
Differential Cache Trace Attack Against

CLEFIA

Chester Rebeiro and Debdeep Mukhopadhyay

Dept. of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India

{chester,debdeep}@cse.iitkgp.ernet.in

Abstract. The paper presents a differential cache trace attack against
CLEFIA, a 128 bit block cipher designed by Sony Corporation. The
attack shows that such ciphers based on the generalized Feistel structures
leak information of the secret key if the cache trace pattern is revealed
to an adversary. The attack that we propose is a three staged attack
and reveals the entire key with 243 CLEFIA encryptions. The attack is
simulated on an Intel Core 2 Duo Processor with a cache architecture
with 32 byte lines as a target platform.

1 Introduction

Cache memory is a small high speed memory which stores recently used data
and instructions. Data present in the cache are accessed more quickly compared
to data not present in cache. Additionally, power consumption while accessing
data inside the cache is less than accesses outside the cache. The differential
behavior in cache memory with respect to time and power have been used to
attack crypto systems [1–7, 10, 11, 13, 14, 16, 17]. Such attacks are known as cache
attacks. Depending on the attackers capabilities, cache attacks are classified
into three : timing attacks, access attacks, and trace attacks. In cache timing

attacks [3, 5, 9, 16, 17] the attacker needs to have access to the encryption time.
Cache access attacks [8, 10] require knowledge of the cache access patterns. These
patterns are generally obtained from a spy process running on the same system
as the cryptographic algorithm.

Cache trace attacks monitor the behavior of cache memory by means of its
power consumption. Bertoni et. al. showed that power profiles of the cache reveal
secret information about the cryptographic algorithm being executed [4]. Their
attack was simulated on a power analysis tool and targeted on a single table
AES implementation. A first round cache trace attack on the standard software
implementation of AES [12] was presented in [7]. This work was extended in [1,
2] to a two round attack. A final round attack on AES was also described here.

All published cache trace attacks have targeted structures in the cipher such
as Figure 1. The figure shows two accesses to table S with indices (in0 ⊕ k0)
and (in1 ⊕ k1). A cache hit occurs when (in0 ⊕ k0) = (in1 ⊕ k1). This results
in lower power consumption and reveals information about the ex-or of the key

S S

in0 in1

k1k0

Fig. 1. Lookup Structure in AES

bits: (k0 ⊕ k1) = (in0⊕ in1). In AES, in order to obtain the actual AES key the
cache trace patterns for two rounds need to be considered.

CLEFIA[15] is a 128 bit block cipher developed by Sony for copyright pro-
tection and authentication. The table access pattern for CLEFIA is depicted in
Figure 2. A straight forward adaptation of the existing cache trace attacks for
CLEFIA is capable of revealing only the value of k0 ⊕ k1 ⊕ k2, and thus has
more ambiguity about the actual key value than for the AES algorithm. Hence
in order to obtain the CLEFIA key, one needs to modify the techniques and
supplement them using the internal round structures or properties in the key
scheduling algorithm of CLEFIA.

S S

k1

k
2

in1in0

k
0

Fig. 2. Lookup Structure in CLEFIA

In this paper we present a cache trace attack for CLEFIA based on the obser-
vations made by Bertoni et. al.[4] that the power consumption gives information
about the cache hit and miss. The work assumes the presence of an Oracle which
returns the cache hit and miss patterns for a given plaintext. The attack makes

use of two chosen plaintexts and exploits key expansion algorithm of CLEFIA.
The complexity of the attack in terms of CLEFIA encryptions is 243 on a cache
with 32 byte cache line.

The outline of the paper is as follows: Section 2 has a brief description of
the block cipher CLEFIA. Section 3 gives an outline of the proposed attack on
the cipher. Section 4 presents the complexity of the attack. Section 5 has the
experimental results. The work is concluded in section 6.

2 The CLEFIA Block Cipher

CLEFIA is a 128 bit block cipher with a generalized Feistel structure. The spec-
ification [15] defines three key lengths of 128, 192, and 256 bits. For brevity, this
paper considers 128 bit keys though the results are valid for the other key sizes.
The structure of CLEFIA is shown in Figure 3. The input has 16 bytes P0 to
P15, grouped into four 4 byte words. There are 18 rounds and in each round the
first and third words are fed into nonlinear functions F0 and F1 respectively.
The output of F0 and F1, collectively known as F functions, are ex-ored with
the second and fourth words. Additionally, the second and fourth words are also
whitened at the beginning and end of the encryption.

The non-linearity in the F functions are created by two sboxes S0 and S1.
These sboxes are in the form of 256 byte look-up tables, and are invoked twice
in each F function, making a total of eight table look-ups per round and 144
(= 8∗18) look-ups per encryption. Equations for functions F0 and F1 are shown
in Equation 1.

F0 :(y0 y1 y2 y3) = (z0 z1 z2 z3) ·M0

F1 :(y0 y1 y2 y3) = (z′0 z′1 z′2 z′3) ·M1
(1)

where

z0 = S0[x0 ⊕ k0] z1 = S1[x1 ⊕ k1] z2 = S0[x2 ⊕ k2] z3 = S1[x2 ⊕ k2]

and

z′0 = S1[x0 ⊕ k0] z′1 = S0[x1 ⊕ k1] z′2 = S1[x2 ⊕ k2] z′3 = S0[x2 ⊕ k2]

The F functions take 4 input bytes, x0, x1, x2, and x3, and 4 round keys, k0, k1,
k2, and k3. After the sbox look-ups, the bytes are diffused by multiplying them
with (4 × 4) matrices M0 and M1 respectively. The M0 and M1 matrices are
defined as follows:

M0 =

1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1

M1 =

1 8 2 A

8 1 A 2
2 A 1 8
A 2 8 1

(2)

The CLEFIA encryption has 4 whitening keys WK0, WK1, WK2, and WK3,
and 36 round keys RK0, · · · , RK35. Key expansion is a two step process. First

WK0 WK10−3 0−3

WK2 WK3
0−3 0−3

C0−C3 C −C C8−C11 C −C12 154 7

P −P −PP P −P P −P

32323232

0 3 4 7 8 11 12 15

F0

RK2

RK40−3

F0
X0−3

X0−2

F0

RK340−3

Y0−18

F0

RK00−3

0−3

Y0−2

Y0−3

X0−1 Y0−1
F1

F1

F1

RK50−3

RK30−3

RK10−3

F1

RK350−3

X0−18 Y1−18

Y1−3

Y1−2X1−2

Y1−1X1−1

X1−3

X1−18

Fig. 3. CLEFIA Block Diagram

a 128 bit intermediate key L is generated from the secret key K using a GFN

function [15]. From this the round keys and whitening keys are generated as
shown below.

Step 1: WK0|WK1|WK2|WK3 ← K

Step 2: For i← 0 to 8
T ← L⊕(CON24+4i |CON24+4i+1|CON24+4i+2 |CON24+4i+3)
L← Σ(L)
if i is odd: T ← T ⊕K

RK4i|RK4i + 1|RK4i + 2|RK4i + 3← T

The function Σ, known as the double swap function, rearranges the bits of L as
shown in Equation 3.

Σ(L)← L(7···63)|L(121···127)|L(0···6)|L(64···120) (3)

From the structure of CLEFIA it is obvious that the knowledge of any set of
4 round keys (RK4i, RK4i + 1, RK4i + 2, RK4i + 3), where i mod 2 = 0, is
sufficient to revert the key expansion process to obtain the secret key. In the
attack on CLEFIA described in this paper, round keys RK0, RK1, RK2, and

RK3 are determined from which L is computed. K can then be obtained from
L by the inverse GFN function.

3 The Attack

The steps involved in the attack is to first obtain the round keys RK0 and RK1
by tracing cache accesses in the first and second round. Then RK4 and RK5 are
computed using the RK0 and RK1 that were obtained. From this, RK2 and 25
bits of RK3 are derived by exploiting CLEFIA’s key expansion algorithm.

3.1 Determining RK0 and RK1

The sbox accesses in the first round of CLEFIA have a structure (Figure 1)
favourable for cache attacks. The equations for the indices to the tables in the
first round is given by:

I10
s0 = P0 ⊕RK00 I10

s1 = P1 ⊕RK01

I11
s0 = P2 ⊕RK02 I11

s1 = P3 ⊕RK03

I12
s0 = P9 ⊕RK11 I12

s1 = P8 ⊕RK10

I13
s0 = P11 ⊕RK13 I13

s1 = P10 ⊕RK12

(4)

Note that Iαi
sβ denotes the index to the ith access to table sβ in round α.

If we make the assumption that no part of the table is present in cache
before the start of encryption, then the first access to each table, ie. I10

s0 and
I10

s1, results in cache misses. A maximum of 6 cache hits (3 in each table) can be
obtained in the first round. This can be forced by starting with random values
for P0 and P1, then varying P2, P3, P8, P9, P10, and P11 in an order such that
Pa is varied before Pb if and only if Pa and Pb access the same sbox and Pa

accesses the sbox before Pb.
In the second round, the indices to the tables S0 and S1 in F0 are given by

equations in (5), where P(0,1,2,3) indicates the concatenation of P0, P1, P2, and
P3.

I20
s0 = P4 ⊕WK00 ⊕ F0(RK0, P(0,1,2,3))0 ⊕RK20

I20
s1 = P5 ⊕WK01 ⊕ F0(RK0, P(0,1,2,3))1 ⊕RK21

I21
s0 = P6 ⊕WK02 ⊕ F0(RK0, P(0,1,2,3))2 ⊕RK22

I21
s1 = P7 ⊕WK03 ⊕ F0(RK0, P(0,1,2,3))3 ⊕RK23

(5)

Four cache hits can be forced in F0 of round two by varying P4, P5, P6, and
P7 in a order as previously defined. This results in a total of 5 cache hits in table
S0. The indices to the table are all the same, ie. I10

s0 = I11
s0 = I20

s0 = I21
s0. We

therefore get the following equalities.

P0 ⊕ P4 = F0(RK0, P(0,1,2,3))0 ⊕RK00 ⊕WK00 ⊕RK20

P2 ⊕ P6 = F0(RK0, P(0,1,2,3))2 ⊕RK02 ⊕WK02 ⊕RK22

(6)

Similarly the 5 cache hits in table S1 result in the following equalities.

P1 ⊕ P5 = F0(RK0, P(0,1,2,3))1 ⊕RK01 ⊕WK01 ⊕RK21

P3 ⊕ P7 = F0(RK0, P(0,1,2,3))3 ⊕RK03 ⊕WK03 ⊕RK23

(7)

For another plaintext Q, with Q0 6= P0 and Q1 6= P1, equations similar to
(6) and (7) can be obtained by tracing cache hits in the first and second rounds.
These are shown in (8).

Q0 ⊕Q4 = F0(RK0, Q(0,1,2,3))0 ⊕RK00 ⊕WK00 ⊕RK20

Q2 ⊕Q6 = F0(RK0, Q(0,1,2,3))2 ⊕RK02 ⊕WK02 ⊕RK22

Q1 ⊕Q5 = F0(RK0, Q(0,1,2,3))1 ⊕RK01 ⊕WK01 ⊕RK21

Q3 ⊕Q7 = F0(RK0, Q(0,1,2,3))3 ⊕RK03 ⊕WK03 ⊕RK23

(8)

From equations in (6),(7),and (8), the fact that P0 ⊕ P2 ⊕P4 ⊕ P6 = Q0⊕Q2⊕
Q4 ⊕Q6, and P1 ⊕ P3 ⊕ P5 ⊕ P7 = Q1 ⊕Q3 ⊕Q5 ⊕Q7 the following equations
can be generated:

P0 ⊕ P4 ⊕Q0 ⊕Q4 = F0(RK0, P(0,1,2,3))0 ⊕ F0(RK0, Q0,1,2,3))0

P2 ⊕ P6 ⊕Q2 ⊕Q6 = F0(RK0, P(0,1,2,3))2 ⊕ F0(RK0, Q0,1,2,3))2

P0 ⊕ P6 ⊕Q0 ⊕Q6 = F0(RK0, P(0,1,2,3))2 ⊕ F0(RK0, Q0,1,2,3))2

P2 ⊕ P4 ⊕Q2 ⊕Q4 = F0(RK0, P(0,1,2,3))0 ⊕ F0(RK0, Q0,1,2,3))0

P1 ⊕ P5 ⊕Q1 ⊕Q5 = F0(RK0, P(0,1,2,3))1 ⊕ F0(RK0, Q0,1,2,3))1

P3 ⊕ P7 ⊕Q3 ⊕Q7 = F0(RK0, P(0,1,2,3))3 ⊕ F0(RK0, Q0,1,2,3))3

P1 ⊕ P7 ⊕Q1 ⊕Q7 = F0(RK0, P(0,1,2,3))3 ⊕ F0(RK0, Q0,1,2,3))3

P3 ⊕ P5 ⊕Q3 ⊕Q5 = F0(RK0, P(0,1,2,3))1 ⊕ F0(RK0, Q0,1,2,3))1

(9)

RK0 can be determined by testing the 232 possibilities against the 8 condi-
tions in (9). In a similar way RK1 can be determined by analyzing cache hits in
F1. The set of equations that should satisfy RK1 are in (10).

P8 ⊕ P12 ⊕Q8 ⊕Q12 = F1(RK0, P(8,9,10,11))0 ⊕ F1(RK0, Q(8,9,10,11))0

P10 ⊕ P14 ⊕Q10 ⊕Q14 = F1(RK0, P(8,9,10,11))2 ⊕ F1(RK0, Q(8,9,10,11))2

P8 ⊕ P14 ⊕Q8 ⊕Q14 = F1(RK0, P(8,9,10,11))2 ⊕ F1(RK0, Q(8,9,10,11))2

P10 ⊕ P12 ⊕Q10 ⊕Q12 = F1(RK0, P(8,9,10,11))0 ⊕ F1(RK0, Q(8,9,10,11))0

P9 ⊕ P13 ⊕Q9 ⊕Q13 = F1(RK0, P(8,9,10,11))1 ⊕ F1(RK0, Q(8,9,10,11))1

P11 ⊕ P15 ⊕Q11 ⊕Q15 = F1(RK0, P(8,9,10,11))3 ⊕ F1(RK0, Q(8,9,10,11))3

P9 ⊕ P15 ⊕Q9 ⊕Q15 = F1(RK0, P(8,9,10,11))3 ⊕ F1(RK0, Q(8,9,10,11))3

P11 ⊕ P13 ⊕Q11 ⊕Q13 = F1(RK0, P(8,9,10,11))1 ⊕ F1(RK0, Q(8,9,10,11))1

(10)

3.2 Determining RK4 and RK5

RK4 and RK5 are determined by third round cache hits. To determine the first
and third bytes of RK4, the plaintext bytes P0, P2, P9, P11, P4, and P6 are set

in that order, so that cache hits are obtained in the first and second round in
table S0. Cache hits in S0 in the third round F0 are obtained by varying P8 and
P10. However several cache hits may be obtained this way due to collisions with
indices in F1 the second round. However, the only values of P8 and P10 that are
of interest have collisions in S0 accesses of the F0 functions in the first, second,
and third rounds. That is, I10

S0 = I11
S0 = I20

S0 = I21
S0 = I30

S0 = I30
S1. From

I10
S0 = I30

S0 we obtain,

RK40 = P0 ⊕ P8 ⊕RK00 ⊕ F0(RK2, P(4,5,6,7) ⊕WK0⊕ F0(RK0, P(0,1,2,3)))0
(11)

where WK0⊕RK2 is obtained from (6) and (7).

WK0⊕RK2 = P(0,1,2,3) ⊕ P(4,5,6,7) ⊕ F0(RK0, (P(0,1,2,3))⊕RK0 (12)

Similarly RK42 is computed.

RK42 = P0⊕P10⊕RK00⊕F0(RK2, P(4,5,6,7)⊕WK0⊕F0(RK0, (P(0,1,2,3)))2
(13)

The two other bytes, RK41 and RK42, can be similarly computed by considering
cache hits in S1 in function F0 in the first, second, and third round.

RK41 = P1 ⊕ P9 ⊕RK01 ⊕ F0(RK2, P(4,5,6,7) ⊕WK0⊕ F0(RK0, P(0,1,2,3)))1

RK43 = P1 ⊕ P11 ⊕RK01 ⊕ F0(RK2, P(4,5,6,7) ⊕WK0⊕ F0(RK0, P(0,1,2,3)))3
(14)

In a similar manner, RK5 can be determined by considering cache hits in the
first, second, and third rounds in function F1. The equations for computing RK5
are presented in (15).

RK50 = P0 ⊕ P8 ⊕RK00 ⊕ F1(RK2, P(12,13,14,15) ⊕WK1⊕ F1(RK1, P(8,9,10,11)))0

RK51 = P1 ⊕ P9 ⊕RK01 ⊕ F1(RK2, P(12,13,14,15) ⊕WK1⊕ F1(RK1, P(8,9,10,11)))1

RK52 = P0 ⊕ P10 ⊕RK00 ⊕ F1(RK2, P(12,13,14,15) ⊕WK1⊕ F1(RK1, P(8,9,10,11)))2

RK53 = P1 ⊕ P11 ⊕RK01 ⊕ F1(RK2, P(12,13,14,15) ⊕WK1⊕ F1(RK1, P(8,9,10,11)))3
(15)

3.3 Determining RK2 and RK3

In the key expansion algorithm, if i = 0 then T = RK0|RK1|RK2|RK3, and

T = L⊕ (CON24|CON25|CON26|CON27)

64 bits of the key dependent constant L can be computed using the values of
RK0 and RK1, which were determined in the first stage of the attack.

(L0|L1) = (RK0|RK1)⊕ (CON24|CON25) (16)

The double swap operation on L places 57 known bits of L in the lower bit
positions. Let the new L after double swap be denoted by L′.

L′

(0···56) = L(7···63) (17)

Again, in the key expansion algorithm, if i = 1, then T = RK4|RK5|RK6|RK7.
This is represented in equation form as

T = L′ ⊕ (CON28|CON29|CON30|CON31)⊕ (WK0|WK1|WK2|WK3) (18)

Therefore,

WK0|WK1(0···24) = L′(0 · · · 56)⊕ (CON28|CON29(0···25))⊕ (RK4|RK5) (19)

Thus it is possible to ascertain WK0 and 25 bits of WK1. WK0 ⊕ RK2 and
WK1⊕ RK3 have been determined in the second step of the attack. With the
knowledge of WK0 and WK10···24 the whole of RK2 and 25 bits of RK3 can
be determined.

4 Analysis of the Attack

Cache memories in practice have a cache line consisting of m bytes (m is a power
of 2, say 2l). Two table indices are considered equivalent if they access the same
cache line. In such cases only the (8 − m) most significant bits of the indices
are equal. The result is an ambiguity in the detection of cache hits. A cache hit
would mean 2l possible indices for access.

Determining RK0 requires cache hits in the table S0 for the accesses I11
s0,

I12
s0, I13

s0, I20
s0, and I21

s0, and in the table S1 for accesses I11
s1, I12

s1, I13
s1,

I20
s1, I21

s1. Finding a cache hit is done by iterating the respective plaintext
byte through the 28 possibilities. The accesses for each table S0 and S1 are
independent and can be done in parallel. Obtaining all the cache hits would
therefore require 5×28 < 211 CLEFIA invocations. Hence for P and Q plaintexts
finding all cache hits would need 212 encryptions. These cache hits define values
for the plaintext bytes P2, P3, P4, P5, P6, P7 and Q2, Q3, Q4, Q5, Q6, Q7.
Considering the cache line, there are 212l possible combinations of these plaintext
bytes. Each of these combinations have to be tested in the eight equations in
(9). The tests are done for each of the 232 possible RK0 values.

For a given set of plaintext bytes, there are at-most 16 values of RK0 that
satisfy all conditions in (9). To understand why 16 values of RK0 are obtained,
consider the right hand side of (9). This can be represented in the form of the
diffusion stage of the F0 function as follow:

1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1

zp0

zp1

zp2

zp3

⊕

1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1

zq0

zq1

zq2

zq3

(20)

zpi and zqj (0 ≤ i ≤ 3, 0 ≤ j ≤ 3) are the output of the sbox for the P

and Q plaintexts respectively. Because of the injective sbox, the zp’s and zq’s
uniquely identify an RK0. Moreover the result of the computation (20) is not
altered if bytes of zpi are interchanged with zqj for i = j. This leads to 24

possible combinations, thus resulting in 16 different RK0 keys that satisfy all
the conditions in (9).

In all there are 24+12l possible values for RK0 and an equal number of pos-
sible values for RK1. The values for RK1 are determined by an independent
process requiring 212 more CLEFIA encryptions.

Determining the bytes of RK4 requires cache hits in F0 in the first, second,
and third rounds. Using the plaintext bytes found previously, required cache hits
in the third round are obtained by setting appropriate values to P8, P9, P10, and
P11. This requires 4× 28 CLEFIA encryptions and produces 24l possible combi-
nations. Solving equations (12), (13), and (14) for each of the RK0 determined
in the previous step would result in 24+12l+4l possible values for RK4. Similarly
RK5 will have an equal number of options.

With the knowledge of RK0, RK1, RK4, and RK5, the whole of RK2 and
25 bits of RK3 is determined. There are 24+16l+7 possible values for all bits of
RK2 and RK3. The 27 additional keys are due to the unsolved 7 bits in RK3.

All the possible keys have to be checked by brute force for correctness. The
total complexity of the attack in terms of CLEFIA encryptions is thus of the
order of 211+16l.

5 Experimental Results

The attack was simulated using an Oracle for the CLEFIA encryptions. The
Oracle is queried with the plaintext and it returns the cache access patterns for
each table S0 and S1. For every modification of the plaintext byte the Oracle
is queried until the desired cache access pattern is obtained. The required cache
access pattern is obtained with probability one.

Once the required cache hits are obtained, equations (9) and (10) are tested
for different values of RK0 and RK1. There are 232 possible values for each
RK, but they can be done in parallel as they are independent. Each of the
possible RK0 and RK1 key values result in 24l possible RK4 and RK5 keys.
Determination of RK4 and RK5 cannot be parallelized as is seen from (12),
(13), (14) and (15). From this stage in the attack, there is a single RK2 and 128
values of RK3 for each (RK0, RK1, RK4, RK5) tuple.

To determine the time required for the attack, we used a CLEFIA reference
code where the sbox elements are unsigned int values. The objective of keeping
unsigned int is justified to increase the speed of encryptions[16]. Most embedded
microcontroller systems have a 32 byte cache line. The number of table elements
sharing one cache line is therefore 4, or l = 2, yielding an attack complexity of
243 encryptions. On an Intel Core 2 Duo the time for this attack took 1 hour
and 30 minutes.

6 Conclusion

In this paper we have shown that the block cipher CLEFIA can be attacked
using cache trace patterns. We proposed a three staged attack to ascertain the
key. We have further analyzed the attack to explain the reductions in key space
achieved by the steps and corresponding equations obtained in the attack. The
entire attack has been simulated on a reference CLEFIA code on an Intel Core
2 Duo machine, targeting as 32 byte cache architecture. The complexity of the
attack has been shown to be 243 and requires around 1 hour and 30 minutes for
the complete attack.

References

1. Acıiçmez, O., Çetin Kaya Koç: Trace-driven cache attacks on aes. Cryptology
ePrint Archive, Report 2006/138 (2006), http://eprint.iacr.org/

2. Aciiçmez, O., Çetin Kaya Koç: Trace-Driven Cache Attacks on AES (Short Paper).
In: Ning, P., Qing, S., Li, N. (eds.) ICICS. Lecture Notes in Computer Science,
vol. 4307, pp. 112–121. Springer (2006)

3. Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep. (2005)
4. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES Power

Attack Based on Induced Cache Miss and Countermeasure. In: ITCC (1). pp.
586–591. IEEE Computer Society (2005)

5. Bonneau, J., Mironov, I.: Cache-Collision Timing Attacks Against AES. In:
Goubin, L., Matsui, M. (eds.) CHES. Lecture Notes in Computer Science, vol.
4249, pp. 201–215. Springer (2006)

6. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side Channel Cryptanalysis of Prod-
uct Ciphers. J. Comput. Secur. 8(2,3), 141–158 (2000)

7. Lauradoux, C.: Collision attacks on processors with cache and countermeasures.
In: Wolf, C., Lucks, S., Yau, P.W. (eds.) WEWoRC. LNI, vol. 74, pp. 76–85. GI
(2005)

8. Neve, M., Seifert, J.P.: Advances on Access-Driven Cache Attacks on AES. In:
Biham, E., Youssef, A.M. (eds.) Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 4356, pp. 147–162. Springer (2006)

9. Neve, M., Seifert, J.P., Wang, Z.: A Refined Look at Bernstein’s AES Side-Channel
Analysis. In: Lin, F.C., Lee, D.T., Lin, B.S., Shieh, S., Jajodia, S. (eds.) ASIACCS.
p. 369. ACM (2006)

10. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Pointcheval, D. (ed.) CT-RSA. Lecture Notes in Computer Sci-
ence, vol. 3860, pp. 1–20. Springer (2006)

11. Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel
(2002)

12. Paulo S. L. M. Barreto: The AES Block Cipher in C++,
http://www.larc.usp.br/ pbarreto/AES++.zip

13. Rebeiro, C., Mondal, M., Mukhopadhyay, D.: Pinpointing Cache Timing Attacks
on AES. In: VLSI Design. IEEE Computer Society (2010), To Appear

14. Rebeiro, C., Mukhopadhyay, D., Takahashi, J., Fukunaga, T.: Cache Timing At-
tacks on Clefia. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT. Lecture Notes in
Computer Science, vol. 5922. Springer (2009), To Appear.

15. Sony Corporation: The 128-bit Blockcipher CLEFIA : Algorithm Specification
(2007)

16. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
Implemented on Computers with Cache. In: Walter, C.D., Çetin Kaya Koç, Paar,
C. (eds.) CHES. Lecture Notes in Computer Science, vol. 2779, pp. 62–76. Springer
(2003)

17. Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of Block
Ciphers Implemented on Computers with Cache. In: International Symposium on
Information Theory and Its Applications. pp. 803–806 (2002)

