
Scalability and Security Conflict for RFID
Authentication Protocols

Imran Erguler1,2, Emin Anarim2

1 National Research Institute of Electronics and Cryptology, TUBITAK-UEKAE PO
Box 74, 41470, Gebze, Kocaeli, Turkey

2 Electrical-Electronics Engineering Department, Bogazici University, 34342 Bebek,
Istanbul, Turkey

ierguler@uekae.tubitak.gov.tr, anarim@boun.edu.tr

Abstract. Many RFID authentication protocols have been proposed to
preserve security and privacy. Nevertheless, most of these protocols are
analyzed and it is shown that they can not provide security against some
RFID attacks. Moreover, some of the secure ones are criticized, because
they suffer from scalability at the reader/server side as in tag identifica-
tion or authentication phase they require a linear search depending on
number of tags in the system. Recently, new authentication protocols
have been presented to solve scalability issue, i.e. they require constant
time for tag identification with providing security. In this paper, we ana-
lyze two of these new RFID authentication protocols SSM (very recently
proposed by Song and Mitchell) and LRMAP (proposed by Ha et al.)
and to the best of our knowledge, they have received no attacks yet.
These schemes take O(1) work to authenticate a tag and are designed
to meet the privacy and security requirements. The common point of
these protocols is that normal and abnormal states are defined for tags.
In the normal state, server authenticates the tag in constant time, while
in the abnormal state, occurs rarely, authentication is realized with lin-
ear search. We show that, however, these authentication protocols do
not provide untraceability which is one of their design objectives. We
also discover that the SSM protocol is vulnerable to a desynchronization
attack, that prevents a legitimate reader/server from authenticating a
legitimate tag. Furthermore, in the light of these attacks, we conclude
that allowing tags to be in different states may give clue to an adver-
sary in tracing the tags, although such a design is preferred to achieve
scalability and efficiency at the server side.

1 Introduction

RFID systems are expected to be the main communication devices in
ubiquitous environment with many applications in manufacturing, sup-
ply chain management and inventory control. Because of low production
costs and small size, RFID technology is envisioned as a replacement
for traditional identification methods such as bar codes. A typical RFID

system has three components: tags, one or more readers, and a backend
server.

Since memory and computation power of a low-cost RFID tag is
limited, it is not feasible to implement computationally intensive cryp-
tographic algorithms. It is an interesting task to design authentication
protocols for low-cost RFID tags to resist all possible attacks and threats
with obeying RFID implementation constraints. Solving this delicate task
has recently aroused interest of security community and many authenti-
cation protocols have been proposed for RFID security. A considerable
part of the research has provided solutions to the anonymous authenti-
cation problem in RFID. However, currently available solutions either do
not provide security and privacy [1–10] or suffer from scalability issues as
the number of tags in the system is very large [5, 11]. The main reason
leading to scalability and security conflict is the hardware constraints on
RFID tags, which has so far limited implementation of cryptography in
tags to symmetric-key algorithms. The symmetric-key approaches with
the anonymous setting result in the difficulty that the server must first
decide which secret should be used to identify/authenticate the tag. As a
consequence, the server must perform a brute force search in its database
to identify a tag. That is, for each tag entry in the database, it computes
a symmetric cryptographic operation with the corresponding tag’s secret
and check whether or not the result matches with the received result
produced by the present tag. Such a tedious search procedure will cause
scalability issues as the tag population increases.

Recently, new RFID protocols have been proposed to reduce compu-
tational load on the back-end database, i.e. solving scalability problem
with claiming that they provide security requirements [9, 10, 12, 13]. Usu-
ally, these protocols use look-up tables to find the match in the search
process, so they need only O(1) effort to identify a tag.

In this study, we investigate security performance of two new proto-
cols which have received no attacks yet. The first protocol has been very
recently proposed by Song and Mitchell [12] denoted as SSM (Scalable
Song Mitchell protocol) and the second protocol, LRMAP, has been pre-
sented by Ha et al. [13]. The common point of these two protocols is that
more than one state is defined for RFID tags, such as the state for regular
cases and the state for irregular cases respectively. In the regular state,
server authenticates the tag in constant time, while in the irregular state
authentication is realized with classic exhaustive search.

For both protocols it has been shown that they guarante untraceabil-
ity, authentication, and robustness against replay and spoofing attacks.

In this paper, we present different attacks to show that the two proto-
cols do not achieve their design objective of untraceability. Our attacks
mainly benefit from the fact that RFID tags are allowed to be in differ-
ent states according to the protocol descriptions which leads to a hint
in distinguishing the tags from the perspective of an adversary. Besides,
we point out that the SSM scheme has a weakness in the secret update
procedure and describe a desynchronization attack on it. The rest of this
paper is organized as follows. Section 2 reviews the SSM and the LRMAP
protocols. In Section 3 we describe the attacks for each scheme, which is
followed by our conclusions in Section 4.

2 Review of the Protocols

In this section, we briefly review the protocols SSM and LRMAP. We use
the following notations to simplify the descriptions.

T RFID tag or transponder
R RFID reader or transceiver
DB The back-end database
ID Identity of a tag, L bits
HID Hashed value of ID, L bits
PID Previous identity of a tag used in previous session, L bits
rR Random nonce generated by reader R
rT Random nonce generated by tag T
SY NC State of T
H() One-way hash function
e(), f(), g() Keyed one-way hash functions of SSM
SecReq Secret update request message
L(x) Left half of input message x
R(x) Right half of input message x
|| Concatenation operator
N Number of tags

2.1 The SSM Protocol

In 2009, Song and Mitchell proposed a scalable RFID authentication pro-
tocol [12] to outcome the scalability problem mentioned in the previous
section. For this model, DB stands for the back-end server and the reader.
Initially, secret si is a string of l bits assigned to Ti and ki = H(si) is
computed by the server. In addition, DB chooses a random l-bit string

x0, and computes the hash-chain values xi = ek(xi−1) for 1 ≤ i ≤ m,
where the values xi are used as tag identifiers and m is the length of the
hash-chain. In this scheme, DB stores secrets si-ki for each tag Ti as well
as the most recent secrets ŝi-k̂i and the identifiers x0, x1, · · · , xm as the
entries for each tag in its look-up table. On the other hand, each Ti stores
k, x and xm, where x is initially set to x0. A step by step description of
the SSM is given below:

– DB generates a random lr-bit string rR, and sends it to T .
– When T receives rR, it compares its stored values of x and xm.

• If x 6= xm, then T calculates MT = fk(rR||x) and updates its
identifier x to ek(x). T transmits rR, x and MT to DB. If the
updated x is equal to xm, T waits for DB response, keeping rR

and MT in short term memory.
• If x = xm, T generates a random number rT and computes M1 =

fk(rR||rT) and M2 = rT ⊕ x. Then, the tag sends rR, M1 and M2

back to DB with a request for an update of the shared secrets as
SecReq. T waits for the server response, keeping rR, rT and M1

in its short term memory.
– When DB receives the messages one of the following cases is per-

formed:
• If DB receives x and MT , it executes the following steps: Firstly,
DB searches its look-up table for a value xi equal to the received
value of x. If such a value is found, it identifies the tag. Otherwise,
the session terminates. Next, DB checks that fk(rR||xi−1) equals
the received value of MT , where k is the key belonging to the iden-
tified tag T . If this verification succeeds, then DB authenticates
T . Otherwise, the session terminates.
∗ If x 6= xm, then the authentication session terminates success-

fully.
∗ However, if x = xm, then the server starts a regular secret

update process. Firstly, DB chooses a random l-bit string s′

and an integer m′, and computes a key k′ = H(s′) and a se-
quence of m′ identifiers x′i = ek′(x′i−1) for 1 ≤ i ≤ m′, where
x′0 is set to x. Then, DB computes MS = gk(rR||x||MT) ⊕
(s||k′||x′m′), and sends rR and MS to T . Finally, DB updates
the set of stored values for T from (ŝ, k̂, s, k, x0, x1, · · · , xm) to
(s, k, s′, k′, x, x′1, · · · , x′m′).

• If DB receives rR, M1, M2 and SecReq from DB, then the server
starts an irregular secret update process. Firstly, DB searches its
look-up table for a value x = xm or x = x0 for which M1 =

fk(rR||(M2 ⊕ x)). If such a value is found, DB authenticates the
tag. Otherwise, the session terminates.
∗ If x = xm, it means that although T sent x = xm to DB in the

previous session, DB did not receive it correctly. Hence, neither
server nor tag have updated their shared secrets. In this case,
DB performs the following steps. DB chooses a random l-bit
string s′ and an integer m′, and computes a key k′ = H(s′)
and a sequence of m′ identifiers x′i = ek′(x′i−1) for 1 ≤ i ≤
m′, where x′0 is set to x. After DB computes rT = M2 ⊕ x
and MS = gk(rR||rT ||M1)⊕ (s||k′||x′m′), and sends rR and MS

to T . Last, DB updates the set of stored values for T from
(ŝ, k̂, s, k, x0, x1, · · · , xm) to (s, k, s′, k′, x, x′1, · · · , x′m′).

∗ If x = x0, it means that MS did not reach T correctly in
the previous session, and thus T did not update its secrets, al-
though DB did. In this case, the following steps are done by the
server. DB computes rT = M2⊕x and MS = gk(rR||rT ||M1)⊕
(ŝ||k||xm), and sends rR and MS to T

– If T receives rR and MS , it calculates (s||k′||x′m′) as the following: If
M1, M2 and SecReq is sent by T in the first step, then (s||k′||x′m′) =
MS ⊕ gk(rR||rT ||M1), however if MT is sent in the first step then
(s||k′||x′m′) = MS ⊕ gk(rR||x||MT) is evaluated. Next, if H(s) is equal
to k, T authenticates DB and updates k and xm to k′ and x′m′ ,
respectively. The secret update session then terminates successfully.
Otherwise, the session is ended.

The protocol is shown in Figure 1.

2.2 The LRMAP

LRMAP is a mutual authentication protocol proposed by Ha et al. [13].
The major advantage of the scheme compared to other protocols is that
the LRMAP reduces the computational load on the back-end database by
putting the tags in two different states. That is, if the tag is synchronized
state the protocol only requires 3 hash operations in the database even
number of tags in the system is large. In the case of desynchronization,
the recovery time in desynchronization state is N + 3 hash operations on
average, where N denotes the number of tags. However, since desynchro-
nization of a tag is a special and unusual state, the normal synchronization
state only requires 3 hash operations.

Data Base / Reader Tag

[ŝ, k̂, s, k, x0, · · · , xi · · · , xm] [k, x, xm]

rR

Generate rR - If x 6= xm,
MT = fk(rR||x)
x ← ek(x)

{rR, x, MT }
¾

Case 1:
Search for xi = x in the DB
Check MT = fk(rR||xi−1)

Case 2:
If x = xm,
MS = gk(rR||x||MT)⊕ (s||k′||x′

m′) {rR, MS}
Update secrets for Tag - (s||k′||x′

m′) = MS ⊕ gk(rR||x||MT)

ŝ ← s, k̂ ← k, s ← s′, k ← k′, x0 ← x If H(s) = k,
xi(1 ≤ i ≤ m) ← x′i(1 ≤ i ≤ m′) k ← k′, xm ← x′

m′

If x = xm,
Generate rT

M1 = fk(rR||rT)
M2 = rT ⊕ x)

{rR, M1, M2, SecReq}
Case 3: ¾
Search for x = xm or x0 in the DB
for which M1 = fk(rR||(M2 ⊕ x))
rT = M2 ⊕ x
If x = xm,
MS = gk(rR||rT ||M1)⊕ (s||k′||x′

m′)
If x = x0,
MS = gk(rR||rT ||M1)⊕ (ŝ||k||xm) {rR, MS}

-
Update secrets for Tag (s||k′||x′

m′) = MS ⊕ gk(rR||rT ||M1)
s ← s′, k ← k′, x0 ← x If H(s) = k,
xi(1 ≤ i ≤ m) ← x′i(1 ≤ i ≤ m′) k ← k′, xm ← x′

m′

Fig. 1. The SSM Protocol

The back-end database DB manages the ID, hashed values HID, and
PID for each T in the database field. According to the state of the tag,
the DB finds the ID for the current session or PID used for the previous
session by comparing the received message with the HID and PID.

A step by step description of the LRMAP is given below:

– R challenges T with a random nonce rR.
– T chooses a random nonce rT and computes P differently according to

the state of SY NC. If SY NC = 0, then P = H(ID), otherwise P =
H(ID||rT). Next computes Q = H(ID||rT ||rR) and sets SY NC = 1.
T responds with {P, L(Q), rT }.

– R delivers the messages from T to DB with rR.
– DB firstly searches P with the HID values stored in the database. If

the values match, DB regards the ID as the identity of T . This is a
general case when the previous session is closed normally. IfDB cannot
find any match in the first searching case, then computes H(ID||rT)
compares it with P . However, if DB still cannot find the ID of T
in the second search, it then computes H(PID||rT) and compares it
with P . DB gets a match in the third search process when R’s last
messages were blocked in the previous session, that is, SY NC = 1
and DB updated the ID, but ID of the tag was not updated. If DB
finds a match in any of the three searching cases, PID is updated to
ID for the first or second search or set to PID for the third search.
Then it calculates Q′ = H(PID||rT ||rR) and checks whether or not
L(Q′) is equal to L(Q). If it holds, DB sends R(Q′) to R and sets
ID = H(PID||rR) and HID = H(ID).

– R forwards received R(Q′) to T .
– If R(Q′) = R(Q), then T updates its ID as ID = H(ID||rR) and sets

SY NC = 0.

The protocol is depicted in Figure 2.

3 The Attacks

In this section, we present concrete attacks to both SSM and LRMAP
protocols. In our attack models, it is assumed that the adversary can
eavesdrop, block, modify, and inject messages in any communication be-
tween a reader and a tag. We apply tracking attacks on these protocols
and show that they do not achieve their design objective of untraceabil-
ity. Additionally, we describe a denial of service (DoS) attack for SSM
such that an adversary can permanently desynchronize the interactions
between a server and a tag.

Data Base / Reader Tag
[ID, HID, PID] [ID, SY NC]

rR

Generate rR - Generate rT

If SY NC = 0, P = H(ID)
else P = H(ID||rT)
Q = H(ID||rT ||rR), SY NC = 1

{P, L(Q), rT }
¾

If P = H(ID), PID = ID
else if P = H(ID||rT), PID = ID
else if P = H(PID||rT), PID = PID

Q′ = H(PID||rT ||rR)
If L(Q′) = L(Q),
ID = H(PID, rR), HID = H(ID)

R(Q′)
-

If R(Q′) = R(Q)
ID = H(ID||rR), SY NC = 0

Fig. 2. The LRMAP Protocol

3.1 Tracking Attack for SSM

Intuitively, a protocol satisfies untraceability if an adversary is not able
to recognize a tag he has previously observed [14]. Issue of untraceability
is treated formally in security models, such as by Avoine [15] and Juels-
Weis [16]. According to [16] as a formal definition, untraceability can be
defined in terms of privacy experiments. The aim of the adversary in
this experiment is to distinguish between two different tags within the
limits of its computational power and functionality-call bounds. Instead
of reproducing the detailed untraceability model definitions of the [16],
we use the terms given in [14]. The privacy experiment consists of two
phases: The learning phase and the challenge phase. In the former, the
adversaryAmay initiate a communication with the readerR (ReaderInit)
or tags T (TagInit). Then he may interact with them according to the
corresponding protocol steps. In the challenge phase, the adversary selects
two tag candidates Ti and Tj to be tested. Then he chooses one of these
tags randomly, called T ∗ and A is given access to this tag. The adversary
may again interact with the reader and the tags. Eventually, A terminates
the test and decides whether the selected tag is Ti or Tj . If the adversary

has a non-negligible advantage in successfully guessing the selected tag,
then he succeeds in attack and the protocol is not untraceable.

According to the SSM protocol specification: If x 6= xm at the tag side,
then T transmits rR, x and MT to DB. However, if x = xm, T responds
to the reader with rR, M1, M2 and SecReq. Thus, response types of the
tag gives a hint about the state of a tag and this is the main idea behind
the attack.

It is very likely that for most of the tags x 6= xm, because this cor-
responds regular case. Nevertheless, x 6= xm for a tag can be assured by
executing the Algorithm Tag Reset given below. In this algorithm, an ad-
versary queries a tag until observing the event that the tag has x = xm

and responds with rR,M1,M2 and SecReq messages. Then, a successful
authentication and irregular secret update process between the server and
the tag is observed. After these steps the adversary is sure that in the
next query of the tag it will not wait for a secret update, because m ≥ 1
i.e. x 6= xm.

Algorithm Tag Reset

– A initiates communication with Ti using TagInit.
– A transmits some random nonce rA to Ti.
– A repeats the above two steps till Ti responds with SecReq.
– A initiates communication with DB using ReaderInit and gets rR.
– A initiates communication with Ti using TagInit.
– A transmits rR to Ti.
– A delivers Ti response {rR,M1,M2, SecReq} to DB.
– A transmits DB response {rR, MS} to Ti.

For the privacy experiments, the adversary follows the attack as de-
scribed below. We suppose for the selected tags x 6= xm (This can be
realized easily by running the Algorithm Tag Reset as mentioned above).
Thus, in this case for the first query of the tags, they will not request a
secret update from the server. In the learning phase of the attack, two
tags Ti and Tj are selected and tag Ti is put into state such that x = xm.
This can be done by simultaneously querying Ti until observing the re-
sponses rR,M1,M2, SecReq.

Learning Phase

– A randomly chooses a pair of distinct tags Ti and Tj.
– A initiates communication with Ti using TagInit.

– A transmits some random nonce rA to Ti.
– A repeats the previous two steps till Ti responds with SecReq.

In the challenge phase, the adversary only the queries the selected tag
once and observes the response. Then he checks whether the tag response
includes SecReq message or not: If the selected tag is Ti, then it answers
the query with rR,M1,M2 and SecReq messages, since x = xm for Ti. On
the other hand if the selected tag is Tj , then it responds with rR, x and
MT due to x 6= xm.

Challenge Phase

– A takes Ti and Tj as its challenge candidates.
– A transmits some random nonce rA to the selected tag T ∗.
– A observes T ∗ response.
– If T ∗ response includes SecReq message, A decides T ∗ = Ti. Other-

wise guesses T ∗ = Tj.

3.2 Denial of Service Attack for SSM

In this part, it is shown that the SSM protocol is vulnerable to a denial
of service attack, in which an adversary can update a tag’s secret to a
random value. Consequently, the tag is desynchronized with the server
and authentication of the tag is prevented. Our attack can be launched
to any tag that is in state x = xm and requesting secret update. Note that
an attacker can easily put any tags to this state by running the Learn-
ing Phase of the previous attack. As the DB responds with {rR,MS}
pair to secret update request of T , an active adversary can intercept and
block the message from reaching the tag. Then he forges a second mes-
sage {rR, M̂S} such that M̂S = MS⊕(0||r1||r2) and r1, r2 are l-bit strings
other than zero. Next, the adversary sends the modified value, {rR, M̂S},
to the tag. T firstly computes M̂S⊕gk(rR||rT ||M1) and obtains (s||k̂||x̂m),
where k̂ = k′ ⊕ r1 and x̂m = x′m′ ⊕ r2. The modified secrets are accepted
by the tag, because H(s) = k is verified. Thus, at the end of the attack
execution, DB and T update their secrets to different values. The server
stores (s, k, s′, k′, x, x′1, · · · , x′m′), while the tag stores k̂ and x̂m. In the
next query of the tag, it sends x and MT to the server, where x = ek̃(x)
and MT = fk̂(rR||x). When DB receives x, it will not find a match in
the look-up table such that a value xi equal to the received value of x.
Furthermore, x̂m is not in the keyed hash chain list of ek̂(x), so the tag
will not request a secure update in the future queries neither. Therefore,

the reader and tag will be in a desynchronized state and future authenti-
cation of the tag becomes impossible. The steps of this desynchronization
attack are given below:

DoS Attack

– A takes Ti as its target tag.
– A initiates communication with Ti using TagInit.
– A transmits some random nonce rA to Ti.
– A repeats the previous two steps till Ti responds with SecReq.
– A initiates communication with DB using ReaderInit and gets rR.
– A initiates communication with Ti using TagInit.
– A transmits rR to Ti.
– A delivers Ti response {rR,M1,M2, SecReq} to DB.
– A blocks DB response {rR,MS} from reaching to Ti.
– A forges a second message {rR, M̂S} : M̂S = MS ⊕ (0||r1||r2).
– A sends the modified value, {rR, M̂S}, to Ti.
– Ti computes M̂S⊕gk(rR||rT ||M1) and gets (s||k̂||x̂m), where k̂ = k′⊕r1

and x̂m = x′m′ ⊕ r2.
– Ti verifies H(s) = k and updates the secrets as k̂ and x̂m, while they

are stored as k′ and x′m′ at DB. Thus DB will not able to identify or
authenticate Ti in the future sessions

3.3 Timing Attack for LRMAP

According to the LRMAP protocol specification, if SY NC of the tag is
0, the tag sets P = H(ID), otherwise computes P = H(ID||rT). Then it
responds to the reader with {P, L(Q), rT }. On the DB/R side, DB firstly
compares the received P with the HID values stored in the database.
If a match exists, the DB regards the ID as the identity of the tag and
concludes SY NC = 0 for the present tag. This is the case when the
previous session is closed normally. This process requires one table-lookup
and reader returns in constant time. On the other hand, if the DB cannot
find the HID in the first searching case, then it computes H(IDi||rT)
value for 1 ≤ i ≤ N until a match is found between P and the computed
value. However, if the DB still cannot find the ID of tag in above two
cases, then it computes H(PIDi||rT) value for 1 ≤ i ≤ N and compares
it with P till the match is found. After a match is obtained in any of three
cases, the reader responds with R(Q′). Notice that if SY NC = 0, then R
returns in constant time since first search only requires one table lookup.
However if SY NC = 1, DB makes about N/2 hash operations for the

second search and N +N/2 hash operations for the third search. Thus, an
adversary can potentially distinguish between tags with SY NC = 0 and
tags with SY NC = 1 by timing server responses. A tag with SY NC = 0
only requires a server to perform a fast table look-up, whereas a tag with
SY NC = 1 requires it to perform an exhaustive search. In fact, this is
the main idea behind our attack.

Assume first search costs τ1 time and each hash operation requires τ2

time. Let t1, t2 and t3 represent the average elapsed time between the sec-
ond and third message flow for the cases; the single search, two searches
(1st, 2nd search) and three searches (1st, 2nd, 3rd search) respectively.
Also suppose θ stands for other time costs such as time loss due to com-
munication layer etc. From this fact, the response time of the reader on
average can be defined as:

1- If SY NC = 0, only the first search is done in DB, so t1 = τ1+τ2+θ.

2- If SY NC = 1 and match is in 2nd search, t2 = τ1 +(N
2 +1) · τ2 + θ.

3- If SY NC = 1 and match is in 3rd search, t3 = τ1 +(3N
2 +1) ·τ2 +θ.

The attack may have a training phase to estimate values of t1, t2 and
t3. For example, Table 1 gives some practical values for t1, t2 and t3. In
this example, it is assumed that the system relies on a single computer
which takes 2−23 seconds to carry out a hash operation and the number
of tags in the system is 220. According to the these values, one can see
that there is a dramatic difference between t1, t2 and t3.

It is very likely that most of the tags have SY NC = 0. In fact, the
protocol is designed with the assumption that most of the tags will be
in this state. Hence, the adversary can estimate the approximate value
of t1, by observing successful authenticated protocols between the reader
and tags and noting the time intervals that the reader respond in the
third message flow. Also, to approximate t2, the adversary firstly puts
a tag into SY NC = 1. He can realize this by challenging the tag and
ending the protocol before sending the third message. Then the adversary
observes a successful authentication with the reader by only considering
time responses. Lastly, the adversary observes a successful authentication
with the reader, to estimate t3, but now prevents the third flow from
reaching the tag. It puts the tag out of the synchronization and SY NC =
1, because while the DB updates the ID, the tag does not. Next, the

adversary allows the reader and the tag to run the protocol again without
intervening them and records the elapsed time for the reader response.
Note that, for this case, the reader realizes the third search, since the tag
is desynchronized from the previous action. Thus, the adversary obtains
information about t3. The adversary may repeat the above steps for some
number of times to get expected values of t1, t2 and t3.

Table 1. Practical values for t1, t2 and t3. It is assumed that N = 220 and the server
has capability make one hash operation in 2−23 seconds. Since τ1 and θ are common
for all of three parameters, they are skipped in calculation .

Parameter Time (millisecond)

t1 0.0001

t2 62.5

t3 187.5

For the privacy experiments, the adversary can follow the attack as
follows. In the learning phase, two tags Ti and Tj are selected and tag Ti

is put into state SY NC = 1. This can be done as mentioned above.

Learning Phase

– A randomly chooses a pair of distinct tags Ti and Tj.
– A initiates communication with Ti using TagInit.
– A transmits some random nonce rA to Ti.
– A terminates the protocol.

In the challenge phase, the adversary only observes a successful au-
thentication between the legitimate reader and the tag and records time
duration between the second and the third message flow, call it t′. If
t′ ≈ t2, the tag’s SY NC = 1, hence the selected tag is Ti. On the other
hand, if t′ ≈ t1 then the tag’s SY NC = 0, hence the selected tag is Tj .

Challenge Phase

– A takes Ti and Tj as its challenge candidates.
– A initiates communication with R using ReaderInit and gets rR.
– A transmits rR to the selected tag T ∗.
– A delivers T ∗ response {P, L(Q), rT } to R.
– A measures elapsed time, t′, between 2nd and 3rd message flow.
– If t′ ≈ t2 and t′ À t1, A decides T ∗ = Ti. Otherwise guesses T ∗ = Tj.

Remark. A similar attack can be also applied on SSM protocol. An ad-
versary A can easily put a tag T into desynchronized state by executing
the Learning Phase in Section 3.1. Then A can distinguish between syn-
chronized and desynchronized tags by timing server responses, because a
synchronized tag only requires a server to perform a fast table look-up,
whereas a desynchronized tag requires it to perform an exhaustive search.

3.4 Timing Attack II for LRMAP

In this part, we enhance the previous attack and use it to distinguish
among three tags by putting them into three different states. In the
learning phase, three tags Ti, Tj and Tk are selected. Ti is put into state
SY NC = 1 as described in the previous attack and Tj is put into de-
synchronized and state SY NC = 1, by blocking third message flow in a
normal session between the reader and Tj .

Learning Phase

– A randomly chooses a pair of distinct tags Ti, Tj and Tk.
– A initiates communication with Ti using TagInit.
– A transmits some random nonce rA to Ti.
– A terminates the protocol.
– A initiates communication with R using ReaderInit and gets rR.
– A initiates communication with Tj using TagInit.
– A transmits rR to Tj.
– A relays Tj’s response {P,L(Q), rT } to the reader.
– A breaks the protocol.

In the challenge phase, the adversary only observes a successful au-
thentication between the legitimate reader and the tag and records time
duration between the second and the third message flow, call it t′. If
t′ ≈ t3, the tag’s SY NC = 1 and it is in desynchronized state, hence the
selected tag is Tj . On the other hand, if t′ ≈ t2 then the tag’s SY NC = 1
but in synchronized, so the selected tag is Ti. Otherwise, if t′ ≈ t1 then
the tag’s SY NC = 0, hence the selected tag is Tk.

Challenge Phase

– A takes Ti, Tj and Tk as its challenge candidates.
– A initiates communication with R using ReaderInit and gets rR.
– A transmits rR to the selected tag T ∗.

– A delivers T ∗ response {P, L(Q), rT } to R.
– A measures elapsed time, t′, between 2nd and 3rd message flow.
– If t′ ≈ t3, A decides T ∗ = Tj. On the other hand, if t′ ≈ t2, A guesses
T ∗ = Ti. Otherwise if t′ ≈ t1, A decides T ∗ = Tk.

4 Concluding Remarks

Scalability is a desirable property for an RFID protocol such that it should
be able to handle large numbers of tags without an undue computational
load. To achieve this, new schemes have been proposed with requiring
only O(1) effort to identify a tag. These models usually allow the tags to
be in different states: For the regular cases, a normal state is defined and
in this state server authenticates the tag in constant time. On the other
hand, for irregular cases, an abnormal state is defined and in this state the
server needs to perform a linear search with complexity O(N). Although
allowing the tags to be in different states reduces the computational com-
plexity at the backend server, it gives also a hint to an adversary who
aims to distinguish the tags by connecting relations between tag/server
responses and tag states. In this study, we analyze two of these protocols
as the SSM and the LRMAP protocols. We show that both of the SSM
and LRMAP protocols cannot achieve untraceability by describing the
tracking and timing attacks that give the adversary a non-negligible ad-
vantage of guessing the selected tag. It can be easily shown that similar
protocols are vulnerable to the presented attacks or some their modified
versions, so this is a security/scalability conflict for RFID authentication
protocols.

References

1. Chien H. Y., Chen C. H.: Mutual Authentication Protocol for RFID Conforming
to EPC Class 1 Generation 2 Standards, Computers Standards Interfaces, vol. 29,
no. 2, pp. 254-259. (2007).

2. Ohkubo M., Suzki K., Kinoshita S.: Cryptographic Approach to Privacy-
friendly Tags, In RFID Privacy Workshop, MIT, MA, USA, November 2003.
http://www.rfidprivacy.us/2003/agenda.php.

3. Rhee K., Kwak J., Kim S., Won D.: Challenge-Response Based on RFID Authen-
tication Protocol for Distributed Database Environment, In: SPC05. LNCS, vol.
3450. pp. 70−84. Springer, Heidelberg (2005)

4. Duc D., Park J., Lee H., Kim K: Enhancing Security of EPCglobal GEN-2 RFID
Tag Against Traceability and Cloning, In: Symposium on Cryptography and In-
formation Security 2006.

5. Song B., Mitchell C.: RFID Authentication Protocol for Low-cost Tags, In WiSec
08: Proceedings of the first ACMConference on Wireless Network Security, pp.
140−147. ACM Press (2008).

6. Dimitriou T.: A Lightweight RFID Protocol to Protect against Traceability and
Cloning Attacks, In Conference on Security and Privacy for Emerging Areas in
Communication Networks SecureComm 2005, pp. 59−66. IEEE (2005).

7. Henrici A., Muller P.: Hash-based Enhancement of Location Privacy for Radio-
frequency Identification Devices Using Varying Identifiers, International Workshop
on Pervasive Computing and Communication Security PerSec 2004, pp. 149−153.
IEEE Computer Society (2004).

8. Molnar D., Wagner D.: Privacy and Security in Library RFID, Issues, practices,
and architectures. In B. Pfitzmann and P. Liu, editors, Conference on Computer
and Communications Security ACM CCS, pp. 210− 219, Washington, DC, USA,
October 2004. ACM Press.

9. Ha, J., Moon, S.J., Gonzlez Nieto, J.M. and Boyd, C., Low-cost and Strong-security
RFID authentication protocol. In: EUC Workshops 2007. LNCS, vol. 4809. pp.
795−807. Springer, Heidelberg (2007)

10. Tsudik G.: A Family of Dunces: Trivial RFID identification and authentication
protocols, In N. Borisov and P. Golle, editors, Privacy Enhancing Technologies,
7th International Symposium PET 2007. LNCS, vol. 4776. pp. 45−61. Springer,
Heidelberg (2007).

11. Cai S., Li Y., Li T., Deng R: Attacks and Improvements to An RFID Mutual
Authentication Protocol and Its Extensions. In: Proceedings of the second ACM-
Conference on Wireless Network Security, ACM Press (2009).

12. Song B., Mitchell C.: Scalable RFID Pseudonym Protocol. In: Network System
Security 19-21 October 2009, IEEE Computer Society Press, pp. 216 − 224.

13. Ha, J., Ha, J., Moon, S., Boyd, C.: LRMAP: Lightweight and Resynchronous
Mutual Authentication Protocol for RFID System. In: Stajano, F., Kim, H.-J.,
Chae, J.-S., Kim, S.-D. (eds.) ICUCT 2006. LNCS, vol. 4412, pp. 80−89. Springer,
Heidelberg (2007).

14. Deursen, T.v., Radomirovic, S.: Security of RFID protocols A Case Study. Elec-
tronic Notes in Theoretical Computer Science, vol. 224, pp. 41−52. Elsevier (2009)

15. Avoine, G.: Adversarial Model for Radio Frequency Identificatin. Cryptology
ePrint Archieve, Report 2005/049 (2005), http://eprint.iacr.org

16. Juels, A. and S. A. Weis: Defining Strong Privacy for RFID, in: PerCom Work-
shops, pp. 342−347, (2007).

