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Abstract. In 1994 Langford and Hellman introduced differential-linear cryptanalysis, which involves building a
differential-linear distinguisher by concatenating a linear approximation with such a (truncated) differential that
with probability 1 does not affect the bit(s) concerned by the input mask of the linear approximation. In 2002
Biham, Dunkelman and Keller presented an enhanced approach to include the case when the differential has
a probability smaller than 1; and in 2005 they proposed several extensions of differential-linear cryptanalysis,
including the high-order differential-linear analysis, the differential-bilinear analysis and the differential-bilinear-
boomerang analysis. In this paper, we show that Biham et al.’s methodologies for computing the probabilities
of a differential-linear distinguisher, a high-order differential-linear distinguisher, a differential-bilinear distin-
guisher and a differential-bilinear-boomerang distinguisher do not have the generality to describe the analytic
techniques. Thus the previous cryptanalytic results obtained by using these techniques of Biham et al. are ques-
tionable. Finally, from a mathematical point we give general methodologies for computing the probabilities. The
new methodologies lead to some better cryptanalytic results, for example, differential-linear attacks on 13-round
DES and 10-round CTC2 with a 255-bit block size and key.

Key words: Block cipher, DES, CTC2, Serpent, Differential-linear cryptanalysis, High-order differential crypt-
analysis, Bilinear cryptanalysis, Boomerang analysis

1 Introduction

Differential cryptanalysis was introduced in 1990 by Biham and Shamir [1]. Linear cryptanalysis was introduced in
1992 by Matsui and Yamagishi [2]. A differential cryptanalysis attack is based on the use of one or more differentials,
and a linear cryptanalysis attack is based on the use of one or more linear approximations. Both the cryptanalytic
methods were applied to attack the full DES [3] cipher faster than an exhaustive key search [4, 5].

In 1994 Langford and Hellman [6] introduced a combination of differential and linear cryptanalysis, known as
differential-linear cryptanalysis, and applied it to break 8-round DES. Different from differential and linear crypt-
analysis, differential-linear cryptanalysis treats a block cipher as a cascade of two sub-ciphers, and it uses a linear
approximation for a sub-cipher and for the other sub-cipher uses a truncated differential [7] that with probability
1 does not affect the bit(s) concerned by the input mask of the linear approximation. In 2002 Biham, Dunkelman
and Keller [8] introduced an enhanced version of differential-linear cryptanalysis, which includes the case when the
differential has a smaller probability; and they finally described a differential-linear attack on 9-round DES. In 2005,
Biham, Dunkelman and Keller [9] introduced several extensions of differential-linear cryptanalysis, including the
high-order differential-linear analysis, the differential-bilinear analysis and the differential-bilinear-boomerang anal-
ysis. Differential-linear cryptanalysis has been used to yield the best currently published cryptanalytic results for a
number of state-of-the-art block ciphers [8, 10–13].

In this paper, we examine the probabilities of a differential-linear distinguisher, a high-order differential-linear
distinguisher, a differential-bilinear distinguisher and a differential-bilinear-boomerang distinguisher, find that Biham
et al.’s methodologies for computing the probabilities of the distinguishers are not correct in some situations, and
it is likely that they do not hold in the general situation; that is to say, they do not have the generality to describe
the analytic techniques. An incorrect methodology may lead to a false probability for a distinguisher, and thus the
resulting attack will have an erroneous data and time complexity, break a wrong number of rounds of the concerned
cipher, and is even ineffective in extreme situations. As a consequence, the previous cryptanalytic results obtained by
using these techniques of Biham et al. are highly questionable. Finally, from a mathematical point we deduce general
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Table 1. Comparison of previous and our main differential-linear cryptanalytic results on DES and Summary of main crypt-
analytic results on CTC2 and Serpent

Cipher Key Size Rounds Attack Technique Data Time Source Note

DES 56 8 Differential-linear 768 CP 214.6 Enc. [6]

9 215.75 CP 229.17 Enc. [14] †
12 250.6 CP 252.34 Enc. This paper

13 252.27 CP 252.97 Enc.+257.27 MA This paper

CTC2 255 6 Algebraic 4 CP 2253 Enc. [15]

(a 255-bit 7 Differential 215 CP 215 Enc. [13]

block size) 8 Differential-linear 237 CP 237 Enc. [13] †
10 2142 CP 2207 Enc. This paper

Serpent 128, 7 Differential 284 CP 278.9 Enc. [16]

192, 10 Linear 2120.6 KP 285 Enc. [17]

256 2118.6 KP 285 Enc. This paper

10 Differential-linear 2101.2 CP 2115.2 Enc. [12] †
2123.4 CP 2123.4 Enc. This paper

192, 8 Amplified boomerang 2114 CP 2179 Enc. [19]

256 10 Boomerang [18] 2126.3 ACPC 2165 Enc. [20]

10 Rectangle 2126.3 CP 2165 Enc. [20]

11 Linear 2122.9 KP 2189 Enc. [17]

11 Differential-linear 2121.8 CP 2135.7 MA [12] †
11 2125.5 CP 2148.1 Enc. This paper

256 8 Differential 284 CP 2206.7 Enc. [16]

9 Amplified boomerang 2110 CP 2252 Enc. [19]

12 Differential-linear 2123.5 CP 2249.4 Enc. [12] †
2125.5 CP 2244.9 Enc. This paper

†: The result is based on Biham et al.’s methodology.

methodologies for computing the probabilities. Using the new methodology we present differential-linear attacks on
13-round DES, 10-round CTC2 with a 255-bit block size and key, and 12-round Serpent with a 256-bit key. Table 1
compares previous with our main differential-linear cryptanalytic results on DES and sumarises both the previous
and our main cryptanalytic results on CTC2 and Serpent, where CP, KP and ACPC refer respectively to the required
numbers of chosen plaintexts, known plaintexts, and adaptively chosen plaintexts and ciphertexts, Enc. refers to the
required number of encryption operations of the relevant version of CTC2, DES and Serpent, and MA refers to the
number of memory accesses.

The remainder of the paper is organised as follows. In the next section we briefly describe some notation, dif-
ferential cryptanalysis and linear cryptanalysis. In Section 3 we give the general methodology for computing the
probability of a differential-linear distinguisher, and present our cryptanalytic results on CTC2, DES and Serpent
in Sections 4–6. In Sections 7–9, we give the general methodologies for computing the probabilities of the remain-
ing three types of distinguishers, and present corrected versions for some previous cryptanalytic results. Section 10
concludes this paper.

2 Preliminaries

In this section we describe some notation and the basic notions used in differential and linear cryptanalysis.

2.1 Notation

In the following descriptions, we assume that a number without a prefix is in decimal notation, and a number with
prefix 0x is in hexadecimal notation, unless otherwise stated. The bits of a value are numbered from right to left,
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except in the case of DES, where we use the same numbering notation as in [3]; the leftmost bit is the most significant
bit, and the rightmost bit is the least significant bit. We use the following notation.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same length
� dot product of two bit strings of the same length
|| sting concatenation
� left shift of a bit string
≪ left rotation of a bit string
◦ functional composition. When composing functions X and Y, X ◦Y denotes the function obtained by first

applying X and then applying Y
ej a 255-bit value with zeros everywhere except for bit position j, (0 ≤ j ≤ 254)
ei0,···,ij the 255-bit value equal to ei0 ⊕ · · · ⊕ eij , (0 ≤ i0, · · · , ij ≤ 254)
ei0,···,ij ,∼ a 255-bit value that has zeros in bit positions i0, · · · , ij , and indeterminate

values in the other bit positions, (0 ≤ i0, · · · , ij ≤ 254)
E an n-bit block cipher with a k-bit key
? an indeterminate value (two values expressed by the ? symbol may be different)

2.2 Differential Cryptanalysis

Differential cryptanalysis [1] takes advantage of how a specific difference in a pair of inputs of a cipher can affect
a difference in the pair of outputs of the cipher, where the pair of outputs are obtained by encrypting the pair of
inputs using the same key. The notion of difference can be defined in several ways; the most widely discussed is with
respect to the XOR operation. The difference between the inputs is called the input difference, and the difference
between the outputs of a function is called the output difference. The combination of the input difference and the
output difference is called a differential. The probability of a differential is defined as follows.

Definition 1. If α and β are n-bit blocks, then the probability of the differential (α, β) for E, written ∆α→ ∆β, is
defined to be

PrE(∆α→ ∆β) = Pr
P∈{0,1}n

(E(P )⊕ E(P ⊕ α) = β).

For a random function, the expected probability of a differential for any pair (α, β) is 2−n. Therefore, if PrE(∆α→
∆β) is larger than 2−n, we can use the differential to distinguish E from a random function, given a sufficient number
of chosen plaintext pairs.

2.3 Linear Cryptanalysis

Linear cryptanalysis [2,5] exploits correlations between a particular linear function of the input blocks and a second
linear function of the output blocks. The combination of the two linear functions is called a linear approximation.
The most widely used linear function involves computing the bitwise dot product operation of the block with a
specific binary vector (the specific value combined with the input blocks may be different from the value applied to
the output blocks). The value combined with the input blocks is called the input mask, and the value applied to the
output blocks is called the output mask. The probability of a linear approximation is defined as follows.

Definition 2. If α and β are n-bit blocks, then the probability of the linear approximation (α, β) for E, written
Γα→ Γβ, is defined to be

PrE(Γα→ Γβ) = Pr
P∈{0,1}n

(P � α = E(P )� β).

We refer to the dot product P � α as the input parity, and the dot product E(P )� β as the output parity.
For a random function, the expected probability of a linear approximation for any pair (α, β) is 1

2 . The bias of
a linear approximation Γα → Γβ, denoted by ε, is defined to be ε = |PrE(Γα → Γβ) − 1

2 |. Thus, if the bias ε is
sufficiently large, we can use the linear approximation to distinguish E from a random function, given a sufficient
number of matching plaintext-ciphertext pairs.
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3 Methodology for Differential-Linear Cryptanalysis

In this section we first review differential-linear cryptanalysis, then deduce the probability of a differential-linear
distinguisher, and discuss its implications.

3.1 Review of Differential-Linear Cryptanalysis

In 1994 Langford and Hellman [6] introduced differential-linear cryptanalysis, which uses a so-called differential-linear
distinguisher. To define a differential-linear distinguisher we need to treat E as a cascade of two sub-ciphers E0 and E1,
where E = E0◦E1. A differential-linear distinguisher is then defined to be a pair consisting of a (truncated) differential
and a linear approximation (∆α→ ∆β, Γγ → Γδ), where Γγ → Γδ is a linear approximation with bias ε for E1, and
∆α→ ∆β is a (truncated) differential for E0 that with probability 1 has a zero output difference in the bit positions
concerned by the linear approximation. Given a pair of plaintexts (P, P ∗ = P ⊕α), we have E0(P )� γ = E0(P ∗)� γ
with probability 1. The differential-linear distinguisher is concerned with the event δ � E(P ) = δ � E(P ∗), and thus
it has a probability Pr(δ � E(P ) = δ � E(P ∗)) = (1

2 + ε)× ( 1
2 + ε) + ( 1

2 − ε)× ( 1
2 − ε) = 1

2 + 2ε2.
By contrast, for a random function, the expected probability of a differential-linear distinguisher is 1

2 . Therefore,
if the bias |Pr(δ � E(P ) = δ � E(P ∗))− 1

2 | = 2ε2 is sufficiently large, we can distinguish E from a random function.
In 2002 Biham, Dunkelman and Keller [8] presented an enhanced approach to include the case when the differential

∆α → ∆β meets the condition E0(P ) � γ = E0(P ∗) � γ with probability p, where p may be smaller than 1.1 A
more detailed description was given in the PhD thesis of Dunkelman [14]. When the differential meets, they applied
Langford and Hellman’s analysis described above; and for the other cases they assumed a random distribution for the
output parities δ�E(P ) and δ�E(P ∗). Finally they got Pr(δ�E(P ) = δ�E(P ∗)) = p×( 1

2 +2ε2)+(1−p)× 1
2 = 1

2 +2pε2.
We note that a different but equivalent assumption is used in other papers of Biham et al., [9] say, which also leads to
the same result, where they assumed that E0(P )�γ = E0(P ∗)�γ holds with half chance for the other cases, and got
Pr(δ�E(P ) = δ�E(P ∗)) = [p+(1−p) 1

2 ]×( 1
2 +2ε2)+[1−p−(1−p) 1

2 ]× [( 1
2 +ε)×( 1

2−ε)+( 1
2−ε)×( 1

2 +ε)] = 1
2 +2pε2.

As a result, if the bias 2pε2 is sufficiently large, the distinguisher can be used as the basis of a differential-linear
attack to distinguish E from a random function. The attack has a data complexity of about O(p−2ε−4).

3.2 General Assumptions

Before further proceeding, we make clear some general assumptions behind differential cryptanalysis, linear crypt-
analysis and differential-linear cryptanalysis as well as its extensions.

Differential and linear cryptanalyses are statistical cryptanalytic methods. In practice, a multi-round differential
(or linear approximation) is usually constructed by concatenating a few one-round differentials (linear approxima-
tions) under the assumption that the involved rounds are independent or an assumption with a similar meaning. As
mentioned in [21], this is “most often not exactly the case, but as often it is a good approximation”. Differential
and linear cryptanalyses, differential-linear cryptanalysis and its extensions generally treat a basic unit of input
(i.e. a chosen-plaintext pair for differential cryptanalysis, differential-(bi)linear cryptanalysis, and the differential-
(bi)linear-boomerang analysis; a known-plaintext for linear cryptanalysis; and a structure of chosen plaintexts for
the high-order differential-linear analysis) as a random variable, and assume that given a set of inputs of the basic
unit, the inputs that satisfy the required property can be approximated by an independent distribution, as followed
in [5,8,9,22]. Differential-linear cryptanalysis treats the two linear approximations for a basic input as independent.

These assumptions mean that, in some cases, the probability of a differential, linear approximation, or distin-
guisher may be overestimated or underestimated. However, computer experiments have shown that they work well
in practice for some block ciphers; see [5, 10, 23, 24] for examples. It seems reasonable to take them for a theoretical
approximation. As a result, like the previous work [4–6,8,9] we make use of the assumptions to obtain the formulas
for computing the probabilities of the distinguishers; otherwise, these formulas could not be so simple, but more
accurate versions can be easily obtained from our reasonings, though a little complicated. Anyway, we suggest that
if possible an attacker should check the validity of these assumptions when applying them to specific ciphers.

1 A more general condition is E0(P ) � γ ⊕ E0(P ∗) � γ = c, where c ∈ {0, 1} is a constant. Without loss of generality, we
consider the case with c = 0.
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3.3 A Counterexample to Biham et al.’s Methodology

A differential-linear distinguisher plays a fundamental role in a differential-linear cryptanalysis attack. Biham et al.’s
enhanced approach [8] aims to make a differential-linear distinguisher cover more rounds of a block cipher, so that
an attacker can break more rounds of the cipher. They used a heuristic way to get the formula for computing the
probability of a differential-linear distinguisher by assuming that E0(P )� γ = E0(P ∗)� γ holds with half chance for
the other cases (or its equivalent).

However, we find that their methodology is not correct for some situations; for example, let’s intuitively consider
the situation where the differential ∆α → ∆β meets β � γ = 0 with probability 1

2 , and all the other possible
differentials ∆α → ∆β̂ meet β̂ � γ = 1. Such an example can be easily built for a practical block cipher, DES say.
The differential ∆α → ∆β contributes 1

2 [( 1
2 + ε) × ( 1

2 + ε) + (1
2 − ε) × ( 1

2 − ε)] = 1
4 + ε2 to the probability of the

distinguisher, and the other differentials ∆α→ ∆β̂ contribute 1
2 [( 1

2 + ε)× ( 1
2 − ε) + ( 1

2 − ε)× ( 1
2 + ε)] = 1

4 − ε
2, which

also cause a bias, but in a negative way, canceling the bias due to ∆α→ ∆β. So the real bias of the distinguisher is
0, that is, the distinguisher has no cryptanalytic significance. However, by Biham et al.’s methodology, the bias of
the distinguisher is 2× 1

2 × ε
2 = ε2, and the distinguisher is useful (if ε2 is large enough); but nevertheless in fact it

is useless.
Therefore, Biham et al.’s methodology does not have the generality to describe differential-linear cryptanalysis.

3.4 New Methodology for Computing the Probability of a Differential-Linear Distinguisher

From the descriptions in Section 3.1 we know that a differential-linear distinguisher is concerned with the probability
of equal output parities obtained by applying the bitwise dot product between mask δ and the ciphertexts of a pair
of plaintexts with difference α; and its probability is dependent on mask γ (as well as the output difference β, but
below we will see something different). We denote such a differential-linear distinguisher by 〈∆α,Γγ〉 → Γδ.

From a mathematical point, we make an analysis for the probability of a distinguisher (under the general as-
sumptions). Out result is given as Theorem 1, followed by a proof.

Theorem 1. An n-bit block cipher E is represented as a cascade of two sub-ciphers E0 and E1, where E = E0 ◦E1.
If Γγ → Γδ is a linear approximation with bias ε for E1, α ( 6= 0) is an input difference for E0, and the probabilities
for the differentials {∆α → ∆β|PrE0(∆α → ∆β) > 0, γ � β = 0, β ∈ {0, 1}n} is p̂ (=

∑
γ�β=0 PrE0(∆α → ∆β)),

then the probability of the differential-linear distinguisher 〈∆α,Γγ〉 → Γδ is

Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ) =
1
2

+ 2(2p̂− 1)ε2.

Proof. Given the input difference α for E0, there are one or more possible output differences {β|PrE0(∆ α →
∆β) > 0, β ∈ {0, 1}n}; these output differences can be classified to two sets: one is {β|γ � β = 0,PrE0(∆α →
∆β) > 0, β ∈ {0, 1}n}, and the other is {β|γ � β = 1,PrE0(∆α → ∆β) > 0, β ∈ {0, 1}n}. If P is a plaintext chosen
uniformly at random from {0, 1}n, then for a given difference from the set satisfying γ � β = 0, the probability
Pr(E(P )�δ = E(P ⊕α)�δ) = (1

2 + ε)× ( 1
2 + ε)+( 1

2 − ε)× ( 1
2 − ε) = 1

2 +2ε2; and for a given difference from the other
set satisfying γ�β = 1, the probability Pr(E(P )� δ = E(P ⊕α)� δ) = (1

2 + ε)× ( 1
2 − ε) + ( 1

2 − ε)× ( 1
2 + ε) = 1

2 −2ε2.
Finally, summing all the possibilities for β and γ � β will result in the probability of the distinguisher. Therefore,
the probability of a differential-linear distinguisher can be calculated in the following way.

Pr(E(P )� δ = E(P ⊕ α)� δ)
=

∑
β∈{0,1}n,Y ∈{0,1}

Pr(E(P )� δ = E(P ⊕ α)� δ,E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n,Y ∈{0,1}

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,E0(P )⊕ E0(P ⊕ α) = β)×

Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y |E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0,E0(P )⊕ E0(P ⊕ α) = β)×
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Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0|E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )⊕ E0(P ⊕ α) = β) +∑
β∈{0,1}n

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1,E0(P )⊕ E0(P ⊕ α) = β)×

Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1|E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )⊕ E0(P ⊕ α) = β)

= (
1
2

+ 2ε2)×
∑

β∈{0,1}n,γ�β=0

Pr(E0(P )⊕ E0(P ⊕ α) = β) + (
1
2
− 2ε2)×

∑
β∈{0,1}n,γ�β=1

Pr(E0(P )⊕ E0(P ⊕ α) = β)

=
1
2

+ 2ε2 × (
∑

β∈{0,1}n,γ�β=0

Pr(E0(P )⊕ E0(P ⊕ α) = β)−
∑

β∈{0,1}n,γ�β=1

Pr(E0(P )⊕ E0(P ⊕ α) = β))

=
1
2

+ 2ε2 × (2×
∑

β∈{0,1}n,γ�β=0

Pr(E0(P )⊕ E0(P ⊕ α) = β)− 1)

=
1
2

+ 2(2p̂− 1)ε2. �

Therefore, the bias of the differential-linear distinguisher 〈∆α,Γγ〉 → Γδ is |PrP∈{0,1}n(E(P )� δ = E(P ⊕ α)�
δ)− 1

2 | = 2|2p̂− 1|ε2.

3.5 Implications

We should be cautious about using the assumption on a random distribution. Biham et al.’s methodology holds only
when the assumption holds, and under the situation we have p̂ = p + (1 − p) 1

2 = 1
2 + p

2 , meaning that the results
obtained using Biham et al.’s and our methodologies are identical. From Theorem 1 we know that the distinguisher
has the biggest bias 2ε2 when p̂ = 0 or 1; and such an example is Langford and Hellman’s 6-round differential-linear
distinguisher of DES. When p̂ = p = 1

2 , like the counterexample described in Section 3.3, then a significant distinction
happens between Biham et al.’s methodology and ours: By Biham et al.’s methodology, the distinguisher is useful
(if ε2 is large enough), however, actually it is not useful.

Our result shows that using only one (truncated) differential satisfying β�γ = 0 is not sufficient in some situations,
and we should use all the differentials satisfying β � γ = 0. This makes the distinguisher harder to construct, and
may be infeasible in practice, due to a large number of possible output differences. Anyway, we should use at least
those with a significant contribution to reduce the deviation if we are able to do so. In Biham et al.’s methodology, if
the bias of the linear approximation keeps constant, the larger p is, the bigger is the bias of the distinguisher. Now,
we know that may be not true: a differential with a bigger probability will not necessarily result in a distinguisher
with a bigger bias.

When formatting a differential-linear distinguisher, in Biham et al.’s enhanced approach the attacker first chooses
a (truncated) differential that meets the condition (as followed in [8,10,12,13], in practice the output difference of the
differential has zeros in the bit positions concerned by the input mask of the linear approximation), then calculates
the probability of the differential, and finally takes this probability as the value of p. The new methodology suggests
a different format. Once the linear approximation and the input difference of the differentials are chosen, that how
many rounds can be constructed for a distinguisher depends on the computational power available for the attacker,
as demonstrated by our attacks on DES, CTC2 and Serpent described in the following three sections.

The notion of the related-key differential-linear analysis first appeared in [25], and it is a combination of related-key
attacks [26,27] and differential-linear cryptanalysis. Building on Biham et al.’s enhanced differential-linear cryptanal-
ysis, Kim [28] described an enhanced version of the related-key differential-linear analysis, and he got the formula
for computing the probability of a related-key differential-linear distinguisher, similar to Biham et al.’s formula. As a
result, we learn that this probability formula is not correct in some situations, and the general formula can be easily
obtained as for a differential-linear distinguisher in Theorem 1.

4 Differential-Linear Cryptanalysis of Reduced DES

The DES block cipher is well known to both academia and industry. In 1994 Langford and Hellman [6] presented a
6-round differential-linear distinguisher of DES, and applied it to break 8-round DES. In 2002, using the enhanced
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technique Biham et al. [8] presented a 7-round differential-linear distinguisher of DES, and finally gave differential-
linear attacks on 8 and 9-round DES; and an improved version of the 9-round attack appeared in pages 108–111
of [14].

In this section, we show that under the new methodology the 3-round linear approximation used in [6, 8] can be
exploited to construct 7 and 8-round differential-linear distinguishers of DES; and the 8-round distinguisher can be
used to break 10-round DES. More importantly, we are able to construct a 11-round differential-linear distinguisher
of DES, and finally use it as the basis of a differential-linear attack on 13-round DES. See [3] for the specifications
of DES. We write the subkey used in the Sl S-box of Round m as Km,l, where 1 ≤ m ≤ 16, 1 ≤ l ≤ 8.

4.1 A 7-Round Differential-Linear Distinguisher with Bias 2−7.94

Biham et al.’s 7-round differential-linear distinguisher [8, 14] consists of a 3-round linear approximation with bias
0.195 and a 4-round truncated differential with probability 12

64 . The 3-round linear approximation Γγ → Γδ is
0x2104008000008000→ 0x2104008000008000, which was used for Langford and Hellman’s differential-linear attack on
8-round DES. The 4-round (truncated) differential ∆α→ ∆β is 0x0000020240000000→ 0x00W0XY 0Z∗∗∗∗M ∗∗∗2,
where M ∈ {0, 1, · · · , 7}, W,X ∈ {0, 8} and Y,Z ∈ {0, 2}. See Fig. 2 and Fig. 3 of [8] for an illustration of the
differential and the linear approximation. ∆β has a zero difference at the five bit positions concerned by Γγ, and
thus meets β�γ = 0. Finally, they compute the bias of the distinguisher 〈∆α,Γγ〉 → Γδ as 2× 12

64 ×0.1952 ≈ 2−4.77.
As discussed above, this is not sufficient, and we should consider all the possible differentials. The first round of the
4-round differential ∆α→ ∆β does not have a one probability, and thus there are a large number of possible output
differences after 4-round DES, making it hard to count all the differentials.

To make things easier, we change the input difference ∆α of the 4-round differential to ∆α̂ = 0x4000000000000000
so that there is a one probability in the first round, thus reducing the number of possible output differences after
4-round DES. We still use the 3-round linear approximation Γγ → Γδ. Let’s compute the probability of the new
7-round differential-linear distinguisher. Obviously, after the expansion E operation of the second round, 0x4 in the
input difference becomes 0x8, which enters the S1 S-box of the second round and generates 11 differences after the
S-box: {ω|ω = 0x3, 0x5, 0x6, 0x7, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF}; the probabilities for these output differences
are given in the second column of Table 2. We represent ω as a concatenation of four one-bit variables a||b||c||d, where
a, b, c, d ∈ {0, 1}. Thus, the right half of the third round has the input difference 00000000a0000000b00000c0000000d0
in binary notation, and this input difference can make at most 6 S-boxes of the third round active: S2,S3,S4,S5,S6,S8.
After a simple analysis, we know that the left half of the input mask Γγ concerns the four bits of the output difference
of the S5 S-box of the third round, and we denote the four-bit output difference as e||f ||g||h, where e, f, g, h ∈ {0, 1}.
The right half of the input mask concerns the second most significant bit of the output difference of the S1 S-box
of the fourth round plus b. The input difference of the S1 S-box of the fourth round depends on: (1) The second
least significant bit of the output difference of the S2 S-box of the third round, and we label the bit m; (2) The
least significant bit of the output difference of the S4 S-box of the third round, and we label the bit n; (3) The
least significant bit (i.e., h) of the output difference of the S5 S-box of the third round; (4) The most significant bit
of the output difference of the S6 S-box of the third round, and we label the bit p; (5) The most significant bit of
the output difference of the S8 S-box of the third round, and we label the bit q; and (6) The one-bit difference in
∆α̂. In summary, the five bits of the output difference concerned by the input mask Γγ depend on a total of 12
indeterminate one-bit differences: a, b, c, d, e, f, g, h,m, n, p, q. And the input difference of the S1 S-box of the fourth
round is 0||n||(m⊕ 1)||h||p||q in binary notation.

In the third round, the S2 S-box has an input difference 00000a in binary notation, the S4 S-box has an input
difference 00000b in binary notation, the S5 S-box has an input difference 0b0000 in binary notation, the S6 S-box has
an input difference 000c00 in binary notation, and the S8 S-box has an input difference 000d00 in binary notation. By
the differential distribution tables of the S-boxes (see [22]), we compute the possible values as well as their probabilities
for m,n, p, q, (e||f ||g||h), as follows: PrS2

(m = 0|a = 0) = 1,PrS2
(m = 0|a = 1) = 28

64 ,PrS2
(m = 1|a = 1) = 36

64 ,
PrS4

(n = 0|b = 0) = 1, PrS4
(n = 0|b = 1) = 32

64 ,PrS4
(n = 1|b = 1) = 32

64 , PrS6
(p = 0|c = 0) = 1, PrS6

(p =
0|c = 1) = 16

64 ,PrS6
(p = 1|c = 1) = 48

64 , PrS8
(q = 0|d = 0) = 1, PrS8

(q = 0|d = 1) = 24
64 ,PrS8

(q = 1|d = 1) = 40
64 ,

PrS5
((e||f ||g||h) = 0x0|b = 0) = 1, PrS5

((e||f ||g||h) = 0x5|b = 1) = 4
64 ,PrS5

((e||f ||g||h) = 0x6|b = 1) = 4
64 ,

PrS5
((e||f ||g||h) = 0x7|b = 1) = 12

64 , PrS5
((e||f ||g||h) = 0x9|b = 1) = 2

64 , PrS5
((e||f ||g||h) = 0xA|b = 1) = 8

64 ,
PrS5

((e||f ||g||h) = 0xB|b = 1) = 10
64 , PrS5

((e||f ||g||h) = 0xC|b = 1) = 4
64 , PrS5

((e||f ||g||h) = 0xD|b = 1) = 6
64 ,

2 This is after the exchange of the left and right halves in the fourth round.
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Table 2. Probabilities for the eleven output differences in {ω}

ω PrS1
(∆0x8→ ∆ω) Pr(∆βω � Γγ = 0|∆0x8→ ∆ω) Pr(∆β̂ω � Γγ = 0|∆0x8→ ∆ω) Pr(∆β̃ω � Γ γ̃ = 0|∆0x8→ ∆ω)

0x3 12
64 0.55859375 0.50328584527596831 0.49779944866895676

0x5 8
64 0.50439453125 0.49747781828045845 0.49595199525356293

0x6 8
64 0.51708984375 0.50507303327322006 0.50433863041689619

0x7 4
64 0.50457763671875 0.49877615783771034 0.50256029706542904

0x9 6
64 0.578125 0.50051539158448577 0.50855094581311278

0xA 2
64 0.537109375 0.50116461620200425 0.50591027818154544

0xB 8
64 0.56123046875 0.49983475663202626 0.50239421910760029

0xC 8
64 0.4735107421875 0.49967876038863324 0.49929085310759547

0xD 2
64 0.4891510009765625 0.49995220528766993 0.49968796220765910

0xE 2
64 0.50665283203125 0.50015277066222552 0.50061782109781916

0xF 4
64 0.50272369384765625 0.50010005129477086 0.50005227406592345

PrS5
((e||f ||g||h) = 0xE|b = 1) = 12

64 , PrS5
((e||f ||g||h) = 0xF |b = 1) = 2

64 . We denote by t the second most significant
bit of the output difference of the S1 S-box of the fourth round, and by the differential distribution table of the S1

S-box we compute the probability of t = 0 and 1 for all the input differences of the S-box; and the conditional
probabilities are given in Table 3.

For each difference ω, we denote by βω the output difference(s) of the 4-round DES, and now we can compute the
probability that the XOR of the concerned five bits of βω (whose values are e, f, g, h, b⊕t) is zero (i.e., Pr(∆βω�Γγ =
0|∆0x8→ ∆ω)) by performing a computer program over all the possible (truncated) differential characteristics. These
probabilities are given in the third column of Table 2. The largest number of possible differential characteristics
happens when ω = 0xF , which is 10× 2× 2× 2× 2× 2 ≈ 211.3, and a straightforward implementation takes a few
seconds in a general PC.

Finally, by Theorem 1 we know that the probability of the 7-round distinguisher 〈∆α̂, Γγ〉 → Γδ is 1
2 + 2× [2×∑

ω PrS1
(∆0x8→ ∆ω)×Pr(∆βω �Γγ = 0|∆0x8→ ∆ω)− 1]× 0.1952 ≈ 1

2 + 2× 2−4.22× 0.1952 ≈ 1
2 + 2−7.94. Thus,

the distinguisher 〈∆α̂, Γγ〉 → Γδ has a bias of 2−7.94.

4.2 A 8-Round Differential-Linear Distinguisher with Bias 2−12.83

We obtain a 8-round differential-linear distinguisher of DES by appending one more round at the end of the four
rounds covered by the differentials {∆α̂ → βω} in the above 7-round distinguisher. A detailed analysis reveals that
the left half of the input mask Γγ concerns the four bits of the output difference of the S5 S-box of the fourth round,
and the right half of the input mask concerns the second most significant bit of the output difference of the S1 S-box
of the fifth round. Let y0, y1, y2, y3, z ∈ {0, 1} be one-bit variables; we denote by y0||y1||y2||y3 the output difference
of the S5 S-box of the fourth round, and denote by z the second most significant bit of the output difference of the
S1 S-box of the fifth round. The input difference of the S1 S-box of the fifth round depends on: (1) The second least
significant bit of the output difference of the S2 S-box of the fourth round, and we label the bit y4; (2) The least
significant bit of the output difference of the S4 S-box of the fourth round, and we label the bit y5; (3) The least
significant bit (i.e., y3) of the output difference of the S5 S-box of the fourth round; (4) The most significant bit of
the output difference of the S6 S-box of the fourth round, and we label the bit y6; (5) The most significant bit of the
output difference of the S7 S-box of the fourth round, and we label the bit y7; and (6) The most significant bit of
the output difference of the S8 S-box of the fourth round, and we label the bit y8.

The input difference of the S2 S-box of the fourth round is x0||x1||x2||0||x3||0 (in binary notation), where x0

denotes the most significant bit of the output difference of the S6 S-box of the third round, x1 denotes the most
significant bit of the output difference of the S8 S-box of the third round, x2 denotes the least significant bit of the
output difference of the S3 S-box of the third round, and x3 denotes the most significant bit of the output difference
of the S5 S-box of the third round. The input difference of the S4 S-box of the fourth round is 0||x4||x5||x6||x7||0,
where x4 denotes the most significant bit of the output difference of the S2 S-box of the third round, x5 denotes the
second most significant bit of the output difference of the S5 S-box of the third round, x6 denotes the second least
significant bit of the output difference of the S8 S-box of the third round, and x7 denotes the second most significant
bit of the output difference of the S3 S-box of the third round. The input difference of the S5 S-box of the fourth
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Table 3. Conditional Probabilities with t = 0 and 1

ξ PrS1
(∆t = 0|∆(0||n||(m⊕ 1)||h||p||q) = ξ) PrS1

(∆t = 1|∆(0||n||(m⊕ 1)||h||p||q) = ξ)

0x0 1 0

0x1 32
64

32
64

0x2 28
64

36
64

0x3 36
64

28
64

0x4 20
64

44
64

0x5 28
64

36
64

0x6 28
64

36
64

0x7 36
64

28
64

0x8 28
64

36
64

0x9 28
64

36
64

0xA 32
64

32
64

0xB 32
64

32
64

0xC 24
64

40
64

0xD 40
64

24
64

0xE 36
64

28
64

0xF 24
64

40
64

0x10 24
64

40
64

0x11 36
64

28
64

0x12 32
64

32
64

0x13 32
64

32
64

0x14 32
64

32
64

0x15 32
64

32
64

0x16 40
64

24
64

0x17 32
64

32
64

0x18 32
64

32
64

0x19 32
64

32
64

0x1A 20
64

44
64

0x1B 28
64

36
64

0x1C 36
64

28
64

0x1D 28
64

36
64

0x1E 36
64

28
64

0x1F 36
64

28
64

round is x7||0||x8||x9||x10||x11, where x8 denotes the least significant bit of the output difference of the S2 S-box of
the third round, x9 denotes the least significant bit of the output difference of the S6 S-box of the third round, x10

denotes the second most significant bit of the output difference of the S4 S-box of the third round, and x11 denotes
the least significant bit of the output difference of the S8 S-box of the third round. The input difference of the S6

S-box of the fourth round is x10||x11||0||0||x12||x13, where x12 denotes the most significant bit of the output difference
of the S3 S-box of the third round, and x13 denotes the second least significant bit of the output difference of the
S5 S-box of the third round. The input difference of the S7 S-box of the fourth round is x12||x13||x14||x15||x16||x17,
where x14 denotes the most significant bit of the output difference of the S4 S-box of the third round, x15 denotes
the second most significant bit of the output difference of the S8 S-box of the third round, x16 denotes the second
most significant bit of the output difference of the S2 S-box of the third round, and x17 denotes the second most
significant bit of the output difference of the S6 S-box of the third round. The input difference of the S8 S-box of the
fourth round is x16||x17||x18||0||0||x19, where x18 denotes the second least significant bit of the output difference of
the S3 S-box of the third round, and x19 denotes the least significant bit of the output difference of the S4 S-box of
the third round.

The differential characteristics for the first two rounds are the same as in the 7-round distinguisher. In summary,
the five bits of the output difference concerned by the input mask Γγ depend on a total of 33 indeterminate one-bit
differences: a, b, c, d, x0, x1, · · · , x19, y0, y1, · · · , y8. For each difference ω, we denote by β̂ω the output difference(s) of
the 5-round DES. Now, similar to that described for the 7-round distinguisher we can compute the probability that the
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XOR of the concerned five bits of β̂ω (whose values are y0, y1, y2, y3, z) is zero (i.e., Pr(∆β̂ω �Γγ = 0|∆0x8→ ∆ω))
by performing a computer program over all the possible (truncated) differential characteristics. These probabilities
are given in the fourth column of Table 2. The largest number of possible differential characteristics happens also
when ω = 0xF , which is roughly 7× 10× 4× 6× 6× 10× 24 × 2× 2× 2× 2× 2 ≈ 225.6; and it takes a few seconds
to check in a PC.

Finally, by Theorem 1 the probability of the 8-round distinguisher 〈∆α̂, Γγ〉 → Γδ is 1
2 +2×[2×

∑
ω PrS1

(∆0x8→
∆ω)×Pr(∆β̂ω � Γγ = 0|∆0x8→ ∆ω)− 1]× 0.1952 ≈ 1

2 + 2× 2−9.11 × 0.1952 ≈ 1
2 + 2−12.83. Therefore, the 8-round

distinguisher 〈∆α̂, Γγ〉 → Γδ has a bias of 2−12.83.
The 8-round distinguisher 〈∆α̂, Γγ〉 → Γδ can be used to break 10-round DES. See Appendix B for the attack

procedure and complexity.

Remarks. We have checked the possibility of extending the 8-round distinguisher 〈∆α̂, Γγ〉 → Γδ to a 9-round
distinguisher by appending one more round at the end of the five rounds covered by the differentials {∆α̂ → βω}.
Now the five bits of the output difference concerned by the input mask Γγ depend on a total of 65 indeterminate one-
bit differences, and there are roughly 255.6 possible differential characteristics for ω = 0xF . This is computationally
infeasible for our PC. Anyway, if there was a cluster of a few hundred computers available, we were able to compute
the probability of the 9-round distinguisher during several days.

4.3 A 11-Round Differential-Linear Distinguisher with Bias 2−24.05

The new methodology enables us to construct a 11-round differential-linear distinguisher of DES. The input dif-
ference for the 11-round distinguisher is the same as used for the 7 and 8-round distinguishers, that is, ∆α̂ =
0x4000000000000000; and we use for the distinguisher the following 6-round linear approximation Γ γ̃ → Γ δ̃ with
bias 1.95×2−9 ≈ 2−8.04: 0x0000000001040080→ 0x2104008000008000, (This is the best 6-round linear approximation
given in [5]).

The differential characteristics for the first two rounds and the input differences for the 6 (possible) active S-boxes
of the third round are the same as in the 7/8-round distinguisher. In the third round, we denote respectively by
x0, x1, x2 the most significant bit, the second most significant bit and the second least significant bit of the output
difference of the S2 S-box, by x3||x4||x5||x6 the output difference of the S3 S-box, by x7, x8, x9 the second most
significant bit, the second least significant bit and the least significant bit of the output difference of the S4 S-box,
by x10||x11||x12||x13 the output difference of the S5 S-box, by x14, x15, x16 the most significant bit, the second most
significant bit and the second least significant bit of the output difference of the S6 S-box, and by x17, x18, x19 the
most significant bit, the second least significant bit and the least significant bit of the output difference of the S8

S-box.
In the fourth round, the S1 S-box has the input difference 0||x9||(x2 ⊕ 1)||x13||x14||x17, and we denote by y0 the

second most significant bit of its output difference; the S2 S-box has the input difference x14||x17||x6||0||x10||0, and we
denote by y1 the least significant bit of its output difference; the S3 S-box has the input difference x10||0||x8||x16||0||x0,
and we denote by y2 the second most significant bit of its output difference; the S4 S-box has the input difference
0||x0||x11||x18||x4||0, and we denote by y3 the second most significant bit of its output difference; the S6 S-box has
the input difference x7||x19||0||0||x3||x12, and we denote by y4 the least significant bit of its output difference; the
S8 S-box has the input difference x1||x15||x5||0||0||x9, and we denote by y5 the least significant bit of its output
difference. Thus we have that the input difference of the S5 S-box of the fifth round is y2||(y0 ⊕ b)||y1||y4||y3||y5.

A simple analysis reveals that the three bits concerned by the input mask Γ γ̃ depend on: (1) x10, x11 and x12;
and (2) The three most significant bits of the output difference of the S5 S-box of the fifth round; and we denote the
XOR of the three bits by z.

For each difference ω, we denote by β̃ω the output difference(s) of the 5-round DES. Now, we can similarly compute
the probability that the XOR of the concerned three bits of β̃ω (i.e., x10 ⊕ x11 ⊕ x12 ⊕ z) is zero by performing a
computer program over all the possible (truncated) differential characteristics. These probabilities are given in the
fifth column of Table 2. The largest number of possible differential characteristics happens also when ω = 0xF , which
is 7× 10× 4× 10× 6× 7××26 × 2 ≈ 223.9; and it takes a few seconds to check in a PC.

Finally, we have that the probability of the 11-round distinguisher 〈∆α̂, Γ γ̃〉 → Γ δ̃ is 1
2 +2×[2×

∑
ω PrS1

(∆0x8→
∆ω) × Pr(∆β̃ω � Γ γ̃ = 0|∆0x8 → ∆ω) − 1] × (2−8.04)2 ≈ 1

2 + 2 × 2−8.98 × (2−8.04)2 ≈ 1
2 + 2−24.05. Therefore, the

11-round distinguisher 〈∆α̂, Γ γ̃〉 → Γ δ̃ has a bias of 2−24.05.
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4.4 Attacking 12-Round DES

We can use the 11-round distinguisher 〈∆α̂, Γ γ̃〉 → Γ δ̃ to break 12 rounds of DES; the attack is basically the
version of the 10-round attack in Appendix B when the first round is removed. With a success probability of
about 99%, the attack requires 250.6 pairs of chosen plaintexts with difference α̂, and has a time complexity of
2× 250.6 + 2× 250.6 × 26 × 1

8×12 ≈ 252.34 12-round DES encryptions.

4.5 Attacking 13-Round DES

The 11-round distinguisher 〈∆α̂, Γ γ̃〉 → Γ δ̃ can be used to break 13-round DES. We assume the attacked rounds are
the first thirteen rounds from Rounds 1 to 13. The attack procedure is as follows.

1. Choose 247.27 structures Si, (i = 1, 2, · · · , 247.27), where a structure is defined to be a set of 24 plaintexts Pi,j
with bits (9,17,23, 31) of the left half taking all the possible values, bit (2) of the right half fixed to 0 and the
other 59 bits fixed, (j = 1, 2, · · · , 24). In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 24

plaintexts in each of the 247.27 structures; we denote by Ci,j the ciphertext for plaintext Pi,j .
2. Choose 247.27 structures Ŝi, (i = 1, · · · , 247.27), where a structure Ŝi is obtained by setting 1 to bit (2) of the

right half of all the plaintexts Pi,j in Si. In a chosen-plaintext attack scenario, obtain all the ciphertexts for the
24 plaintexts in each Ŝi.

3. Guess a value for K1,1, and do as follows.

(a) Initialize 220 counters to zero, which correspond to the 220 possible pairs of the 10 ciphertext bits: bit (17)
of the left half and bits (1,2,3,4,5,8,14,25,32) of the right half.

(b) Partially encrypt every (remaining) plaintext Pi,j with the guessed K1,1 to get its intermediate value imme-
diately after Round 1; we denote it by εi,j .

(c) Partially decrypt εi,j⊕0x4000000000000000 with the guessed K1,1 to get its plaintext, and find the plaintext
in Ŝi; we denote it by P̂i,j , and denote by Ĉi,j the corresponding ciphertext for P̂i,j . Store (Ci,j , Ĉi,j) in a
table.

(d) For every ciphertext pair (Ci,j , Ĉi,j), increase 1 to the counter corresponding to the pair of the 10 ciphertext
bits specified by (Ci,j , Ĉi,j).

(e) Guess a value for K13,1, and do as follows.
i. For each of the 220 pairs of the concerned 10 ciphertext bits, partially decrypt it with the guessed K13,1

to get the pair of the 5 bits concerned by the output mask Γ δ̃, and compute the XOR of the pair of the
5 bits (concerned by the output mask).

ii. Count the number of the ciphertext pairs (Ci,j , Ĉi,j) such that the XOR of the pair of the 5 bits concerned
by Γ δ̃ is zero, and compute its deviation from 250.27.

iii. If the guess for (K1,1,K13,1) is the first guess for (K1,1,K13,1), then record the guess and the deviation
computed in Step 2(e)(ii); otherwise, record the guess and its deviation only when the deviation is larger
than that of the previously recorded guess, and remove the guess with the smaller deviation.

4. For the K1,1 recorded in Step 2(e)(iii), exhaustively search for the remaining 48 key bits with two known plain-
text/ciphertext pairs. If a 56-bit key is suggested, output it as the user key of the 13-round DES.

The attack requires 252.27 chosen plaintexts. The required memory for the attack is dominated by the storage of
the plaintexts and ciphertexts, which is 252.27 × 16 = 256.27 bytes. Steps 1 and 2 have a time complexity of 252.27

13-round DES encryptions. Steps 3(b) and 3(c) have a time complexity of 2 × 251.27 × 26 × 1
8×13 ≈ 251.57 13-round

DES encryptions. Step 3(d) has a time complexity of 251.27 × 26 = 257.27 memory accesses. The time complexity of
Step 3(e) is dominated by the time complexity of Step 3(e)(i), which is 2×26×26×220× 1

8×13 ≈ 226.3 13-round DES
encryptions. Step 4 has a time complexity of 248 13-round DES encryptions. Therefore, the attack has a total time
complexity of approximately 252.97 13-round DES encryptions and 257.27 memory accesses. There are 251.27 plaintext
pairs (Pi,j , P̂i,j) for a guess of (K1,1,K13,1), and thus following Theorem 2 of [29], we have that the attack has a
success probability of about 99%.
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5 Differential-Linear Cryptanalysis of CTC2

The CTC2 [15] cipher is designed to show the strength of the algebraic analysis [30] on block ciphers by the proposer,
who described an algebraic attack on 6 rounds of the version of CTC2 that uses a 255-bit block size and a 255-bit
key. In 2009, Dunkelman and Keller [13] described 6 and 7-round differential-linear distinguishers for the version of
CTC2, and finally presented differential-linear attacks on 7 and 8 rounds of CTC2 (with a 255-bit block size and key).
The attack on 8-round CTC2 is known as the best previously published result on CTC2 in terms of the numbers of
attacked rounds.

In this section, using the new methodology we describe a 8.5-round differential-linear distinguisher with bias 2−68

for the CTC2 with a 255-bit block size and key, and give a differential-linear attack on 10-round CTC2 (with a
255-bit block size and a key). We first briefly review the CTC2 cipher.

5.1 The CTC2 Block Cipher

The CTC2 [15] block cipher has a variable block size, a variable length key, and a variable number of rounds. There
are many combinations for the block size, key size and round number. As in [13], we only consider the version of CTC2
that uses a 255-bit block size and a 255-bit key. CTC2 uses the following two elementary operations to construct its
round function.

– S is a non-linear substitution operation constructed by applying the same 3 × 3-bit bijective S-box 85 times in
parallel to an input.

– D is a linear diffusion operation, which takes a 255-bit block Y = (Y254, · · · , Y1, Y0) as input, and outputs a
255-bit block Z = (Z254, · · · , Z1, Z0), computed as defined below.{

Z151 = Y2 ⊕ Y139 ⊕ Y21

Z(i×202+2) mod 255 = Yi ⊕ Y(i+137) mod 255 i = 0, 1, 3, 4, · · · , 254

CTC2 takes as input a 255-bit plaintext block P , and its encryption procedure forNr rounds is, where Z0, Xi, Yi, Zi,
XNr , YNr , ZNr are 255-bit variables, and K0,Ki,KNr are round keys generated from a user key K as Kj = K≪ j
in our notation, (0 ≤ j ≤ Nr).

1. Z0 = P .
2. For i = 1 to Nr − 1:

– Xi = Zi−1 ⊕Ki−1,
– Yi = S(Xi),
– Zi = D(Yi).

3. XNr
= ZNr−1 ⊕KNr−1, YNr

= S(Xi), ZNr
= D(YNr

).
4. Ciphertext = ZNr

⊕KNr
.

The ith iteration of Step 2 in the above description is referred to below as Round i, (1 ≤ i ≤ Nr − 1), and the
transformations in Steps 3 and 4 are referred to below as Round Nr. This is in accordance with [15]. We number the
85 S-boxes in a round from 0 to 84 from right to left.

5.2 A 8.5-Round Differential-Linear Distinguisher with Bias 2−68

The 8.5-round differential-linear distinguisher is made up of a 5.5-round linear approximation Γγ → Γδ with bias 2−33

and all the 3-round differentials {∆α→ ∆β} that meet β�γ = 0 with ∆α = e0. The 5.5-round linear approximation
Γγ → Γδ is e5,33,49,54,101, 112,131,138,155,168,188,193,217,247,251 → e32,151, which is obtained by appending the following
two rounds before the 3.5-round linear approximation e14,104,134,241 → e32,151 given in [13]: e5,33,49,54,101,112,131,138,155,

168,188,193,217,247,251
S→ e3,33,35,49,56,99,112,129,140,153,170,186,193,217, 247,249

D→ e38,53, 94,98,171,186,210,231
S→ e36,51,94,96,173,

188,212,233
D→ e14,104,134,241. The input difference α is chosen so that there are only 16 active bit positions after being

applied D−1. This enables us to conduct a differential-linear attack on 10-round CTC2 as presented in the next
subsection. For any other one-bit difference except e0, there are more than 50 active bit positions after applying D−1

to it, and thus the resulting distinguisher cannot be used to break 10-round CTC2, because too many subkey bits
are required to guess.
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Table 4. Probabilities for the four output differences in {ω}

Difference (ω) e0 e1 e2 e0,1,2

PrS(∆α→ ∆ω) 2−2 2−2 2−2 2−2

Pr(βω � γ = 0|∆α→ ∆ω) 0.75 0.5 0.5 0.5

We now compute the probability of the 8.5-round differential-linear distinguisher. Without loss of generality, we
assume that the 3-round differentials {∆α→ ∆β} operate on Rounds 1 to 3, and the 5.5-round linear approximation
Γγ → Γδ operates on Rounds 4 to 9 (just before the D operation of Round 9). By the D operation, we learn that
the input mask Γγ concerns the following 28 bit positions of the output difference of the S operation of Round 3:
Bits 5, 12, 20, 24, 27, 45, 76, 82, 83, 86, 88, 89, 95, 105, 120, 142, 149, 157, 161, 163, 164, 200, 204, 206, 207, 220,
223 and 238.3 The 28 concerned bit positions are covered in 24 S-boxes of Round 3: S-boxes 1, 4, 6, 8, 9, 15, 25, 27,
28, 29, 31, 35, 40, 47, 49, 52, 53, 54, 66, 68, 69, 73, 74 and 79; let Ω be the set of the 24 S-boxes.

On the other direction, the input difference ∆α generates 4 possible differences after the S operation of Round
1: {ω|ω = e0, e1, e2, e0,1,2}, each with probability 2−2 as shown in the second row of Table 4. We represent the least
significant three bits of ω as a concatenation of three one-bit variables c||b||a, where a, b, c ∈ {0, 1}. After the D
operation of Round 1, a difference ω causes at most 6 active S-boxes of Round 2: S-boxes 0, 5, 23, 41, 50 and 68; the
input difference for S-box 0 is a||0||0 in binary notation, the input difference for S-box 5 is c||0||0 in binary notation,
the input difference for S-box 23 is 0||b||0 in binary notation, the input difference for S-box 41 is 0||0||a in binary
notation, the input difference for S-box 50 is 0||c||0 in binary notation, and the input difference for S-box 68 is 0||0||b
in binary notation. The 18-bit output difference of the 6 active S-boxes of Round 2 get involved in a total of 34 bits
of the input difference of the S-box operation of Round 3: Bits 2, 7, 17, 21, 25, 36, 40, 49, 60, 64, 70, 78, 93, 102,
106, 113, 117, 121, 123, 128, 151, 155, 159, 170, 174, 181, 185, 204, 212, 223, 227, 234, 238 and 242. Among the 34
bits, only 8 bits are involved in the 24 S-boxes in Ω: Bits 25, 93, 106, 121, 159, 204, 223 and 238; and they are for
S-boxes 8, 31, 35, 40, 53, 68, 74 and 79. The values for the 8 bits depend on 7 bits of the output difference of the 6
active S-boxes of Round 2: (1) The second least significant bit of the output difference of S-box 0, and we label the
bit d; (2) The least and most significant bits of the output difference of S-box 5, and we denote them by e and f ,
respectively; (3) The second least significant bit of the output difference of S-box 23, and we label the bit g; (4) The
most significant two bits of the output difference of S-box 50, and we denote them by h and m, respectively; and (5)
The second least significant bit of the output difference of S-box 68, and we label the bit n.

As a result, we have: (I) S-box 8 of Round 3 has an input difference 0||h||0, and the least significant bit, labeled
by x0, of its output difference is concerned by Γγ; (II) S-box 31 of Round 3 has an input difference 0||0||e, and the
most significant bit, labeled by x1, of its output difference is concerned by Γγ; (III) S-box 35 of Round 3 has an input
difference 0||m||0, and the least significant bit, labeled by x2, of its output difference is concerned by Γγ; (IV) S-box
40 of Round 3 has an input difference 0||f ||0, and the least significant bit, labeled by x3, of its output difference is
concerned by Γγ; (V) S-box 53 of Round 3 has an input difference 0||0||h, and the most significant bit, labeled by
x4, of its output difference is concerned by Γγ; (VI) S-box 68 of Round 3 has an input difference 0||0||d, and the
least and most significant bits, labeled respectively by x5 and x6, of its output difference are concerned by Γγ; (VII)
S-box 74 of Round 3 has an input difference 0||n||0, and the second least significant bit, labeled by x7, of its output
difference is concerned by Γγ; and (VIII) S-box 79 of Round 3 has an input difference 0||g||0, and the second least
significant bit, labeled by x8, of its output difference is concerned by Γγ. Now, whether β � γ = 0 is equivalent to
whether

⊕8
i=0 xi = 0.

By the differential distribution table of the S-box, we get the possible values for d, (f ||e), g, (m||h), n, x0, x1, x2, x3,
x4, x5 ⊕ x6, x7, x8 and the conditional probabilities, as follows: Pr(d = 0|a = 0) = 1,Pr(d = 0|a = 1) = 0.5,Pr(d =
1|a = 1) = 0.5,Pr((f ||e) = 0|c = 0) = 1,Pr((f ||e) = 1|c = 1) = 0.5,Pr((f ||e) = 3|c = 1) = 0.5,Pr(g = 0|b = 0) =
1,Pr(g = 1|b = 1) = 1,Pr((m||h) = 0|c = 0) = 1,Pr((m||h) = 1|c = 1) = 0.5,Pr((m||h) = 3|c = 1) = 0.5,Pr(n =
0|b = 0) = 1,Pr(n = 0|b = 1) = 0.5,Pr(n = 1|b = 1) = 0.5,Pr(x0 = 0|h = 0) = 1,Pr(x0 = 0|h = 1) = 0.5,Pr(x0 =
1|h = 1) = 0.5,Pr(x1 = 0|e = 0) = 1,Pr(x1 = 0|e = 1) = 0.5,Pr(x1 = 1|e = 1) = 0.5,Pr(x2 = 0|m = 0) = 1,Pr(x2 =
0|m = 1) = 0.5,Pr(x2 = 1|m = 1) = 0.5,Pr(x3 = 0|f = 0) = 1,Pr(x3 = 0|f = 1) = 0.5,Pr(x3 = 1|f = 1) =
0.5,Pr(x4 = 0|h = 0) = 1,Pr(x4 = 0|h = 1) = 0.5,Pr(x4 = 1|h = 1) = 0.5,Pr(x7 = 0|n = 0) = 1,Pr(x7 = 1|n = 1) =

3 Bit position 213 appears twice, and thus cancels out.
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1,Pr(x8 = 0|g = 0) = 1,Pr(x8 = 1|g = 1) = 1,Pr(x5 ⊕ x6 = 0|d = 0) = 1,Pr(x5 ⊕ x6 = 0|d = 1) = 0.5,Pr(x5 ⊕ x6 =
1|d = 1) = 0.5.

For each difference ω, we denote by βω the output difference(s) immediately after Round 3, and using the above
conditional probabilities we compute the probability of

⊕8
i=0 xi = 0 by performing a program over all the possible

(truncated) differential characteristics, which takes a few seconds in a general PC. These probabilities are given in
the third row of Table 4.

Thus, by Theorem 1 we have that the probability of the 8.5-round distinguisher is 1
2 + 2× [2×

∑
ω PrS(∆0x1→

∆ω) × Pr(∆βω � Γγ = 0|∆0x1 → ∆ω) − 1] × (2−33)2 = 1
2 + 2 × 2−3 × 2−66 = 1

2 + 2−68. Therefore, the 8.5-round
differential-linear distinguisher has a bias of 2−68.

5.3 Attacking 10-Round CTC2 with a 255-Bit Block Size and Key

The above 8.5-round distinguisher enables us to construct a differential-linear attack breaking 10-round CTC2 when
used with a 255-bit block size and key.

We assume the attacked rounds are the first ten rounds from Rounds 1 to 10; and we use the distinguisher from
Rounds 2 until before the D operation of Round 10. As mentioned earlier, we learn that the input difference α
propagates to 16 bit positions after the inverse of the D operation of Round 1: Bits 17, 21, 40, 59, 78, 97, 116, 135,
139, 154, 158, 177, 196, 215, 234 and 253. The 16 active bits correspond to 16 S-boxes of Round 0: S-boxes 5, 7, 13,
19, 26, 32, 38, 45, 46, 51, 52, 59, 65, 71, 78 and 84; let Θ be the set of the 16 S-boxes, and KΘ be the 48 bits of
K0 corresponding to the 16 S-boxes in Θ. Another observation is that we do not need to guess the subkey bits from
K10, because the output mask Γδ of the 8.5-round distinguisher concerns the intermediate value immediately after
the S operation of Round 10, and for a pair of ciphertexts (C, Ĉ) the value of δ �D−1(C)⊕ δ �D−1(Ĉ) equals to
δ �D−1(C ⊕ Ĉ), which is independent of K10. The attack procedure is as follows.

1. Choose 294 structures Si, (i = 0, 1, · · · , 294−1), where a structure is defined to be a set of 248 plaintexts Pi,j with
the 48 bits for the S-boxes in Θ taking all the possible values and the other 207 bits fixed, (j = 0, 1, · · · , 248− 1).
In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 248 plaintexts in each of the 294 structures;
we denote by Ci,j the ciphertext for plaintext Pi,j .

2. Guess a value for KΘ, and do as follows.
(a) Partially encrypt every (remaining) plaintext Pi,j with the guessed KΘ to get its intermediate value imme-

diately after the S operation of Round 1; we denote it by εi,j .
(b) Take bitwise complements to bits (17, 21, 40, 59, 78, 97, 116, 135, 139, 154, 158, 177, 196, 215, 234, 253) of

εi,j , and keep invariant the other bits of εi,j ; we denote the resulting value by ε̂i,j .
(c) Partially decrypt ε̂i,j with the guessed KΘ to get its plaintext, and find the plaintext in Si; we denote it by

P̂i,j , and denote by Ĉi,j the corresponding ciphertext for P̂i,j .
(d) For every ciphertext pair (Ci,j , Ĉi,j), compute the XOR of bits 32 and 151 of D−1(Ci,j ⊕ Ĉi,j).
(e) Count the number of the ciphertext pairs (Ci,j , Ĉi,j) which have a zero XOR between bits 32 and 151 of

D−1(Ci,j ⊕ Ĉi,j), and compute its deviation from 2140.
(f) If the guess for KΘ is the first guess, record it and its deviation computed in Step 2(e); otherwise, record it

and its deviation only when the deviation is larger than the previously recorded deviation, and discard the
previously recorded guess and its deviation.

3. For the recorded KΘ in Step 2(f), exhaustively search for the remaining 207 key bits with a known plain-
text/ciphertext pair. If a 255-bit key is suggested, output it as the user key of CTC2.

The attack requires 2142 chosen plaintexts. The time complexity of Step 2 is dominated by the time complexity
of Steps 2(a), 2(c) and 2(d), which is approximately 2× 2141× 248× 16

85×10 + 2141× 248× 1
10 ≈ 2186.2 10-round CTC2

encryptions. Step 3 has a time complexity of 2207 10-round CTC2 encryptions. Therefore, the attack has a total time
complexity of 2207 10-round CTC2 encryptions to find the 255-bit key. There are 2141 plaintext pairs (Pi,j , P̂i,j) for
a guess of KΘ. Following Theorem 2 of [29], we learn that the probability that the correct guess for KΘ is recorded
in Step 2(f) is about 99.9%. Thus, the attack has a success probability of about 99.9%.

6 Differential-Linear Cryptanalysis of Reduced Serpent

The Serpent [31] block cipher is one of the five AES finalists, second to the Rijndael [32] cipher. In 2003, Biham et
al. [10] described a 8-round differential-linear distinguisher of Serpent, and presented a differential-linear attack on
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10-round Serpent with a 128-bit key; and they presented a 9-round differential-linear distinguisher of Serpent, and
finally gave a differential-linear attack on 11-round Serpent with a 192/256-bit key. In 2008 Dunkelman et al. [12]
presented improved 8 and 9-round differential-linear distinguishers of Serpent, and finally used them as the basis for
differential-linear attacks on 10-round Serpent with a 128-bit key, 11-round Serpent with a 192-bit key and 12-round
Serpent with a 256-bit key. The attacks on 10-round Serpent with a 128-bit key, 11-round Serpent with a 192-bit
key and 12-round Serpent with a 192-bit key are known as the best previously published cryptanalytic results on
Serpent in terms of the numbers of attacked rounds.

In this section, we first present a 9-round linear approximation with bias 2−51, which can be used to conduct
linear attacks on 10-round Serpent with a 128-bit key and 11-round Serpent with a 192/256-bit key. Then, building
on a 6-round linear approximation obtained by truncating the 9-round linear approximation, we construct a 9-round
differential-linear distinguisher with bias 2−59.41 under the new methodology, and finally use it to conduct differential-
linear attacks on 10-round Serpent with a 128-bit key, 11-round Serpent with a 192-bit key and 12-round Serpent
with a 256-bit key.

6.1 The Serpent Block Cipher

The Serpent [31] block cipher has a 128-bit block size, a variable length key of up to 256 bits, and a total of 32
rounds; short keys is used by appending one “1” bit to the most significant bit end, followed by as many “0” bits as
required. Serpent uses the following elementary operations:

– IP/FP is the initial/final permutation; see [31] for their specifications.
– Si is a non-linear substitution operation constructed by applying the same 4 × 4-bit bijective Si mod 8 S-box 32

times in parallel to an input, (0 ≤ i ≤ 31). Refer to [31] for specifications of the S-boxes S0, S1, · · · , S7.
– L is a linear diffusion operation, which takes as input a 128-bit block of four 32-bit words X = (X3, X2, X1, X0),

and outputs a 128-bit block of four 32-bit words Y = (Y3, Y2, Y1, Y0), computed as follows.
– X0 = X0 ≪ 13,
– X2 = X2 ≪ 3,
– X1 = X0 ⊕X1 ⊕X2,
– X3 = X3 ⊕X2 ⊕ (X0 � 3),
– X1 = X1 ≪ 1,
– X3 = X3 ≪ 7,
– X0 = X0 ⊕X1 ⊕X3,
– X2 = X2 ⊕X3 ⊕ (X1 � 3),
– X0 = X0 ≪ 5,
– X2 = X2 ≪ 22,
– Y = (X3, X2, X1, X0).

Serpent takes as input a 128-bit plaintext block P , and its encryption procedure is, where B̂0, B̂1, · · · , B̂32 are
128-bit variables, and K0,K1, · · · ,K32 are round keys.

1. B̂0 = IP(P ).
2. For i = 0 to 30:

– B̂i+1 = L(Si(B̂i ⊕Ki)).
3. B̂32 = S31(B̂31 ⊕K31)⊕K32.
4. Ciphertext = FP(B̂32).

We refer to below the ith iteration of Step 2 in the above description as Round i, (0 ≤ i ≤ 30), and the
transformations in Steps 3 and 4 as Round 31. This is in accordance with [31]. We number the 32 S-boxes of a round
from 0 to 31 from right to left. For simplicity, we describe a state S in a Serpent encryption as four 32-bit words
(s3, s2, s1, s0), and write it as (s3,31||s2,31||s1,31||s0,31)|| · · · ||(s3,1||s2,31||s1,1||s0,1)||(s3,0||s2,0||s1,0||s0,0), where sj,l is
the lth bit of sj , (0 ≤ j ≤ 3, 0 ≤ l ≤ 31). We write Ki,m for the 4-bit subkey of Ki that corresponds to S-box m of
Round i, (0 ≤ m ≤ 31). As the IP and FP operations are simply linear diffusion transformations, we omit them in
our analysis. We denote by Serpent-128/192/256 the versions of Serpent that respectively use 128, 192 and 256 key
bits.
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Table 5. A 9-Round Linear Approximation with Bias 2−51

Operation input mask Probability

S3 0xD0600D000030300000300000D00DB70B 1
2
± 2−12

L 0x40C00400001010000010000040048208 1

S4 0x00400000000000000000000000080006 1
2
± 2−7

L 0x00400000000000000000000000040008 1

S5 0x00400000000000000000000000000002 1
2
± 2−5

L 0x00400000000000000000000000000008 1

S6 0x00000000000000000000000080000000 1
2
± 2−3

L 0x00000000000000000000000040000000 1

S7 0x000000A0000100000000000000000000 1
2
± 2−5

L 0x00000010000100000000000000000000 1

S0 0x0000000000000000000010000B0000A0 1
2
± 2−6

L 0x00000000000000000000100001000010 1

S1 0x0010000B0000B0000A00000000000000 1
2
± 2−7

L 0x00100001000010000100000000000000 1

S2 0x0000A0000000000010000B0000B0000B 1
2
± 2−6

L 0x00001000000000005000010000100001 1

S3 0x000B0000B000030000B0200E00000010 1
2
± 2−8

L 0x00080000800001000080700200000060 1

output mask 0xAD1804BAC022040318D22A22230FC240 /

6.2 9-Round Linear Approximations with Bias 2−51

In [31], the Serpent designers gave upper bounds for the biases of 6 and 7-round linear approximations, which are
2−28 and 2−34, respectively. However, in 2001 Biham et al. [17] described a few 6 and 7-round linear approximations
with bias 2−25 and 2−32, respectively, which are obviously beyond the bounds given by the Serpent designers; and
they presented 9-round linear approximations with bias 2−52, and used them to break 10-round Serpent-128 and
11-round Serpent-192/256. By the most recent theory [29] on the success probability of linear cryptanalysis, Biham
et al.’s linear attacks on 10-round Serpent-128 and 11-round Serpent-192/256 will respectively require 2120.6 and
2122.9 known plaintexts to have a success probability of about 99%. The 9-round linear approximations are the best
previously known linear approximations on Serpent with a cryptanalytic significance.

We observe that 9-round linear approximations with bias 2−51 can be obtained by changing the masks in the first
few rounds of Biham et al.’s 9-round linear approximation, and one of them is detailed in Table 5. When we take the
six rounds from the S4 operation until immediately before the S2 operation and then optimize the input and output
masks, we can get 6-round linear approximations with bias 2−23. 7-round linear approximations with bias 2−30 can
be obtained by taking the seven rounds from the S4 operation until immediately before the second S3 operation and
then optimizing the input mask. And, we can get 8-round linear approximations with bias 2−37 by taking the last
eight rounds optimizing the input mask. They have a larger bias than Biham et al.’s linear approximations.

Building on the 9-round linear approximation with bias 2−51, we can conduct linear attacks on 10-round Serpent-
128 and 11-round Serpent-192/256, similar to those described in [17]. To attack 10-round Serpent-128 we change the
output mask for the second S3 operation to 0x00040000400001000040100100000010, and thus the resulting 9-round
linear approximation has the output mask 0x2010090800E0300C0A00002004010000, with bias 2−57; and there are
11 active S-boxes in the round following the round with the output mask. By Theorem 2 of [29], the attack on 10-
round Serpent-128 requires 2118.6 known plaintexts to have a success probability of 99%, and has a time complexity
of about 244 × 245 × 11

32×10 ≈ 285 10-round Serpent encryptions. Further, to attack 11-round Serpent-192/256 we
then change the input mask for the 9-round distinguisher to 0xF0600F0000F0300000F00000F00F2202, and thus
the new 9-round linear approximation has a bias of 2−60, and there are 24 active S-boxes in the round preceding
the rounds with the input mask, (the output mask for the round is 0x1007905C2041030854725DE06C107AF4). The
attack requires 2126.9 known plaintexts to have a success probability of 99%, and has a time complexity of about
296 × 296 × 24

32×11 + 244 × (2126.9 × 11
32×11 + 296) ≈ 2189 11-round Serpent encryptions.
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Table 6. Probabilities for the six output differences in {ω}

Difference (ω) PrS2(∆0xA→ ∆ω) Pr(∆βω � Γγ = 0|∆0xA→ ∆ω)

0x2 2−3 0.453125

0x4 2−3 0.502197265625

0x6 2−2 0.5

0x8 2−3 0.49609375

0xA 2−2 0.500732421875

0xE 2−3 0.5

Nevertheless, the significance of the 9-round linear approximation does not only lie in these attacks, but more
significantly, as to be described in the next subsection, using a 6-round linear approximation obtained from the 9-
round linear approximation, we can construct a 9-round differential-linear distinguisher that enables us to nontrivially
break 12-round Serpent-256, the best cryptanalytic result for Serpent.

6.3 A 9-Round Differential-Linear Distinguisher with Bias 2−59.41

We frist give the 9-round differential-linear distinguisher, and then introduce its construction strategies at the end
of this subsection. The distinguisher is made up of a 6-round linear approximation Γγ → Γδ with bias 2−27 for
Rounds 5 to 10 and all the 3-round differentials {∆α → ∆β} for Rounds 2 to 4 that meet β � γ = 0 with ∆α =
0x000000A0000000000000000000000000. The 5-round linear approximation Γγ → Γδ is 0x0040000000000000000000
0000000002 → 0x000B0000B000030000B0200E00000010, which is from the S5 operation until immediately before
the second S3 operation of the 9-round linear approximation given in Table 5.

Given the input difference ∆α, there is only one active S-box among the 32 S2 S-boxes of Round 2, which generates
6 possible output differences: {ω|ω = 0x2, 0x4, 0x6, 0x8, 0xA, 0xE}; the probabilities for these output differences are
given in the second column of Table 6, and the differential distribution tables of the eight S-boxes are presented
in [33]. We write ω as d||c||b||a in binary notation, where a, b, c, d ∈ {0, 1}. By the LT operation we know that the
input mask Γγ concerns a total of 3 bits of the output differences of three S4 S-boxes in Round 4: (i) The most
significant bit of the output difference of S-box 0, and we label it x0; (ii) The second most significant bit of the
output difference of S-box 4, and we label it x1; and (iii) The second most significant bit of the output difference of
S-box 29, and we label it x2.

The 6 possible output differences {ω} may affect at most 18 S-boxes of Round 3, and a simple analysis reveals
that only fifteen of them relate to the input differences of the three S-boxes of Round 4 concerned by the input mask.
We now focus on the fifteen S3 S-boxes in Round 3. S-box 0 has an input difference d000 in binary notation, and
we denote the most significant bit and the second most significant bit of its output difference by y0, y1, respectively.
S-box 2 has an input difference 000c in binary notation, and we denote the second least significant bit of its output
difference by y2. S-box 3 has an input difference c000 in binary notation, and we denote the most significant bit,
the second most significant bit and the second least significant bit of its output difference by y3, y4, y5, respectively.
S-box 4 has an input difference 0a00 in binary notation, and we denote the second most significant bit and the
least significant bit of its output difference by y6, y7, respectively. S-box 6 has an input difference 0a00 in binary
notation, and we denote the second least significant bit and the least significant bit of its output difference by y8, y9,
respectively. S-box 7 has an input difference 00a0 in binary notation, and we denote the most significant bit and
the second most significant bit of its output difference by y10, y11, respectively. S-box 8 has an input difference 000c
in binary notation, and we denote the least significant bit of its output difference by y12. S-box 11 has an input
difference 000a in binary notation, and we denote the second most significant bit and the least significant bit of its
output difference by y13, y14, respectively. S-box 18 has an input difference 0c00 in binary notation, and we denote
the least significant bit of its output difference by y15. S-box 21 has an input difference 000a in binary notation, and
we denote the second most significant bit and the least significant bit of its output difference by y16, y17, respectively.
S-box 22 has an input difference 0d00 in binary notation, and we denote the most significant bit, the second most
significant bit and the least significant bit of its output difference by y18, y19, y20, respectively. S-box 25 has an input
difference 0c00 in binary notation, and we denote the most significant bit, the second most significant bit and the least
significant bit of its output difference by y21, y22, y23, respectively. S-box 26 has an input difference 00b0 in binary
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Table 7. Relevant Probabilities for S3

Pr((y0||y1) = 0x0|d = 1) = 0.125 Pr((y0||y1) = 0x1|d = 1) = 0.125
Pr((y0||y1) = 0x2|d = 1) = 0.125 Pr((y0||y1) = 0x3|d = 1) = 0.625
Pr(y2 = 0x0|c = 1) = 0.5 Pr(y2 = 0x1|c = 1) = 0.5
Pr((y3||y4||y5) = 0x1|c = 1) = 0.125 Pr((y3||y4||y5) = 0x3|c = 1) = 0.125
Pr((y3||y4||y5) = 0x4|c = 1) = 0.125 Pr((y3||y4||y5) = 0x6|c = 1) = 0.375
Pr((y3||y4||y5) = 0x7|c = 1) = 0.25 Pr((y10||y11) = 0x1|a = 1) = 0.25
Pr((y10||y11) = 0x2|a = 1) = 0.5 Pr((y10||y11) = 0x3|a = 1) = 0.25
Pr((y6||y7) = 0x0|a = 1) = 0.125 Pr((y6||y7) = 0x1|a = 1) = 0.125
Pr((y6||y7) = 0x2|a = 1) = 0.375 Pr((y6||y7) = 0x3|a = 1) = 0.375
Pr((y8||y9) = 0x0|a = 1) = 0.125 Pr((y8||y9) = 0x1|a = 1) = 0.125
Pr((y8||y9) = 0x2|a = 1) = 0.375 Pr((y8||y9) = 0x3|a = 1) = 0.375
Pr(y12 = 0x0|c = 1) = 0.25 Pr(y12 = 0x1|c = 1) = 0.75
Pr((y13||y14) = 0x1|a = 1) = 0.25 Pr((y13||y14) = 0x2|a = 1) = 0.25
Pr((y13||y14) = 0x3|a = 1) = 0.5 Pr((y16||y17) = 0x1|a = 1) = 0.25
Pr((y16||y17) = 0x2|a = 1) = 0.25 Pr((y16||y17) = 0x3|a = 1) = 0.5
Pr(y15 = 0x0|c = 1) = 0.5 Pr(y15 = 0x1|c = 1) = 0.5
Pr((y18||y19||y20) = 0x2|d = 1) = 0.25 Pr((y18||y19||y20) = 0x3|d = 1) = 0.25
Pr((y18||y19||y20) = 0x4|d = 1) = 0.125 Pr((y18||y19||y20) = 0x5|d = 1) = 0.125
Pr((y18||y19||y20) = 0x6|d = 1) = 0.125 Pr((y18||y19||y20) = 0x7|d = 1) = 0.125
Pr((y21||y22||y23) = 0x2|c = 1) = 0.25 Pr((y21||y22||y23) = 0x3|c = 1) = 0.25
Pr((y21||y22||y23) = 0x4|c = 1) = 0.125 Pr((y21||y22||y23) = 0x5|c = 1) = 0.125
Pr((y21||y22||y23) = 0x6|c = 1) = 0.125 Pr((y21||y22||y23) = 0x7|c = 1) = 0.125
Pr((y24||y25) = 0x0|b = 1) = 0.125 Pr((y24||y25) = 0x1|b = 1) = 0.375
Pr((y24||y25) = 0x2|b = 1) = 0.125 Pr((y24||y25) = 0x3|b = 1) = 0.375
Pr((y26||y27) = 0x1|c = 1) = 0.25 Pr((y26||y27) = 0x2|c = 1) = 0.5
Pr((y26||y27) = 0x3|c = 1) = 0.25 Pr((y28||y29) = 0x1|b = 1) = 0.25
Pr((y28||y29) = 0x2|b = 1) = 0.5 Pr((y28||y29) = 0x3|b = 1) = 0.25

notation, and we denote the second most significant bit and the second least significant bit of its output difference by
y24, y25, respectively. S-box 29 has an input difference 00c0 in binary notation, and we denote the most significant bit
and the second most significant bit of its output difference by y26, y27, respectively. S-box 31 has an input difference
000b in binary notation, and we denote the second most significant bit and the second least significant bit of its
output difference by y28, y29, respectively.

As a result, we get the input differences of the concerned three S4 S-boxes of Round 4: (1) The input difference
for S-box 0 is (y19 ⊕ y21)||(y1 ⊕ y2 ⊕ y3 ⊕ y11 ⊕ y17 ⊕ y28)||(y15 ⊕ y29)||(y7 ⊕ y25); (2) The input difference for S-box
4 is (y24 ⊕ y26)||(y4 ⊕ y6 ⊕ y8 ⊕ y10 ⊕ y13 ⊕ y23)||(y1 ⊕ y5 ⊕ y20)||(y12 ⊕ y15 ⊕ y16); and (3) The input difference for
S-box 29 is (y9 ⊕ y18)||(y0 ⊕ y6 ⊕ y15 ⊕ y27 ⊕ y29)||y22||y14.

By the differential distribution table of the S3 S-box, we get all the possible values for (y0||y1), y2, (y3||y4||y5),
(y6||y7), (y8||y9), (y10||y11), y12, (y13||y14), y15, (y16||y17), (y18||y19|| y20), (y21||y22||y23), (y24||y25), (y26||y27) and
(y28||y29) as well as their probabilities, which are given in Table 7. By the differential distribution table of S4, we
compute the conditional probability that for every possible input difference, the concerned bit of the output difference
of each concerned S4 S-box in Round 4 is 0 or 1; the probabilities are given in Table 8.

For each difference ω, we denote by βω the output difference(s) of the 3-round Serpent. Subsequently, we compute
the probability that the XOR of the concerned 3 bits of βω is zero (i.e., Pr(∆βω � Γγ = 0|∆0xA → ∆ω)) by
performing a program over all the possible (truncated) differential characteristics. These probabilities are given in
the third column of Table 6. A straightforward implementation takes several seconds in a general PC.

Therefore, the probability of the 9-round differential-linear distinguisher is 1
2 + 2× [2×

∑
ω PrS2(∆0xA→ ∆ω)×

Pr(∆βω�Γγ = 0|∆0xA→ ∆ω)−1]×(2−27)2 ≈ 1
2−2×2−6.41×2−54 = 1

2−2−59.41. Thus, the 9-round differential-linear
distinguisher has a bias of 2−59.41.

We use several strategies to find the above distinguisher. First, 9 rounds are the most that we can build for a
differential-linear distinguisher in a general PC. As mentioned in Section 6.2, the best currently known 7-round linear
approximation has bias 2−30; thus if we aim to build an useful distinguisher operating on 10 (or more) rounds by
using such a 7-round linear approximation, then the bias for the distinguisher is 2×|2p̂−1|×(2−30)2 = |2p̂−1| ·2−59,
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Table 8. Relevant Probabilities for S4

Difference (ω) Pr(x0 = 0|ω) Pr(x0 = 1|ω) Pr(x1(x2) = 0|ω) Pr(x1(x2) = 1|ω)

0x0 1 0 1 0

0x1 0.25 0.75 0.25 0.75

0x2 0.5 0.5 0.25 0.75

0x3 0.5 0.5 0.75 0.25

0x4 0.5 0.5 0.5 0.5

0x5 0.25 0.75 0.5 0.5

0x6 0.5 0.5 0.5 0.5

0x7 0.5 0.5 0.5 0.5

0x8 0.25 0.75 0.5 0.5

0x9 0.75 0.25 0.5 0.5

0xA 0.5 0.5 0.5 0.5

0xB 0.5 0.5 0.5 0.5

0xC 0.25 0.75 0.25 0.75

0xD 0.75 0.25 0.5 0.5

0xE 0.5 0.5 0.75 0.25

0xF 0.5 0.5 0.25 0.75

so the margin for the value of |2p̂ − 1| is tough for using 3-round differentials. Alternatively we may choose to use
4-round differentials, instead of using a 7-round linear approximation, however, there are a large number of possible
differential characteristics for which calculating the probability of β � γ = 0 is beyond the computational power of a
general PC. Second, to use a 9-round distinguisher to attack 12-round Serpent, we should use such an input difference
for the distinguisher that makes a small number of active S-boxes for the two rounds preceding the distinguisher,
ideally less than 32, meaning that a small number of unknown key bits are required to guess; another way is to append
two more rounds after the distinguisher, however this usually needs to guess more subkey bits. Third, some 3-round
differentials should involve as few as possible active bits, and the input mask should concern as few as possible
output bits of the S operation of the preceding round. After having checked the biases of a number of 9-round
distinguishers, we find: Generally speaking, the more active or concerned bits are involved, the more smaller is the
bias of the distinguisher, and the distinguisher is more likely to be ineffective. The above 9-round differential-linear
distinguisher is the best we have found under the strategies, where the input mask concerns only three output bits
of the preceding S4 operation, and either of the two values 0x2 and 0x8 of ω makes only two active S3 S-boxes in
the following round.

6.4 Differential-Linear Attack on 12-Round Serpent-256

We can use the 9-round differential-linear distinguisher as the basis for a differential-linear attack breaking 12-round
Serpent-256. We attack Rounds 0 to 11, and use the distinguisher from Rounds 2 to 10. The input difference α
becomes 0x000000A2040008000000000000000000 after being applied the reverse of the LT operation of Round 1,
and the 5 active bits correspond to S-boxes 18, 22, 24 and 25 of Round 1. It makes 27 active S-boxes of Round 0:
S-boxes 0, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, · · ·, 29 and 31; let Θ be the set of the 27 S-boxes, and KΘ be the 108
bits of K0 corresponding to the 27 S-boxes in Θ. The 16 bits concerned by the output mask correspond to S-boxes
1, 8, 11, 13, 18, 23 and 28 of Round 11. The attack procedure is as follows, where the values of parameters λ and φ
will be specified in the subsequent analysis.

1. Choose λ structures Si, (i = 0, 1, · · · , λ−1), where a structure is defined to be a set of 2108 plaintexts Pi,j with the
108 bits for the 27 S-boxes in Θ taking all the possible values and the other 20 bits fixed, (j = 0, 1, · · · , 2108− 1).
In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 2108 plaintexts in each of the λ structures;
we denote by Ci,j the ciphertext for plaintext Pi,j .

2. Guess a value for (KΘ,K1,18,K1,22,K1,24,K1,25), and do as follows.
(a) Initialize 256 counters to zero, which correspond to the 256 possible pairs of the 28 ciphertext bits correspond-

ing to S-boxes 1, 8, 11, 13, 18, 23 and 28 of Round 11.
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(b) Partially encrypt every (remaining) plaintext Pi,j with the guessed (KΘ,K1,18,K1,22, K1,24,K1,25) to get its
intermediate value immediately after the S operation of Round 1; we denote it by εi,j .

(c) Compute εi,j ⊕ 0x000000A2040008000000000000000000, and we denote the resulting value by ε̂i,j .
(d) Partially decrypt ε̂i,j with the guessed (KΘ,K1,18,K1,22, K1,24,K1,25) to get its plaintext, and find the

plaintext in Si; we denote it by P̂i,j , and denote by Ĉi,j the corresponding ciphertext for P̂i,j .
(e) For every ciphertext pair (Ci,j , Ĉi,j), increase 1 to the counter corresponding to the pair of the 28 ciphertext

bits specified by (Ci,j , Ĉi,j).
(f) Guess a value for (K12,1,K12,8,K12,11,K12,13,K12,18,K12,23,K12,28), and do as follows.

i. For each of the 256 pairs of the concerned 28 ciphertext bits, partially decrypt it with the guessed
(K12,1,K12,8, · · · ,K12,28) to get the pair of the 16 bits concerned by the output mask, and compute the
XOR of the pair of the 16 bits (concerned by the output mask).

ii. Count the number of the ciphertext pairs (Ci,j , Ĉi,j) such that the XOR of the pair of the 16 bits
concerned by the output mask is zero, and compute its deviation from λ · 2107.

iii. If the guess for (KΘ,K1,18,K1,22,K1,24,K1,25,K12,1,K12,8, · · · ,K12,28) belong to the first φ guesses for
(KΘ,K1,18,K1,22,K1,24,K1,25,K12,1,K12,8, · · · ,K12,28), then record the guess and the deviation com-
puted in Step 2(f)(ii); otherwise, record the guess and its deviation only when the deviation is larger
than the smallest deviation of the previously recorded φ guesses, and remove the guess with the smallest
deviation from the φ guesses.

3. For every recorded (KΘ,K1,18,K1,22,K1,24,K1,25) in Step 2(f)(iii), exhaustively search for the remaining 132 key
bits with two known plaintext/ciphertext pairs. If a 256-bit key is suggested, output it as the user key of the
12-round Serpent.

The attack requires λ×2108 chosen plaintexts. The required memory for the attack is dominated by the storage of
the plaintexts and ciphertexts, which is λ×2108×32 = λ×2113 bytes. The time complexity of Step 2 is dominated by
the time complexity of Steps 2(b), 2(d) and 2(f)(i), which is λ×2×2107×2124× 27+4

32×12 +2×2124×228×256× 7
32×12 ≈ λ×

2228.37 12-round Serpent encryptions. Step 3 has a time complexity of at most φ×2132 12-round Serpent encryptions.
There are λ×2107 plaintext pairs (Pi,j , P̂i,j) for a guess of (KΘ,K1,18,K1,22,K1,24,K1,25,K12,1,K12,8, · · · ,K12,28). Fol-
lowing Theorem 2 of [29], we have that the probability that the correct guess of (KΘ,K1,18,K1,22,K1,24,K1,25,K12,1,
K12,8, · · · ,K12,28) is recorded in Step 2(f)(iii) is about 96.6% when λ = 218.8 and φ = 1, and is about 98.8% when
λ = 216.5 and φ = 2104. Thus, when λ = 216.5 and φ = 2104, with a success probability of about 98.8% the at-
tack requires 2125.5 chosen plaintexts, and has a total time complexity of approximately 2244.9 12-round Serpent
encryptions.

6.5 Differential-Linear Attack on 11-Round Serpent-192

The 9-round differential-linear distinguisher enables us to break 11-round Serpent-192; the attack is basically the
version of the above 12-round Serpent-256 attack when the first round is removed. Let φ = 1, then we get similarly
that with a success probability of about 99.5% the attack requires 2107.2 structures of 216 plaintexts with the 16 bits
for S-boxes 18, 22, 24 and 25 (of Round 1) taking all the possible values and the other 112 bits fixed, and has a time
complexity of 2123.2 + 2× 2122.2 × 216 × 4

32×11 + 2× 216 × 228 × 256 × 7
32×11 ≈ 2132.8 11-round Serpent encryptions

to find the correct value for (K1,18,K1,22,K1,24,K1,25,K12,1,K12,8,K12,11,K12,13,K12,18,K12,23,K12,28). Finally, for
the recorded (K12,1,K12,8,K12,11,K12,13,K12,18,K12,23,K12,28), we get the 192-bit key by performing an exhaustive
search on the remaining 164 key bits, which takes 2164 11-round Serpent encryptions.

We can reduce the time complexity using a different 9-round differential-linear distinguisher, which is obtained by
changing the output mask of the S2 operation to 0x0000100000 0000007000010000100001. Consequently, the output
mask Γδ becomes 0x000B0000B001 030220B0200C00400010, and it now concerns 11 S-boxes in the following round.
Since the bias for the linear approximation remains invariant, the distinguisher has a bias 2−59.41. Similarly, the attack
(with φ = 1) requires 2109.5 structures (as described above) to have a success probability of about 99%, and has a
time complexity of 2125.5 + 2× 2124.5× 216× 4

32×11 + 2× 216× 244× 288× 11
32×11 ≈ 2144 11-round encryptions to find

the correct (K1,18,K1,22, K1,24,K1,25,K12,1,K12,5,K12,8,K12,11,K12,13,K12,15,K12,16,K12,18,K12,20,K12,23, K12,28).
Given the correct (K12,1,K12,5, · · · ,K12,28), an exhaustive search for the remaining 148 key bits takes 2148 11-round
encryptions. Therefore, the attack has a total time complexity of approximately 2144 +2148 ≈ 2148.1 11-round Serpent
encryptions to find the 192-bit key.
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We can also perform an attack procedure without using the counters; it is a time-memory tradeoff to the first
11-round Serpent-192 attack. For every guess of (K1,18,K1,22,K1,24,K1,25, K12,1,K12,8, · · · ,K12,28), we first get the
ciphertext pairs as in Steps 2(b)–(d), and then partially decrypt every ciphertext pair to get the XOR of the pair
of the 16 bits concerned by the output mask, and finally perform as in Steps 2(f)(ii), 2(f)(iii) and 3 (with φ = 1).
The resulting attack has a total time complexity of approximately 2× 2122.2 × 244 × 7

32×11 + 2164 ≈ 2164.3 11-round
Serpent encryptions.

6.6 Differential-Linear Attack on 10-Round Serpent-128

The 9-round differential-linear distinguisher can be used to break 10-round Serpent-128; the attack is basically
the version of the 12-round Serpent-256 attack when the first two rounds are removed. Let φ = 1; then with a
success probability of about 99.2% the attack requires 2122.4 plaintext pairs with difference α, and has a time
complexity of 2123.4 + 2 × 228 × 256 × 7

32×10 ≈ 2123.4 10-round Serpent encryptions to find the correct value for
(K1,18,K1,22,K1,24,K1,25). Given the recorded (K1,18,K1,22,K1,24,K1,25), we can get the 128-bit key by performing
an exhaustive search on the remaining 112 key bits, which takes 2112 10-round Serpent encryptions.

We also find some 8-round and several different 9-round differential-linear distinguishers that can be used to
break 10-round Serpent-128, like the two described in the latter part of the next subsection. Nevertheless, among
them only one differential-linear distinguisher can be used to break 10-round Serpent-128 without requiring the
additional memory for similar counters, and it is 9-round. The 9-round differential-linear distinguisher consists of
a 6.5-round linear approximation Γγ → Γδ with bias 2−27 and all the 2.5-round differentials {∆α → ∆β} that
meet β � γ = 0 with ∆α = 0x00000000000000900000000000000000. The 6.5-round linear approximation Γγ →
Γδ is 0x000B0000B000030000B0200E00000010 → 0x00400000000000000000000000040008, which operates on 6.5
consecutive rounds of the 9-round linear approximation given in Table 5 in the decryption direction, from the L
operation immediately before the S3 operation until the L operation immediately after the S4 operation. The 2.5-
round differentials {∆α→ ∆β} operate on 2.5 consecutive rounds in the decryption direction, from the S5 S-boxes
of Round 13 until the S3 S-boxes of Round 11. The distinguisher has a bias of 2−59.01; see Appendix A for details
of computing the bias. An important property of the distinguisher is that Γδ concerns only three S4 S-boxes of
the preceding round. Likewise, with a success probability of 99%, the attack requires 2121.2 ciphertext pairs with
difference α, and has a total time complexity of 2122.2 + 2 × 2121.2 × 212 × 3

32×10 + 2112 ≈ 2127.5 10-round Serpent
encryptions to find the 128-bit key, where we use φ = 1. We can also use the distinguisher to break 11-round Serpent-
192 by appending one round after the round with ∆α, but anyway cannot break 12-round Serpent-256, because there
is a large number of required unknown subkey bits in the extra round.

It is worthy to note that in both the above 10-round Serpent-128 attacks we can reduce the data and time
complexity by using a reasonably greater φ, while keeping the same success probability.

6.7 Remarks

We have computed the biases of a number of 9-round differential-linear distinguishers, and a few of them can be
used to attack 10-round Serpent-128 or 11-round Serpent-192, but almost all of them cannot be used to nontriv-
ially break 12-round Serpent-256. For instance, we compute the bias of the 9-round differential-linear distinguisher
constructed by replacing the input difference of the 9-round differential-linear distinguisher described in Section 6.3
with 0x00000000000000400000000000000000 and replacing the input mask with 0x002000000000000000000000000000
02 (the intermediate masks keep invariant). This input mask is also used as the input mask of the 6-round linear
approximation in Biham et al.’s 9-round differential-linear distinguisher. The reason for choosing the input differ-
ence is because it causes a minimum number of active bits for the following S3 operation. As a result, we get the
probability of β � γ = 0 is approximately 0.49988768994808197. Besides, we also checked the 9-round differential-
linear distinguisher when the input difference is 0x00000000000000040000000000000000 (and the input mask is
0x00200000000000000000000000000002), and the probability of β � γ = 0 is approximately 0.50000306963920593.
Both the distinguishers have a bias of smaller than 2−64, and are not useful.

Interestingly, we find such a 9-round differential-linear distinguisher that for every possible difference ω the
probability of βω � γ = 0 is surprisingly close (or equal) to 1

2 , which is obtained by replacing the input difference
of the 9-round differential-linear distinguisher described in Section 6.3 with 0x00000000000000400000000000000000
and replacing the input mask with 0x00E0000000000000000000000000000E (the intermediate masks keep invariant).
The reason for choosing the input mask is that it will make a 6-round linear approximation with bias 2−25 (the best
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previously known 6-round linear approximation), thus improving a factor of 4 over the one used above. The input
difference generates four possible output differences after the active S2 S-box: {ω|ω = 0x6, 0xA, 0xB, 0xD}, each
with probability 2−2; the probability of βω � γ = 0 for ω ∈ {0x6, 0xA} is 0.5, the probability of βω � γ = 0 for
ω = 0xB is 0.50000000018189894, and the probability of βω � γ = 0 for ω = 0xD is 0.50000000000499334. Hence,
the total probability of β � γ = 0 is approximately 0.50000000004672309, surprisingly close to 1

2 .
The second best 9-round differential-linear distinguisher which we have found might be potentially used to break

12-round Serpent-256 is the one described in Section 6.3 with the input difference being replaced by 0x00000000000000
000000005000000000 (keeping the other parts unchanged). The probability of β�γ = 0 is approximately 0.4990295171
7376709, and thus the distinguisher has a bias of approximately 2 × 2−9 × (2−27)2 = 2−62, larger than 2−64.
There are 5 active S-boxes in Round 1, and 28 active S-boxes in Round 0. Changing the input difference to
0x0A00000000000000000000000000000, we obtain the third best 9-round differential-linear distinguisher that we
have found might be potentially used to break 12-round Serpent-256. The probability of β � γ = 0 is approximately
0.49903964996337891, and the distinguisher has a bias of approximately 2× 2−9.03 × (2−27)2 = 2−62.03. There are 4
active S-boxes in Round 1, and 26 active S-boxes in Round 0. If they were used to attack 12-round Serpent-256, the
resulting attacks would require almost the entire codebook to have an acceptable success probability.

7 Methodology for the High-Order Differential-Linear Analysis

In this section, we review the high-order differential-linear analysis presented in [9], give the methodology for com-
puting the probability of a high-order differential-linear distinguisher, followed by a few implications, and finally
comment on the previous cryptanalytic results.

7.1 Review of the High-Order Differential-Linear Analysis

The high-order differential-linear analysis was proposed in 2005 by Biham, Dunkelman and Keller [9] as a combination
of high-order differential cryptanalysis [7,34] and differential-linear cryptanalysis. High-order differential cryptanalysis
focuses on whether a particular relation exists between the ciphertexts of a set of plaintexts with certain structure.
e.g., whether the XOR of the ciphertexts is equal to 0.

The high-order differential-linear analysis involves an attacker building a high-order differential-linear distin-
guisher. Such a distinguisher treats E = E0 ◦ E1, a cascade of two sub-ciphers E0 and E1; it consists of a linear ap-
proximation Γγ → Γδ with bias ε for E1 and a high-order differential for E0 that predicts

⊕m−1
i=0 E0(Pi) = 0 with prob-

ability p, where P0, P1, · · · , Pm−1 are a set of plaintexts. The distinguisher focuses on the event
⊕m−1

i=0 E(Pi)� δ = 0.
Finally, by assuming that

⊕m−1
i=0 E0(Pi) � γ = 0 holds with probability 1

2 (i.e.,
⊕m−1

i=0 E0(Pi) �γ has a uniform
distribution) for the cases when the high-order differential does not predict

⊕m−1
i=0 E0(Pi) = 0, Biham et al. deduced

that the high-order differential-linear distinguisher has a probability Pr(
⊕m−1

i=0 E(Pi)� δ = 0) = [p+ (1− p)× 1
2 ]×

( 1
2 + 2m−1εm) + [1− p− (1− p)× 1

2 ]× [1− ( 1
2 + 2m−1εm)] = 1

2 + 2m−1pεm, using the following lemma they obtained.

Lemma 1 (from [9]). Let {X0, X1, · · · , Xm−1} be a set of inputs to E1. If Γγ → Γδ is a linear approximation with
bias ε for E1, then (under standard independence assumptions) Pr(

⊕m−1
i=0 Xi�γ =

⊕m−1
i=0 E1(Xi)�δ) = 1

2 +2m−1εm.

For a random function, the expected probability of a high-order differential-linear distinguisher is 1
2 . Thus, if the

bias |Pr(
⊕m−1

i=0 E(Pi) � δ = 0) − 1
2 | = 2m−1pεm is sufficiently large, the distinguisher can be used to distinguish E

from a random function.

7.2 New Methodology for Computing the Probability of a High-Order Differential-Linear
Distinguisher

First observe that no matter to what value
⊕m−1

i=0 Xi � γ is fixed, Lemma 1 holds (under an assumption about the
independent behaviors of the linear approximations for X0, X1, · · · , Xm−1).

Similarly we find that Biham et al.’s methodology is not correct in some situations. An intuitive counterexample
is when the high-order differential predicts

⊕m−1
i=0 E0(Pi) = 0 with probability 1

2 and predicts
⊕m−1

i=0 E0(Pi) = 1 with
probability 1

2 , which is similar to the one discussed in Section 3.3.
We start the reasoning for the new methodology with the event

⊕m−1
i=0 E0(Pi) � γ = 0. Suppose the event⊕m−1

i=0 E0(Pi)� γ = 0 happens with probability p̂. If the event
⊕m−1

i=0 E0(Pi)� γ = 0 happens, then by Lemma 1 we
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know that Pr(
⊕m−1

i=0 E(Pi) �δ = 0) = 1
2 + 2m−1εm. If the event does not happen, i.e.,

⊕m−1
i=0 E0(Pi) � γ = 1, then

we get that Pr(
⊕m−1

i=0 E(Pi)� δ = 0) = 1− ( 1
2 + 2m−1εm). Therefore, we have

Pr(
m−1⊕
i=0

E(Pi)� δ = 0)

= Pr(
m−1⊕
i=0

E0(Pi)� γ = 0)× Pr(
m−1⊕
i=0

E(Pi)� δ = 0|
m−1⊕
i=0

E0(Pi)� γ = 0) +

Pr(
m−1⊕
i=0

E0(Pi)� γ = 1)× Pr(
m−1⊕
i=0

E(Pi)� δ = 0|
m−1⊕
i=0

E0(Pi)� γ = 1)

= p̂× (
1
2

+ 2m−1εm) + (1− p̂)× [1− (
1
2

+ 2m−1εm)]

=
1
2

+ 2m−1(2p̂− 1)εm.

Now we can give the following result.

Theorem 2. An n-bit block cipher E is represented as a cascade of two sub-ciphers E0 and E1, where E = E0 ◦E1.
Let P0, P1, · · · , Pm−1 be a set of plaintexts. If Γγ → Γδ is a linear approximation with bias ε for E1, and the equation⊕m−1

i=0 E0(Pi)� γ = 0 holds with probability p̂, then the probability of the high-order differential-linear distinguisher
is Pr(

⊕m−1
i=0 E(Pi)� δ = 0) = 1

2 + 2m−1(2p̂− 1)εm.

Thus, the bias of the high-order differential-linear distinguisher is |Pr(
⊕m−1

i=0 E(Pi)�δ = 0)− 1
2 | = 2m−1|2p̂−1|εm.

7.3 Implications

When formulating a high-order differential-linear distinguisher, we should compute the probability of
⊕m−1

i=0 E0(Pi)�
γ = 0, instead of the probability of

⊕m−1
i=0 E0(Pi) = 0. Biham et al.’s methodology holds only when the assumption on

a random distribution holds, and does not have the generality to describe the high-order differential-linear analysis.
Other implications include those similar to what have been described in Section 3.5.

7.4 Comments on Previous Cryptanalytic Results

In [9], Biham et al. described a generic high-order differential-linear distinguisher for Feistel ciphers with a bijective
round function, by combining a linear approximation with a high-order differential with probability 1, and they then
applied it to break 8 rounds of the FEAL [35] cipher. They also spotted some weak keys for the IDEA [36] cipher
after mounting a high-order differential-linear attack.

In 2007, Biham et al. [11] presented a high-order differential-linear attack on 6-round IDEA, which is the best
currently published result on IDEA in a single key attack scenario.

With probability 1 the high-order differentials used in these attacks predict that it is zero for
⊕m−1

i=0 E0(Pi) or only
for the bits of

⊕m−1
i=0 E0(Pi) that are concerned by the linear approximations used. Finally, Biham et al. computed

the bias of a distinguisher as 2m−1 × 1 × εm = 2m−1εm by their formula. However, following the new methodology
we should view the formula extremely sceptically; but nevertheless by Theorem 2 the correct bias is also equal to
2m−1εm. This is due to the use of an extreme high-order differential that makes

⊕m−1
i=0 E0(Pi)� γ = 0 (or only the

concerned bits of the sum) with a one probability: when the high-order differential meets
⊕m−1

i=0 E0(Pi) = 0 with
a one probability; and under this situation,

⊕m−1
i=0 E0(Pi) � γ = 0 is certain to hold, making the bias obtained by

Biham et al.’s formula happen to equal the bias obtained using the general formula. Therefore, the attack procedures
remain usable, though a questionable formula is used for computing the probability of a distinguisher.

8 Methodology for the Differential-Bilinear Analysis

In this section, we first briefly review the differential-bilinear analysis proposed in [9], give the probability of a
differential-bilinear distinguisher, followed by its implications, and finally correct certain previous cryptanalytic re-
sults.
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8.1 Review of the Differential-Bilinear Analysis

In 2005, Biham, Dunkelman and Keller [9] introduced a combination of bilinear cryptanalysis [30] and differential
cryptanalysis, known as the differential-bilinear analysis. Bilinear cryptanalysis is an extension to linear cryptanalysis,
and works typically for Feistel ciphers in a principle similar to that of linear cryptanalysis; it is based on the use of
a so-called bilinear approximation. We refer the reader to [30] for an introduction of bilinear cryptanalysis.

The differential-bilinear analysis uses a differential-bilinear distinguisher as the basis. The distinguisher treats
a Feistel cipher E as a cascade of two sub-ciphers E0 and E1, where E = E0 ◦ E1, and it involves a (truncated)
differential ∆α → ∆β for E0 and a bilinear approximation with bias ε for E1. The bilinear approximation has the
following general form,

XL � α0 ×XR � β0 ⊕XL � γ0 ⊕XR � δ0 ⊕ YL � α1 × YR � β1 ⊕ YL � γ1 ⊕ YR � δ1 =
XL � ζ0 ×K � ζ1 ⊕XR � η0 ×K � η1 ⊕ YL � θ0 ×K � θ1 ⊕ YR � µ0 ×K � µ1 ⊕K � ν, (1)

where XL, XR are respectively the left and right halves of a value X from {0, 1}n, YL, YR are respectively the left
and right halves of E1(X), α0, β0, γ0, δ0, α1, β1, γ1, δ1, ζ0, ζ1, η0, η1, θ0, θ1, µ0, µ1, ν are some n-bit masks, and K is the
subkey.

The differential ∆α→ ∆β meets the following equation with probability p,

TL � α0 × TR � β0 ⊕ TL � γ0 ⊕ TR � δ0 = T ∗L � α0 × T ∗R � β0 ⊕ T ∗L � γ0 ⊕ T ∗R � δ0, (2)

where TL, TR are respectively the left and right halves of the encryption result of E0(P ) with P being a randomly
chosen plaintext, and T ∗L, T

∗
R are respectively the left and right halves of E0(P ⊕ α).

The differential-bilinear distinguisher considers the event expressed by Eq. (3).

CL � α1 × CR � β1 ⊕ CL � γ1 ⊕ CR � δ1 = C∗L � α1 × C∗R � β1 ⊕ C∗L � γ1 ⊕ C∗R � δ1, (3)

where CL, CR are respectively the left and right halves of E(P ), and C∗L, C
∗
R are respectively the left and right halves

of E(P ⊕ α).
As in differential-linear cryptanalysis, Biham et al. got that Eq. (3) holds with probability ( 1

2 + ε)× ( 1
2 + ε) +( 1

2 −
ε)× ( 1

2 − ε) = 1
2 +2ε2 when the differential meets the condition given as Eq. (2); and they assumed Eq. (2) holds with

probability 1
2 for the cases when the differential does not meet Eq. (2). Finally, they concluded that the differential-

bilinear distinguisher has a probability Pr(Eq. (3) holds) = [p+(1−p) 1
2 ]×( 1

2 +2ε2)+( 1
2−

1
2p)×( 1

2−2ε2) = 1
2 +2pε2.

For a random function, the expected probability of a differential-bilinear distinguisher is 1
2 . Thus, if the bias

|Pr(Eq. (3) holds) − 1
2 | = 2pε2 is sufficiently large, the distinguisher can be used to distinguish E from a random

function.
Some noteworthy particulars for differential-bilinear cryptanalysis were discussed in [9,14], not existing in differential-

linear cryptanalysis; for example, those bilinear terms in Eq. (1) multiplied by the dot product of the subkey and
the masks and those bilinear terms in Eq. (2). It is obvious that only knowing the difference β between (TL||TR) and
(T ∗L||T ∗R) is not sufficient to compute Eq. (2). If (TL||TR)⊕ (T ∗L||T ∗R) = β = (βL, βR), then TL �α0 × TR � β0 ⊕ T ∗L �
α0 × T ∗R � β0 = TL � α0 × βR � β0 ⊕ βL � α0 × TR � β0 ⊕ βL � α0 × βR � β0. Thus when the chosen α0, β0, β are
required to meet βL�α0 = βR�β0 = 0, then Eq. (2) can be computed as an expression involving only γ0, δ0, β, i.e.,
βL � γ0 ⊕ βR � δ0 = 0, without requiring the values of (TL||TR) and (T ∗L||T ∗R).

8.2 New Methodology for Computing the Probability of a Differential-Bilinear Distinguisher

Similarly it is easy to build an intuitive counterexample to Biham et al.’s methodology.
To simplify our following descriptions, we write a bilinear approximation expressed by Eq. (1) as (Γα0, Γβ0,

Γγ0, Γ δ0) −→ (Γα1, Γβ1, Γγ1, Γ δ1) if there is no ambiguity about the cipher in use; otherwise, we will give an
explicit statement for the cipher. We denote by 〈∆α,Γα0, Γβ0, Γγ0, Γ δ0〉 → (Γα1, Γβ1, Γγ1, Γ δ1) a differential-
bilinear distinguisher that focuses on the event expressed by Eq. (3).

Similar to the reasonings given in the last two sections, if the event Eq. (2) happens with probability p̂, then the
event Eq. (3) occurs with probability ( 1

2 + ε) × ( 1
2 + ε) + ( 1

2 − ε) × ( 1
2 − ε) = 1

2 + 2ε2; and if the event Eq. (2) does
not happen, then the event Eq. (3) occurs with probability ( 1

2 + ε)× ( 1
2 − ε) + ( 1

2 − ε)× ( 1
2 + ε) = 1

2 − 2ε2. Therefore,
the event Eq. (3) occurs with a total probability p̂× ( 1

2 + 2ε2) + (1− p̂)× ( 1
2 − 2ε2) = 1

2 + 2(2p̂− 1)ε2. Thus we have
the following result.
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Theorem 3. An n-bit block cipher E is represented as a cascade of two sub-ciphers E0 and E1, where E = E0 ◦E1.
If (Γα0, Γβ0, Γγ0, Γ δ0) → (Γα1, Γβ1, Γγ1, Γ δ1) is a bilinear approximation with bias ε for E1, α (6= 0) is an input
difference for E0, and Eq. (2) holds with probability p̂, then the probability of the differential-bilinear distinguisher
〈∆α,Γα0, Γβ0, Γγ0, Γ δ0〉 → (Γα1, Γβ1, Γγ1, Γ δ1) is Pr(Eq. (3) holds) = 1

2 + 2(2p̂− 1)ε2.

Hence, the bias of the differential-bilinear distinguisher 〈∆α,Γα0, Γβ0, Γγ0, Γ δ0〉 → (Γα1, Γβ1, Γγ1, Γ δ1) is
|Pr(Eq. (3) holds)− 1

2 | = 2|2p̂− 1|ε2.

8.3 Implications

When formulating a differential-bilinear distinguisher, we should compute the probability that Eq. (2) holds for all
the possible differentials, instead of the probability that only the differential ∆α→ ∆β meets Eq. (2). Biham et al.’s
methodology holds only when the assumption on a random distribution holds, and does not have the generality to
describe the differential-bilinear analysis. Other implications are similar to those described in Section 3.5.

8.4 Correcting Previous Differential-Bilinear Attack on 8-Round DES

In [9] Biham et al. applied the differential-bilinear analysis technique to break 8-round DES. The 8-round DES attack
uses a 6-round differential-bilinear distinguisher that consists of a 3-round bilinear approximation with bias 1.66×2−3

and a 3-round truncated differential that with probability 23
32 has a zero output difference for the bits concerned by

the bilinear approximation (see Fig. 1 of [9] for its details). Taken from [30], the 3-round bilinear approximation for
the distinguisher is XL�α0×XR�β0⊕XL�γ0⊕XR� δ0⊕YL�α1×YR�β1⊕YL�γ1⊕YR� δ1 = K� ν⊕XL�
α0 ×K � µ ⊕ YL � α0 ×K � τ , where α0 = α1 = 0x20000000, β0 = β1 = 0x00019000, γ0 = γ1 = 0x21040080, δ0 =
δ1 = 0x00008000. The 3-round differential ∆α→ ∆β is (∆0x0020000000000000→ ∆0x ∗ ∗ ∗MR ∗ ∗ ∗ 0X00NZ0Y ),
where X,Y ∈ {0, 4}, Z ∈ {0, 1}, N ∈ {0, 8},M ∈ {0, 2, 4, 6, 8, A,C,E}, R ∈ {2, 4, 6}. Finally, Biham et al. computed
the bias of the distinguisher 〈∆α,Γα0, Γβ0, Γγ0, Γ δ0〉 → (Γα1, Γβ1, Γγ1, Γ δ1) as 2 × 23

32 × (1.66 × 2−3)2 ≈ 2−4 by
their formula.

We first observe that the 3-round truncated differential is wrong, because of an error in the output difference
of the round function of the second round. In the second round, only the S3 S-box is active, and thus by the P
permutation operation the correct output difference of the round function of the second round should be of the form
0x0S0T0U0V , not the form 0x0X00NZ0Y , where S, V ∈ {0, 4} and T,U ∈ {0, 1}. Furthermore, we observe that the
probability of the 3-round truncated differential is not correct. Biham et al. computed: (i) The probability that the
second most significant bit of the output difference of the S3 S-box of the second round is zero is 28

64 ; and (ii) When
the second most significant bit of the output difference of the S3 S-box of the second round is 1, the probability that
the second most significant bit of the output difference of the S4 S-box of the third round is zero is 1

2 . As a result, they
got that the differential has probability 28

64 + (1− 28
64 )× 1

2 = 46
64 . However, the probability given in (ii) is not correct.

The S4 S-box of the third round has an input difference 0x2, and thus by the differential distribution table of the S4

S-box (see [22]) we know that the probability that the second most significant bit of the output difference of the S-box
is zero is 8+4+4+8

64 = 3
8 , not 1

2 . Therefore, the 3-round truncated differential should be (∆0x0020000000000000 →
∆0x0S0T0U0V ∗∗∗JW ∗∗∗)4, where S, V ∈ {0, 4}, T, U ∈ {0, 1}, J ∈ {0, 2, 4, 6, 8, A,C,E},W ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

If we followed Biham et al.’s computation method, the correct 3-round truncated differential would have a
probability of 28

64 +(1− 28
64 )× 3

8 = 83
128 to make TL�α0×TR�β0⊕TL�γ0⊕TR�δ0 = T ∗L�α0×T ∗R�β0⊕T ∗L�γ0⊕T ∗R�δ0

(refer to Eq. (2) for its meaning). However, this is incorrect, as discussed earlier, and we need to check all the
probabilities, instead of only a few of them. After a detailed analysis, we know that the differential always meets: (1)
TL�γ0⊕T ∗L�γ0 = 0; (2) TL�α0⊕T ∗L�α0 = 0; (3) TR�δ0⊕T ∗R�δ0 = 0; and (4) TR�0x00010000⊕T ∗R�0x00010000 = 0.
Thus, the equation to be predicted by the differential is simplified to TL � α0 × (TR ⊕ T ∗R) � 0x00001000 = 0,
which is dependent of TL and TR ⊕ T ∗R. By the P permutation operation of DES, we know that the value of
(TR ⊕ T ∗R) � 0x00001000 is equal to the second most significant bit of the output difference of the S4 S-box of
the third round, which depends on T and can take 0 or 1. By the differential distribution table of the S3 S-box,
the probability of T = 0 is 4+12+8+4

64 = 7
16 . If T = 0 then (TR ⊕ T ∗R) � 0x00001000 = 0; and if T = 1 then

by the differential distribution table of the S4 S-box, Pr((TR ⊕ T ∗R) � 0x00001000 = 0) = 8+4+4+8
64 = 3

8 . Hence,
Pr((TR ⊕ T ∗R) � 0x00001000 = 0) = 7

16 + (1 − 7
16 ) × 3

8 = 83
128 . If we assume that the plaintexts are randomly

chosen, then Pr(TL � α0 × (TR ⊕ T ∗R) � 0x00001000 = 0) = 83
128 + 1

2 × (1 − 83
128 ) = 211

256 . Finally from Theorem 3

4 This is after the exchange of the left and right halves in the third round.
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we learn that the bias of the differential-bilinear distinguisher 〈∆α,Γα0, Γβ0, Γγ0, Γ δ0〉 → (Γα1, Γβ1, Γγ1, Γ δ1) is
2 · |2× 211

256−1| ·(1.66×2−3)2 ≈ 2−4.16. As a result, the attack mentioned in [14] should require about ( 2−4.16

2−4 )−2 ≈ 1.25
times of the originally required plaintexts.

Remarks. In [9] Biham et al. also applied the differential-bilinear analysis to break 8 rounds of the s5DES [37] block
cipher — a modified version of DES. Similarly, there are some flaws in the 8-round s5DES attack, too.

9 Methodology for the Differential-Bilinear-Boomerang Analysis

In this section we deduce the probability of a differential-bilinear-boomerang distinguisher after reviewing Biham et
al.’s differential-bilinear-boomerang analysis [9].

9.1 Review of the Differential-Bilinear-Boomerang Analysis

The differential-bilinear-boomerang analysis [9] is a combination of the boomerang analysis [18] with the differential-
bilinear analysis. The boomerang analysis uses two differentials with larger probabilities on two different parts of a
block cipher, instead of a single differential with a smaller probability on the entire cipher. For the sake of simplicity
we assume the differential-bilinear analysis to be combined is that described in Section 8.1.

The differential-bilinear-boomerang analysis requires an attacker to build a differential-bilinear-boomerang dis-
tinguisher. Such a distinguisher treats E as a cascade of three sub-ciphers E0, E1 and E2, where E = E0 ◦E1 ◦E2. It
is made up of a differential ∆θ → ∆α with probability p0 for E0 ◦ E1, the set of the differentials for E2 that have a
fixed output difference ϕ, denoted by {∆φ → ∆ϕ|PrE2(∆φ → ∆ϕ) > 0, φ ∈ {0, 1}n} with pφ = PrE2(∆φ → ∆ϕ), a
bilinear approximation (Γα0, Γβ0, Γγ0, Γ δ0)→ (Γα1, Γβ1, Γγ1, Γ δ1) with bias ε for E−1

0 , (refer to Section 8.2 for its
specifications), and a (truncated) differential ∆α → ∆β for E−1

1 that meets the following equation with probability
p:

TL � α0 × TR � β0 ⊕ TL � γ0 ⊕ TR � δ0 = T ∗L � α0 × T ∗R � β0 ⊕ T ∗L � γ0 ⊕ T ∗R � δ0, (4)

where TL, TR are respectively the left and right halves of E−1
1 (Z) with Z chosen uniformly at random from {0, 1}n,

and T ∗L, T
∗
R are respectively the left and right halves of E−1

1 (Z ⊕ α).
Let P be a randomly chosen plaintext. The distinguisher focuses on the event expressed by Eq. (5).

P̃L � α1 × P̃R � β1 ⊕ P̃L � γ1 ⊕ P̃R � δ1 = P̃ ∗L � α1 × P̃ ∗R � β1 ⊕ P̃ ∗L � γ1 ⊕ P̃ ∗R � δ1, (5)

where P̃L, P̃R are respectively the left and right halves of E−1(E(P ) ⊕ ϕ), and P̃ ∗L, P̃
∗
R are respectively the left and

right halves of E−1(E(P ⊕ θ)⊕ ϕ).
Biham et al. showed that for a given value of α, the probability of E−1

2 (E(P ) ⊕ ϕ) ⊕ E−1
2 (E(P ⊕ θ) ⊕ ϕ) = α

is p0p
2
1, where p1 =

√∑
φ p

2
φ. Finally, by an analysis similar to the differential-bilinear analysis, they got that the

bias of the differential-bilinear-boomerang distinguisher is |Pr(Eq. (5) holds) − 1
2 | = 2p0p

2
1pε

2. Thus, if 2p0p
2
1pε

2 is
sufficiently large, the distinguisher can be used to distinguish E from a random function.

In [9] Biham et al. described some theoretical advantages of the differential-bilinear-boomerang analysis. There
have been no published applications for the technique. Biham et al. hinted (and Dunkelman explicitly stated in [14])
that with small modifications the differential-bilinear-boomerang analysis covers the combinations of the boomerang
analysis with linear, differential-linear and bilinear cryptanalysis, as they are special cases of the differential-bilinear
analysis.

9.2 New Methodology for Computing the Probability of a Differential-Bilinear-Boomerang
Distinguisher

First, Biham et al.’s methodology is not correct in some situations. Consider an intuitive situation such that: (1)
The differential ∆θ → ∆α for E0 ◦ E1 has probability 1; (2) There is one differential ∆φ → ∆ϕ for E2 that has
probability 1; and (3) The differential ∆α → ∆β for E−1

1 makes Eq. (4) hold with probability 1
2 and makes it

not hold with probability 1
2 . Under the situation, it is certain that the input difference for E−1

1 is α, and thus the
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situation is simplified to analyse the bias of a differential-bilinear distinguisher. After a similar analysis, we know
that the differential-bilinear-boomerang distinguisher has a bias of 0. However, Biham et al.’s formula suggests that
it is 2× 1× 1× 1

2 × ε
2 = ε2, which is wrong.

For simplify, we denote by 〈∆θ,∆ϕ, Γα0, Γβ0, Γγ0, Γ δ0〉 → (Γα1, Γβ1, Γγ1, Γ δ1) a differential-bilinear-boomerang
distinguisher that focuses on the event expressed by Eq. (5).

Biham et al. considered only one input difference (i.e., α) for E−1
1 , however, this is not sufficient in most situations,

and there may exist many possible input differences {α|Pr(E−1
2 (E(P )⊕ϕ)⊕E−1

2 (E(P⊕θ)⊕ϕ) = α) > 0, α ∈ {0, 1}n};
we label the set S, and assume p̂α = Pr(E−1

2 (E(P )⊕ ϕ)⊕ E−1
2 (E(P ⊕ θ)⊕ ϕ) = α); and given α, Eq. (4) holds with

probability pα. Then by applying Theorem 3, we get that the differential-bilinear-boomerang distinguisher has a
probability

∑
α∈S [p̂α × ( 1

2 + 2(2pα − 1)ε2)] = 1
2 + 2ε2

∑
α∈S [p̂α(2pα − 1)]. Hence, we have the following result.

Theorem 4. An n-bit block cipher E is represented as a cascade of three sub-ciphers E0, E1 and E2, where E =
E0 ◦ E1 ◦ E2. Let P be a randomly chosen plaintext. If θ ( 6= 0) is an input difference for E0, ϕ ( 6= 0) is an output
difference for E2, (Γα0, Γβ0, Γγ0, Γ δ0) → (Γα1, Γβ1, Γγ1, Γ δ1) is a bilinear approximation with bias ε for E−1

0 , let
S = {α|Pr(E−1

2 (E(P ) ⊕ϕ)⊕E−1
2 (E(P ⊕θ)⊕ϕ) = α) > 0, α ∈ {0, 1}n} be the set of possible input differences for E−1

1

with p̂α = Pr(E−1
2 (E(P )⊕ϕ)⊕E−1

2 (E(P ⊕ θ)⊕ϕ) = α), and Eq. (4) holds for a given α with probability pα, then the
probability of the differential-bilinear-boomerang distinguisher 〈∆θ,∆ϕ, Γα0, Γβ0, Γγ0, Γ δ0〉 → (Γα1, Γβ1, Γγ1, Γ δ1)
is Pr(Eq. (5) holds) = 1

2 + 2ε2
∑
α∈S [p̂α(2pα − 1)].

Therefore, the bias of the differential-bilinear-boomerang distinguisher 〈∆θ, ∆ϕ, Γα0, Γβ0, Γγ0, Γ δ0〉 → (Γα1,
Γβ1, Γγ1, Γ δ1) is |Pr(Eq. (5) holds)− 1

2 | = 2ε2|
∑
α∈S [p̂α(2pα − 1)]|.

9.3 Implications

Biham et al. used only one input difference for E−1
1 . However, this is not sufficient in most situations, and we should

try to use as many input differences as possible, which is much tougher than originally thought in practice. Biham
et al.’s methodology does not have the generality to describe the differential-bilinear-boomerang analysis. Other
implications are similar to those described in Section 3.5.

10 Conclusions

In this paper we have shown that Biham et al.’s methodologies for computing the probabilities of a differential-linear
distinguisher, a high-order differential-linear distinguisher, a differential-bilinear distinguisher and a differential-
bilinear-boomerang distinguisher do not have the generality to describe the cryptanalytic techniques, and have given
general methodologies for computing the probabilities under the general assumptions. Using the new methodologies,
we have presented differential-linear attacks on 13-round DES, 10-round CTC2 with a 255-bit block size and key, and
12-round Serpent with a 256-bit key, and have corrected Biham et al.’s differential-bilinear attack on 8-round DES.
Like most cryptanalytic results on block ciphers, the presented attacks are theoretical in the sense of the magnitudes
of the attack complexities.

Most recently, we note that Liu et al. [38] described a new extension of differential-linear cryptanalysis, called
differential-multiple linear cryptanalysis, which uses more than one linear approximations. They computed the prob-
ability of a so-called differential-multiple linear distinguisher in a similar way to Biham et al.’s enhanced approach.
As a result, we learn that this probability formula does not have the generality, either. The general formula can be
obtained as for a differential-linear distinguisher in Theorem 1.
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A A 9-Round Differential-Linear Distinguisher with Bias 2−59.01 of Serpent

The 9-round distinguisher has been introduced in Section 3.7, and below we will compute its bias. The input difference
∆α makes only one active S-box among the 32 S−1

5 S-boxes of Round 13, which has 7 possible output differences:
{ω|ω = 0x1, 0x4, 0x6, 0x8, 0xC, 0xD, 0xE}; the probabilities for these output differences are given in the second
column of Table 9, and the differential distribution tables of the eight S-boxes are presented in [33]. We write ω as
d||c||b||a in binary notation, where a, b, c, d ∈ {0, 1}. It is easy to see that the input mask Γγ concerns a total of
16 bits of the output differences of seven S−1

3 S-boxes in Round 11: (i) The least significant two bits and the most
significant bit of the output difference of S-box 28, and we denote by y0 the XOR of the three bits; (ii) The least
significant two bits and the most significant bit of the output difference of S-box 23, and we denote by y1 the XOR of
the three bits; (iii) The least significant two bits of the output difference of S-box 18, and we denote by y2 the XOR
of the two bits; (iv) The least significant two bits and the most significant bit of the output difference of S-box 13,
and we denote by y3 the XOR of the three bits; (v) The second least significant bit of the output difference of S-box
11, and we label it y4; (vi) The most significant three bits of the output difference of S-box 8, and we denote by y5
the XOR of the three bits; and (vii) The least significant bit of the output difference of S-box 1, and we label it y6.

We now focus on ten S−1
4 S-boxes in Round 12. S-box 31 has an input difference 000a in binary notation, and we

denote the most significant bit, the second least significant bit and the least significant bit of its output difference by
x0, x1, x2, respectively. S-box 24 has an input difference bcb0 in binary notation, and we denote the most significant
bit and the second least significant bit of its output difference by x3, x4, respectively. S-box 21 has an input difference
0b00 in binary notation, and we denote the most significant bit, the second most significant bit and the second
least significant bit of its output difference by x5, x6, x7, respectively. S-box 20 has an input difference (b⊕ d)000 in
binary notation, and we denote the most significant bit, the second least significant bit and the least significant bit
of its output difference by x8, x9, x10, respectively. S-box 16 has an input difference 00b0 in binary notation, and we
denote by x11||x12||x13||x14 the four-bit output difference, where x11, x12, x13, x14 ∈ {0, 1}. S-box 15 has an input
difference a000 in binary notation, and we denote the most significant bit, the second least significant bit and the
least significant bit of its output difference by x15, x16, x17, respectively. S-box 14 has an input difference 0d00 in
binary notation, and we denote the most significant bit, the second least significant bit and the least significant bit
of its output difference by x18, x19, x20, respectively. S-box 12 has an input difference 00a0 in binary notation, and
we denote by x21 the second least significant bit of its output difference. S-box 10 has an input difference d000 in
binary notation, and we denote the most significant bit, the second least significant bit and the least significant bit
of its output difference by x22, x23, x24, respectively. S-box 4 has an input difference 000(b ⊕ d) in binary notation,
and we denote by x25||x26||x27||x28 the four-bit output difference, where x25, x26, x27, x28 ∈ {0, 1}.

As a result, we get the input differences of the concerned seven S−1
3 S-boxes of Round 11: (1) The input difference

for S-box 28 is x7||(x0 ⊕ x4 ⊕ x6)||x7||x20; (2) The input difference for S-box 23 is (x8 ⊕ x9 ⊕ x13)||x12||(x4 ⊕
x13)||(x25 ⊕ x27); (3) The input difference for S-box 18 is (x10 ⊕ x15 ⊕ x16)||(x5 ⊕ x19)||0||(x0 ⊕ x1 ⊕ x28); (4)
The input difference for S-box 13 is (x8 ⊕ x17 ⊕ x22 ⊕ x23)||x11||x19||x2; (5) The input difference for S-box 11 is
x27||(x18 ⊕ x26)||(x14 ⊕ x21 ⊕ x27)||(x3 ⊕ x4); (6) The input difference for S-box 8 is (x15 ⊕ x24)||x27||0||(x5 ⊕ x7);
and (7) The input difference for S-box 1 is 0||x25||0||(x18 ⊕ x19).

By the differential distribution table of S−1
4 , we similarly get all the possible values for (x0||x1||x3), (x3||x4),

(x5||x6||x7), (x8||x9||x10), (x11||x12||x13||x14), (x15||x16||x17), (x18||x19|| x20), x21, (x22||x23||x24), (x25||x26||x27||x28)
as well as their probabilities. By the differential distribution table of S−1

3 , we similarly get the probability that for
every possible input difference, the XOR of the concerned bit(s) of the output difference of each concerned S−1

3

S-box in Round 11 is 0 or 1. For each difference ω, we denote by βω the output difference(s) of the 2.5-round Serpent
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Table 9. Probabilities for the seven output differences in {ω}

Difference (ω) Pr
S−1
5

(∆0x9→ ∆ω) Pr(∆βω � Γγ = 0|∆0x9→ ∆ω)

0x1 2−3 0.4996337890625

0x4 2−2 0.53125

0x6 2−3 0.49991488456726074

0x8 2−3 0.5

0xC 2−3 0.5

0xD 2−3 0.5

0xE 2−3 0.5

in the decryption direction. Subsequently, we compute the probability the XOR of the concerned 16 bits of βω is
zero (i.e., Pr(∆βω � Γγ = 0|∆0x9 → ∆ω)) by performing a program over all the possible (truncated) differential
characteristics. These probabilities are given in the third column of Table 9.

Therefore, the probability of the 9-round differential-linear distinguisher is 1
2 + [2 ×

∑
ω PrS−1

5
(∆0x9 → ∆ω) ×

Pr(∆βω�Γγ = 0|∆0x9→ ∆ω)−1]×(2−27)2 ≈ 1
2 +2×2−6.01×2−54 = 1

2 +2−59.01. Thus, the 9-round differential-linear
distinguisher has a bias of 2−59.01.

B Differential-Linear Attack on 10-Round DES

The 8-round distinguisher 〈∆α̂, Γγ〉 → Γδ enables us to construct a differential-linear attack breaking 10 rounds
of DES. We assume the attacked rounds are the first ten rounds from Rounds 1 to 10. The attack procedure is as
follows.

1. Choose 224.66 structures Si, (i = 1, 2, · · · , 224.66), where a structure is defined to be a set of 24 plaintexts Pi,j
with bits (9,17,23, 31) of the left half taking all the possible values, bit (2) of the right half fixed to 0 and the
other 59 bits fixed, (j = 1, 2, · · · , 24). In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 24

plaintexts in each of the 224.66 structures; we denote by Ci,j the ciphertext for plaintext Pi,j .
2. Choose 224.66 structures Ŝi, (i = 1, · · · , 224.66), where a structure Ŝi is obtained by setting 1 to bit (2) of the

right half of all the plaintexts Pi,j in Si. In a chosen-plaintext attack scenario, obtain all the ciphertexts for the
24 plaintexts in each Ŝi.

3. Initialize 212 counters to zero, which correspond to all the possible values of the 12-bit subkey (K1,1,K10,1) .
4. Guess the 6-bit subkey K1,1, and do as follows.

(a) Partially encrypt every plaintext Pi,j with the guessed K1,1 to get its intermediate value immediately after
Round 1; we denote it by εi,j .

(b) Partially decrypt εi,j⊕0x4000000000000000 with the guessed K1,1 to get its plaintext, and find the plaintext
in Ŝi; we denote it by P̂i,j , and denote by Ĉi,j the corresponding ciphertext for P̂i,j . Store (Ci,j , Ĉi,j) in a
table.

5. Guess the 6-bit subkey K10,1, and do as follows for every ciphertext pair (Ci,j , Ĉi,j).
(a) Partially decrypt Ci,j and Ĉi,j with K10,1 to get bit (17) of the left half of their intermediate values imme-

diately before Round 10.
(b) Check whether the XOR of the five bits for Ci,j — bit (17) of the left half and bits (3,8,14,25) of the right

half of its intermediate value immediately before Round 10 — is equal to the XOR of the corresponding five
bits for Ĉi,j . If yes, increase 1 to the counter corresponding to the guessed (K1,1,K10,1).

6. Output the guess for (K1,1,K10,1) with the highest deviation from 227.66.

The attack requires 229.66 chosen plaintexts, and has a time complexity of 2 × 228.66 + 2 × 228.66 × 26 × 1
80 +

2 × 228.66 × 212 × 1
80 ≈ 235.36 10-round DES encryptions. There are 228.66 plaintext pairs (Pi,j , P̂i,j) for a guess of

(K1,1,K10,1). Following the results in [29], we learn that the attack has a success probability of about 97%. The
remaining key bits can be found by exhaustive search.


