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Abstract

In this paper, we analyze the complexity of the construction of the 2k-diamond structure
proposed by Kelsey and Kohno [15]. We point out a flaw in their analysis and show that their
construction may not produce the desired diamond structure. We then give a more rigorous and
detailed complexity analysis of the construction of a diamond structure. For this, we appeal
to random graph theory (in particular, to the theory of random intersection graphs), which
allows us to determine sharp necessary and sufficient conditions for the message complexity
(i.e., the number of hash computations required to build the required structure). We also
analyze the computational complexity for constructing a diamond structure, which has not been
previously studied in the literature. Finally, we study the impact of our analysis on herding and
other attacks that use the diamond structure as a subroutine. Precisely, our results shows the
following:

1. The message complexity for the construction of a diamond structure is
√

k times more
than the amount previously stated in literature.

2. The time complexity is n times the message complexity, where n is the size of hash value.

Due to the above two results, the herding attack [15] and the second preimage attack [3] on
iterated hash functions have increased complexity. We also show that the message complexity of
herding and second preimage attacks on “hash twice” is n times the complexity claimed by [2],
by giving a more detailed analysis of the attack.

1 Introduction

In a recent paper, Kelsey and Kohno [15] proposed a new attack on Damg̊ard-Merkle hash functions,
called the herding attack. In such an attack, the adversary first commits to a hash value and is
then provided with a prefix. The attacker is required to find a suitable suffix that “herds” to the
previously committed hash value. That is, given x, h, and a hash function H, the adversary must
find y such that H(x ‖ y) = h.
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Figure 1: A 23 diamond structure
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To launch the attack, [15] proposed a 2k-diamond structure, which permits the construction of
certain multi-collisions, but which is structurally different from Joux’s multicollision attack [13].

A 2k-diamond structure contains a complete binary tree of depth k. There are 2k−ℓ nodes at
level ℓ, for k ≥ ℓ ≥ 0. There is also a single node at level −1, which we will call the source node.
The source node is joined to every node at level 0. The nodes at level 0 are called the leaves of the
diamond structure and the node at level k is called the root of the diamond structure.

Every edge e in the diamond structure is labeled by a string σ(e). Typically, a string σ(e)
consists of one or more message blocks. We also assign a label h(N) to every node N in the
structure at level at least 0, as follows. Consider a directed path P from the source node to the
node N in the diamond structure. P will consist of some edges e0e1 · · · eℓ, where N is at level ℓ in
the tree. Then we define

h(N) = H(σ(e0) ‖ σ(e1) ‖ · · · ‖ σ(eℓ)).

The diamond structure will be constructed in such a way that all paths leading to a given node N
yield the same value h(N), so h(N) will be well-defined.

At any level ℓ of the structure there are 2k−ℓ hash values. These must be paired up in such a way
that, when the next message blocks are appended, 2k−ℓ−1 collisions occur. Thus there are 2k−ℓ−1

hash values at the next level, which is level ℓ + 1. The entire structure yields a 2k-multicollision,
but it has other uses, as well.

A diagram of a 23 diamond structure is given in Figure 1.
The diamond structure has found applications in attacks on hash functions that resisted other

techniques such as Joux’s multicollision [13] and Kelsey-Schneier’s expandable message attack [16].
Andreeva et al [3] used the diamond structure to launch a second-preimage attack on Rivest’s
dithered hash construction [23], which resisted the attack by Kelsey and Schneier [16]. They used
the same dithering symbol for all the edges at the same level of the diamond structure. Using a
similar technique, they also launched an attack on Shoup’s domain extension algorithm for universal
one-way hash functions [25]. In a recent paper, Andreeva et al [2] extended the application of
diamond structures to launch herding attacks on four variants of hash functions, namely, hash
twice, concatenated hash, zipper hash, and tree based hash, as well as a second preimage attack
on hash twice construction.

All these attacks are based on the analysis of Kelsey and Kohno [15], which claims that con-
struction of a diamond structure is not as expensive as a naive approach would suggest. They stated
that for herding an n-bit hash function, one requires 2(n+k+4)/2 messages to construct a 2k-diamond
structure. In this paper, we show a problem with their analysis and present a corrected and more
detailed analysis of the herding attack. We also perform the first analysis of the computational
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complexity for constructing a diamond structure. The main results are as follows:

1. The message complexity of constructing a 2k-diamond structure using the Kelsey-Kohno
algorithm is Θ(

√
k × 2(n+k)/2) (Theorem 1).

2. If each hash computation takes unit time, the computational complexity of constructing a
2k-diamond structure is O(n ×

√
k × 2(n+k)/2) (Theorem 2).

Using these results, we revisit the analysis of various attacks, such as [2, 3, 15], that are based on
diamond structure.

The paper is organized as follows. In Section 2, we outline the definitions and notations that are
used in the paper. In Section 3, we formally present the diamond construction and give an overview
of the analysis of Kelsey and Kohno [15], pointing out the problem with their analysis. Also, in
Section 3, we analyse the construction of a diamond structure using the Erdös-Rényi random graph
model. In Section 4, we perform a more rigorous analysis in the setting of random intersection
graphs. In Section 5, we revisit the complexity of the attacks that are based on diamond structure
in the light of our analysis.

2 Preliminaries

In this section, we discuss some preliminaries that are required to understand this paper. We define
the notation that we use in the paper, basics of hash functions, and variants of hash functions which
are attacked using the diamond structure, as well as some concepts from the graph theory that we
require in our analysis.

2.1 Notation

We let N denote the set of all natural numbers. For any integer k ∈ N, denote by [k] the set
{1, 2, . . . , k}. Let n ∈ N, then {0, 1}n denotes all the n-bit strings. For any x ∈ {0, 1}∗, we denote
the bit-length of x by |x|. We denote the concatenation of two strings x and y by x‖y. We denote
the message blocks of any message M by M1‖M2‖ · · · ‖Ml, where l denotes the number of message
blocks. We write log n for the logarithm of n to the base 2 and ln n for natural logarithm of n. We
use the following asymptotic notation [7, p. 336]. If f : N → R and g : N → R are two functions
such that g(n) > 0 for n sufficiently large, then we write:

f ≪ g if f(n)/g(n) → 0 as n → ∞
f ≫ g if f(n)/g(n) → ∞ as n → ∞.

2.2 Basic hash function constructions

Hash functions have been defined in two settings: traditional keyless hash function and as a family
of hash functions. In a traditional keyless hash function, we have a single hash function H that
maps an arbitrary length input to a fixed length output. We now give a formal definition of the
keyed hash functions.

Definition 2.1. For a finite key space K, a space of messages M, and a finite space of possible
outputs called message digests, Y, we define a hash function family as

H : K ×M → Y.

We denote the family of hash functions by H := {Hk}k∈K.
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A key k ∈ K acts as an index which defines which hash function is chosen from the family. We
usually denote the hash function H(k,M) by Hk(M) for k ∈ K and M ∈ M. We even drop the
subscript when the function is clear from the context. Note that a traditional keyless hash function
is a hash family with |K| = 1.

A hash function, h, with Y ∈ {0, 1}n is required to have three basic security properties [14,
27, 28]: collision resistance, preimage resistance, and second preimage resistance. Kelsey and
Kohno [15] defined a new security property: the chosen-target-forced-prefix resistance. This prop-
erty is also studied in [21] in connection with the Schnorr signature scheme, under the name
random-prefix preimage problem. In this paper, we deal with second preimage resistance and
chosen-target-forced-prefix resistance. These are defined informally as follows.

1. Second preimage-resistance: An attacker, when given one message M , should not be able to
find another message M ′ such that h(M) = h(M ′) with less than 2n hash computations.

2. Chosen-target-forced-prefix resistance: An attacker commits to a hash value, hc, and is then
challenged with a prefix P . The attacker should not be able to find a suffix S such that
h(P‖S) = hc with less than 2n hash computations. The attack is also called the herding
attack.

A second preimage attack or herding attack with less than 2n work is considered to be a break
of the hash function.

In this paper, we deal with a standard form of hash function, the iterated hash function. In
an iterated hash function, we first define a function over a small domain, called the compression
function, and then we extend the domain by using the compression function in an iterative manner.

Let f : {0, 1}n × {0, 1}b → {0, 1}n be a compression function. We denote the n-bit output of
every iteration by h and call them chaining values; they are the input to the next iteration. The
hash function based on a compression function f is denoted by Hf . With a little abuse of notation,
we drop the super-script if the compression function is clear from the context. For the rest of the
paper, we assume that the message M is padded such that the padded message is a multiple of b.
For this section, we assume that the padded message has a bit length bl and for simplicity, we denote
the padded message by M . We represent the message in block form as M = M1‖M2‖ · · · ‖Ml, where
|Mi| = b for all i ∈ [l].

We next define some iterative hash functions that are susceptible to the herding attack and
second preimage attack using the diamond structure.

MERKLE-DAMGARD.

The Merkle-Damg̊ard construction is simple iteration, where

hi = f(hi−1,Mi) ∀i ∈ [l]

and h0 is a publicly known initial hash value. The output of the computation is MDf := hl.

HASH TWICE.

In hash twice, one hashes two consecutive copies of the message M . Formally, for a hash function
H, it is defined as

HT := H(H(IV,M),M)

where IV is the publicly known initial hash value.
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DITHERED HASH FUNCTIONS.

In the dithered hash function, every call to the compression function has three inputs: the dithering
sequence which depends on the iteration, the chaining hash value, and the next message block. In
the construction of Rivest [23], the author uses a dithering sequence that is abelian square free. We
give a brief overview of such sequence to the generality required to understand the construction of
dithered hash functions. For details, we refer the reader to reference [1].

Definition 2.2. A word w is a sequence of letters over some finite alphabet. If a word w can be
written as xyz (where y is non-empty and x and/or z can be empty), then y is called a factor of
w. A word w is called square free if no factor of w can be represented in the form yy for any
non-empty word y.

Thus, square free words are strongly non-periodic and non-repeating. A much stronger notion
of non-repeating word is abelian square free word which Rivest used in his construction.

Definition 2.3. A word w is said to be abelian square free if it cannot be written in the form
w = xyy′z, where y is a non-empty word and y′ is a permutation of y.

To capture the idea correctly, abcbca is square free, but not abelian square free as abc is followed
by bca which is a permutation of abc.

Rivest construction. Let z = {zi}∞i=0 be any abelian square free dithering sequence, then the
construction of Rivest is

hi = f(hi−1,Mi, zi) for all i ∈ [l],

where |Mi| + |zi| = b and DHf := hl.

2.3 Random graph theory

Our analysis uses some basic notions from graph theory (for more information, see a standard
textbook such as Bondy and Murty [7]). An undirected graph G = (V, E) consists of a finite set of
vertices (or nodes), V, and a finite set of edges, E , where an edge joins two distinct vertices. The
edge joining two vertices u and v is denoted by the pair (u, v) or (v, u), or more briefly by uv or vu,
and the vertices u and v are called adjacent vertices. A path is a finite set of vertices (v1, . . . , vk),
such that vi and vi+1 are adjacent for 1 ≤ i ≤ k − 1. If it is possible to reach any vertex from any
other vertex in the graph via some finite path, then the graph is connected. If there exists a set of
edges, no two of which share a vertex, then the set of edges is called a matching. M is a maximum
matching in G if no matching in G contains more edges than M does. If a matching M contains
every vertex of G, then M is called a perfect matching or a one-factor.

All the above-defined characteristics of graph are preserved under any relabelling of the vertices.
We term such a characteristics of a graph as a property. More formally, we have the following
definition.

Definition 2.4. A graph property is defined to be a predicate that is preserved under all possible
isomorphisms of a graph. A property of a graph is monotone if the property is preserved by addition
of arbitrary new edges to the graph.

Many natural properties of graphs are monotone properties, e.g., being connected, being two-
connected, containing a Hamiltonian cycle, containing a perfect matching, containing a triangle,
etc.

In this paper, we deal with random graphs. An Erdős-Rényi random graph, G(ν, p), is a graph
on ν labelled vertices, obtained by selecting each pair of vertices to be an edge randomly and
independently with a fixed probability p. When we use this graph, we say we are working in the
Erdős-Rényi model.
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The probability p has a very important role, as it can be seen as a parameter which determines
the sparsity or density of the graph. As p ranges from 0 to 1, the graph becomes more and more
dense on average. Moreover, many natural monotone graph-theoretic properties become true within
a very small range of values of p. More precisely, given a monotone graph-theoretic property, there
is typically a value of p (which will be a function of ν, the number of vertices) called the called
threshold function. The given property holds in the model G(ν, p) with probability close to 0 for
p significantly less than the threshold, and the property holds with probability close to 1 for p
significantly greater than the threshold. Formally, the notion of a threshold function is defined as
follows:

Definition 2.5. [7, p. 347] A function t(ν) is a threshold function for a monotone property P
if, whenever p ≪ t(ν), then G(ν, p) does not satisfy P asymptotically almost surely, and whenever
p ≫ t(ν), then G(ν, p) satisfies P asymptotically almost surely.

Here the phrase asymptotically almost surely means with probability tending to 1 as ν → ∞.
We sometimes abbreviate this phrase to a.a.s.

2.4 Random intersection graphs

Let V be a set (of vertices) with |V| = ν, and let F be a set (of colours) with |F | = m. For each
v ∈ V, let Fv be a subset of the set F of colours. The intersection graph G({Fv}) has vertex set V,
and has an edge uv if and only if Fu ∩ Fv 6= ∅.

There are various models for random intersection graphs, where the sets Fv in an intersection
graph are chosen independently using some probability distribution on the subsets of F that does not
depend on v. The most widely studied model is the binomial random intersection graph Gbin(n,m, p)
introduced by Singer-Cohen [26], where p is a real number such that 0 ≤ p ≤ 1. In this model,
we choose Fv by selecting each colour f ∈ F to lie in Fv independently with probability p. The
term ‘binomial’ comes from an alternative way of generating Gbin(n,m, p), which can be described as
follows. To choose the set Fv , first choose kv ∈ {0, 1, 2, . . . ,m} according to the binomial distribution
Bin(m, p) (so the probability that kv = i is

(
m
i

)
pi(1 − p)m−i). Then choose Fv uniformly from the

set of all kv-subsets of F .
We will also consider the uniform random intersection graph Gu(ν,m,L), where L is an integer.

Here we choose each subset Fv uniformly (and independently) from the L-subsets of F . Here the
term ‘uniform’ comes from the fact that all subsets Fv have the same size, rather than anything to
do with the uniform distribution.

Our main object of study is the Sampling With Replacement random intersection graph (or
SWR random intersection graph) Gswr(ν,m,L), where L is an integer. In this model, Fv is the
result of sampling L times from F , with replacement.

We should note that random intersection graphs have been already been applied to cryptogra-
phy: these graphs have been used [4, 22] to model the effectiveness of the Eschenauer-Gligor key
predistribution scheme for wireless sensor networks [10].

3 Analysis of the complexity of constructing a diamond structure

We begin by recalling the analysis provided by Kelsey and Kohno [15]. Before we begin, we note
that this analysis implies that n > k. Kelsey and Kohno [15] argued as follows:

The work done to build the diamond structure is based on how many messages must be
tried from each of 2k starting values, before each has collided with at least one other
value. Intuitively, we can make the following argument, which matches experimen-
tal data for small parameters: When we try 2n/2+k/2+1/2 messages spread out from
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2k starting hash values (lines), we get 2n/2+k/2+1/2−k messages per line, and thus be-
tween any pair of these starting hash values, we expect about (2n/2+k/2+1/2−k)2 × 2−n =
2n+k+1−2k−n = 2−k+1 collisions. We thus expect about 2−k+k+1 = 2 other hash values
to collide with any given starting hash value.

We agree with this conclusion. Unfortunately, we will prove that this line of reasoning does not
imply that the 2k nodes can be paired up in such a way that we get 2k−1 collisions. It is useful to
think of this problem in a graph-theoretic setting. Suppose we label the nodes as 1, 2, . . . , 2k. Then
we construct a graph G = (V, E) in the following manner. The vertex set is V = {v1, . . . , v2k} and
(vi, vj) ∈ E if the nodes i and j collide at the next level of the diamond structure. G is an SWR
random intersection graph (and we will treat it as such later), but based on the analysis above
it seems reasonable to model G by a random graph in G(2k, 2−k+1). Now, the question is if this
random graph contains a perfect matching, as this is precisely what is required in order to be able
to find the desired 2k−1 pairs of collisions.

Unfortunately, random graph theory tells us that it is very unlikely that there is a perfect
matching in a random graph in G(2k, 2−k+1). This is because Erdös and Rényi [9] proved that
the threshold function for having a perfect matching in G(ν, p) (for ν even) is ln ν/ν. The class of
random graphs G(2k, 2−k+1) has p = 2/ν, which is well below the required threshold. Note also
that the threshold function for not having an isolated vertex is ln ν/ν [8], and a graph that contains
an isolated vertex obviously cannot contain a perfect matching.

3.1 Fixing the problem

In view of the above discussion concerning the threshold function for having a perfect matching, we
assume that a random graph in G(ν, ln ν/ν) will have a perfect matching. We proceed in a similar
manner to [15]. Suppose we construct ν = 2k lists, each containing L messages. The probability
that any two given messages collide under H is 2−n. The probability that no message in one list
collides with a message in another list can be estimated to be

(

1 − 1

2n

)L2

≈ 1 − L2

2n
.

The probability (which we denote by p) that there is at least one collision between two given lists
is

p ≈ L2

2n
. (1)

In view of our analysis above, we want

p ≈ ln ν

ν
.

Recalling that ν = 2k, it is clear that we need to take

L ≈
√

k ln 2 × 2(n−k)/2 ≈ 0.83 ×
√

k × 2(n−k)/2. (2)

The message complexity (i.e., the number of hash computations) at level 0 is therefore

2kL ≈ 0.83 ×
√

k × 2(n+k)/2. (3)

Ignoring constant factors, this is a factor of about
√

k bigger than the estimate in [15].

Remark. If we take L = 2(n−k+1)/2 in (1), then we obtain p ≈ 2−k+1, in agreement with [15].

Theorem 1. The total message complexity required to construct a 2k-diamond structure using the
Kelsey–Kohno algorithm is Θ(

√
k × 2(n+k)/2).
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Proof. The entire diamond structure requires finding collisions at levels 0, 1, . . . , k − 1. The above
analysis shows that, at level ℓ, the message complexity is about 0.83×

√
k − ℓ×2(n+k−ℓ)/2. Therefore

the total message complexity is

k−1∑

ℓ=0

0.83 ×
√

k − ℓ × 2(n+k−ℓ)/2 =

k∑

i=1

0.83 ×
√

i × 2(n+i)/2

= 0.83 × 2n/2
k∑

i=1

√
i × 2i/2

< 0.83 ×
√

k × 2n/2
k∑

i=1

2i/2

= 0.83 ×
√

k × 2n/2 × 21/2(2(k+1)/2 − 1)

21/2 − 1

= O(
√

k × 2(n+k)/2). (4)

For the lower bound, we have

k−1∑

ℓ=0

0.83 ×
√

k − ℓ × 2(n+k−ℓ)/2 =

k∑

i=1

0.83 ×
√

i × 2(n+i)/2

= 0.83 × 2n/2
k∑

i=1

√
i × 2i/2

> 0.83 ×
√

k

2
× 2n/2 ×

k∑

i=k/2

2i/2

= 0.83 ×
√

k

2
× 2n/2 × 2k/4(2(k/2+1)/2 − 1)√

2 − 1

= Ω(
√

k × 2(n+k)/2).

The result follows.

3.2 Computational complexity

So far, we have only considered the message complexity of constructing the diamond structure. In
this section, we look at the computational complexity. The computational complexity of construct-
ing a diamond structure has not previously been considered in the literature. However, this clearly
is an important and relevant issue if these structures are ever going to be implemented in a real
attack.

There are three main steps required to proceed from one level of the diamond structure to the
next. As before, we start by analyzing the work done to go from level 0 to level 1 (the work done
at other levels can be analyzed in the same way).

1. Compute L = 0.83 ×
√

k × 2(n−k)/2 hash values for each of the 2k lists.

2. Construct the associated graph, i.e., for each pair of lists, determine if there is a common
hash value.

3. Determine if the associated graph contains a perfect matching.
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Under the assumption that each hash computation takes unit time, the complexity of step 1 is
just the message complexity, which we have already computed to be Θ(2kL) in (3).

In step 2, we have to search every pair of lists for a repeated value. Various solutions are
possible. Asymptotically, we cannot do better than concatenating all the lists, sorting them, and
then performing a single pass through the sorted list to detect duplicates. The total time is therefore

O(2kL log(2kL)).

In step 3, we need to find a perfect matching in a graph on 2k vertices. Motwani [20] gives
a randomised algorithm that finds a maximal matching (with high probability) in a graph with
ǫ edges and with average degree at least ln ν in time O ((ǫ log ν)/(log log ν)). (The best known
algorithm under worst case analysis is due to Micali and Vazirani [19]; the running time is O(ǫ

√
ν).

However, for our purposes, the randomized algorithm of Motwani suffices.) In our case, we have a
graph that almost surely contains a perfect matching and the expected number of edges is k × 2k,
so an algorithm that finds a maximum matching will in fact find a perfect matching. This will take
time

O

(
k22k

log k

)

.

Combining the three steps, we see that the total time required at level 0 is

O

(

2kL + 2kL log(2kL) +
k22k

log k

)

= O

(

2kL log(2kL) +
k22k

log k

)

.

Recall from (2) that L = Θ(
√

k × 2(n−k)/2). Then we have

2kL log(2kL) = Θ(
√

k × 2(n+k)/2 × log(
√

k × 2(n+k)/2))

= Θ

(√
k × 2(n+k)/2 ×

(
n + k

2
+

1

2
log k

))

= Θ(
√

k × 2(n+k)/2 × n), (5)

since k < n.
The total computation time at level 0 is thus

O

(√
k × 2(n+k)/2 × n +

k22k

log k

)

. (6)

Finally, we determine the total computation time over all k levels. From (6), this total is seen
to be

O

(
k−1∑

ℓ=0

n ×
√

k − ℓ × 2(n+k−ℓ)/2 +
(k − ℓ)22k−ℓ

log(k − ℓ)

)

. (7)

The first part of the sum is just the message complexity multiplied by n. For the second part, note
that

k−2∑

ℓ=0

(k − ℓ)2 × 2k−ℓ

log(k − ℓ)
<

k−2∑

ℓ=0

(

(k − ℓ)2 × 2k−ℓ
)

=

k∑

i=1

(
i2 × 2i

)

︸ ︷︷ ︸

S

−2. (8)
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We now evaluate the sum S

S = 12 × 2 + 22 × 22 + 32 × 23 + · · · k2 × 2k (9)

2S = 12 × 22 + 22 × 23 + 32 × 24 · · · (k − 1)2 × 2k + k2 × 2k+1 (10)

(10)−(9) yields

S = k2 × 2k+1 −
k∑

i=1

(i2 − (i − 1)2) × 2i = O(k2 × 2k) (11)

Combining equations (7) and (11), we have the total computation time as,

O(n ×
√

k × 2(n+k)/2 + k2 × 2k) = O(n ×
√

k × 2(n+k)/2),

since n > k. We can summarize it as the following theorem.

Theorem 2. If each hash computation takes unit time, the computational complexity of construct-
ing a 2k-diamond structure using the Kelsey–Kohno algorithm is

O(n ×
√

k × 2(n+k)/2). (12)

Therefore, the computational complexity is n times the message complexity.

4 Analysis of diamond structures using random intersection graphs

The analysis carried out in the previous section used the Erdös-Rényi model for random graphs.
It was straightforward but a slight simplification of the real picture. To be specific, the Erdös-
Rényi model does not exactly capture the way in which the diamond structure is constructed. In
this section, we perform a more rigorous analysis using the setting of random intersection graphs.
However, we will see that this does not change any of the conclusions reached in the previous
section.

We are interested in analysing the SWR random intersection graph G from the previous section
directly, rather than modelling it as an Erdős-Rényi random graph. So we want to find a threshold
function for the existence of a perfect matching in an SWR random intersection graph. We only
consider the case when m > ν, as this is the case of interest for our application. Roughly speaking,
we prove that L2ν/(m ln ν) is a threshold for a perfect matching. More precisely, we prove the
following theorem.

Theorem 3. Let α > 1 be a fixed real number. Let m and L be functions of an integer ν, and
suppose that L ≤ m = ⌊να⌋.

(i) Whenever

lim inf
ν→∞

L2ν

m ln ν
< 1, (13)

then asymptotically almost surely Gswr(ν,m,L) does not contain a perfect matching.

(ii) Whenever

lim inf
ν→∞

L2ν

m ln ν
> 1, (14)

then asymptotically almost surely Gswr(ν,m,L) contains a perfect matching when ν is even.

Our proof of Theorem 3 uses a combination of known techniques from the theory of random
intersection graphs, in particular from [4, 5, 11, 12, 24, 26]. We believe that the condition that
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m = ⌊να⌋ can be replaced by the weaker condition that ν log ν = o(m), without changing the
proof of the theorem significantly. We also believe that the perfect matching threshold will have a
different form when α ≤ 1.

Proof. We begin by proving Part (i) of the theorem. Assume that the condition (13) holds. The
proof works by observing that the SWR graph Gswr(ν,m,L) is closely related to the uniform random
intersection graph Gu(ν,m,L) (indeed, there is a simple coupling between these two graphs). For
we may generate an instance of the uniform random intersection graph by a two stage process, as
follows. We first generate an instance G of an SWR-graph, where G = G({Fv}). For each vertex
v ∈ V, we then construct a subset F ′

v of size L by adding L − |Fv| distinct colours from F \ Fv

uniformly and independently at random to Fv. We may do this, since |Fv | ≤ L. It is now easy to
check that the graph G′ = G({F ′

v}) is an instance of a uniform random intersection graph. Since
Fv ⊆ F ′

v for all v ∈ V , we see that G is a subgraph of G′ and so G′ has a perfect matching whenever
G has a perfect matching. So the probability that Gswr(ν,m,L) has no perfect matching is bounded
below by the probability that Gu(ν,m,L) has no perfect matching. But Blackburn and Gerke [4,
Theorem 2] show that a.a.s. Gu(ν,m,L) has an isolated vertex when lim infν→∞(L2ν/(m ln ν) < 1,
and so in particular a.a.s. Gu(ν,m,L) does not have a perfect matching. This establishes Part (i)
of the theorem.

We now prove Part (ii) of the theorem. Suppose that (14) holds, so there exists a positive
real number ǫ so that L2ν/(m ln ν) ≥ 1 + ǫ for all sufficiently large integers ν. The probability of
Gswr(ν,m,L) possessing a perfect matching increases as L increases so, by replacing L by a smaller
function of ν if necessary, it suffices to prove the theorem in the case when

L2ν

m ln ν
→ 1 + ǫ as ν → ∞.

Define

p̃ = (1 + ǫ′)

√

ln ν

mν
,

where ǫ′ is a positive real number so that 1 + ǫ′ <
√

1 + ǫ. Since

L →
√

1 + ǫ

√

m ln ν

ν

there exist constants c and c′ with 1 < c and c′ < 1 and such that

p̃m < cp̃m < c′L < L (15)

for all sufficiently large ν.
We define the following process, which produces a pair (G,G′) of graphs. For each vertex

v, choose (uniformly and independently) a random bijection fv : {1, 2, . . . ,m} → F . Choose
(independently) an integer kv ∈ {0, 1, . . . ,m} according to the distribution Bin(m, p̃). Choose
(independently) an integer k′

v ∈ {1, 2, . . . , L}, with respect to the distribution of the number
of distinct elements sampled after L samples with replacement from an m-set. Define Fv =
{fv(1), fv(2), . . . , fv(kv)} and F ′

v = {fv(1), fv(2), . . . , fv(k
′
v)}. Then set G = G({Fv}) and G′ =

G({F ′
v}).

Note that G = Gbin(ν,m, p̃) and G′ = Gswr(ν,m,L). The event that G contains a perfect
matching occurs asymptotically almost surely when ν is even, by Rybarczyk [24, Theorem 6]. We
aim to prove that the event that G is a subgraph of G′ also occurs asymptotically almost surely.
This is sufficient to prove the theorem, since the intersection of these two events is a subset of
the event that G′ contains a perfect matching, and the intersection of two a.a.s. events occurs
asymptotically almost surely.
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For v ∈ V , let π be the probability that kv > k′
v. (Clearly π does not depend on v.) We have

that G is a subgraph of G′ whenever kv ≤ k′
v for all v ∈ V , so the event that G is a subgraph of G′

occurs with probability at least 1 − νπ. It remains to show that νπ → 0 as ν → ∞.
Since cp̃m < c′L by (15),

π ≤ Pr(kv ≥ cp̃m) + Pr(k′
v ≤ c′L).

Since kv is chosen according to the distribution Bin(m, p̃), the Chernoff bound (see Bollobas [6,
Corollary 1.4], for example) implies that

Pr(kv ≥ cp̃m) ≤ exp

(−(c − 1)2p̃m

3(1 − p̃)
+

c − 1

1 − p̃

)

= o(1/ν), (16)

the final bound following since the leading term of

−(c − 1)2p̃m

3(1 − p̃)
+

c − 1

1 − p̃
(17)

is negative and has order of magnitude
√

να−1 ln ν. In more detail, we have the following: we see
that p̃ → 0, and so (c− 1)(1− p̃) → c− 1 = O(1). We have that −(c− 1)2 < 0. Moreover, p̃, m and
1 − p̃ are all positive. So the first term of (17) is negative. We have that 1/(3(1 − p̃)) → 1/3 and

p̃m → (1 + ǫ′)
√

(m ln ν)/ν = (1 + ǫ′)
√

να−1 ln ν,

and this clearly tends to infinity faster than ln ν, since α > 1. So (16) holds. Now, we have that

Pr(k′
v ≤ c′L) ≤

(
m

⌊c′L⌋

)(
c′L

m

)L

≤
(

me

⌊c′L⌋

)c′L(c′L

m

)L

, since

(
n

k

)

≤
(ne

k

)k

= O

(

ec′L

(
c′L

m

)(1−c′)L
)

= exp
(
c′L − (1 − c′)L ln(m/(c′L)) + O(1)

)
.

Since m/(c′L) → ∞, we see that the exponent in this expression is negative for sufficiently large

ν, and has order of magnitude greater than L. Since ln ν ≤ ν
1

2
(α−1) = o(L), we see that Pr(k′

v ≤
c′L) = o(1/ν). So

νπ ≤ ν
(
Pr(kv ≥ cp̃m) + Pr(k′

v ≤ c′L)
)

= o(1),

as required.

To close this section, we show that the estimate obtained in the SWR random intersection graph
model agrees with the estimate obtained in the Erdös-Rényi graph model. Recall from Section 3.1
that we determined L by solving the equation L2/2n = ln ν/ν. In the SWR random intersection
graph, we have m = 2n. Theorem 3 says that we should (roughly) take L2ν = m ln ν, which
becomes L2/2n = ln ν/ν, as before. So none of the results change when we carry out the analysis
in the SWR random intersection graph model.

12



5 Revised analysis of the other attacks

The diamond structure has been used in second preimage attacks [3, 2] and in herding attacks [15, 2].
The steps followed in both attacks are the same except that they occur in a different order. In case
of a herding attack, the attacker first computes the hash of the prefix, then finds a linking message
that links the hash of prefix to one of the intermediate hash values of the diamond structure.
Finally, she appends the messages on the path inside the diamond structure from the intermediate
node to the root in front of the prefix and the linking message. The suffix is the message formed
by appending the linking message with the message on the path.

In the case of finding a second preimage, the attacker first finds a linking message that links
the root of the diamond structure to one of the intermediate hash value of the original message.
Then she finds a prefix that hashes to one of the nodes at level 0 of the diamond structure. She
then appends the messages associated with the edges on the path inside the diamond structure
that leads to the root of the diamond structure. The output is the message in the proper order.

We analyze the complexity of some known attacks in light of our revised analysis of the diamond
structure. We use the term offline phase for the steps carried out by adversary before she is given
the challenge and the term online phase for the steps followed by adversary after she is provided
with the challenge.

5.1 Herding attack on Merkle-Damg̊ard construction

Kelsey and Kohno [15] proposed the construction of diamond structure and the herding attack
on Mekle-Damg̊ard construction using the diamond structure. According to their analysis, the
message complexity of the attack is O(2(n+k)/2 + 2n−k). We revisit the attack in the light of our
correction of their analysis.

Message complexity

We proceed step by step. We already analyzed the complexity of the construction of the diamond
structure. In the online phase, the attacker has to find a linking message that links the hash of the
prefix to one of the leaves of the diamond structure. The complexity of finding the linking message
is O(2n−k). Therefore, from Theorem 1, we can calculate the message complexity of the attack as

O(
√

k × 2(n+k)/2 + 2n−k).

From the arithmetic-geometric mean inequality, we can find the minimum of the message complexity
by finding the value of k satisfying the following equation

n − 3k − log k = 0

The solution to this equation has the form k = n/3− 1
3 log(n/3) + O(log n/n) ≈ n/3. For lower

values of k, the message complexity is dominated by O(2n−k). Therefore, we see the same trend as
in [15]. However, for larger values of k, the message complexity is dominated by the construction
of diamond structure. In this case, the major contribution is from the term O(

√
k × 2(n+k)/2) and

we see the factor of
√

k coming in to the picture.

Time complexity

The time complexity of the offline phase is the same as given by Theorem 2. However, in the online
phase, we need to find the linking message and then actually find the hash value at the leaves to
which it maps. We can safely assume that the nodes at level 0 are sorted by their hash values.
This is because, if the nodes are not sorted by their hash values, we can perform the sorting in the
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offline phase, which takes O(k× 2k) time. However, this has no impact in asymptotic analysis as it
get subsumed by the complexity of construction of diamond structure (we will use this fact in the
sequel and never explicitly mention it). Hence, the time complexity to hash the required number
of messages and then to find if it links to any of the leaves is O(k × 2n−k). Therefore, the time
complexity comes out to be

O(n ×
√

k × 2(n+k)/2 + k × 2n−k).

The minimum occurs at the solution of the equation

n − 3k − 2 log n + log k = 0.

We can proceed as before, to calculate k = n/3 − 2
3 log n + 1

3 log(n/3) + O(log n/n) ≈ n/3. When
k is larger than n/3, then the time complexity is n times the message complexity and it is k times
the message complexity for smaller values of k.

We tabulate the complexity for some fixed values of n and compare our result with the analysis
of [15] for certain values of k in Table 1.

5.2 Second preimage attack on dithered hash

The dithered hash construction was proposed by Rivest [23] to counter the second preimage attack
of Kelsey and Schenier [16]. However, recently, Andreeva et al. [3] proposed an attack based
on the diamond construction. For a challenge message M of block length 2l, the adversary first
finds a linking message that links the root of the diamond structure to one of intermediate hash
values in the hash computation of M . She then finds a linking message that hashes to one of the
intermediate hash values (say N0) in the diamond structure. The adversary then finds the path
inside the diamond structure that leads from N0 to the root.

The success of the attack depends on the fact that although dithering sequences are non-periodic
and non-repeating, they have large size factors. The attack uses such a factor with the messages
that are used in the construction of diamond structure. If Factz(ℓ) denote the number of factors
of size ℓ in the sequence z, then Andreeva et al. evaluated the message complexity of their attack
as

O(Factz(ℓ) × 2n−l + 2n−k + 2(n+k)/2)

They also stated following lemmas about two dithering sequences that were advocated by Rivest.

Lemma 4. For ℓ ≤ 85, for the Keränen sequence [17, 18] z, we have

Factz(ℓ) ≤ 8l + 332.

Lemma 5. Let c denote the sequence obtained by diluting the Keränen sequence z with a 13-bit

n Example k = ⌊n/3⌋ k = ⌊2n/5⌋
Message Complexity Time Message Complexity Time
[15] Actual Complexity [15] Actual Complexity

128 MD5 285 288 296 289 293 2100

160 SHA-1 2106 2110 2117 2112 2117 2123

192 Tiger 2128 2131 2139 2134 2138 2145

256 SHA-256 2170 2174 2182 2179 2183 2191

512 Whirlpool 2341 2345 2354 2358 2362 2371

Table 1: Comparison of complexity of herding attack (all calculations are done without considering
the constants.)
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counter [23]. Then for every ℓ ∈ [0, 213], we have

Factc(ℓ) = 8l + 32760.

In other words, if we represent the above dithering sequence by z, the number of factors of size
ℓ is bounded by

Factz(ℓ) = O(ℓ)

Using the Lemma 4 and Lemma 5, the message complexity evaluated by [3] for the second preimage
of a 2l-block message, using a 2k-diamond structure is

O(k × 2n−l + 2n−k + 2(n+k)/2).

We reconsider this analysis in the light of our analysis of diamond structure.

5.2.1 Message complexity

In the attack on the dithered hash, Andreeva et al used the same dithering sequence for all edges at
the same depth of the diamond structure, and one dithered sequence to connect the root of diamond
structure to M . Thus, for a 2k-diamond structure, the size of dithering sequence they need on the
diamond structure is exactly k + 1. In the worst case, when all the factors have same size in the
dithering sequence, the probability that a randomly chosen factor of size k in the sequence z is
the one used in the construction of diamond structure is (Factz(k))−1. Therefore, the message
complexity to connect the root of the diamond structure to M is

O(Factz(k + 1) × 2n−l) = O(k × 2n−l). (18)

Suppose the root gets linked to the ith iteration of the hashing of M .
We have already calculated the message complexity of the construction of diamond structure in

Theorem 1. To find the complexity of the attack, note that the attacker needs to hash a message
(let us say M

′

) of block length i − 2 − k, where k is the depth of diamond structure, in order
to defy the Merkle-Damg̊ard strengthening. This is upper bounded by 2k hash computations.
Since k < n, we see that this has no impact on the asymptotic calculation as it is subsumed by the
construction of the diamond structure (we use this fact again in sequel and never explicitly mention
it). The message complexity to find a linking message that links H(M

′

) to one of the leaves of the
diamond structure is O(2n−k). We calculate the message complexity of the second preimage attack
on dithered hash function as

O
(

2k +
√

k × 2(n+k)/2 + 2n−k + k × 2n−l
)

= O
(√

k × 2(n+k)/2 + 2n−k + k × 2n−l
)

,

Under the assumption that l ≈ k, it can be further simplified to

O
(√

k × 2(n+k)/2 + k × 2n−k
)

.

5.2.2 Computational complexity

We note that the attack uses the simple diamond structure as constructed in Section 3. Hence, the
total time required to construct the diamond structure is as stated in Theorem 2. For the time
required in the online phase, note that we need to find the intermediate hash value to which we
link the root of the diamond structure. Moreover, we can safely assume that the intermediate hash
values in the hash computation of M are sorted. If not, then we first sort them in the online phase,
which takes O(l × 2l) time. Note that it does not effect the computational complexity, because
it is subsumed by the construction of the diamond structure (we implicitly use this fact again in
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the analysis of second preimage attack on hash twice construction). Hence, it takes a factor of
l time more than what is required in message complexity (equation (18)) resulting in total time
O(l×k×2n−l). Also, as in the herding attack, we need to find the leaf to which the linking message
maps. Thus, the time complexity to find that leaf is O(k×2n−k). Therefore, the total time required
for the attack is given by

T (k, l) = O
(

k × 2n−k + k × l × 2n−l + n ×
√

k × 2(n+k)/2
)

.

Under the assumption that k ≈ l, we have

M(k, l) = O
(√

k × 2(n+k)/2 + k × 2n−k
)

.

T (k, l) = O
(

k2 × 2n−k + n ×
√

k × 2(n+k)/2
)

.

It is easy to check that the message complexity is minimized when k is the solution of following
equation,

n − 3k + log k = 0,

which is roughly n/3. Following the argument in Section 5.1, we can say that the message com-
plexity of the attack is dominated by O(k×2n−k) for k < n/3 and therefore it is the same as in [3].
However, for large values of k, a factor of

√
k comes into the picture.

Also, the time complexity is minimized when k satisfies the following equation:

n − 3k + 3 log k − log n = 0

We present a comparison of the computational complexity of the attack with the message complexity
and compare it with the analysis of [3] in Table 2.

5.3 Herding attack and second preimage attack on hash twice function

Andreeva et al [2] proposed a herding attack and a second preimage attack on the hash twice
function by building a diamond structure on multicollisions. For a hash twice function of the form
defined in Section 2.2, both the attacks constructed Joux’s multicollisions on first pass of hash
function, and then used the messages that caused the multicollisions to build a diamond structure
for the second pass. In total, the attack requires the construction of two diamond structures, one
on each of the two passes. In fact, the adversary performs the following steps during the offline
phase:

1. Construct a 2k-diamond structure (let us say D1) for the first pass.

n Example k = ⌊n/3⌋ k = ⌊2n/5⌋
Message Complexity Time Message Complexity Time
[3] Actual Complexity [3] Actual Complexity

128 MD5 289 291 295 290 293 2100

160 SHA-1 2111 2113 2117 2112 2115 2122

192 Tiger 2132 2134 2139 2134 2138 2145

256 SHA-256 2175 2177 2182 2179 2183 2191

512 Whirlpool 2347 2349 2354 2358 2362 2371

Table 2: Comparison of message and computational complexity of second preimage attack on
dithered hash (all calculations are done without considering the constants).
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2. Construct 2n−k+r-multicollisions (let us say M) in front of D1, where the value of r is to be
calculated later. Let the hash value at the end of multi-collision be h1.

3. Construct a diamond structure (let us say D2) on the second pass using the messages from
the last r blocks of messages in M.

5.3.1 Herding attack on hash twice

After the offline phase, the adversary commits to the hash value at the root of D2. In the online
phase, the adversary is given a prefix P . She calculates H(P ) and then finds a linking message, m
that links H(P ) to one of the leaves of D1. Using h1 as inital value, the adversary hashes P‖m.
She uses the first 2n−k-multicollisions of M to find the linking message to D2. Finally, she finds a
path inside D2 that leads to the root. Andreeva et al [2] calculated the total message complexity
of the attack to be O(2n−k +2(n+k)/2). We next perform a more detailed analysis of the attack and
compute the message complexity and the computational complexity of the attack.

Message complexity

Step 1 is the simple diamond construction for which we gave a detailed analysis in Section 3. To
find the complexity of Step 2, we need to calculate the value of r, the number of blocks of messages
required to construct the second diamond structure. Since, we need 0.83 ×

√
k − ℓ × 2(n+k−ℓ)/2

messages to herd from level ℓ to level (ℓ + 1), the total number of multicollisions required to
construct the diamond structure is

C =
k−1∑

ℓ=0

0.83 ×
√

k − ℓ × 2(n+k−ℓ)/2 = Θ(
√

k × 2(n+k)/2).

The last equality is due to equation (4). Hence, the message complexity to find a 2n−k+r-multicollision
is

Θ
(

((n − k) + log C) 2n/2
)

= Θ(n × 2n/2) (19)

For Step 3, we find the message complexity to go from level 0 to level 1 (the rest of them can
be done analogously). Note that every message that needs to be hashed is in fact of block length
log 2kL and there are 2kL such messages. From equation (5), the total hash computation is,

2kL log 2kL = Θ(n ×
√

k × 2(n+k)/2).

Therefore, the message complexity to construct D2 is

Θ

(
k−1∑

ℓ=0

√
k − ℓ × 2(n+k−ℓ)/2 × n

)

= Θ(n ×
√

k × 2(n+k)/2). (20)

For the online phase, we comment that the total time is the time required to find the two linking
messages (one to D1 and another one to D2). The work done to find the linking message to D1 is
simply 2n−k. However, the message complexity to find the linking message to D2 is O((n−k)×2n−k),
because each message is n − k blocks long. Therefore, the total message complexity in the online
phase is

O((n − k) × 2n−k) = O(n × 2n−k) (21)

Using equation (4) and (19)−(21), the message complexity for the attack is

O
(√

k × 2(n+k)/2 + n ×
(

2n/2 +
√

k × 2(n+k)/2 + 2n−k
))

= O
(

n ×
(√

k × 2(n+k)/2 + 2n−k
))

.
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Computational complexity

Since D1 is a simple diamond structure, we note that the time required to construct D1 is the same
as equation (12). Also, Step 2 is just finding the required number of multicollisions. Therefore, its
time complexity equals the message complexity of finding the required number of multicollisions,
which is precisely equal to equation (19). For the final part of the attack, we analyze each step of
Section 3.2 for the construction of D2 for level 0 (the other levels are analyzed analogously). Recall
that to proceed from one level to the next in a diamond structure, we first hash certain lists of
messages, construct an associated graph by creating an edge when a pair of lists has a common
hash value, and then find a perfect matching on that graph.

For the construction of D2, we have L lists of messages for each of 2k hash values, but now all
the messages are log(2kL) blocks long. Using equation (5), we calculate the total time required to
hash the 2kL lists as

2kL log(2kL) = Θ(
√

k × 2(n+k)/2 × n).

Now, we comment that the time complexity to construct the associated graph and then to
find a perfect matching in that graph for D2 is same as in the construction of a simple diamond
structure. This is because we need to sort the same number of hash values (which defines the
complexity of the construction of the graph) and we have the same number of vertices, the same
expected number of edges, and the same average degree (which determines the complexity of finding
a perfect matching). Therefore, the total time required at level 0 is,

O

(

2kL log(2kL) + 2kL log(2kL) +
k22k

log k

)

= O

(

2kL log(2kL) +
k22k

log k

)

.

Note that this is same as in the construction of simple diamond structure. Hence, the time
complexity of the construction of D2 is the same as equation (12).

Arguing in a similar fashion as in the previous cases for the online phase, we comment that
the total time is k times the message complexity to link the message. Therefore, the total time
complexity of the attack (pre-computation and online phase) is

O
(

n ×
(

2n/2 +
√

k × 2(n+k)/2 + k × 2n−k
))

= O
(

n ×
(√

k × 2(n+k)/2 + k × 2n−k
))

.

Therefore, the message complexity of the attack on hash twice is just n times the message
complexity of the herding attack of Kelsey and Kohno (see Section 5.1 and compare Table 1 and
Table 3).

5.3.2 Second preimage attack on hash twice

Let M be a 2l blocks long challenge message for the adversary. The steps followed by the adversary
are similar to the herding attack. The only additional step for the adversary is in the online
phase when she creates the prefix of the required block length that links to one of the leaves of
D1 and has to find a linking message that links the root of D2 to one of the intermediate hash
values in the second pass of M . The analysis of [2] showed the message complexity of the attack
is O(2n−k + 2(n+k)/2 + 2n−l). We perform a more detailed analysis and tabulate the effect of the
difference in the Table 3.

Let M be a 2l block challenge message for the adversary. The steps followed by the adversary
are similar to the herding attack. She creates two diamond structures D1 and D2 in a similar
manner as in the herding attack. The only additional step for the adversary is in the online phase
when she creates the prefix of the required block length that links to one of the leaves of D1 and
has to find a linking message that links the root of D2 to one of the intermediate hash values in the
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second pass of M . Hence, the total hash computation is O(2n−k) for finding the linking message
to D1 and O(2n−l) to find the linking message from the root of D2 to one of the intermediate hash
values in the second pass of M . However, every message that the adversary uses to link to D2 is
n − k blocks long. Therefore, the number of hash computations the adversary has to perform is
O((n − k) × 2n−k). Thus the total message complexity of the online phase is

O(2n−l + (n − k) × 2n−k + 2n−k) = O(2n−l + n × 2n−k).

We can now estimate the message complexity as

O
(

n × (2n−k +
√

k × 2(n+k)/2) + 2n−l
)

.

Arguing in a similar fashion for the online phase as in Section 5.2.2, we can say that the time
complexity for linking the message to the diamond structure is k times the message complexity,
and the time complexity for linking the root of D2 to one of the intermediate hash value in the
hash computation of M is l times its message complexity. Therefore, the time complexity comes
out to be

O
(

n × (
√

k × 2(n+k)/2 + k × 2n−k) + l × 2n−l
)

n Example k = ⌊n/3⌋ k = ⌊2n/5⌋
Message Complexity Time Message Complexity Time
[2] Actual Complexity [2] Actual Complexity

128 MD5 285 295 298 290 2100 2102

160 SHA-1 2107 2117 2120 2112 2122 2125

192 Tiger 2128 2139 2142 2134 2145 2148

256 SHA-256 2171 2182 2185 2179 2191 2194

512 Whirlpool 2341 2354 2358 2358 2371 2375

Table 3: Comparison of message complexity of second preimage attack (assuming l ≈ k) on hash
twice construction (all calculations are done without considering the constants).

Remark. We can analyze the time and the message complexity of the herding attack on concate-
nated hash functions of the form

Hf1(M)‖Hf2(M),

where f1 and f2 can be the same or different compression functions, in a similar fashion as in
Section 5.3. This is because the basic construction is the same as for the hash twice function. The
only difference lies in the commitment stage, where the adversary commits to the h1‖h2, where h1

is the hash value as in Step 2 of the herding attack on hash twice, and h2 is the hash value of the
root of D2 constructed in the attack.

6 Conclusion

In this paper, we pointed out that the analysis of diamond structure proposed by Kelsey-Kohno
is not complete and may not yield the desired structure. We also gave a rigorous analysis of the
construction of the diamond structure using concepts from random graph theory. There are some
consequences of this, as enumerated below:

1. Our analysis showed that the message complexity of the construction of a 2k-diamond struc-
ture is about

√
k times more than [15] claimed (Theorem 1).
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2. We also showed that the computational complexity of the construction of a diamond structure
is n times the message complexity (Theorem 2).

3. For the Merkle-Damg̊ard construction, the ratio of time complexity and the message com-
plexity of the attacks is k if we choose the value of k to be strictly less than n/3 and it is n
if we choose k to be larger than n/3.

4. For the hash twice construction and concatenated hash functions, the ratio of computational
and message complexity is linear in k when k is strictly less than n/3, and it is constant for
larger values of k.

We summarize the values of k to minimize message complexity in Table 4 and to minimize com-
putational complexity in Table 5 for different attacks. We summarize our results on the message
complexity in Table 6 and time complexity in Table 7.

References

[1] J. P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations.
Cambridge University Press, Cambridge, UK, 2003.

[2] E. Andreeva, C. Bouillaguet, O. Dunkelman, and J. Kelsey. Herding, second preimage and
Trojan message attacks beyond Merkle-Damg̊ard. In Selected Areas in Cryptography, volume
5867 of Lecture Notes in Computer Science, pages 393–414, 2009.

[3] E. Andreeva, C. Bouillaguet, P. A. Fouque, J. J. Hoch, J. Kelsey, A. Shamir, and S. Zimmer.
Second preimage attacks on dithered hash functions. In EUROCRYPT, volume 4965 of Lecture
Notes in Computer Science, pages 270–288, 2008.

[4] S. R. Blackburn and S. Gerke. Connectivity of the uniform random intersection graph. Discrete
Mathematics, 309(16):5130–5140, 2009.

[5] M. Bloznelis, J. Jaworski, and K. Rybarczyk. Component evolution in a secure wireless sensor
network. Networks, 53(1):19–26, 2009.

[6] B. Bollobás. Random Graphs (2nd Edition). Cambridge University Press, Cambridge, UK,
2001.

[7] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

[8] P. Erdös and A. Renyi. On the evolution of random graphs. In Proceedings of the Hungarian
Academy of Sciences, volume 5, pages 17–61, 1960.
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Table 4: Values of k to get minimum message complexity (assuming l ≈ k)

n Example Herding Attack Second Preimage Herding and Second
on Dithered Hash Preimage on Hash Twice

128 MD5 40 43 45
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Table 5: Values of k to get minimum time complexity (assuming l ≈ k)
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