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Abstract

This paper proposes practical chosen-ciphertext secure public-key encryption systems that
are provably secure under the computational Diffie-Hellman assumption, in the standard model.
Our schemes are conceptually simpler and more efficient than previous constructions. We also
show that in bilinear groups the size of the public-key can be shrunk from n to 2

√
n group

elements, where n is the security parameter.

1 Introduction

Security against chosen-ciphertext attack (CCA) is nowadays considered to be the standard security
notion for public-key encryption. In this work we are interested in practical schemes with proofs of
security under mild security assumptions (such as the computational Diffie-Hellman assumption),
without relying on heuristics such as the random oracle model [2].

ElGamal Encryption. Let G be a cyclic group generated by g. The ElGamal encryption scheme,
described as a key-encapsulation mechanism (Gen,Enc,Dec), is as follows

Gen : sk = z, pk = Z = gz, Enc(pk) : C = gr,K = Zr,

Dec(sk , C) : K = Cz ∈ G,

where all appearing exponents are chosen at random. It can be proved one-way (OW-CPA) secure
under the computational Diffie-Hellman (DH) assumption, but its semantic (IND-CPA) security is
equivalent to the stronger DDH assumption. To obtain an IND-CPA secure variant from the DH as-
sumption one commonly uses the Goldreich-Levin [13] hard-core predicate fgl(·, R) with randomness
R to extract a pseudorandom bit from the Diffie-Hellman seed. By a standard randomness-reusing
technique one obtains a scheme that encapsulates n-bit keys:

Gendh : skdh = (z1, . . . , zn), pkdh = (Z1 = gz1 , . . . , Zn = gzn),
Enc(pk) :Cdh = gr, Kdh = (fgl(Zr1 , R), . . . , fgl(Zrn, R)) ∈ {0, 1}n, (1)

1 Dept. of Computer Science, New York University, Courant Institute, 251 Mercer Street, New York, NY 10012,
USA. kkh@cs.nyu.edu. Supported by NSF award number CNS-0716690.
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where decapsulation reconstructs the seed values Zri by computing Zri = Czidh. Combined with a
one-time pad it yields an IND-CPA secure encryption scheme.

IND-CCA security from Decisional Assumptions. Whereas CPA-secure schemes can be
constructed generically, building CCA-secure schemes seems more difficult and usually requires
stronger hardness assumptions. The first practical CCA-secure encryption scheme (without random
oracles) was proposed in a seminal paper by Cramer and Shoup [10]. Their construction was later
generalized to hash proof systems [9]. However, the Cramer-Shoup encryption scheme and all its
variants [22, 7, 20, 21, 16, 17] inherently rely on decisional assumption, e.g., the Decisional Diffie-
Hellman (DDH) assumption or the quadratic residuosity assumption. Moreover, there are groups,
such as certain elliptic curve groups with bilinear pairing map, where the DDH assumption does
not hold, but the DH problem appears to be hard.

IND-CCA security from Computational Assumptions. The DDH assumption has often
been criticized as being too strong [3, 12] and in general wrong in certain cryptographically relevant
groups [19]. Schemes based on the DH assumption are preferred but, surprisingly, even with strong
tools such as the Cramer Shoup framework [10] such schemes seem to be hard to obtain.

Canetti, Halevi and Katz [5] proposed the first practical public-key encryption scheme based
on a computational assumption, namely the Bilinear DH assumption in bilinear groups. Later, as
a general tool to construct secure cryptographic primitives against active attacks, Cash et al. [8]
proposed the Twin Diffie-Hellman (2DH) assumption. Though seemingly a stronger assumption,
the interactive Strong 2DH assumption (which is the 2DH assumption where the adversary is addi-
tionally given an oracle that solves the 2DH problem for fixed bases) is implied by the standard DH
assumption. Building on “IBE techniques” [4, 5], Cash et al. obtained the first practical encryption
scheme which is CCA-secure assuming the strong 2DH assumption, and therefore also assuming
the standard DH assumption. Here the decisional 2DH oracle provided by Strong 2DH assumption
plays a crucial role in distinguishing consistent from non-consistent ciphertexts. However, to prove
IND-CCA security, [8] had to add n group elements to the ciphertext of the scheme from Equation
(1) which renders the scheme quite impractical. In independent work, Hanaoka and Kurosawa [14]
used a different approach based on broadcast encryption, and could thereby reduce the number of
group elements in the ciphertexts to a constant. According to [14], their approach is not based
on the twinning framework. Recently, Hofheinz and Kiltz gave a CCA-secure encryption scheme
based on the factoring assumption [18].

1.1 Our contributions

In this paper we propose a number of new encryption schemes that are CCA-secure assuming the
standard DH assumption. We apply the Twin Diffie-Hellman framework from [8] to the CPA-secure
scheme given in Equation (1). Therefore our schemes are simple and intuitive. As summarized in
Table 1 at the end of this section, they improve efficiency of prior schemes from [8, 14].

A scheme from Strong DH. To illustrate our main ideas we first give a toy scheme that is
IND-CCA secure assuming the Strong DH assumption [1] (The Strong DH assumption is that the
DH assumption holds when the adversary is equipped with a (fixed-base) DDH oracle.) This is
essentially the same scheme as ElGamal from Equation (1), but one more group element is added
to the ciphertext.

Gensdh : sk = (skdh, x, x
′), pk = (pkdh, X = gx, X ′ = gx

′
)

Encsdh(pk) : C = (Cdh, (XtX ′)r), K = Kdh,
(2)
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where t = T(Cdh) is the output of a target collision resistant hash function. Decryption only returns
K if the ciphertext C = (C0, C1) is consistent, i.e., if Cxt+x

′

0 = C1. In all other cases it rejects
and returns ⊥. The additional element (XtX ′)r from the ciphertext is used as a handle for an all-
but-one simulation technique (based on techniques from identity-based encryption [4]) to be able
to simulate the decryption oracle for all ciphertexts, except the challenge ciphertext. The above
simulation technique works only if consistent ciphertexts can be distinguished from inconsistent
ones, which is why we need the DDH oracle provided by the Strong DH assumption.

First scheme from DH. Our first scheme, which is secure under the (standard) DH assumption,
applies the twinning framework to the above idea by adding an additional element (Y tY ′)r to the
ciphertext.

Gendh1 : sk = (skdh, x, x
′, y, y′),

pk = (pkdh, X = gx, X ′ = gx
′
, Y = gy, Y ′ = gy

′
)

Encdh1(pk) : C = (Cdh, (XtX ′)r, (Y tY ′)r),
K = Kdh.

(3)

Again, decryption only returns K if the ciphertext is consistent, and ⊥ otherwise. By analogy to
the scheme from Equation (2) it is IND-CCA secure under the Strong 2DH assumption which, by
the Twinning theorem from [8], is implied by the standard DH assumption. Again, the Decisional
2DH oracle provided by the Strong DH assumption is crucial for distinguishing consistent from
inconsistent ciphertexts in the reduction.

Second scheme from DH. Our second scheme from the DH assumption applies an “implicit
rejection technique” to remove the second element from the ciphertext.

Gendh2 : sk = (skdh, x, x
′, y, y′),

pk = (pkdh, X = gx, X ′ = gx
′
, Y = gy, Y ′ = gy

′
)

Encdh2(pk) : C = (Cdh, (XtX ′)r),
K = KG ⊕Kdh, where KG = G((Y tY ′)r),

(4)

where G : G → {0, 1}n is a secure pseudorandom generator. Decryption only returns K if the
ciphertext C = (C0, C1) is consistent, i.e., if Cxt+x

′

0 = C1. In that case KG is computed as
KG = G(Cyt+y

′

0 ). Unfortunately, we are not able to show full CCA security of this KEM but,
instead, we are able to prove the weaker constrained CCA (CCCA) security [16] under the DH
assumption. A CCCA-secure KEM plus a symmetric authenticated encryption scheme (i.e., a MAC
plus a one-time pad) yields CCA-secure encryption. The intuition behind the security is similar to
the scheme from Equation (3) with the difference that, during the simulation, the values Y and Y ′

are set-up such that, if the ciphertext is inconsistent, then the simulated decryption will produce KG

that is uniform in the adversary’s view and therefore K = KG⊕Kdh is also uniform. Consequently,
when combined with symmetric authenticated encryption such inconsistent decryption queries will
get rejected by the symmetric cipher.

Reducing the size of the Public-Keys. Our schemes are quite practical, except for the large
public-key which consists of ≈ n group elements. We also propose two methods to reduce the size
of the public-key when our schemes are instantiated over bilinear groups. Most interestingly, we
note that the public-key can be shrunk from n to 2

√
n elements by ”implicitly defining” the n

elements of pkdh as Zi,j := ê(Zi, Z ′j), for i, j ∈ [1,
√
n]. (Here ê : G × G → GT is a symmetric

bilinear map.) Note that now only the 2
√
n elements Zi, Z ′j need to be stored in the public-key.

1 Furthermore, in bilinear groups it is also possible to move the n values Z1, . . . , Zn from the
1We remark that this is a generic technique that may also be applied to other Diffie-Hellman based constructions

suffering from large public keys, such as the DDH-based lossy trapdoor functions in [23, 11].
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Scheme Assumption Ciphertext Efficiency [#exp, #pairings]) Key sizes
Overhead Encryption Decryption Public key (System)

CKS [8] DH (n + 2)× |G| [3n + 1, 0] [2n + 1, 0] (2n + 2)×G 1×G
HK [14] DH 3× |G| [3n + 7, 0] [n + 2, 0] (n + 3)×G 2×G
KEMdh1 (§3) DH 3× |G| [n + 5, 0] [n + 2, 0] (n + 4)×G 1×G
KEMdh2 (§4) DH |mac|+ 2× |G| [n + 5, 0] [n + 2, 0] (n + 4)×G 1×G
Variant 1 (§5.2) BDH 2× |G| [4, n] [2, n + 2] 1×G (n + 3)×G
Variant 2 (§5.3) BDH 2× |G| [

√
n + 3, n] [

√
n + 1, n + 2] 2(

√
n + 1)×G 1×G

Table 1: Efficiency comparison of the proposed schemes.

public-key pkdh into the system parameter that can be shared among many users. In that case the
public-key only contains one group element, but the system parameters are still of size ≈ n. We
remark that the observation of putting public-key elements into the systems parameters is not new
and has been made before, e.g., for Water’s IBE scheme [24]. Finally, we also sketch how our ideas
can be extended to construct an IBE scheme. All our bilinear constructions are CCA secure under
the Bilinear DH (BDH) assumption.

2 Preliminaries

2.1 Notation

In the following we let (Gκ)κ∈N be a family of prime-order groups, indexed by security parameter κ.
Occasionally we write G shorthand for some group Gκ ∈ (Gκ)κ∈N, when the reference to the security
parameter κ is clear. We denote with poly(κ) an unspecified positive integer-valued polynomial,
and with negl(κ) a negligible function in κ, that is, |negl(κ)| < o(1/κc) for every positive integer c.
For a positive integer n, we denote with [n] the set [n] = {1, . . . , n}.

2.2 Key Encapsulation Mechanisms

Let n = n(κ) be a polynomial. A key-encapsulation mechanism (Gen,Enc,Dec) with key-space
{0, 1}n consists of three polynomial-time algorithms (PTAs). Via (pk , sk) ← Gen(1n) the ran-
domized key-generation algorithm produces public/secret keys for security parameter κ ∈ N; via
(C,K) ← Enc(pk) the randomized encapsulation algorithm creates an uniformly distributed sym-
metric key K ∈ {0, 1}n, together with a ciphertext C; via K ← Dec(sk , C) the possessor of secret
key sk decrypts ciphertext C to get back a key K which is an element in {0, 1}n or a special rejec-
tion symbol ⊥. For consistency, we require that for all κ ∈ N, and all (C,K) ← Enc(pk) we have
Pr[Dec(sk , C) = K] = 1, where the probability is taken over the choice of (pk , sk)← Gen(1n), and
the coins of all the algorithms in the expression above.

Chosen-Ciphertext Security. The common requirement for a KEM is indistinguishability
against chosen-ciphertext attacks (IND-CCA) [10] where an adversary is allowed to adaptively query
a decapsulation oracle with ciphertexts to obtain the corresponding session key. More formally, for
an adversary A we define the advantage function

AdvCCAAKEMdh1
(κ) := Pr

b = b′ :

(pk , sk)← Gen(1n)
(C,K0)← Enc(pk)
K1 ← {0, 1}n; b← {0, 1}
b′ ← ADec(·)(pk ,Kb, C)

− 1
2
,
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where oracle Dec(Ci) returns Ki ← Dec(sk , Ci). The restriction is that A is only allowed to
query Dec(·) on ciphertexts Ci different from the challenge ciphertext C. A key encapsulation
mechanism is said to be indistinguishable against chosen ciphertext attacks (IND-CCA) if for all
PTA adversaries A, the advantage AdvCCAAKEMdh1

(κ) is a negligible function in κ.
It was proved in [10] that an IND-CCA secure KEM and a CCA-secure symmetric encryption

scheme yields an IND-CCA secure hybrid encryption scheme.

Constrained Chosen-Ciphertext Security. Chosen-ciphertext security can be relaxed to
indistinguishability against constrained chosen-ciphertext attacks (IND-CCCA) [16]. Intuitively,
one only allows the adversary to make a decapsulation query if it already has some “a priori
knowledge” about the decapsulated key. This partial knowledge about the key is modeled implicitly
by letting the adversary additionally provide an efficiently computable Boolean predicate pred :
{0, 1}n → {0, 1}. If pred(K) = 1 then the decapsulated key K is returned, and ⊥ otherwise. The
amount of uncertainty the adversary has about the session key (denoted as plaintext uncertainty
uncertA) is measured by the fraction of keys for which the predicate evaluates to 1. We require this
fraction to be negligible for every query, i.e. the adversary has to have a high a priori knowledge
about the decapsulated key when making a decapsulation query. More formally, for an adversary
A we define the advantage function

AdvCCCAAKEMdh2
(κ) := Pr

b = b′ :

(pk , sk)← Gen(1n)
(C,K0)← Enc(pk)
K1 ← {0, 1}n; b← {0, 1}
b′ ← ACDec(·,·)(pk ,Kb, C)

− 1
2
,

where oracle CDec(pred i, Ci) first computes Ki ← Dec(sk , Ci). If Ki = ⊥ or pred i(Ki) = 0 then
return ⊥. Otherwise, return Ki. The restriction is that A is only allowed to query CDec(pred i, Ci)
on predicates pred i that are provided as PTA and on ciphertexts Ci different from the challenge
ciphertext C.

To adversary A in the above experiment we also associate A’s plaintext uncertainty uncertA(κ)
when making Q decapsulation queries, measured by

uncertA(κ) :=
1
Q

∑
1≤i≤Q

Pr
K∈{0,1}n

[pred i(K) = 1] ,

where pred i : G → {0, 1} is the predicate A submits in the ith decapsulation query. Finally,
a key encapsulation mechanism is said to be indistinguishable against constrained chosen cipher-
text attacks (IND-CCCA) if for all PTA adversaries A with negligible uncertA(κ), the advantage
AdvCCCAAKEMdh2

(n) is a negligible function in κ.
It was proved in [16] that an IND-CCCA secure KEM plus a symmetric encryption scheme secure

in the sense of authenticated encryption yields an IND-CCA secure hybrid encryption scheme.
We refer to Appendix A for other definitions of standard cryptographic primitives such as hash

functions and pseudorandom generators.

2.3 Diffie-Hellman Assumptions

Let G = Gκ be a cyclic group generated by g. Define

dh(A,B) := C, where A = ga, B = gb, and C = gab. (5)

The problem of computing dh(A,B) given random A,B ∈ G is the computational Diffie-Hellman
(DH) problem. The DH assumption asserts that this problem is hard, that is, Pr[A(A,B) =
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dh(A,B)] ≤ negl(κ) for all probabilistic polynomial-time algorithms A. The DH predicate is defined
as

dhp(A, B̂, Ĉ) := dh(A, B̂) ?= Ĉ.

The Strong DH assumption states that it is hard to compute dh(A,B), given random A,B ∈ G,
along with access to a decision oracle for the predicate dhp(A, ·, ·), which on input (B̂, Ĉ), returns
dhp(A, B̂, Ĉ).

Let dh be defined as in (5). Define the function

2dh : G3 → G2

(A1, A2, B) 7→ (dh(A1, B), dh(A2, B)).

This function, introduced in [8], is called the twin DH function. One can also define a corresponding
twin DH predicate:

2dhp(A1, A2, B̂, Ĉ1, Ĉ2) := 2dh(A1, A2, B̂) ?= (Ĉ1, Ĉ2).

The twin Diffie-Hellman assumption states it is hard to compute 2dh(A1, A2, B), given ran-
dom A1, A2, B ∈ G. The strong twin DH assumption states that it is hard to compute
2dh(A1, A2, B), given random A1, A2, B ∈ G, along with access to a decision oracle for the pred-
icate 2dhp(A1, A2, ·, ·, ·), which on input (B̂, Ĉ1, Ĉ2), returns 2dhp(A1, A2, B̂, Ĉ1, Ĉ2). It is clear
that the (strong) twin DH assumption implies the DH assumption.

We will make use of a result from [8], which essentially states that the DH assumption implies
the strong twin Diffie-Hellman assumption.

Lemma 1 (Theorem 3 of [8]). Let G be a group of prime order p, log2 p = poly(κ). Suppose A
is an adversary against the strong twin Diffie-Hellman problem in G, running in polynomial-time
in κ and having non-negligible success probability. Then there exists a polynomial-time adversary
B against the computational Diffie-Hellman problem in G having non-negligible success probability.

2.4 Hard-core Functions

In the following we denote with fgl : G×{0, 1}u → {0, 1}ν a Goldreich-Levin hard-core function [13]
for dh(A,B) with randomness space {0, 1}u and range {0, 1}ν , where u and ν are suitable integers
(depending on the given group representation).

The following lemma is from [8, Theorem 9].

Lemma 2. Let G = Gκ be a prime-order group generated by g. Let A1, A2, B
$← G be random

group elements, R $← {0, 1}u, and let K = fgl(dh(A1, B), R). Let Uν
$← {0, 1}ν be uniformly

random. Suppose there exists a probabilistic polynomial-time algorithm B having access to an oracle
computing 2dhp(A1, A2, ·, ·, ·) and distinguishing the distributions

∆dh = (g,A1, A2, B,K,R) and ∆rand = (g,A1, A2, B, Uν , R)

with non-negligible advantage. Then there exists a probabilistic polynomial-time algorithm comput-
ing dh(A,B) on input (A,B) with non-negligible success probability.

3 Chosen-Ciphertext Secure Key Encapsulation

In this section we build our first CCA-secure key-encapsulation mechanism whose security is based
on the DH assumption.
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Let G = Gκ be a group of prime order p and let n = n(κ) be a polynomial. Let Ts : G→ Zp be
a hash function with key s that is assumed to be target collision resistant (see Appendix A.1 for a
formal definition). Let KEMdh1 = (Gen,Enc,Dec) be defined as follows.

Gen(1κ) Choose a random generator g $← G and randomness R $← {0, 1}u for fgl. Choose a random
seed s for the hash function Ts, choose random integers x, x′, y, y′, z1, . . . , zn

$← Zp, and set
X = gx, X ′ = gx

′
, Y = gy, Y ′ = gy

′
, Z1 = gz1 , . . . , Zn = gzn . Set

pk = (g,X,X ′, Y, Y ′, Z1, . . . , Zn, R, s) and sk = (pk , x, x′, y, y′, z1, . . . , zn)

and return (pk , sk).

Enc(pk) On input of public key pk , sample r $← Zp. Set C0 = gr, t = Ts(C0), C1 = (XtX ′)r,
C2 = (Y tY ′)r, and

K = (fgl(Zr1 , R), . . . , fgl(Zrn, R))

Return ((C0, C1, C2),K).

Dec(sk , (C0, C1, C2)) Set t = Ts(C0). If C1 6= Cxt+x
′

0 or C2 6= Cyt+y
′

0 then return ⊥. Otherwise
compute and return

K = (fgl(Cz10 , R), . . . , fgl(Czn0 , R)).

Theorem 3. Let Ts be a target collision-resistant hash function and suppose that the computational
Diffie-Hellman assumption holds in G. Then KEMdh1 is IND-CCA secure.

In the proof we use a trick from [4] to set up the public key and challenge ciphertext in a
way to perform an all-but-one simulation. This enables the simulator to embed the given Diffie-
Hellman challenge, while at the same time being able to decapsulate any ciphertext submitted by
the adversary. We combine this technique with the twinning technique from [8], to be able to check
for consistency of submitted ciphertexts.
Proof. In the following we write (C∗0 , C

∗
1 , C

∗
2 ) to denote the challenge ciphertext with corre-

sponding key K∗0 , denote with K∗1 the random key chosen by the IND-CCA experiment, and set
t∗ = Ts(C∗0 ).

We proceed in a sequence of games. We start with a game where the challenger proceeds like
the standard IND-CCA game (i.e., K∗0 is a real key and K∗1 is a random key), and end up with
a game where both K∗0 and K∗1 are chosen uniformly random. Then we show that all games are
computationally indistinguishable under the computational Diffie-Hellman assumption. Let Wi

denote the event that A outputs b′ such that b′ = b in Game i.

Game 0. This is the standard IND-CCA game. By definition we have

Pr[W0] =
1
2

+ AdvCCAAKEMdh1
(κ)

Game 1. We proceed as in Game 0, except that the challenger returns ⊥ if the adversary queries
to decapsulate a ciphertext (C ′0, C

′
1, C

′
2) with C ′0 = C∗0 . Note that the probability that the adversary

submits a ciphertext such that C ′0 = C∗0 before seeing the challenge ciphertext is bounded by q/p,
where q is the number of chosen-ciphertext queries issued by A. Since q = poly(κ), we have
q/p ≤ negl(κ). Moreover, a ciphertext is inconsistent, thus gets rejected, if C ′0 = C∗0 and C ′1 6= C∗1
or C ′2 6= C∗2 , and is rejected by definition if C ′1 = C∗1 and C ′2 = C∗2 . Therefore

|Pr[W1]− Pr[W0]| ≤ negl(κ).
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Game 2. We define Game 2 like Game 1, except for the following. Now the challenger aborts,
if the adversary asks to decapsulate a ciphertext (C ′0, C

′
1, C

′
2) with C ′0 6= C∗0 and Ts(C ′0) = Ts(C∗0 ).

By the target collision resistance of Ts, we have

|Pr[W2]− Pr[W1]| ≤ negl(κ).

Game 3. We define Game 3 like Game 2, except that we sample K∗0
$← {0, 1}nν uniformly

random. Note that now both K∗0 and K∗1 are chosen uniformly random, thus we have

Pr[W3] =
1
2
.

We claim that
|Pr[W3]− Pr[W2]| ≤ negl(κ)

under the computational Diffie-Hellman assumption. We prove this by a hybrid argument. To
this end, we define a sequence of hybrid games H0, . . . ,Hn, such that H0 equals Game 2 and
Hn equals Game 3. Then we argue that hybrid Hi is indistinguishable from hybrid Hi−1 for i ∈
{1, . . . , n} under the computational Diffie-Hellman assumption. The claim follows, since n = n(κ)
is a polynomial. We define H0 exactly like Game 2. Then, for i from 1 to n, in hybrid Hi we set the
first iν bits of K∗0 to independent random bits, and proceed otherwise exactly like in hybrid Hi−1.
Thus, hybrid Hn proceeds exactly like Game 3.

Let Ei denote the event that A outputs 1 in Hybrid i. Suppose

|Pr[E0]− Pr[En]| = 1/poly0(κ), (6)

that is, the success probability of A in Hybrid 0 is not negligibly close to the success probability
in Hybrid n. Note that then there must exist an index i such that |Pr[Ei−1]− Pr[Ei]| = 1/poly(κ)
(since if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for all i, then we would have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose there exists an algorithm A for which (6) holds. Then we can construct an adversary
B having access to a 2dhp oracle and distinguishing the distributions ∆dh and ∆rand, which by
Lemma 2 is sufficient to prove security under the computational Diffie-Hellman assumption in G.
Adversary B receives a challenge δ = (g,A1, A2, B, L,R) as input, and has access to an oracle
evaluating 2dhp(A1, A2, ·, ·, ·). B guesses an index i ∈ [n], which with probability at least 1/n
corresponds to the index i such that |Pr[Ei−1]− Pr[Ei]| = maxi |Pr[Ei−1]− Pr[Ei]|, and proceeds
as follows.

Set-up of the public key. B picks random integers d, e, f $← Zp, and sets X = Ae1, X ′ = A−et
∗

1 gd,
Y = A2, Y ′ = A−t

∗

2 gf , and Zi = A1, where t∗ = Ts(B). R is used as randomness for fgl(·, R),
the rest of the public key is generated as in Game 0. Note that X,X ′, Y, Y ′, Zi are independent
and uniformly distributed group elements.

Handling decapsulation queries. When A issues a decapsulation query (C0 = gr, C1, C2), B
computes t = Ts(C0), X̃ = (C1/C

d
0 )1/(et−et

∗), and Ỹ = (C2/C
f
0 )1/(t−t

∗). Assuming t 6= t∗ and
that the ciphertext is formed correctly (that is, C0 = gr, C1 = (XtX ′)r, and C2 = (Y tY ′)r)
we have

X̃ = ((XtX ′)r/(gr)d)1/(et−et
∗) = (Aer(t−t

∗)
1 grd/grd)1/(et−et

∗)

= Ar1 = dh(A1, C0),
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and likewise Ỹ = Ar2 = dh(A2, C0). B tests consistency of ciphertexts by querying
2dhp(A1, A2, C0, X̃, Ỹ ), which returns 1 if and only if X̃ = dh(A1, C0) and Ỹ = dh(A2, C0).

If this test is passed, then B sets K∗0 = (K∗0,1, . . . ,K
∗
0,n) as K∗0,i = fgl(X̃, R) and K∗0,j =

fgl(C
zj
0 , R) for j ∈ [n] \ {i}. Since by Game 2 we have t 6= t∗ for all queries issued by A, B

can answer all decapsulation queries correctly.

Set-up of the challenge ciphertext. B sets C∗0 = B, C∗1 = Bd, and C∗2 = Bf . Note that, by
the set-up of X,X ′, Y, Y ′, this is a consistent ciphertext, since we have

(Xt∗X ′)logg B = ((Ae1)t
∗
A−et

∗

1 gd)logg B = Bd

and (similarly) (Y t∗Y ′)logg B = Bf . Then B samples i−1 uniformly random bits K1, . . . ,Ki−1,
sets Ki = L, Kj = fgl((C∗0 )zj , R) for j from i + 1 to n, and outputs the challenge
((C∗0 , C

∗
1 , C

∗
2 ), (K1, . . . ,Kn)).

Now, if δ $← ∆dh then L = fgl(dh(B,Zi), R). Thus A’s view when interacting with B is
identical to Hybrid Hi−1. If δ $← ∆rand, then A’s view is identical to Hybrid Hi. Thus B can use A
to distinguish δ ∈ ∆dh from δ ∈ ∆rand. �

We remark that the same proof strategy can be used to prove that the KEM given in equation (2)
(Section 1) is CCA-secure under the Strong DH assumption.

4 Constrained Chosen-Ciphertext Secure Key Encapsulation

In this section we build a more efficient variant of our first CCA-secure key-encapsulation mecha-
nism, which we cannot prove CCA-secure. However, we can prove that it is secure in the sense of
constrained CCA security, which is sufficient to obtain CCA-secure hybrid encryption. Again the
security is based on the DH assumption.

Let G = Gκ be a group of prime order p and let n = n(κ) be a polynomial. Let KEMdh2 =
(Gen,Enc,Dec) be defined as follows.

Gen(1κ) Choose a random generator g $← G and randomness R $← {0, 1}u for fgl. Choose a random
seed s for the hash function Ts : G→ Zp, choose random integers x, x′, y, y′, z1, . . . , zn

$← Zp,
and set X = gx, X ′ = gx

′
, Y = gy, Y ′ = gy

′
, Z1 = gz1 , . . . , Zn = gzn . Let G : G→ {0, 1}n be

a pseudorandom generator. Set

pk = (g,X,X ′, Y, Y ′, Z1, . . . , Zn, R, s,G) and sk = (pk, x, x′, y, y′, z1, . . . , zn)

and return (pk, sk).

Enc(pk) On input of public key pk, sample r $← Zp. Set C0 = gr, t = Ts(C0), C1 = (XtX ′)r,
KG = G((Y tY ′)r), and

Kdh = (fgl(Zr1 , R), . . . , fgl(Zrn, R))

Set K = KG ⊕Kdh and return ((C0, C1),K).

Dec(sk, (C0, C1)) Set t = Ts(C0). If C1 6= Cxt+x
′

0 then return ⊥. Otherwise compute KG =
G(Cyt+y

′

0 ) and
Kdh = (fgl(Cz10 , R), . . . , fgl(Czn0 , R)),

and return K = KG ⊕Kdh.
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Theorem 4. Let Ts be a target collision-resistant hash function, G be a pseudorandom generator,
and suppose that the computational Diffie-Hellman assumption holds in G. Then KEMdh2 is IND-
CCCA secure.

Since we removed one element from the ciphertext (which was crucial to apply the twinning
technique from the proof of Theorem 3 to check for consistency of ciphertexts) we have to use
different means to prove the constrained chosen-ciphertext security of KEMdh2. Here we exploit
the new set-up of the encapsulated key, which allows us to reject invalid ciphertexts “implicitly.”
Proof. We write (C∗0 , C

∗
1 ) to denote the challenge ciphertext with corresponding key K∗0 , and

denote with K∗1 the random key chosen by the IND-CCCA experiment. We set t∗ = Ts(C∗0 ).
Again we proceed in a sequence of games, starting with a game where K∗0 is a real key and

K∗1 is a random key, and ending up with a game where both K∗0 and K∗1 are chosen uniformly
random. Then we show that all games are computationally indistinguishable under the Diffie-
Hellman assumption. Let Wi denote the event that A outputs b′ such that b′ = b in Game i.

Game 0. This is the standard IND-CCA game. By definition we have

Pr[W0] =
1
2

+ AdvCCCAAKEMdh2
(κ)

Game 1. We proceed as in Game 0, except that the challenger aborts, if the adversary queries
to decapsulate a ciphertext (C ′0, C

′
1) with C ′0 = C∗0 . As in the proof of Theorem 3 we have

|Pr[W1]− Pr[W0]| ≤ negl(κ).

Game 2. We proceed as in Game 1, except that the challenger aborts, if the adversary queries a
ciphertext (C ′0, C

′
1) with Ts(C ′0) = Ts(C∗0 ) and C ′0 6= C∗0 . By the target collision resistance of Ts,

we have
|Pr[W2]− Pr[W1]| ≤ negl(κ).

Game 3. We define Game 3 like Game 2, except that we sample K∗0
$← {0, 1}nν uniformly

random. Note that now both K∗0 and K∗1 are chosen uniformly random, thus we have

Pr[W3] =
1
2
.

We claim that
|Pr[W3]− Pr[W2]| ≤ negl(κ).

under the computational Diffie-Hellman assumption, and prove this by a hybrid argument. We
define a sequence of hybrid games H0, . . . ,Hn, such that H0 equals Game 2 and Hn equals Game 3.
Then we show that Game Hi is indistinguishable from Game Hi−1 for i ∈ {1, . . . , n} under the
computational Diffie-Hellman assumption. Game H0 is defined exactly like Game 2. For i from 1
to n, in Game i we set the first iν bits of K∗0 to independent random bits, and proceed otherwise
exactly like in Game i− 1. Note that Game Hn proceeds exactly like Game 3.

Again we construct an adversary B distinguishing the distributions ∆dh and ∆rand. Adversary
B receives a challenge δ = (g,A1, A2, B, L,R) as input, guesses an index i ∈ [n], and proceeds as
follows.
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Set-up of the public key. B picks random integers d, e, y1, y2, y
′ $← Zp, and sets X = Ae1, X ′ =

A−et
∗

1 gd, Y = gy1Ay21 , Y ′ = Y −t
∗
gy
′
, and Zi = A1. The rest of the public key is generated as

in Game 0. Observe that the group elements X,X ′, Y, Y ′, Zi are independent and uniformly
distributed.

Handling decapsulation queries. When A issues a decapsulation query (C0 = gr, C1), B com-
putes t = Ts(C0), X̃ = (C1/C

d
0 )1/(et−et

∗), Ỹ = Cy10 X̃y2 , and Ỹ ′ = Ỹ −t
∗
Cy
′

0 .

Assuming t 6= t∗ and that the ciphertext is formed correctly (that is, C0 = gr and C1 =
(XtX ′)r) we have X̃ = Ar1 as in the proof of Theorem 3, and

Ỹ = Cy10 X̃y2 = gry1Ary21 = (gy1Ay21 )r = Y r and Ỹ ′ = Y −rt
∗
gry
′

= (Y −t
∗
gy
′
)r = Y ′r,

from which KG = G(Ỹ tỸ ′) = G((Y tY ′)r) can be computed. In this case also Kdh =
(Kdh,1, . . . ,Kdh,n), and thus the key K = KG ⊕ Kdh, can be computed correctly by set-
ting Kdh,i = fgl(X̃, R) and Kj = fgl(C

zj
0 , R) for j ∈ [n] \ {i}. Since we have t 6= t∗ for all

submitted queries due to Game 2, B can decapsulate any valid ciphertext correctly.

We resort to the following lemma to argue that any inconsistent ciphertext is rejected (i.e. B
returns ⊥ on input (C0, C1)) with overwhelming probability. The proof is given below.

Lemma 5. Any ciphertext (C0, C1) satisfying t 6= t∗ and logg C0 6= logXtX′ C1 is rejected
with probability 1− negl(κ).

Set-up of the challenge ciphertext. B sets C∗0 = B, C∗1 = Bd, and KG = G(By′). Note that,
by the set-up of X,X ′, Y , and Y ′, this is a consistent ciphertext, since

(Xt∗X ′)logg B = ((Ae1)t
∗
A−et

∗

1 gd)logB = Bd and (Y t∗Y ′)logg B = By′ .

B samples i−1 uniformly random bits Kdh,1, . . . ,Kdh,i−1, sets Kdh,i = L, and Kdh.j = fgl(C
zj
0 )

for j from i + 1 to n. Then it sets Kdh = (Kdh,1, . . . ,Kdh,n) and outputs the challenge
((C∗0 , C

∗
1 ),KG ⊕Kdh).

If δ $← ∆dh then we have L = fgl(dh(C∗0 , Zi), R). Thus A’s view when interacting with B is identical
to Game i−1. If δ $← ∆rand, then A’s view is identical to Game i. Thus B can use A to distinguish
δ ∈ ∆dh from δ ∈ ∆rand.

It remains to prove Lemma 5. We show that for one inconsistent ciphertext the key computed
by B looks like a uniform and independent bit string in the view of the adversary. But for a
random independent key K the probability that pred i(K) = 1, which means that the ciphertext
is not rejected, is negligible by assumption. This makes it possible to show in a hybrid argument
that any inconsistent ciphertext is rejected.

We argue that KG = G(Ỹ tỸ ′) part of the key is computationally indistinguishable from uni-
formly random. To this end, we show that Ỹ (and therefore the input Ỹ tỸ ′ to G) is independent
and uniformly random. The claim follows by the security property of G.

So, let us consider an inconsistent ciphertext (C0, C1) submitted by A. Observe that logg C0 6=
logXtX′ C1 implies logg C0 6= logA X̃. Let r0 = logg C0 and r1 = logA X̃ and µ = logg Ỹ , and
consider the system of equations

logg Y = y1 + y2 logg A and µ = r0y1 + r1y2 logg A.

Since r0 6= r1, the system of equations has a unique solution (y1, y2) ∈ Z2
p for each µ ∈ Zp. Thus

each group element Ỹ = gµ is equally likely in the view of the adversary (given a single inconsistent
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ciphertext). Since KG is indistinguishable from random, we have that the key K computed by B is
randomly distributed, and therefore Pr[pred i(K) = 1] ≤ negl(κ). �

5 Reducing the size of the public key

Let (G,GT ) be a bilinear group that is equiped with an efficiently computable pairing ê : G×G→
GT . (See, e.g., [6, 4].) In this section we show that by instantiating our scheme from Equation (2)
(Section 1) in bilinear groups we are able to reduce the size of the public-key considerably.

5.1 Bilinear Diffie-Hellman Assumption

Let

bdh(A,B,C) := D, where A = ga, B = gb, C = gc, and D = ê(g, g)abc. (7)

The problem of computing bdh(A,B,C) given random A,B,C ∈ G is the computational Bilinear
Diffie-Hellman (DH) problem. The BDH assumption [6] asserts that this problem is hard, that is,
Pr[A(A,B,C) = bdh(A,B,C)] ≤ negl(κ) for all probabilistic polynomial-time algorithms A.

In the bilinear setting, the Goldreich-Levin theorem [13] gives us the following lemma for a
fgl : GT × {0, 1}u → {0, 1}ν .

Lemma 6. Let G = Gκ be a prime-order group generated by g equipped with a pairing ê : G×G→
GT . Let A,B,C $← G be random group elements, R $← {0, 1}u, and let K = fgl(bdh(A,B,C), R).
Let Uν

$← {0, 1}ν be uniformly random. Suppose there exists a probabilistic polynomial-time algo-
rithm B distinguishing the distributions

∆bdh = (g,A,B,C,K,R) and ∆rand = (g,A,B,C, Uν , R)

with non-negligible advantage. Then there exists a probabilistic polynomial-time algorithm comput-
ing bdh(A,B,C) on input (A,B,C) with non-negligible success probability, hence breaking the BDH
assumption.

5.2 Public-key encryption with public keys of size O(1)

Our first idea is a variant where the elements sys = (g,X,X ′, Z1, . . . , Zn) ∈ Gn+3 can be put into
the system parameters (that can be shared among many users) and the public-key to contain only
one single group element Y . Our encryption scheme can be viewed as a BDH-variant of a Decisional
BDH scheme from [7, 20]. It is defined as follows.

Gen(1κ) Given the system parameters sys choose a random integer y $← Zp, and set Y = gy. Set

pk = Y and sk = y

and return (pk , sk).

Enc(pk) On input of public key pk , sample r $← Zp. Set C0 = gr, t = T(C0), C1 = (XtX ′)r, and
K = (K1, . . . ,Kn), where

Ki = fgl(ê(Y r, Zi), R), for i ∈ [1, n].

Return ((C0, C1),K).
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Dec(sk , (C0, C1)) If ê(C0, X
tX ′) 6= ê(g, C1) then return ⊥. Otherwise, compute, for each i ∈ [1, n],

Ki = fgl(ê(Cy0 , Zi), R)

and return K = (K1, . . . ,Kn) ∈ {0, 1}nν .

Note that the consistency of the ciphertext is publicly verifiable, i.e., anyone could verify a
ciphertext being consistent or not.

Theorem 7. Let T be a target collision-resistant hash function and suppose that the computational
Bilinear Diffie-Hellman assumption holds in G. Then the above scheme is an IND-CCA secure
KEM.

Proof. We proceed in a sequence of games similarly to Theorem 3.
As before, we write (C∗0 , C

∗
1 ) to denote the challenge ciphertext with corresponding key K∗0 ,

denote with K∗1 the random key chosen by the IND-CCA experiment, and set t∗ = Ts(C∗0 ).
We start with a game where the challenger proceeds like the standard IND-CCA game (i.e., K∗0

is a real key and K∗1 is a random key), and end up with a game where both K∗0 and K∗1 are chosen
uniformly random. Then we show that all games are computationally indistinguishable under the
computational Bilinear Diffie-Hellman assumption. Let Wi denote the event that A outputs b′ such
that b′ = b in Game i.

Game 0. This is the standard IND-CCA game. By definition we have

Pr[W0] =
1
2

+ AdvCCAAKEMbdh1
(κ)

Game 1. We proceed as in Game 0, except that the challenger aborts, if the adversary queries
to decapsulate a ciphertext (C ′0, C

′
1) with C ′0 = C∗0 . Note that the probability that the adversary

submits a ciphertext such that C ′0 = C∗0 before seeing the challenge ciphertext is bounded by q/p,
where q is the number of chosen-ciphertext queries issued by A. Since q = poly(κ), we have
q/p ≤ negl(κ). Moreover, a ciphertext is inconsistent, thus gets rejected, if C ′0 = C∗0 and C ′1 6= C∗1 ,
and is rejected by definition if C ′0 = C∗0 and C ′1 = C∗1 . Therefore

|Pr[W1]− Pr[W0]| ≤ negl(κ).

Game 2. We define Game 2 like Game 1, except for the following. Now the challenger aborts, if
the adversary asks to decapsulate a ciphertext (C ′0, C

′
1) with C ′0 6= C∗0 and Ts(C ′0) = Ts(C∗0 ). By

the target collision resistance of Ts, we have

|Pr[W2]− Pr[W1]| ≤ negl(κ).

Game 3. We define Game 3 like Game 2, except that we sample K∗0
$← {0, 1}nν uniformly

random. Note that now both K∗0 and K∗1 are chosen uniformly random, thus we have

Pr[W3] =
1
2
.

We claim that
|Pr[W3]− Pr[W2]| ≤ negl(κ)
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under the computational Bilinear Diffie-Hellman assumption. We prove this by a hybrid argument.
To this end, we define a sequence of hybrid games H0, . . . ,Hn, such that H0 equals Game 2 and
Hn equals Game 3. Then we argue that hybrid Hi is indistinguishable from hybrid Hi−1 for
i ∈ {1, . . . , n} under the computational Bilinear Diffie-Hellman assumption. The claim follows,
since n = n(κ) is a polynomial. We define H0 exactly like Game 2. Then, for i from 1 to n, in
hybrid Hi we set the first iν bits of K∗0 to independent random bits, and proceed otherwise exactly
like in hybrid Hi−1. Thus, hybrid Hn proceeds exactly like Game 3.

Let Ei denote the event that A outputs 1 in Hybrid i. Suppose that

|Pr[E0]− Pr[En]| = 1/poly0(κ), (8)

that is, the success probability of A in Hybrid 0 is not negligibly close to the success probability
in Hybrid n. Note that then there must exist an index i such that |Pr[Ei−1]− Pr[Ei]| = 1/poly(κ)
(since if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for all i, then we would have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose that there exists an algorithm A for which (8) holds. Then we can construct an
adversary B distinguishing the distributions ∆bdh and ∆rand, which by Lemma 6 is sufficient to
prove security under the computational Bilinear Diffie-Hellman assumption in G. Adversary B
receives a challenge δ = (g,A,B,C, L,R) as input, guesses an index i ∈ [n], which with probability
at least 1/n corresponds to the index i such that |Pr[Ei−1]− Pr[Ei]| = maxi |Pr[Ei−1]− Pr[Ei]|,
and proceeds as follows:

Set-up of the system parameters. B picks random integers d, e, f $← Zp, and sets X = Ae,
X ′ = A−et

∗
gd, and Zi = A, where t∗ = T(C). The rest of the public key is generated as in

Game 0. Note that C,X,X ′, Zi are independent and uniformly distributed group elements.

Set-up of the public key. B sets Y = B.

Handling decapsulation queries. When A issues a decapsulation query (C0 = gr, C1), B com-
putes t = Ts(C0) and tests the consistency of the ciphertext by verifying

ê(C0, X
tX ′) ?= ê(g, C1).

If the equality holds, then B sets K = (K1, . . . ,Kn) as Kj = fgl(ê(Czj0 , Y ), R) for j ∈ [n]\{i}
and Ki = fgl(ê(X̃, Y ), R), where X̃ := (C1/C

d
0 )1/(et−et

∗). Note that

X̃ = ((XtX ′)r/(gr)d)1/(et−et
∗) = (Ar(et−et

∗)grd/grd)1/(et−et
∗)

= Ar = dh(A,C0).

Since by Game 2 we have t 6= t∗, B can answer all decapsulation queries correctly for all
queries issued by A.

Set-up of the challenge ciphertext. B sets C∗0 = C and C∗1 = Cd. Note that, by the set-up of
X,X ′, this is a consistent ciphertext, since we have

(Xt∗X ′)logg C = ((Ae1)t
∗
A−et

∗

1 gd)logg C = Cd

Then B samples i − 1 uniformly random groups of ν bits K∗1 , . . . ,K
∗
i−1, sets K∗i = L, K∗j =

fgl(ê(C∗0 , Y )zj , R) for j from i+ 1 to n, and outputs the challenge ((C∗0 , C
∗
1 ), (K∗1 , . . . ,K

∗
n)).

Now, if δ $← ∆bdh then we have L = fgl(bdh(A,B,C), R). Thus A’s view when interacting with
B is identical to Hybrid Hi−1. If δ $← ∆rand, then A’s view is identical to Hybrid Hi. Thus B can
use A to distinguish δ ∈ ∆bdh from δ ∈ ∆rand. �
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5.3 Public-key encryption with public-key of size O(
√

n)

Our second idea reduces the size of the public-key from ≈ n to ≈ 2
√
n group elements (and no

systems parameters). Assume n is a square and set η :=
√
n. The public key contains elements

Z1, Z
′
1, . . . , Zη, Z

′
η ∈ G which implicitly define η2 = n distinct elements Zi,j = ê(Zi, Z ′j) in the

target group GT . In our new scheme these elements can be used in place of Z1, . . . , Zn.

Gen(1κ) Choose a random generator g $← G and randomness R $← {0, 1}u for fgl. Choose a random
seed s for the hash function Ts, choose random integers x, x′, z1, z′1, . . . , zη, z

′
η

$← Zp, and set
X = gx, X ′ = gx

′
, Z1 = gz1 , Z ′1 = gz

′
1 , ... , Zη = gzη , Z ′η = gz

′
η . Set

pk = (g,X,X ′, Z1, Z
′
1, . . . , Zη, Z

′
η, R, s) and sk = (pk , x, x′, z1, z′1, . . . , zη, z

′
η)

and return (pk , sk).

Enc(pk) On input of public key pk , sample r $← Zp. Set C0 = gr, t = Ts(C0), C1 = (XtX ′)r, and
K = (K1,1, . . . ,Kη,η), where

Ki,j = fgl(ê(Zri , Z
′
j), R), for i, j ∈ [1, η].

Return ((C0, C1),K).

Dec(sk , (C0, C1)) First reject if ê(C0, X
tX ′) 6= ê(g, C1). Otherwise, for each i, j ∈ [1, η] compute

Ki,j = fgl(ê(Czi0 , Z
′
j), R).

and return K = (K1,1, . . . ,Kη,η) ∈ {0, 1}nν .

Like in the previous scheme, the consistency of the ciphertext is publicly verifiable. Fur-
thermore, decryption can alternatively check consistency of the ciphertext by testing if
Cxt+x

′

0 = C1.

Theorem 8. Let Ts be a target collision-resistant hash function and suppose that the computational
Bilinear Diffie-Hellman assumption holds in G. Then the above scheme is an IND-CCA secure
KEM.

Proof. The proofs goes analogously to that of Theorem 7 with Game 3 defining hybrid games H1,0,
H1,1, H1,2, . . . , H1,η, H2,1, H2,2, . . . , H2,η, H3,1, . . . , Hη,η (for convenience, we denote with H−i,j
the game preceding Hi,j in this ordering, e.g. H−3,1 = H2,η). Assuming that each two consecutive
hybrid games are indistinguishable by A, Game 2 (which is the same as H1,0) is indistinguishable
from Hη,η (which is the same as Game 3). But when both K∗0 and K∗1 are chosen uniformly random
then we have

Pr[W3] =
1
2
.

So all we have to show is that indeed the hybrid games are indistinguishable.
Suppose that there exists an algorithm A for which

|Pr[Eη,η]− Pr[E1,0]| = 1/poly0(κ), (9)

where Ei,j denotes the event that A outputs 1 in Hi,j . Then there are i∗, j∗ ∈ {1 . . . η} such that
Pr[Ei∗,j∗ ]− Pr[E−i∗,j∗ ] = 1/poly(κ), where E−i,j denotes the event that A outputs 1 in H−i,j . (If no
such indices exist and the difference is negligible for all (i, j), then |Pr[Eη,η]− Pr[E1,0]| = negl(κ).)
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Then we can construct an adversary B distinguishing the distributions ∆bdh and ∆rand, which
by Lemma 6 is sufficient to prove security under the computational Bilinear Diffie-Hellman as-
sumption in G. Adversary B receives a challenge δ = (g,A,B,C, L,R) as input, guesses in-
dices i, j ∈ [η], which with probability at least 1/η2 correspond to the indices i∗, j∗ such that∣∣∣Pr[E−i∗,j∗ ]− Pr[Ei∗,j∗ ]

∣∣∣ = maxi,j
∣∣∣Pr[E−i,j ]− Pr[Ei,j ]

∣∣∣, and proceeds as follows:

Set-up of the public-key. B picks random integers d, e, f $← Zp, and sets X = Ae, X ′ = A−et
∗
gd,

Zi∗ = A, and Z ′j∗ = B, where t∗ = Ts(C). The rest of the public key is generated as in
scheme definition. Note that C,X,X ′, Zi∗ , Z ′j∗ are independent and uniformly distributed
group elements.

Handling decapsulation queries. When A issues a decapsulation query (C0 = gr, C1), B com-
putes t = Ts(C0) and tests the consistency of the ciphertext by verifying

ê(C0, X
tX ′) ?= ê(g, C1).

If the equality holds, then B sets K = (K1,1, . . . ,Kη,η) as:

• Ki,j = fgl(ê(C0, Z
′
j)
zi , R) for i ∈ [η] \ {i∗} and j ∈ [η],

• Ki∗,j = fgl(ê(C0, Zi∗)z
′
j , R) for j ∈ [η] \ {j∗}, and

• Ki∗,j∗ = fgl(ê(X̃, B), R), where X̃ := (C1/C
d
0 )1/(et−et

∗).

Note that

X̃ = ((XtX ′)r/(gr)d)1/(et−et
∗) = (Ar(et−et

∗)grd/grd)1/(et−et
∗)

= Ar = dh(A,C0).

Since by Game 2 we have t 6= t∗, B can answer all decapsulation queries correctly for all
queries issued by A.

Set-up of the challenge ciphertext. B sets C∗0 = C and C∗1 = Cd. Note that, by the set-up of
X,X ′, this is a consistent ciphertext, since we have

(Xt∗X ′)logg C = ((Ae1)t
∗
A−et

∗

1 gd)logg C = Cd

Then B sets the key K∗ = (K∗1,1,K
∗
1,2, . . . ,K

∗
i∗,j∗ , . . . ,K

∗
η,η) accordingly:

• the bits before K∗i∗,j∗ uniformly at random;
• K∗i∗,j∗ = L;
• and K∗i,j = fgl(bdh(C,Zi, Z ′j), R) for the remaining ν-bit blocks K∗i,j , i.e. i > i∗ or

(i = i∗ ∧ j > j∗), which is possible because B knows zi or z′j ;

and outputs the challenge ((C∗0 , C
∗
1 ),K∗).

Now, if δ $← ∆bdh then we have L = fgl(bdh(A,B,C), R). Thus A’s view when interacting with
B is identical to Hybrid H−i∗,j∗ . If δ $← ∆rand, then A’s view is identical to Hybrid Hi,j . Thus B can
use A to distinguish δ ∈ ∆bdh from δ ∈ ∆rand. �

We remark that the above construction also extends to a Boneh-Boyen-style [4] identity-based
encryption scheme selective-identity secure under the computational Bilinear Diffie-Hellman as-
sumption. The IBE scheme has the same parameters as the above scheme, a user secret key for an
identity id contains 2n group elements of the form (gziz

′
j · (X idX ′)si,j , gsi,j ) ∈ G2.
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A Definitions

A.1 Target Collision Resistant Hashing

A target collision resistant hash function is a family of keyed hash functions Ts : G→ Zp for each
k-bit key s. It is assumed to be target collision resistant (TCR) [10], which is captured by defining
the advantage of an adversary B as

Pr[Ts(c∗) = Ts(c) ∧ c 6= c∗ : s← {0, 1}k; c∗ ← G; c← B(s, c∗)].

Note that target collision resistance is a weaker requirement than collision-resistance, so that,
in particular, any practical collision-resistant function can be used. Commonly [10, 22] a TCR
function is implemented using a dedicated cryptographic hash function like MD5 or SHA, which
we assume to be target collision resistant. Since |G| = |Zp| = p we can alternatively also use a fixed
(non-keyed) bijective encoding function T′ : G→ Zp.
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A.2 Pseudorandom Generator

A pseudorandom generator is a function whose output is indistinguishable from uniformly random,
given that its input is chosen uniformly random. More formally, for a set G consider a function
G : G→ {0, 1}n. We say that G is a secure pseudorandom generator, if∣∣∣Pr[A(G(x)) = 1 | x $← G]− Pr[A(y) = 1 | y $← {0, 1}n]

∣∣∣ ≤ negl(κ)

for any probabilistic polynomial-time (in κ) algorithm A.
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