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Abstract

In this paper, we introduce the intermediate hashed Diffie-Hellman (IHDH) assumption which
is weaker than the hashed DH (HDH) assumption (and thus the decisional DH assumption), and
is stronger than the computational DH assumption. We then present two public key encryption
schemes with short ciphertexts which are both chosen-ciphertext secure under this assumption. The
short-message scheme has smaller size of ciphertexts than Kurosawa-Desmedt (KD) scheme, and the
long-message scheme is a KD-size scheme (with arbitrary plaintext length) which is based on a weaker
assumption than the HDH assumption.
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1 Introduction

1.1 Background

The design of public-key encryption (PKE) schemes without random oracles is a central subject in modern
cryptography. It should satisfy both high security and high efficiency at the same time. High security
means chosen ciphertext (CCA) security [36, 21] under a reasonable assumption which is as weak as
possible.

The decisional Diffie-Hellman (DDH) assumption, the hashed Diffie-Hellman (HDH) assumption and
the computational Diffie-Hellman (CDH) assumption are well known such assumptions, where the HDH
assumption is weaker than the DDH assumption and stronger than the CDH assumption. That is, DDH
< HDH < CDH, where “X < Y ” denotes that assumption Y always holds if assumption X holds.

Cramer and Shoup [19] showed the first practical CCA-secure encryption scheme under the DDH
assumption. They extended it to a hybrid encryption scheme in which a message can be any bit string
of arbitrary length [38, 20]. We call their hybrid encryption scheme CS scheme. They also formalized a
notion of KEM-DEM framework to prove the security of hybrid encryption schemes.

Kurosawa and Desmedt next constructed a more efficient scheme (which we call KD scheme) than
CS scheme under the DDH assumption. This scheme violated a then commonly held belief such that
both the KEM part and the DEM part must be CCA-secure. (Indeed, the KEM part of KD scheme is
not CCA-secure as shown by [24].)

CS scheme and KD scheme are often used as reference schemes to measure the efficiency of other hybrid
encryption schemes. For evaluating efficiency, ciphertext size is one of the most important evaluation
items, and in this paper, we mainly discuss PKE schemes with short ciphertext length. In what follows,
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CS-size scheme denotes a scheme whose size of ciphertexts is the same as that of CS scheme (i.e. three
group elements of ciphertext overhead), and KD-size scheme denotes a scheme whose size of ciphertexts
is the same as that of KD scheme (i.e. two group elements and one MAC of ciphertext overhead).

In [18], Cash, Kiltz and Shoup demonstrated a CCA-secure encryption scheme under the CDH as-
sumption by utilizing the hardcore bits. However, the size of ciphertexts is very large. The first CS-size
scheme under the CDH assumption was given by Hanaoka and Kurosawa [23]. KD-size schemes under the
HDH assumption were shown by Hofheinz and Kiltz [25] and Hanaoka and Kurosawa [23] independently.

Abe, Gennaro and Kurosawa [2] introduced the tag-KEM paradigm. Hofheinz and Kiltz [25] relaxed
the notion of CCA-security of KEM to constrained CCA (CCCA) security. KD scheme can be explained
in each of these frameworks.

1.2 Our Contribution

In this paper, we first introduce a new intractability assumption which we call the intermediate hashed
Diffie-Hellman (IHDH) assumption. The IHDH assumption states that it is hard to compute gαβ from
g, gα, gβ and h(gαβ), where g is a generator of an Abelian group G with prime order p, and h is a function
whose output length is 1

2 log2 p bits. We then show that the IHDH assumption is weaker than the HDH
assumption, and is stronger than the CDH assumption. That is, DDH < HDH < IHDH < CDH.

Next we present two compact encryption schemes, a short-message scheme and a long-message scheme,
which are both CCA-secure under the IHDH assumption.

• The short-message scheme has smaller size ciphertexts than KD scheme. It can encrypt only short
messages with logarithmic length in the security parameter (say at most 7 ∼ 50 bits long), but still
be useful to encrypt passwords, for example. This is the first scheme which simultaneously yields
both shorter ciphertexts than that of KD schemes and CCA-security from a weaker assumption
than the HDH assumption.

• The long-message scheme can encrypt any bit string of arbitrary length. It is a KD-size scheme
which is based on a weaker assumption than the HDH assumption.

We stress that in this paper, we mainly discuss ciphertext length, and computational cost is not taken
into account for efficiency evaluation. In fact, our proposed schemes are less efficient than KD scheme in
terms of computational cost.

As by-products, two generic techniques for designing efficient PKE schemes can also be derived from
our proposed schemes. These techniques are as follows: (1)A method for constructing PKE schemes from
any key encapsulation mechanism (KEM) without using DEMs, (2)A computationally cost-free conversion
from any CCCA-secure KEM [25] into a CCA-secure KEM.

1.3 Related Works

In the literatures, methods for constructing practical CCA-secure PKE schemes with better efficiency
and/or stronger security have been actively studied. Here, we briefly review previous results.

As mentioned above, the first practical CCA-secure PKE was proposed by Cramer and Shoup [19, 20],
and this scheme was further improved by Kurosawa and Desmedt [30]. Hofheinz and Kiltz [25], and
Hanaoka and Kurosawa [23] independently proposed variants of KD scheme whose security can be proven
under the HDH assumption.

After the proposal of KD scheme, there are mainly two directions for improving it: (1) One direction
is to improve efficiency by using stronger assumptions, e.g. [14, 29], and (2) the other is to relax the
underlying assumption, e.g. [37, 25, 18, 23].
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Figure 1: Relation among our proposed and existing schemes, where |KD|, > |KD|, and < |KD| denote ciphertext
overhead of KD scheme, larger ciphertext overhead than that of KD scheme, and smaller ciphertext overhead than that
of KD scheme, respectively, and > HDH and < HDH are weaker and stronger assumptions than the HDH assumption,
respectively.

For the first direction (i.e. direction (1)), Boyen, Mei, and Waters [14] proposed more efficient PKE
schemes from the bilinear DH (BDH) assumption [9, 10, 16], and this scheme is constructed by using the
Canetti-Halevi-Katz transform [17] along with specific algebraic properties of certain efficient identity-
based encryption schemes [7, 39]. In [29], Kiltz presented an efficient PKE scheme whose ciphertext length
is the same as that of [14], and its CCA-security is proven under the Gap HDH (GHDH) assumption.
[1, 31, 13, 18, 3] yield signicantly shorther ciphertexts than the above mentioned schemes. However, these
schemes require random oracles which do not exist in the real world [15].

For the second direction (i.e. direction (2)), Shacham [37] and Hofheinz and Kiltz [25] independently
proposed CCA-secure PKE scheme from the n-linear assumption [8], where DDH = 1-linear < 2-linear <
· · · < CDH. However, the size of ciphertexts is about n times larger than that of KD scheme. Under
the CDH assumption, Cash, Kiltz, and Shoup [18] proposed a CCA-secure PKE scheme. However, its
ciphertext length is also significantly larger than that of CS scheme (and thus KD scheme). Hanaoka
and Kurosawa presented another CCA-secure PKE scheme from the CDH assumption whose ciphertext
length is the same as that of CS scheme. In [26] and [27], Hofheinz and Kiltz proposed a CCA-secure PKE
scheme from the factoring assumption and the higher order residuosity assumption which are considerably
weak assumptions. However, their ciphertext length are longer than that of KD scheme (over elliptic
curves), and it is not known whether factoring is harder than Diffie-Hellman problems.

In summary, we see that all existing schemes are either less secure or less efficient in terms of ciphertext
length than the (hashed variants of) KD scheme. Fig. 1 depicts relations among these schemes and our
proposed schemes.

2 Preliminaries

2.1 PKE and CCA Security

In this subsection, we review definitions of the model and CCA-security of PKE schemes. A PKE scheme
consists of the following three algorithms: Setup(1k) takes as input the security parameter 1k and
outputs a decryption key dk and a public key PK. Encrypt(PK,M) takes as input a public key PK
and a plaintext M ∈M, and outputs a ciphertext C. Decrypt(dk,C, PK) takes as input the private key
dk, a ciphertext C, and the public key PK, and outputs M . We require that if (dk, PK) R← Setup(1k)
and C R← Encrypt(PK,M) then Decrypt(dk,C, PK) = M . CCA-security of a PKE scheme is defined
using the following game between an attack algorithm A and a challenger. Both the challenger and A are
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given 1k as input.

Setup. The challenger runs Setup(1k) to obtain a decryption key dk and a public key PK, and gives
PK to A.

Query I. Algorithm A adaptively issues decryption queries C1, . . . , Cm. For query Ci, the challenger
responds with Decrypt(dk,Ci, PK).

Challenge. At some point, A submits a pair of plaintexts (M0,M1) ∈ M2. Then, the challenger
picks a random b ∈ {0, 1}, runs algorithm Encrypt to obtain the challenge ciphertext C? R←
Encrypt(PK,Mb), and give C? to A.

Query II. Algorithm A continues to adaptively issue decryption queries Cm+1, . . . , CqD . For query
Ci(6= C?), the challenger responds as Query I.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Let AdvPKEA denote the probability that A wins the game.

Definition 1. We say that a PKE scheme is (τ, ε, qD) CCA-secure if for all τ -time algorithms A who make
a total of qD decryption queries, we have that |AdvPKEA−1/2| < ε. If a PKE scheme is (τ(k), ε(k), qD(k))
CCA-secure for all polynomials τ(k) and qD(k) and some negligible function ε(k), we simply say that it
is CCA-secure.

2.2 KEM and (C)CCA Security

Here, we further give a review on definitions of the model and (C)CCA-security of KEMs. A KEM
consists of the following three algorithms: Setup(1k) takes as input the security parameter 1k and
outputs a decryption key dk and a public key PK. Encrypt(PK) takes as input a public key PK and
outputs a pair (ψ,K) where ψ is a ciphertext and K ∈ K is a data encryption key. Decrypt(dk, ψ, PK)
takes as input the private key dk, a ciphertext ψ, and the public key PK, and outputs K ∈ K which will
be used for decrypting the DEM part of hybrid encryption. We require that if (dk, PK) R← Setup(1k)
and (ψ,K) R← Encrypt(PK) then Decrypt(dk, ψ, PK) = K. In [25], Hofheinz and Kiltz proposed the
notion of CCCA-security for KEMs, and showed that it is generally possible to construct a CCA-secure
PKE scheme from any CCCA-secure KEM if authenticated encryption [5] is used as DEM. CCCA-security
for KEM is defined as follows: Both the challenger and A are given 1k as input.

Setup. The challenger runs Setup(1k) to obtain a decryption key dk and a public key PK. The
challenger also runs algorithm Encrypt to obtain (ψ?,K?) R← Encrypt(PK) where K? ∈ K.
Next, the challenger picks a random b ∈ {0, 1}. It sets K0 = K? and picks a random K1 in K. It
then gives the public key PK and the challenge ciphertext (ψ?,Kb) to algorithm A.

Query. Algorithm A adaptively issues decryption queries (ψ1, pred1(·)), ..., (ψqD , predqD(·)). For query
(ψi(6= ψ?), predi(·)), the challenger responds with K(or “⊥”)= Decrypt(dk, ψi, PK) if predi(K) =
1. It returns “⊥” otherwise.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Here, function predi : K → {0, 1} is called predicate, and according to pred1, ..., predqD , uncertainty
uncertA is estimated as uncertA = maxE

1
qD

∑
1≤i≤qD

PrK∈K[predi(K) = 1 when A runs with E], where
E is an environment which interacts with A. See also [25] for some remarks on the definition. Let
AdvKEMA denote the probability that A wins the game.
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Definition 2. We say that a KEM is (τ, ε, qD, µ)-CCCA-secure if for all τ -time algorithms A who
make a total of qD decryption queries with uncertA ≤ µ, we have that |AdvKEMA − 1/2| < ε. Es-
pecially, we say that a KEM is (τ, ε, qD)-CCA-secure if it is (τ, ε, qD, 1)-CCCA-secure. If a KEM is
(τ(k), ε(k), qD(k)(, µ))-(C)CCA-secure for all polynomials τ(k) and qD(k) and some negligible function
ε(k) (and µ > 0), we simply say that it is (C)CCA-secure .

As mentioned above, a hybrid encryption scheme from a CCCA-secure KEM and an authenticated
symmetric key encryption (AE) scheme [5] becomes a CCA-secure PKE scheme [25], and that from a
CCA-secure KEM and a CCA-secure data encapsulation mechanism (DEM) becomes also a CCA-secure
PKE scheme [38]. It is known that an AE scheme yields a (at least) k-bit longer ciphertext than a
plaintext, for the security parameter k, while ciphertext length of a CCA-secure DEM can be determined
to be the same as the plaintext length if we use a strong pseudorandom permutation [32, 34] as a DEM.

2.3 Conventional Diffie-Hellman Assumptions

Let G be a multiplicative group with prime order p. Then, the CDH problem on G is stated as follows. Let
A be an algorithm, and we say that A has advantage ε in solving the CDH problem on G if Pr[A(g, gα, gβ) =
gαβ ] ≥ ε, where the probability is over the random choice of generators g in G, the random choice of α
and β in Zp, and the random bits consumed by A.

Definition 3. We say that the (τ, ε)-CDH assumption holds in G if no τ -time algorithm has advantage
ε in solving the CDH problem on G. If the (τ(k), ε(k))-CDH assumption holds for all polynomial τ(k)
and some negligible function ε(k), we simply say that the CDH assumption holds.

The hashed Diffie-Hellman (HDH) problem on G and function H : G→ S is stated as follows. Let A
be an algorithm, and we say that A has advantage ε in solving the HDH problem on G and H if

1/2 · |Pr[A(g, gα, gβ ,H(gαβ)) = 0]− Pr[A(g, gα, gβ, T ) = 0]| ≥ ε,

where the probability is over the random choice of generators g in G, the random choice of α and β in
Zp, the random choice of T ∈ S, and the random bits consumed by A.

Definition 4. We say that the (τ, ε)-HDH assumption holds in G and H if no τ -time algorithm has
advantage ε in solving the HDH problem on G and h. Especially, we say that the (τ, ε)-DDH assumption
holds in G if (τ, ε)-HDH assumption holds in G andH, whereH is the identity function. If the (τ(k), ε(k))-
HDH (resp. DDH) assumption holds for all polynomial τ(k) and some negligible function ε(k), we simply
say that the HDH (resp. DDH) assumption holds.

It is known that the DDH assumption implies the HDH assumption if H is a key derivation function
(KDF) [38], but not vice versa.

2.4 Other Tools

Target Collision Resistant Hash Functions. Let TCR : X → Y be a hash function, A be an
algorithm, and A’s advantage be Pr[TCR(x′) = TCR(x) ∈ Y ∧ x′ 6= x| x R← X ; x′ R← A(x)], where the
probability is over the random choice of x in G and the random bits consumed by A.

Definition 5. We say that TCR is a (τ, ε)-target collision resistant hash function (TCRHF) if no τ -time
algorithm has advantage ε. If it is a (τ(k), ε(k))-TCRHF for all polynomial τ(k) and some negligible
function ε(k), we simply say that it is a TCRHF.
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Key Derivation Functions. Let H : X → Y be a function, A be an algorithm, and A’s advantage be
1/2 · |Pr[A(H(x)) = 0] − Pr[A(T ) = 0]|, where the probability is over the random choice of x in X and
the random choice of T ∈ Y, and the random bits consumed by A.

Definition 6. We say that H is a (τ, ε)-key derivation function (KDF) if no τ -time algorithm has
advantage ε. If it is a (τ(k), ε(k))-KDF for all polynomial τ(k) and some negligible function ε(k), we
simply say that it is a KDF.

3 New Assumptions between CDH and DDH

3.1 IDH Assumption and IHDH Assumption

Let G be a cyclic group of prime order p, and let g be a generator. It is known that the discrete
log problem is solved in time O(

√
p) by using Pollard rho algorithm. Hence we say that G has k-bit

security when
√
p is k-bit long. In what follows, assume that G has k-bit security, that is, p is 2k-bit

long. The relationship between KD scheme and Pollard rho algorithm is also discussed at Appendix E.
Now we introduce the intermediate DH assumption (IDH assumption) and the intermediate hashed DH
assumption (IHDH assumption). Each assumption states that it is hard to compute gαβ from g, gα, gβ

and K, where K is some k-bit information of gαβ . In the IDH assumption, K is the k most significant
bits of gαβ . In the IHDH assumption, K = h(gαβ) for some hash function h : G → {0, 1}k. The IHDH
assumption is defined more formally as follows. Let A be an algorithm, and we say that A has advantage
ε in solving the IHDH problem on G and h : G→ {0, 1}k if

Pr[A(g, gα, gβ, h(gαβ)) = gαβ ] ≥ ε

where the probability is over the random choice of generator g in G, the random choice of α and β in Zp,
and the random bits consumed by A.

Definition 7. We say that the (τ, ε)-IHDH assumption holds in G and h if no τ -time algorithm has
advantage ε in solving the IHDH problem on G and h. If the (τ(k), ε(k))-IHDH assumption holds for all
polynomial τ(k) and some negligible function ε(k), we simply say that the IHDH assumption holds.

It is easy to prove that for k-bit security, the IHDH assumption on G and h : G→ {0, 1}k is implied
by the HDH assumption in G and H : G → {0, 1}2k (and thus the DDH assumption if H is a KDF) if
h(x) maps to k most significant bits of H(x) for all x ∈ G. For simplicity, throughout this paper k-msb(x)
and k-lsb(x) denote k most and least significant bits of x, respectively. We note that for typical cases H
does not need to yield a larger range than its domain since an element of G is already 2k-bit long for the
same security level. The IDH assumption is directly implied by the DDH assumption. More formally,
these implications are addressed as follows:

Theorem 1. If the (τ, εhdh)-HDH assumption on G and H : G → {0, 1}2k holds, then the (τ, 2εhdh +
1/2−k)-IHDH assumption on G and h also holds, where h(x) = k-msb(H(x)) for all x ∈ G.

Proof. For proving the theorem, by using an algorithm A which for given (g, gα, gβ, h(gαβ)) computes
gαβ with non-negligible probability, we construct another algorithm B which for given (g, gα, gβ , Z) dis-
tinguishes whether Z = H(gαβ) or not with non-negligible advantage by using A.

Algorithm B is constructed as follows: For given (g, gα, gβ , Z), B computes ω = k-msb(Z) and inputs
(g, gα, gβ, ω) to A. Let Z ′ be A’s output. Then, B outputs “Z = H(gαβ)” if and only if H(Z ′) = Z.
We note that (g, gα, gβ, ω) is perfectly indistinguishable from a randomly chosen instance of the IHDH
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Figure 2: Implications among variants of the Diffie-Hellman assumptions, where “A
xxx←− B” denotes that assumption A is

implied by assumption B under condition xxx for h and/or H. Conditions for h and H are as follows: kdfH denotes that H
is a KDF, msbh and lsbH denote that h(x) = k-msb(H ′(x)) and H(x) = k-lsb(H ′(x)), respectively, for all x ∈ G assuming
that the HDH assumption holds in G and H ′ : G → {0, 1}2k, msb′h denotes that for some function h′ : {0, 1}k → {0, 1}k,
h(x) = h′(k-msb(x)) for all x ∈ G.

problem if Z = H(gαβ), and therefore, A will output gαβ . On the other hand, A may notice that
(g, gα, gβ , ω) is not in a valid form of an instance of the IHDH problem. In this case, B cannot know A’s
behavior, and A may output whatever it likes. However, Z is picked uniformly random from {0, 1}2k, and
consequently even if k-msb(Z) is exposed to A, the remained part of Z is still information-theoretically
hidden to A. Hence, H(Z ′) = Z happens with probability 1/2k. ut

Since the DDH assumption implies the HDH assumption, we also have the following corollary.

Corollary 1. If the (τ, εddh)-DDH assumption on G holds and H : G → {0, 1}2k is a KDF, then the
(τ, 2εddh + 2εkdf + 1/2k)-IHDH assumption on G and h holds, where h(x) = k-msb(H(x)) for all x ∈ G.

3.2 Decisional Variants

As usual, we can define a decisional (and hashed) version of the IHDH assumption. The hashed IHDH
(IH2DH) problem on G, function H : G→ S, and function h : G→ {0, 1}k is stated as follows. Let A be
an algorithm, and we say that A has advantage ε in solving the IH2DH problem on G, H, and h if

1/2 · |Pr[A(g, gα, gβ, h(gαβ),H(gαβ)) = 0]− Pr[A(g, gα, gβ , h(gαβ), T ) = 0]| ≥ ε,

where the probability is over the random choice of generators g in G, the random choice of α and β in
Zp, the random choice of T ∈ S, and the random bits consumed by A.

Definition 8. We say that the (τ, ε)-IH2DH assumption holds in G, H, and h if no τ -time algorithm has
advantage ε in solving the IH2DH problem on G, H, and h. If the (τ(k), ε(k))-IH2DH assumption holds
for all polynomial τ(k) and some negligible function ε(k), we simply say the IH2DH assumption holds.

Fig. 2 illustrates implications among the above security notions, and we see that the IHDH assumption
is implied by the other ones except for the CDH assumption under natural conditions. Proofs for the
implications can be straightforwardly done. We stress that requirements for hash function h in the IHDH
assumption is considerably mild and for example, least significant bits of the output of a KDF is sufficient.

3.3 Relationship between IH2DH and Hardcore of IHDH

The IHDH assumption implies the IH2DH assumption if H is a hardcore function of the IHDH problem.
To be more precise, we define a hardcore function for the IHDH problem as follows. Let A be a τ -time
algorithm which has advantage ε in solving the IH2DH problem on G, H and h.
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Definition 9. We say that function H is a hardcore function for the IHDH problem on G and h if there
exists a p1(τ)-time algorithm BA which can solve the IHDH problem on G, H and h with advantage p2(ε)
for some polynomials p1 and p2 for any A.

By using Goldreich-Levin (GL) function [22], hardcore functions can be generically constructed for
any one-way function. The construction of the GL function H is as follows: For a given function f , pick
a random binary string R where |R| is the same as the input length of f , and define H(x) = 〈R, x〉 where
〈R, x〉 denotes the innerproduct of R and the binary representation of x. Then, if there exists an algorithm
which for given f(x), distinguishes H(x) = 0 or 1 with a non-negligibly better probability than 1/2, there
always exists another algorithm which for given f(x), outputs x with a non-negligible probability. For
constructing a hardcore function for the IHDH problem, we set f(gα, gβ, gαβ) = (gα, gβ, h(gαβ)) (if an
input is not in a valid form, its corresponding output is “⊥”). For this particular one-way function, H can
be set as H(gα, gβ, gαβ) = 〈R, gαβ〉 where |R| = |gαβ |. This technique can be straightforwardly extend
for extracting c log k hardcore bits from one DH key, where c is a constant value. See also Appendix of
[12] for the GL function for the Diffie-Hellman type keys. On a well-designed elliptic curve, an element
of a group can be represented by the x-coordinate of its corresponding point. Therefore, throughout this
paper, we assume that gαβ is encoded as an element in Zq where q is close to p (i.e. |q| = |p|), and that
this representation is used for computing innerproducts. We call a hardcore function which is constructed
in such a way the GL hardcore function for the IHDH problem. For constructing hardcore functions for
the IHDH problem, there are also some other candidates which can be used for generating hardcore bits
of Diffie-Hellman type keys [12, 11, 28].

4 Short Message Encryption Scheme from IHDH

In this section, we propose a new PKE scheme from the IHDH assumption. This is the first PKE scheme
which simultaneously yields (i) CCA-security under a weaker assumption than the HDH assumption,
and (ii) shorter ciphertext length than the KD hybrid encryption scheme. Our scheme is constructed
by non-straightforwardly extending the Hanaoka-Kurosawa KEM which is CCCA-secure under the HDH
assumption. Some techniques in this extension can be generically applied to other CCCA (or CCA)
secure KEMs for enhancing their efficiency, and these generic techniques are discussed in Sec. 6.

The Construction. Let G be a multiplicative group with prime order p, and g ∈ G be a generator,
where |p| = 2k for the security parameter k. Then, the construction of our PKE scheme is as follows:

Setup(1k): Generate a random polynomial f(x) = a0 + a1x + a2x
2 over Zp, and compute yj = gaj for

0 ≤ j ≤ 2. The decryption key is f(x), and the public key is PK = (G, g, y0, y1, y2,TCR, h,H),
where TCR : G → Z∗

p is a TCRHF, h : G → {0, 1}k is a KDF, and H : G → {0, 1}c·log k is the GL
hardcore function for the IHDH problem on G and h (see Sec. 3.3).

Encrypt(M,PK): For a plaintext M ∈ {0, 1}c·log k, pick a random r
R← Zp, and check whether M ?=

H(yr
0). Then, compute C = (gr, (y0y

i
1y

i2
2 )r, h(yr

0)) if the equality holds, where i = TCR(gr), or
repeat the same procedure with another r otherwise. (Computational cost for finding such r is
almost equivalent to that for log 2k+kc

log 2k+1 exponentiations [35]. See also Claim 1 which guarantees
uniformity of H(yr

0) for randomly chosen r.)

Decrypt(dk,C, PK): For a ciphertext C = (C0, C1, C2), check whether Cf(i)
0

?= C1∧h(Ca0
0 ) ?= C2, where

i = TCR(C0). If not, output ⊥. Otherwise, output H(Ca0
0 ) = M .
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We see that a ciphertext of the above scheme consists of two group elements and k-bit binary string which
results in a (c · log k)-bit shorter ciphertext than that of the KD hybrid encryption scheme. Drawbacks of
the proposed scheme are that the size of a plaintext is only (c · log k)-bit long and that its computational
cost for encryption is expensive. As mentioned, CCA-security of our scheme can be proven under the
IHDH assumption which is weaker than the HDH assumption (and thus the DDH assumption). Security
of our scheme is formally addressed as follows:

Theorem 2. Let G be a multiplicative group with prime order p, TCR be a TCRHF, h be a KDF, and
H be the GL hardcore function for the IHDH problem on G and h. Then, the above PKE scheme is
CCA-secure under the IHDH assumption on G and h.

In the above theorem, we address the security of the proposed scheme without explicitly giving the
reduction cost since it is loose and complicated due to the use of the GL hardcore function. More precise
reduction cost can be estimated from Lemma 2. An immediate corollary of Theorem 2 is that the above
scheme is also secure under the IDH assumption (this is clear since the IDH assumption is stronger than
the IHDH assumption if its underlying hash functions are appropriately chosen).

The proof of Theorem 2 can be trivially obtained by proving Lemmas 1 and 2, where Lemma 1
guarantees that the GL hardcore function H has a specific property (besides the hardcoreness) which is
required for the proof of Lemma 2, and Lemma 2 addresses CCA-security of the above scheme under
that specific property and the IH2DH assumption.

Lemma 1. Suppose that a random variable x is uniformly distributed over Zp. Then, for the GL hardcore
function H(x), the most and least likely values of H(x) ∈ {0, 1}c log k are known a priori. More specifically,
M = (0, 0, ..., 0) and (1, 1, ..., 1) maximizes and minimizes Prx[H(x) = M ], respectively. (Proof of this
lemma is given in Appendix A.)

Lemma 2. Let G be a multiplicative group with prime order p, TCR be a (τ, εtcr)-TCRHF, and h be
a (τ, εkdf )-KDF. Also, assume that most and least likely values of H(x) for randomly chosen x ∈ G is
known a priori. Then, the above scheme is (τ − o(τ), εcca, qD)-CCA-secure under the (τ, εih2dh)-IH2DH
assumption1 on G, H and h, where

εcca =
6εih2dh + εtcr + qD(εkdf + 1/2k + 3/(p− 3))

k−c − 4εih2dh
.

Proof. Assume we are given an adversary A which breaks CCA-security of the above PKE scheme with
running time τ , advantage ε, and qD decryption queries. We use A to construct another adversary B
which solves the IH2DH problem on G, H and h. Define adversary B as follows:

1. For a given IH2DH instance (g, gα, gβ , h(gαβ), Z), B picks a TCRHF TCR, and computes i? =
TCR(gβ). (Z is H(gαβ) or a random k-bit string.)

2. B sets y0 = gα, and picks a random rnd from Z∗
p\{i?}. B also picks randoms ui? and urnd from Zp.

3. Let f(x) = α+a1x+a2x
2 be a polynomial over Zp such that f(i?) = ui? , f(rnd) = urnd. Note that

each ai can be expressed as a linear combination of α, ui? and urnd by using Lagrange formula. B
then computes yi = gai for i = 1, 2 by using y0 = gα.

4. B inputs public key PK = (G, g, y0, y1, y2,TCR, h,H) to A.
1We consider only the case where k−c � 4εih2dh, and this is sufficient for all interesting parameter settings.
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5. When A makes decryption query C = (C0, C1, C2), B proceeds as follows:

(a) If C0 = gβ, then B responds ⊥.

(b) If C0 6= gβ and TCR(C0) ∈ {i?, rnd}, then B aborts and outputs a random bit.

(c) If C0 6= gβ and TCR(C0) 6∈ {i?, rnd}, B computes Cui?

0 and Curnd
0 . Let TCR(C0) = i and f ′ be

polynomials over Zp with degree two, such that (f ′(i), f ′(i?), f ′(rnd)) = (logC0
C1, ui? , urnd).

Then, B calculates C0
f ′(0) by using the Lagrange interpolation from (C1, C

ui?

0 , Curnd
0 ). B

responds H(C0
f ′(0)) if h(C0

f ′(0)) = C2, or “⊥” otherwise.

6. At some point, A queries a pair of plaintexts M0,M1 ∈ {0, 1}c·log k. Then, B picks a random bit b. If
Mb is identical to Z, then B generates a challenge ciphertext C? = (gβ , (gβ)ui? , h(gαβ)), and sends
it to A. Otherwise, it aborts and outputs a random bit. We note that C? is a correct challenge
ciphertext if Z = H(gαβ).

7. Finally, A outputs his guess, and B outputs 0 (i.e. “Z = H(gαβ)”) if and only if A’s output is
identical to b.

Let Win denote the event that A correctly outputs the underlying bit of the challenge ciphertext in the
real world, Abort denote the event that for the challenge ciphertext C? = (C?

0 , C
?
1 , C

?
2 ) and a random

rnd ∈ Z∗
p\{TCR(C?

0 )}, A submits a ciphertext C = (C0, C1, C2) such that C0 6= C?
0 and TCR(C0) ∈

{TCR(C?
0 ), rnd}, and Invalid denote the event that A submits a ciphertext C = (C0, C1, C2) which is

rejected in the real world, but not in the above simulation. More precisely, C is a ciphertext such that
TCR(C0) 6∈ {TCR(C?

0 ), rnd}, h(Cf ′(0)
0 ) = C2, but C1 6= C

f(i)
0 . Let Embed denote the event that the

plaintext of the challenge ciphertext is H(x) ∈ {0, 1}c·log k for randomly chosen x ∈ G. In other words,
Embed is the event that Mb happens to be H(gαβ) in the simulation. Then, B’s advantage in solving the
IH2DH problem is estimated as follows:

1
2
· |Pr[B(g, gα, gβ, h(gαβ),H(gαβ)) = 0]− Pr[B(g, gα, gβ , h(gαβ), T ) = 0]|

≥ 1
2
· |Pr[Win ∧ Embed ∧ Abort ∧ Invalid] +

1
2

Pr[Embed]− 1
2
|

≥ 1
2
· |Pr[Win ∧ Embed]− Pr[Abort]− Pr[Invalid]− 1

2
Pr[Embed]|.

We note that if Z 6= H(gαβ), then A may notice that the given environment is a simulation. However,
it cannot carry out anything except for outputting a random bit since it is information-theoretically
impossible to distinguish whether Z = M0 or M1. Therefore, Pr[B(g, gα, gβ, h(gαβ), T ) = 0] = 1/2. The
proof completes by proving following claims.

Claim 1. For any M ∈ {0, 1}c·log k, k−c − 4εih2dh ≤ Prx∈G[H(x) = M ] ≤ k−c + 4εih2dh assuming the
(τ, εih2dh)-IH2DH assumption holds.

Proof. Let M ′ be the least likely value of H(x) for randomly chosen x ∈ G. (Recall that most and least
likely values of H(x) are assumed to be known a priori, and due to Lemma 1 this assumption always
holds for the GL hardcore function.) Then, we can construct an algorithm B′ which immediately solves
the IH2DH problem as follows: For a given IH2DH instance (g, gα, gβ, h(gαβ), Z), B′ outputs 1 if Z = M ′,
or a random bit otherwise.

B′’s advantage is estimated as

1
2
· |Pr[B′(g, gα, gβ , h(gαβ),H(gαβ)) = 0]− Pr[B′(g, gα, gβ, h(gαβ), T ) = 0]|
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=
1
2
· |1

2
· (1− Pr[H(gαβ) = M ′])− 1

2
· (1− k−c)| = 1

4
· |k−c − Pr[H(gαβ) = M ′]|.

Since the distribution of gαβ is uniform over G, Pr[H(gαβ) = M ′] = Prx∈G[H(x) = M ′]. Hence, we have
that 1

4(k−c − Prx∈G[H(x) = M ′]) ≤ εih2dh, and thus Prx∈G[H(x) = M ′] ≤ k−c − 4εih2dh. Similarly to
this, by using the most likely value of H(x), we can also prove Prx∈G[H(x) = M ] ≥ k−c + 4εih2dh. ut

Claim 2. Pr[Win ∧ Embed] ≥ (1
2 + ε) · (k−c − 4εih2dh).

Proof. Since there is a possibility that events Win and Embed are dependent, it is not straightforward
to estimate Pr[Win ∧ Embed] from Pr[Win] and Pr[Embed]. This is one of the main non-trivial parts in
the security proof of the proposed scheme. For individually dealing with these two dependent events, we
discuss them by using conditional probabilities under the condition that Mb is fixed. Interestingly, Embed
depends on only the values of Mb and Z, and therefore, under that condition Embed is independent
to Win under the same condition. Namely, we have Pr[Win ∧ Embed] =

∑
M∈{0,1}c·log k Pr[Win|Mb =

M ] Pr[Embed|Mb = M ] Pr[Mb = M ]. Since Pr[Embed|Mb = M ] = Prx∈G[H(x) = M ], from Claim 1 we
have Pr[Embed|Mb = M ] ≥ k−c − 4εih2dh. Consequently, we also have

Pr[Win ∧ Embed] ≥ (
∑

M∈{0,1}c·log k

Pr[Win|Mb = M ] Pr[Mb = M ]) · (k−c − 4εih2dh)

= Pr[Win] · (k−c − 4εih2dh) = (
1
2

+ ε) · (k−c − 4εih2dh),

which proves the claim. ut

Claim 3. Pr[Abort] ≤ εtcr + qD
p−2 . (Proof of this claim is given in Appendix B.)

Claim 4. Pr[Invalid] ≤ qD · (εkdf + 1
2k + 2

p−2).

Proof. Suppose C = (C0, C1, C2) is a ciphertext such that B does not abort and C1 6= C
f(i)
0 . Then, we

notice that for any f(x), i?, and i, the value f ′(0) takes p− 2 different values according to p− 2 different
values for rnd. This can be easily proved by a contradiction as follows: Fix f(x), i?, i and u 6= f(i). For
rnd ∈ (Z∗

p\{i?}), let frnd(x) be a polynomial of degree at most two such that frnd(i?) = f(i?), frnd(i) =
u, frnd(rnd) = f(rnd). Then, we will show that for any (rnd1, rnd2) ∈ (Z∗

p\{i?})2, frnd1(0) 6= frnd2(0) if
rnd1 6= rnd2. Suppose that frnd1(0) = frnd2(0). Then frnd1(x) = frnd2(x) because they intersect at three
points, x = 0, i? and i. In this case, frnd1(x) = f(x) because they intersect at three points, x = i?, rnd1

and rnd2. But this is a contradiction because frnd1(i) = u 6= f(i).
Therefore, from the viewpoint of A, the distribution of h(Cf ′(0)

0 ) is computationally indistinguishable
from the uniform distribution over {0, 1}k with advantage at least εkdf + 2/p(≤ εkdf + 2/(p − 2)) where
2/p comes from statistical distance between the distribution of Cf ′(0)

0 and the uniform distribution over
G. Notice that if the distribution of h(Cf ′(0)

0 ) is uniform over {0, 1}k, then it is information-theoretically
impossible to guess the value of h(Cf ′(0)

0 ) with probability more than 1/2k. Hence, h(Cf ′(0)
0 ) = C2

happens with probability at most 1/2k + εkdf + 2/(p− 2). ut

Claim 5. Pr[Embed] ≤ k−c + 4εih2dh. (The claim is straightforwardly proved by Claim 1.)
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From Claims 2, 3, 4, and 5, we have

εih2dh ≥ 1
2

(
(
1
2

+ ε)(
1
kc
− 4εih2dh)− εtcr − qD(εkdf +

1
2k

+
3

p− 3
)− 1

2
(

1
kc

+ 4εih2dh)
)

=
1
2

(
ε(

1
kc
− 4εih2dh)− 4εih2dh − εtcr − qD(εkdf +

1
2k

+
3

p− 3
)
)
.

Then, we also have (6εih2dh + εtcr + qD(εkdf + 1
2k + 3

p−3))( 1
kc −4εih2dh)−1 ≥ ε, which proves the lemma. ut

5 Long Message Encryption Scheme from IHDH

In this section, we propose a new KEM which is CCA-secure under the IHDH assumption. By using
this KEM along with any redundancy free DEM, we can construct a hybrid encryption scheme whose
ciphertext length is the same as that of the KD hybrid encryption scheme, and this is a PKE scheme
(with arbitrary plaintext length) that achieves such ciphertext length from a weaker assumption than
the HDH assumption.

The Construction. Let G be a multiplicative group with prime order p, and g ∈ G be a generator.
Let h : G → {0, 1}k be a KDF. (Based on the leftover hash lemma, we can also use a universal hash
function as h.) Let H : G→ {0, 1} be the hardcore function for the IHDH problem on G and h.

Setup(1k): Choose a KDF h : G→ {0, 1}k and a TCRHF TCR : G→ Z∗
p. Generate a random polynomial

f(x) = a0 + a1x+ · · ·+ ak+1x
k+1 over Zp, and compute yi = gai for 0 ≤ i ≤ k+ 1. The decryption

key is f(x), and the public key is PK = (G, g, y0, y1, ..., yk+1,TCR,H, h).

Encrypt(PK): Pick a random r
R← Zp, and compute s = TCR(gr). Let ψ = (gr, gr·f(s), h(yr

1) ⊕ · · · ⊕
h(yr

k)), K = (H(yr
1)||...||H(yr

k)). (One can easily compute gf(x) as gf(x) =
∏

0≤i≤k+1 y
xi

i . Also,
notice that y0 and yk+1 are used for only computing gr·f(s).) The final output is (ψ,K).

Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1, C2), if C1 = C
f(s)
0 for s = TCR(C0) and C2 =

h(Ca1
0 )⊕ · · · ⊕ h(Cak

0 ), then output K = (H(Ca1
0 )||...||H(Cak

0 )). Otherwise output ⊥.

The security of the above scheme is addressed as follows:

Theorem 3. Let G be a multiplicative group with prime order p, TCR be a TCRHF, h be a KDF, and H
be a hardcore function for the IHDH problem on G and h. Then, the above KEM is CCA-secure under
the IHDH assumption on G and h.

The hardcore function H does not need to be the GL function, which is required in the previous
section. Theorem 3 is straightforwardly proven by the following lemma.

Lemma 3. Let G be a multiplicative group with prime order p, TCR be a (τ, εtcr)-TCRHF, and h be
a (τ, εkdf )-KDF. Then, the above scheme is (τ − o(τ), εcca, qD)-CCA-secure under the (τ, εih2dh)-IH2DH
assumption on G, H and h, where εcca = k · (εih2dh + εtcr + qD(εkdf + 1

2k + 3
p−2)). (Proof of this lemma

is given in Appendix C.)
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Table 1: Ciphertext overhead and security of PKE schemes (with short plaintexts) which are directly derived from existing
KEMs, where k is the security parameter, and we assume that size of a group element is 2k. ROM, GDH, CBDH, and
DBDH denote the random oracle model [6], the gap DH assumption [33], the computational BDH assumption [9, 10], and
the decisional BDH assumption [16], respectively.

KEM Ctxt Overhead Assumption ⇒ Ctxt Overhead Assumption

[1] 2k GDH (ROM) 2k − c log k GDH (ROM)
[18] 2k CDH (ROM) 2k − c log k CDH (ROM)
[14] 4k DBDH ⇒ 4k − c log k CBDH
[29] 4k GHDH 4k − c log k GDH

[18, 23] 6k CDH 6k − c log k CDH

6 Generic Techniques

In this section, we explain two generic techniques for constructing efficient PKE schemes which are
extracted from the above proposed schemes.

6.1 Direct Use of KEM as PKE and its Subtle Point

The first technique is to generically convert any KEM into a PKE scheme without using a DEM. This
method is as follows: Let M be a plaintext which the sender wants to confidentially send to the receiver.
Then, the sender runs the encryption algorithm of a KEM to obtain a ciphertext ψ (of the KEM) and a
data encryption key K. If K = M , then the sender transmits only C = ψ as the whole ciphertext of M .
The receiver recovers M(= K) by using the decryption algorithm of the KEM.

Intuitively, the above method always seems to work for converting any CCA-secure KEM with
|K| = O(poly(k)) into a CCA-secure PKE scheme with |M | ≤ |K|. However, its security proof is
not straightforward since the precise distribution of K is not generally known, and furthermore it is not
necessary to be uniform. Therefore, it is not easy to individually handle (1) the probability of succeed-
ing in the simulation and (2) the conditional advantage of the adversary under the condition that the
simulation is succeeded. Thus, one of our contributions is a method to simultaneously cope with them.2

Our proof technique can also be extended to other schemes, and we can construct new PKE schemes
with shorter ciphertext length from various KEMs. Examples are summarized in Table 1. Interestingly,
it is observed that ciphertext overhead of a CCA-secure PKE scheme can be less than one group element
in the random oracle model under the CDH assumption, and furthermore, it can be less than two group
elements in the standard model under the Gap DH (GDH) or computational BDH (CBDH) assumptions.
PKE schemes with such short ciphertext length have not been known before.3

It should be also noticed that for short plaintexts (such that |M | < k), redundancy free DEMs are not
available in the standard KEM/DEM framework. Therefore, our scheme is advantageous to the standard
KEM/DEM framework in terms of ciphertext length when plaintexts are very short.

Remark. For any PKE scheme, it is also possible to save c log k bits in ciphertext length if we repeatedly
run the encryption algorithm until the first c log k bits in the generated ciphertext become all zero (and
do not transmit the first c log k bits of the ciphertext). However, since in this modified scheme, the
ciphertext space becomes significantly restricted, the security proof of the original PKE scheme cannot
be immediately applied.

2It is not difficult to show that the distribution of K is computationally indistinguishable from the uniform distribution.
However, this is not sufficient for simultaneously handling (1) and (2).

3Due to the use of the GL function, underlying assumptions are also weakened to be computational ones.
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6.2 A Practical Conversion from Any CCCA-Secure KEM into CCA-Secure One

Here, we explain the other generic technique which is a computationally cost-free method to convert
any CCCA-secure KEM into a CCA-secure KEM. It should be noticed that our proposed CCA-secure
PKE scheme is constructed from the CCCA-secure KEMs due to [25, 23] without using authenticated
encryption. Here, we generalize this technique. More specifically, we give a generic conversion which
provides a CCA-secure KEM with essentially the same efficiency as its underlying CCCA-secure KEM.
For simplicity, we assume that length of a data encryption key of the underlying CCCA-secure KEM and
the resulting CCA-secure KEM are 2k bits and k bits, respectively, where k is the security parameter.4

The proposed conversion is as follows: For a given (CCCA-secure) KEM Π′ = (Setup′,Encrypt′,
Decrypt′), we construct another (CCA-secure) KEM Π = (Setup,Encrypt,Decrypt) where Setup(1k):
Run Setup′(1k) to obtain (dk, PK). The decryption key is dk and the public key is PK. Encrypt(PK):
Run (ψ,K)← Encrypt′(PK), and split K into Ka and Ks such that K = (Ka‖Ks) and |Ka| = |Ks| = k.
The final output is ((ψ,Ka),Ks) where (ψ,Ka) is the ciphertext and Ks is the data encryption key.
Decrypt(dk, (ψ,Ka), PK): For a ciphertext (ψ,Ka), compute K ′ ← Decrypt′(dk, ψ, PK), and split K ′

into K ′
a and K ′

s as above. Then, output K ′
s if Ka = K ′

a, or “⊥” otherwise.

Theorem 4. Π is (τ, 2ε, qD)-CCA-secure if Π′ is (τ, ε, qD, µ)-CCCA-secure with 1
2k ≤ µ ≤ 1. (Proof of

this theorem is given in Appendix D.)

Baek, Galindo, Susilo, and Zhou [4] proposed another simple construction of CCA-secure KEMs from
CCCA-secure KEMs. However, our method is more efficient than their construction since the method
in [4] requires one additional MAC computation while ours does not need any additional computation.
It should be noticed that [4] also requires that two k-bit keys can be extracted from one KEM, and
therefore, cipheretext sizes of both their method and ours are same. An instantiation of our conversion
based on KD scheme is given in Appendix E.

4With the help of appropriately chosen KDFs, it is also possible to flexibly determine these values as various length.
However, this assumption significantly simplifies the description of the construction, and furthermore it holds in many
interesting instantiations.
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A Proof of Lemma 1

For proving the lemma, it is sufficient to show that for any 2k-dimensional vector R = (r1, ..., r2k) ∈
{0, 1}2k, Prx[〈x,R〉 = 0] ≥ 1/2, where 〈x,R〉 denotes the innerproduct of the binary representation of
x ∈ Zq and R. We note that vector R is not required to be randomly picked, and even for biased ones,
e.g. all zero or all one vectors, it is possible to prove that this always holds.

Then, the proof completes by proving the following claims: (i) Lemma 1 is true if for all i ∈
{1, 2, ..., 2k}, Prx[xi = 0] ≥ 1/2 where xi is i-th bit of the binary representation of x (x1 is the most sig-
nificant bit of x), and (ii) For all i ∈ {1, 2, ..., 2k}, Prx[xi = 0] ≥ 1/2 holds. These are formally addressed
as Claims 6 and 7.

Claim 6. For any 2k-dimensional vector R = (r1, ..., r2k) ∈ {0, 1}2k, Prx[〈x,R〉 = 0] ≥ 1/2 if Prx[xi =
0] ≥ 1/2 always holds for all i ∈ {1, 2, ..., 2k}.

Proof. Let pi be the probability that the innerproduct of vectors (x1, ..., xi) and (r1, ..., ri) is zero, i.e.
pi = Prx[⊕j=1,...,ixjrj = 0], and let qi be the probability that xi is zero, i.e. qi = Prx[xi = 0]. Then, we
have the following equation:

pi+1 =
{
pi if ri+1 = 0,
piqi+1 + (1− pi)(1− qi+1) if ri+1 = 1.

Therefore, by a straightforward modification of the above equation, we have

pi+1 −
1
2

=
{
pi − 1

2 if ri+1 = 0,
(pi − 1

2)(2qi+1 − 1) if ri+1 = 1.

It should be noticed that due to the assumption, qi = Prx[xi = 0] ≥ 1/2 for all i ∈ {1, 2, ..., 2k}, and
consequently, if (pi−1/2) ≥ 0, then (pi+1−1/2) ≥ 0 also holds. Since p1 ≥ q1 = Prx[x1 = 0] = 22k−1/q ≥
1/2, by the mathematical induction (pi − 1/2) ≥ 0 always holds. Hence, we have (p2k − 1/2) ≥ 0, and
therefore Prx[〈x,R〉 = 0]− 1/2 ≥ 0. ut

Claim 7. For all i ∈ {1, 2, ..., 2k}, Prx[xi = 0] ≥ 1/2.

Proof. Let qi be Prx[xi = 0] for i ∈ {1, 2, ..., 2k} (as above), and let πi be the i-th bit of the binary
representation of q (π1 is the most significant bit of q). Let Ei be an event that [(x1, ..., xi) = (π1, ..., πi)]
is true. Then, we have

qi = Pr
x

[xi = 0|Ei−1, πi = 1]Pr[Ei−1, πi = 1] + Pr
x

[xi = 0|Ei−1, πi = 0]Pr[Ei−1, πi = 0]

+Pr
x

[xi = 0|Ei−1] Pr[Ei−1]

≥ Pr
x

[xi = 0|Ei−1, πi = 1]Pr[Ei−1, πi = 1] + Pr[Ei−1, πi = 0] +
1
2

Pr[Ei−1].

Therefore, for proving the claim, it is sufficient to show that Prx[xi = 0|Ei−1, πi = 1] ≥ 1/2. Let q′i be
Prx[xi = 0|Ei−1, πi = 1]. Then, q′i is estimated as

q′i =
22k−i

p−
∑

j∈{1,...,i−1} πj · 22k−j
≥ 22k−i

22k−i+1
=

1
2
,

which proves the claim. ut

From Claims 6 and 7, the lemma is proved.
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B Proof of Claim 3

Since rnd is information-theoretically hidden to A, for a query C = (C0, C1, C2) TCR(C0) = rnd happens
with probability at most 1/(p − 2). On the other hand, the probability of succeeding in generating a
ciphertext C = (C0, C1, C2) such that C0 6= C?

0 and TCR(C0) = TCR(C?
0 ) is bounded by εtcr. Therefore,

Abort = true happens with probability at most εtcr + qD/q − 2.

C Proof of Lemma 3

Assume we are given an adversary A which breaks CCA-security of the above KEM with running time
τ , advantage ε, and qD decryption queries. We use A to construct another adversary B which solves the
IH2DH problem on G, H and h.

Assume that there exists an adversary A′ which can break the CCA-security of the above KEM with
running time τ , advantage ε, and qD decryption queries. That is, A′ is given a challenge ciphertext

(gβ , gβ·f(s?), h(ga1β)⊕ · · · ⊕ h(gakβ)),

where s? = TCR(gβ), and then A′ can distinguish (H(yβ
1 )||...||H(yβ

k )) from a random k-bit string. By
applying a standard hybrid argument, we can construct another adversary A which distinguishes

(H(yβ
1 )||...||H(yβ

j )||randomk−j)

from

(H(yβ
1 )||...||H(yβ

j−1)||randomk−j+1)

for some j with 1 ≤ j ≤ k, where random` denotes an `-bit random string, with running time τ , advantage
1
k ε, and qD decryption queries.

We use A to construct a distinguisher B for our IH2DH problem. That is, for given (g, gα, gβ , h(gαβ)), h
and γ, B decides if γ = H(gαβ) or a random bit as follows.

1. Let aj = α. B chooses a1, · · · , aj−1, aj+1, · · · , ak randomly from Zp. Let yi = gai for i = 1, · · · , k.

2. B picks a target collision resistant hash function TCR, and computes s? = TCR(gβ).

3. B chooses t ∈ Z∗
p \ {s?} and u?, ut ∈ Zp randomly.

4. Define a0 and ak+1 and f(x) in such a way that f(x) = a0+a1x+ · · ·+ak+1x
k+1 satisfies f(s?) = u?

and f(t) = ut. B computes y0 = ga0 and yk+1 = gak+1 by using gα.

5. B runs A on input a public key PK = (G, g, y0, y1, ..., yk+1,TCR,H, h).

6. B computes a challenge ciphertext

ψ? = (gβ, (gβ)u?
, h((gβ)a1)⊕ · · · ⊕ h(gαβ)⊕ · · · ⊕ h((gβ)ak)

and a challenge key
K? = (H((gβ)a1)||...||H((gβ)aj−1)||γ||randomk−j),

where γ = H(gαβ) or a random bit.

7. When A makes a decryption query ψ = (C0, C1, C2), B proceeds as follows:
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(a) If C0 = gβ, then B responds ⊥.

(b) If C0 6= gβ and TCR(C0) ∈ {s?, t}, then B aborts and outputs a random bit.

(c) Otherwise let TCR(C0) = s. Define a0,t, aj,t, ak+1,t and ft(x) in such a way that

ft(x) = a0,t + a1x+ · · ·+ aj,tx
j + · · · akx

k + ak+1,tx
k+1

satisfies
ft(s) = logC0

C1, ft(s?) = u?, ft(t) = ut.

B computes zt = C
aj,t

0 by using Lagrange formula. If

C2 = h(Ca1
0 )⊕ · · · ⊕ h(zt)⊕ · · · ⊕ h(Cak

0 ), (1)

then B returns (H(Ca1
0 )||...||H(zt)||...||H(Cak

0 )). Otherwise it returns “⊥”.

8. Finally, A outputs a bit b as his guess, and B outputs the same bit b as his own guess for h(gαβ).

Let Win denote the event that for the challenge ciphertext in the real world, A correctly distinguishes
(H(yβ

1 )||...||H(yβ
j )||randomk−j) from (H(yβ

1 )||...||H(yβ
j−1)||randomk−j+1), Abort denote the event that

for the challenge ciphertext ψ? = (C?
0 , C

?
1 , C

?
2 ) and a random t ∈ Z∗

p\{TCR(C?
0 )}, A submits a ciphertext

ψ = (C0, C1, C2) such that C0 6= C?
0 and TCR(C0) ∈ {TCR(C?

0 ), t}, and Invalid denote the event that A
submits a ciphertext ψ = (C0, C1, C2) which is rejected in the real world, but not in the above simulation.
More precisely, ψ is a ciphertext such that TCR(C0) 6∈ {TCR(C?

0 ), t} and Eq. 1 holds, but C1 6= C
f(s)
0 .

Then, B’s advantage in distinguishing H(gαβ) is estimated as follows:

1
2
· |Pr[B(g, gα, gβ, h(gαβ),H(gαβ)) = 0]− Pr[B(g, gα, gβ , h(gαβ), T ) = 0]|

≥ |Pr[Win ∧ Abort ∧ Invalid]− 1
2
|

≥ |Pr[Win]− Pr[Abort]− Pr[Invalid]− 1
2
]|.

The proof is completed by estimating bounds on Pr[Abort] and Pr[Invalid].

Claim 8. Pr[Abort] ≤ εtcr + qD
p−2 .

Proof. Since t is information-theoretically hidden to A, for a query ψ = (C0, C1, C2) TCR(C0) = t happens
with probability at most 1/(p − 2). On the other hand, the probability of succeeding in generating a
ciphertext ψ = (C0, C1, C2) such that C0 6= C?

0 and TCR(C0) = TCR(C?
0 ) is bounded by εtcr. Therefore,

Abort = true happens with probability at most εtcr + qD/q − 2. ut

Before estimating Pr[Invalid], we address a useful claim for it.

Claim 9. Suppose that (C0, C1) 6= (gr, grf(s)) at step 7. For t1, t2 ∈ Z∗
p \ {s?}, let zt1 and zt2 be zt with

t = t1 and t2, respectively. If t1 6= t2, then zt1 6= zt2.

Proof. Suppose that zt1 = zt2 . Then we have

∆(x) = ft1(x)− ft2(x)
= (a0,t1 − a0,t2) + (ak+1,t1 − ak+1,t2)x

k+1.

Further it is clear that
∆(s) = ∆(s?) = 0.
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Hence we obtain that ft1(x) = ft2(x). In this case, let

∆′(x) = ft1(x)− f(x)
= (a0,t1 − a0) + (aj,t1 − α)xj + (ak+1,t1 − ak+1)xk+1.

Then it is easy to see that
∆′(s?) = ∆′(t1) = ∆′(t2) = 0.

Therefore we obtain that ft1(x) = f(x). However this is a contradiction because ft1(s) 6= f(s). ut

Now, we are ready to estimate an upper bound on Pr[Invalid].

Claim 10. Pr[Invalid] ≤ qD · (εkdf + 1
2k + 2

p−2).

Proof. It is obvious that Eq. 1 holds with probability at most 1/2k if no information on h(zt) is given.
From Claim 9, we have that if C1 6= C

f(s)
0 , then zt takes p− 2 different values according to p− 2 different

values for t. Since h is a KDF, the distribution of h(zt) is computationally indistinguishable from the
uniform distribution with advantage at most εkdf +2/p, where 2/p comes from statistical distance between
the uniform distributions over Zp and Z∗

p\{t}. Hence, for an invalid query Eq. 1 holds with probability
at most 1/2k + εkdf + 2/p. ut

From Claims 8 and 10, we have

εih2dh ≥
1
k
ε− εtcr − qD

(
εkdf +

1
2k

+
3

p− 2

)
,

which proves the lemma.

D Proof of Theorem 4

Assume we are given an adversary A which breaks CCA-security of Π with advantage 2ε. We use A
to construct another adversary B which breaks CCCA-security of Π′ with advantage ε and uncertainty
µ(≥ 1/2k). Specifically, when A submits a decryption query (ψ,Ka) to B, B also submits (ψ, pred(·)) to
the CCCA challenger where pred is defined as pred(K) = 1 iff the first k bits of K is identical to Ka.
Obviously, this does not contradict to the restriction that µ ≥ 1/2k. Therefore, B can perfectly respond
to A’s queries by using the challenger’s answer to A. For the CCCA challenge ciphertext (ψ?, K̂) for B,
B inputs ((ψ?, K̂a), K̂s,b) to A where b is a random bit, K̂ = (K̂a‖K̂s,0), and K̂s,1 is a random string
with |K̂s,1| = k. It is clear that this is a valid CCA challenge ciphertext if K̂ is the real key for ψ?,
and therefore, in this case A will output b′ such that b′ = b with advantage 2ε. On the other hand, if
K̂ is random, then A may notice that it is a simulation, but it can not do anything except for randomly
guessing b. Hence, if Π′ is CCCA-secure, then Π is CCA-secure.

E Instantiation of Our Conversion

Here, we demonstrate to construct a new CCA-secure KEM which is derived from the (CCCA-secure)
KD KEM via our conversion, and address its efficiency. The construction of the original KD KEM is as
follows: Let G be a multiplicative group with prime order p, and g, h ∈ G be generators. The decryption
key is dk = (x0, x1, y0, y1)

R← Z4
p, and the public key is PK = (G, g, h,X, Y,TCR) where X = gx0hx1 ,

Y = gy0hy1 , and TCR is a target collision resistant hash function. A ciphertext and its corresponding
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data encryption key are generated as ψ = (gr, hr) and K = (XY α)r, respectively, where r R← Zp and
α = TCR(gr, hr). Decryption can be straightforwardly done by using dk. It is known that the KD
KEM is not CCA-secure [24], but CCCA-secure [25]. By applying our conversion, the KD KEM is
transformed to be a CCA-secure KEM which is as follows: The decryption key and the publc key are the
same as the original KD KEM. A ciphertext and its corresponding data encryption key is generated as
ψ = (gr, hr,Ka) and K = Ks, respectively, where (Ka‖Ks) = (XY α)r. We note that due to the existence
of the Pollard rho algorithm, |p| is determined to be at least 2k bits for k-bit security, and therefore,
we have |(XY α)r| = 2k and |Ka| = |Ks| = k.5 Decryption is straightforward (it is the same as that
of the KD KEM with consistency check of Ka). Obviously, computational cost of the resulting KEM is
completely the same as the original KD KEM. On the other hand, length of a ciphertext becomes k-bit
longer than that of the KD KEM. However, due to strengthened security (i.e. CCA-security) it also
becomes possible to use a standard CCA-secure DEM (instead of authenticated encryption) for hybrid
encryption, and consequently total length of a ciphertext of hybrid encryption from the new KEM is also
completely the same as that from the KD KEM.

5Rigorously speaking, since the distribution of (XY α)r is not uniform over {0, 1}2k but over G, we need to convert
(XY α)r into a 2k-bit binary string in an appropriate manner, and then split it into k-bit strings Ka and Ks.
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