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Abstract

We show tight connections between several cryptographigipres, namely encryption with weakly random
keys, encryption with key-dependent messages (KDM), affidsghtion of point functions with multi-bit output
(which we call multi-bit point functions, or MBPFs, for shiprThese primitives, which have been studied mostly
separately in recent works, bear some apparent simigrbieth in the flavor of their security requirements and
in the flavor of their constructions and assumptions. Sigjlprous connections have not been drawn.

Our results can be interpreted as indicating that MBPF aafiass imply a very strong form of encryption
that simultaneouslhachieves security for weakly-random keys and key-depdanaessages as special cases.
Similarly, each one of the other primitives implies a certastricted form of MBPF obfuscation. Our results
carry both constructions and impossibility results frone @nimitive to others. In particular:

e Therecentimpossibility result for KDM security of Haitreend Holenstein (TCC '09) carries over to MBPF
obfuscators.

e The Canetti-Dakdouk construction of MBPF obfuscators 8asea strong variant of the DDH assumption
(EC '08) gives an encryption scheme which is secure vanyweak key distribution of super-logarithmic
min-entropy (and in particular, also has very strong leak@&gilient properties).

e All the recent constructions of encryption schemes thasaoeire w.r.t. weak keys imply a weak form of
MBPF obfuscators.
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1 Introduction

Symmetric encryption is an algorithmic tool that allows ar md parties to communicate secret information over
open communication media that are accessible to eavest®pim order to achieve this goal, the communicating
parties need to have some shared secret randomn&sy.(a he classic view of symmetric encryption allows the
encryption scheme to determine the distribution of the kegigely (typically it is a uniformly random string). It als
assumes that the encryption and decryption algorithmsxaeueed in a completely sealed way, so no information
about the key is leaked to the eavesdroppers. Finally, tesicd model assumes that the parties only use the key in
the encryption and decryption routines and not for any gbliepose. In particular, their messages are never related
to the key.

In recent years, much research has been done to investigiatel relaxations of this classic (and somewhat
naive) model. One relaxation is to consider the case wherkey is chosen using a “defective” source of random-
ness that does not generate uniform and independent ranidam®ee e.g. [1, 2, 13, 20, 24] and the references
therein). Namely, the key is assumed to be taken from aloligioin that is adversarially chosen under some restric-
tion. Typically the restriction is that the min-entropy betdistribution of the secret key is at leastfor some value
of a.. In this case the scheme is said to be secure w-rteak keys.

A different relaxation of the classic model considers theecavhere the key is chosen uniformly but some
arbitrary information on the key is leaked to the adversary (see e,@4J). This models both direct attacks where
the adversary gains access to the internal storage of thtiegpasuch as the cold-boot attack of [17], and indirect
information leakage that occurs when the shared key iselifiom the communication between the parties, such
as the information exchange used to agree on the key. Ofaoalisecurity is lost if the adversary learns the key
in its entirety, and therefore some restriction needs torised on theamountof information that the adversary
can get. One possibility is to require that the key has sogréfgiant statistical entropy left, even given the leakage.
We call this theentropicsetting. Another, stronger, security notion only insisigttit is computationallyinfeasible
to compute the secret key from the leaked information, bloiwsl the leakage to completely determine the key
statistically. We call this type of leakageixiliary input?® It turns out that encryption resilient to weak keys is also
resilient to a comparable amount of leakage in the entragtiing. Conversely, in some settings there is a simple
transformation from leakage resilient encryption to orat thithstands comparably weak keds.

Yet another relaxation of the classic model considers tise gehere the messages may depend on the shared
key. Security in this more demanding setting was terikeddependent message secUitipM security) by Black,
Rogaway and Shrimpton in [7]. In the last few years, the motdé KDM security has been extensively studied
[3,4,5,8,9, 16, 18, 19], and several positive results eatermost notably the results of [3, 8] who showed how to
obtain KDM security w.r.t. the class of affine functions (fbemer under the DDH assumption and the latter under
the LWE assumption). In contrast, [16] show that there exdgblack-box reductions from the KDM security of any
encryption scheme w.r.t. all efficient functions to “anynstard cryptographic assumption.”

While the constructions for KDM-secure schemes and thetnari®ons of schemes that are secure wartveak
keys bear significant similarities to each other (eg., se@48 [3, 13], and [1, 3]), no formal connections between
the problems have been made so far.

Another recently studied primitive, which may seem unesladt a cursory look, is obfuscation of point functions
(programs) with multi-bit output. Obfuscation is the taglconstructing an algorithm, called abfuscatorO, that
takes as input a programfrom a family P of programs and outputs a program= O(p) that has essentially the
same functionality ap, but where the code af only gives information that can also be determined with lerac
access t@. A central point here is tha should work correctly and securely feveryprogram inP.

A point function with multi-bit output (or a MBPF) is a funo [ ;. ,,,y which, on inputz, outputsm if x = k
and L otherwise. In the special case of point functions, the valuis fixed to some constant, say 1. Obfuscators
for point functions are constructed in [10, 25] under strasgumptions, and in [21] in the random oracle model.

IMany other models of leakage-resilience, such as the “ooypitation leaks information” model [14, 22], place furthestrictions on
the type of information that may be leaked, and are not censitin this work.

2In the case of semantic security for symmetric-key encoypfivithout chosen-plaintext attacks), we can use thewatlg transforma-
tion: Given a scheméEnc, Dec) that's secure against key leakage, construct the weakétesnse( Ency,(m) = (r, Enck+r(m)) for a
random|k|-bit r, Dec), (r, c) = Deckir(c)).



Obfuscators for MBPFs are only known based on very strongsaedific assumptions, such as the existence of
fully-composable point function obfuscators [11]. Di#at constructions exist for restricted settings, such as th
case wheren is shorter thark, or the case whera, andk are distributed independently from each other [11, 13].
In all of these constructions the obfuscator is given theest andm explicitly.

The applicability of MBPF obfuscation to symmetric encigpthas been pointed out in [11], who proposed to
encrypt a message with key k by letting O(I ,,,)) be the ciphertext. The fact that security holds for &nyas
used to suggest that remains hidden even whénis taken from a distribution which is not uniform, as long s i
has sufficient min-entropy that it cannot be guessed in mohjal time. Also, [13] show that their construction of
leakage resilient encryption can be used as a restrictéahvaf MBPF obfuscation.

1.1 Our Results

We show tight relations between the primitives of symmétgg encryption and MBPF obfuscation. Specifically,
we show that symmetric-key encryption with weak key resdie leakage resilience, and KDM security, each with
its own variants, can all be viewed as natural special cab&iseoMBPF obfuscation problem. In fact, MBPF
obfuscation incorporates weak key resilience and KDM sgcsimultaneously. In addition to providing some
insight and intuition to these primitives, the drawn coniters provide new results — both constructions and hardness
results — for the primitives considered.

As a preliminary step towards drawing these connectionsetap a framework for relaxing the standard notion
of security of MBPF obfuscation. This notion, called virtbéack-box (VBB) security [6], essentially requires that
for any adversary with binary output there exists a simulatech that, for any:, m, the output of the adversary
given O(I ,,,)) is indistinguishable from the output of the simulator givenacle access td;,,,). We wish to
consider the relaxed case whérandm are taken from an unknowdlistribution from a given class. We capture
this relaxation by replacing the “for arky m” requirement in the VBB definition with “for any distributioon i, m
from a given class of distributions.” Note that the simutdtnows the class of distributions, but not the distribution
itself. We relate the different notions of encryption to MB8bfuscation for different classes of distributions.

Obfuscation vs. Weak-Key and Leakage Resilient Encryption We say that an MBPF obfuscatordsentropic
with independent messagés satisfies the above definition for product distributsoonk, m where the distribution
of k has min-entropy at least. Note that the product distribution ensures thaits drawnindependenthof &, and
that we impose no restriction on the entropynef

Our first result is thatv-entropic MBPF obfuscators with independent messagegjaieadent to symmetric key
encryption witha-weak keys® We describe both directions of the equivalence.

From obfuscation to encryptiorGiven an obfuscato®, we construct an encryption scheme by the transformation
Enci(m) = O(I(,m)) andDecy(c) = c(k), wherec is interpreted as the description of a circuit.

From encryption to obfuscatiorConversely, given an encryption scheme, we construct amsobfor as follows.
On input the paitk, m, simply encryptn with key & to obtain a ciphertext. Then, the obfuscated program
simply hasc hard-coded, and on input, runsDec,(c) and outputs the result. Here, for the correctness of
obfuscation, we require that the encryption schemededectif it is decrypting a ciphertext with an incorrect
secret key. We show that this property can be added gengiticany semantically secure encryption scheme.

CPA security vs. self-composability. If we start with aCPA secureencryption scheme, then the resulting MBPF
obfuscator© is self-composablein the sense that security is preserved evef is run multiple times with the
sameinput & and (possibly) different inputs:;. As was shown by [11], this property is not, in general, ireglby
obfuscation alone. The converse is true as well.

3The traditional notion of encryption without leakage riesite, where the secret key is chosen uniformly at randosapsured by the
a(n) = 2" case of the equivalence.



Semantically secure encryption withis equivalent to MBPF obfuscator for:
a-weak keys a-entropic sec. for indep. messages
auxiliary input auxiliary input

CPA security self-composability

fully weak keys fully-entropic sec.

KDM security dependent messages

Table 1: Equivalence between symmetric-key encryptioft) @d obfuscation (right) terminology. The five rows
can be combined arbitrarily, except that row 1 is requir@hglwith rows 3-5, and we do not consider the combina-
tion of rows 2 and 5.

Fully-entropic obfuscation and fully-weak key security. We say that an MBPF obfuscator for independent mes-
sages isully entropicif it satisfiesa-entropic security for all super-logarithmic If we start with such an obfuscator,
the transformation produces an encryption scheme with scrsecurity for fully-weak keys (i.e. security for any
key distribution with super-logarithmic entropy).

To connect our neww-entropic definition to previous works, we show that any MBRFuscator that is fully-
entropic also satisfies the virtual black-box property, itavorks forany k, m. We note that the proof of this result
is trickier than it might seem, the main difficulty being tlathe case ofv-entropic security the simulator has the
bounda, whereas in the virtual black-box case no such bound exists.

Auxiliary input.  If we start from a leakage-resilient encryption w.r.t. diaxy input, then the resulting MBPF
obfuscator is secure with respect to auxiliary input as veslidefined in [15]. The converse is true as well.

KDM security.  All of the above equivalence results were stated with redpebe restricted notion of obfuscation
to independentnessages. Interestingly, the standard notion of MBPF ohfien provides the additional (and very
powerful) security guarantee for encryption wiiy-dependent messag&dM).

We say thatO is an «a-entropic (dependent message) MBPF obfuscé#tdrwithstands anyjoint distribution
on k, m where the projection distribution ok has min-entropy at least, and the message may depend on
k. Typically, we viewm as a function oft. Such an obfuscator is equivalent to @KDM semantically secure
encryption scheme, via the same transformations as before.

Multiple extensions. Finally, we note that the four extensions of the original reaction between obfuscation
and encryption can be achieved concurrently, with two daveRirst, when combining CPA and KDM security,
we require that the function connecting the message to theb&echosen non-adaptively prior to viewing any
ciphertexts. Second, we do not consider KDM security witkileury input.

1.2 Implications

We describe some implications of the above corresponderstdts. See Section 6 for more detalils.

Secure encryption w.r.t. (fully) weak keys. The known constructions af-weak key secure encryption schemes
require that the bound be chosen in advance, and then the scheme is constructetidmaseUsing our transforma-
tions, we get that, under the strong DDH assumption in [1@#,[10, 11] MBPF obfuscator provides an encryption
scheme that simultaneously achiewes/eak key security for all super-logarithmic functiomsThe main advantage
of this scheme is that the min-entropydoes not need to be chosen in advance.

We remark that the hardness assumption we use has a simitar-fl& explicitly makes an assumption for every
distribution with super logarithmic min-entropy. The dalgoint is however that the construction doex depend
ona and so it provides a tradeoff between the strength of thengstson and the strength of the obtained guarantee.



Impossibility for MBPF obfuscators and fully composable pant function obfuscators. Using our transforma-
tions, the negative result due to Haitner and Holensteihiftiplies that MBPF obfuscators cannot be proven secure
via a “black box reduction to standard cryptographic piives.” Since full MBPF obfuscators can be constructed
in a black-box way from fully composable point function offators [11], the impossibility carries over to this
primitive as well.

Constructing self-composable MBPF obfuscators with indepndent messages. Using our transformations, we
can use constructions of encryption schemes that are secutea-weak keys, to get self composable MBPF
obfuscators with independent messages. More specifivedlyconstruct self composable obfuscators for MBPFs
{I4r,m)} as long as the distribution of. is independent of the distribution & both distributions are efficiently
sampleable, and the distribution ohas min-entropyx.

1.3 Organization

Section 2 contains some basic definitions for obfuscatiah earcryption. Section 3 draws connections between
obfuscation and weak key encryption, for both semantic a8 §ecurity. Section 4 extends the connection to the
auxiliary input setting. Section 5 draws connections betwebfuscation and KDM encryption. Section 6 states the
implications that we draw from the general connections. &proofs are located in the appendices.

2 Definitions

2.1 Obfuscation of Point Functions with Multi-bit Output
Let (g my = {0,1}* U{L} — {0,1}* U L denote the function

m ifx=k
Tgem) (@) = { L otherwise

which outputs thenessagen given thekeyk, and L otherwise. Le = {I ,,) | k,m € {0,1}*} be the family of
all such functions, which we call the family pbint functions with multi-bit outpubr justmulti-bit point functions
(MBPF)for short.

Definition 2.1 (Obfuscation of Point Functions with Multi-bit Output). A multi-bit point function (MBPF)
obfuscator is a PPT algorithn® which takes as input valuéé, m) describing a function/(;, ,,,y € Z and outputs
a circuit C. We will abuse notation and writ®(1 ,,,)), but will always assume tha® getsk andm as clearly
delineated inputs.

Correctness: For all (k, m) € {0,1}* with |k| = n, |m| = poly(n), all z € {0,1}",

Pr(C(z) # Igm)(2) | C = O (j,m))] < negl(n)

where the probability is taken over the randomness of thesaaftor algorithm.

Polynomial Slowdown: For any k, m, the size of the circuil’ = O(I;, ,,)) is polynomial in|k| + |m)|.

Entropic Security: We say that the scheme ha@:)-entropic security if for any PPT adversaryd with 1 bit output,
any polynomial(-), there exists a PPT simulatdr such that for all jointly-distributed X, , Y., } ey WhereX, takes
values in{0, 1}", Y;, takes values if0, 1}*(™) and H..(X,,) > a(n), we have:

[P [A(O T my)) = 1] = Pr [T 0 (1) = 1] | < negl(n)

where the probability is taken over the randomnesgiofn) — (X,,,Y,,), the randomness of the obfuscat@rand
the randomness ofl, S. We say that a scheme hagdly-entropic security if it has «(n)-entropic security for all

a(n) € w(log(n)).



We relate the notion of fully-entropic security, defined adoto the standard security guarantee provided by
obfuscation called theirtual black-box property

Definition 2.2 (Virtual black-box property [6, 10, 25]). For any PPT adversaryd with 1 bit output and any
polynomialsp(-), £(-), there exists a PPT simulatd® such that for all distributiong X,,, Y, }.eny With X, taking
values in{0, 1}" andY, taking values in(0, 1}*(™), we have:

P2 LA m)) = 1] = Pr 570 (17) = 1] <

The probability is taken over the randomnessiafm) — (X,,,Y,), A, S, andO.

Note the differences between the fully-entropic definitiom the VBB definition: the former allows a different
simulator for each entropy threshold-), but requires a negligible error in simulation, while théda allows a
different simulator for each simulation-errp(-), but requires the simulator to work for all distributiongaedless
of entropy. Interestingly, we show that the fully-entromlefinition implies VBB (but don’'t know whether the
converse holds as well).

Theorem 2.1. If O is a MBPF obfuscator that satisfidslly-entropic security(as in Definition 2.1) ther® also
satisfiesvirtual black-box obfuscatiofas in Definition 2.2).

This theorem is proved in Appendix A. The idea is to extend tdwhnique used in [10] to show that a
distribution-based definition implies the virtual blackdqaroperty in the case of point functions. At a high level, the
distributional definition says that if a user chooses a keynfa well-spread distribution, then an adversary cannot
learn anything from an obfuscated point function beyonddbethat the key is from this distribution, so in particular
the key is hard to determine. We show how to extend the digioibal definition to the MBPF setting and prove that
fully-entropic security implies this distributional reigement, and therefore the virtual black-box property al.we

Fully entropic security, as well as virtual black box segyrare quite strong, and difficult to satisfy. The notion
of a(n)-entropic security, for some particula(n) € w(log(n)), corresponds to a meaningful weakening of that
notion where security is only provided when the input comemfa reasonably random source. A similar weakening
of obfuscation, in the special case of point functions, was eonsidered by Canetti, Micciancio and Reingold [12]
in the context of perfectly one-way hash functions.

Instead of restricting attention to distribution wittfn) min-entropy, one might instead give the simulator the
ability to ask its oracle more queries, by a factor26f® (i.e. the simulator is no longer polynomial time). In
Appendix B, we show that this alternative relaxed notioncimally implied bya-entropic security.

We consider several additional variants of obfuscatiooughout the paper. First, we propose an additional
weakening of the definition, which we call security fodependent messagesd where we require that the distri-
bution on the outputn is independent from that of the inplitfor a point function/;, ,,,).

Definition 2.3 (Independent Messages).We say that an obfuscat@ is «(n)-entropically securdor independent
messages we restrict the definition ofi(n)-entropic security only to distribution§X,,, Y;,} where X,, andY;, are
independenthdistributed. We define the notion fiflly-entropic security for independent messagaalogously.

We also define a stronger variant of plain obfuscation, wipidvides some&omposabilityguarantees. There
are two variants: Foiull compositionwe require that the security of obfuscation is preserved éhe adversary
gets (freshly and independently) obfuscated circuits fanynfunctions, where the various obfuscated functions
are related in arbitrary ways (i.e., both the keys and thesages may differ). Foself compositiorwe require
that all the obfuscated functions have the same value of ¢gekk That is, one should obfuscate the functions
Likmy)s - - > Le,me) With the same keyk but potentially different messages,, ..., m;. (For point functions, self
composition boils down to the case of many obfuscated vessié the same function.)

Definition 2.4 (Composability). A multi-bit point function obfuscato® with «(n)-entropic security is said to
be fully-composableif for any PPT adversary4 with 1 bit output, any polynomials-), ¢(-), there exists a PPT



simulatorsS such that for all distributions (X,,, ¥;,) }nen, whereX,, = XV, ... X, v, = vV, ... v, and
X" taking values inf0, 1}", ¥;{*) taking values in{0, 1}*™ and H..(X,) > a(n), we have:

where the probabilities are ovéky, ..., k;,my,...,m;) — (X,,Y,) and over the randomness 4f S, O.

If the above holds only for the distributions,, wherePr[k; = ky... = k] = 1, then we say tha© is
self-composable.

The notions of composability extend naturally to obfussatath fully-entropic security, where we require that
the above definition holds for afi(n) € w(log(n)). It also extends to obfuscators for independent messagesew
we restrict the definition to the case wheYg andY,, are independent. (It is stressed that there is no indeperelen
assumption among the coordinates wittip or Y;,.)

2.2 Definitions for Encryption with Weak Keys

A symmetric encryption scheme consists of efficient alpang (Enc, Dec).* We say that the encryption scheme
is semantically securor a(n)-weak keysf the usual notion of semantic security holds even when #hedomes
from any weak-source of entropy(n). We propose the following definition of symmetric key endigp with weak
keys.

Definition 2.5 (Symmetric Encryption with Weak Keys ). We say that an encryption scheme IG#A security
for a(n)-weak keys if there exists an efficient algoritiih, ¢) running in timepoly(n, ¢), such that, for all PPT
adversaries4 and all distribution-ensemble§X,, },,en With Ho (X)) > a(n), we have:

| Pr[CPA P (A, n) = 1] — Pr[CPAY P (A, n) = 1]| < negl(n)

where the game@PAg(’D(A, n) for b = 0,1 are defined via the following experiment:

1. k+— X,

2. Repeat:A submits a queryn and receives a ciphertextwhere:
In gameCPA ", the challenger sets — Ency,(m).
In gameCPA ", the challenger sets — D(n, |m|).

3. The output of the game is the outputf

The algorithmD(n, ¢) can keep persistent state during stage 2. We dsfneantic securitywith «(n)-weak keys
via the gamesSEMg(’D, SEMf’D, which are equivalent to the CPA gamesceptthat step (2) is performed only
once.

We say that an encryption scheme is CPA-secure (resp. seaipnsecure) forfully weak keys if it is CPA-
secure (resp. semantically-secure) securenfor)-weak keys for altv(n) € w(log(n)).

Note that, in case ofv(n) = n (i.e. uniformly random secret keys), the above definitioredggiivalent to
the standard notion of CPA/semantic security, since we taaya simply defineD(n,¢) to always output fresh
encryptionsEncy,(0%), wherek is initially chosen uniformly at random and re-used for aleges. On the other
hand, when considering(n)-weak keys, the above definition is somewhat stronger thsinrgguiring that the
adversary cannot distinguish between an encryptiom @ind that of some set message, such‘adn particular,
it requires that there is a singlmiversaldistribution D on ciphertexts, which is indistinguishable from encryptio
with any key distribution X,, of sufficient entropy. For example, consider an encrypticheme which, along
with the ciphertext, always outputs the first bit of the se&ey. Although such scheme might satisfy a natural
definition where encryption of,y andm; are indistinguishable, it could never satisfy the abovenitadn, even for
a(n) = n — 1. The reason is that the ciphertext distribution is now d#fe depending on whether the keys come
from a distribution that fixes the first bit atversus one which fixes the first bit &t Although our definition is

“That is, the key generation algorithm is implicit and is ased to always generate a uniformbit string.



stronger than one may need, we will show that it is necessatsafficient for our equivalence with obfuscation to
hold. Moreover, all natural constructions of encryptiohesmes with weak-keys that we know of achieve the above
definition.

We also define a “wrong-key detection” property, which wal fieeded to achieve correctness in obfuscation.

Definition 2.6 (Wrong-Key Detection). We say that an encryption scheme satisfieswtung-key detectioiprop-
erty if for all k # &’ € {0,117, all m € {0, 1}P°Y(™), Pr[Decys (Ency(m)) # L] < negl(n).

We note that a similar, but weaker, property called confusieeness, was defined in [23]. For confusion free-
ness, the keys, &’ are random and independent, while we consider a worst-t¢eseecofk, k' and the probability
above is only over the randomness of the encryption scheme.

Lemma 2.1 shows that, in the case of semantic security, wkegigletection can always be achieved via a simple
transformation. We note, however, that this transfornmatio longer works in the case of CPA security.

Lemma 2.1. Let (Enc,Dec) be a semantically-secure encryption schemed@u)-weak keys and let{ be a
pairwise-independent permutation family. Define an erntaypschemé&Enc’, Dec’) by:

Enc, (m) £ Choose:h < H,r « U,
neplm) = Output: (r, h, c = Ency,, (r]|m))

Compute:(r’||m’) = Decy,y(c)
Output: m’ if v = r and L otherwise

Dec,((r, h,c)) = {

Then(Enc’, Dec’) is a semantically-secure encryption schemedtn)-weak keys, witlivrong-key detection The
above also holds if we replacey(n)” with “fully”.

Proof. Let us first show that the modification preserves semantiargdor «(n)-weak keys. LetD(n, ¢) be the
distribution for which the semantic security @nc, Dec) is satisfied, and defin®’(n, ¢) = D(n, ¢+ n). Then, for
any adversaryd attacking the modified schenfenc’, Dec’), and any distribution-ensemb{eX,, } ,cn we have

IPr[SEMy (A, n) = 1] — Pr[SEM; (A, n) = 1]]

m «— A(1") m «— A(1")
= |Pr| 7 Uy h « Hk « Xy, ¢+ Encygy(r|jmo) | —Pr | ¢« D'(n,m)= D(n,|m|+n)
A(1%e) =1 A1", ) =1
m,— A(1") m— A(1")
< max Pr| k< h(X,),c < Encg(r|lm) | —Pr | ¢« D(n,|m|+n)
re{0.1ymhen A1, e) =1 A1 ¢) =1
< negl(n) 1)

where the last inequality simply follows from the semarstgzurity of the originalEnc, Dec) scheme and noting
that, for any fixed permutatioh, the distribution’(X,,) has the same entropy &5,.

Now we show that modified scheme haong-key detectianAssume otherwise, that there is some polynomial
p(-) and infinitely many values for which there exist& # k' € {0,1}", m € {0, 1}*°¥() such that

Pr[Dec}, (Enci(m)) # L] = Pr [Decy(y)(Encyg (r]lm)) has a prefix]

h—H,r<—Upy
kHUmle%n%Un[Deck/(Enck(r||m)) has a prefix] > p(n) 2
We now show that (2) contradicts the semantic securiffo€, Dec) (even for uniform keys). In particular, consider
an adversary4 which queries the challenger on the messages= r||m, for a randomr and for them which
contradicts correctness and satisfies (2). On imptite adv..A picks a randonk’ — U,, and outputd iff Decy/(c)
begins withr. By (2), we see that in the semantic-security gashgVl, (where the encryption is of the message
m) A outputsl with probability p(n). On the other hand, iFEM;, no matter what distributioD the challenger

7



samples from, the result is independent-and therefore, the probability that outputsl is the probability that
Decy/ (Ency(myg)) begins withr, which is at most /2". Therefore the adversard has a non-negligible advantage
in the semantic-security game (for amy, which gives a contradictior

3 Encryption with Weak Keys and MBPF Obfuscation

3.1 Sem. Sec. Encryption and Obfuscation with Independent kEssages

In this section, we show equivalence between semanticadiyre encryption with weak keys and MBPF obfuscators
for independent messages

Theorem 3.1. Leta(n) € w(log(n)). There exist MBPF obfuscators witt{n)-entropic security for independent
messages if and only if there exist semantically secureyption schemes with wrong key detectionddn )-weak
keys. Furthermore, the above also holds if we replaeé)” with “fully”.

We prove the “if” and “only if” directions in Lemmas 3.1 and23respectively.

Lemma 3.1. Leta(n) € w(log(n)) and letO be a MBPF obfuscator with(n)-entropic security for independent
messages. Ldnc,(m) = O(L(k,m)), Deci(C) £ C(k) where the ciphertex® is interpreted as a circuit. Then the
encryption schemgEnc, Dec) is semantically secure witl(n)-weak keys and has the wrong-key detection property.

Proof. The correctness of decryption follows from the correctreéssbfuscation. For the security of the encryption
scheme withn(n)-weak keys. Fix any adversard and any distribution{ X, },en with Ho(X,,) > «a(n). The
distribution{Y,, } is defined by runningd(1") and outputting the messagethat.4 gives to its challenger. Define
the distributionD(n, £) = O(I;, ) Where(k, m) « (U,, U;). Then, by thex(n)-entropic security of obfuscation,
there must be a simulatdf such that

PrSEMYXP (A, n) = 1] — Pr[SEMP (A4, n) = 1]‘
| P RO = 1= P AU m)) = 1]
< | B MO = 1= Pr | [sTemOn) - 1]' ©)
o) 3& . [STem) (17) = 1] — o) f(run,w,) [Slkm) (17) = 1]' (4)
o f(rUn,Ug) [STtem) (17) = 1] — o f(rUmUe) [AOIk,my)) = 1]' (5)
< negl(n)

where (3),(5) follow by the definition of entropic security abfuscation, and (4) follows since the only way that
a PPT simulator can get anything from its oracle is by queryiron the inputk, which happens with negligible
probability whenk comes from a source of super-logarithmic entrogy:). O

Lemma 3.2. Let (Enc,Dec) be an encryption scheme with semantic securitydftr)-weak keys and with the
wrong-key detectiorproperty. We define the obfuscatér which, on input/ ,,,), computes a ciphertext =
Enci(m) and outputs the circuit’,(-) defined byC.(z) £ Dec,(c). Then the obfuscato® has a(n)-entropic
security for independent messages.

Proof. First, we show the correctness property of the obfuscator.kFr € {0,1}" andm € {0,1}P°Y (™) |f
k = x then
Pr[C(z) # L m)(7) | C O (3,m))] = Pr[Decy(Encg(m)) # m| < negl(n)



by the correctness of encryption. On the other hank #f = then
Pr[C(x) # L(jm) (%) | C + O(I(}m))] = Pr[Decy(Ency(m)) # L] < negl(n)

by thewrong-key detectioof encryption.

The polynomial slowdown property of the obfuscator follofr@m the fact that the size of the circuit is only
proportional to the ciphertext size and the size of the dewg circuit, which are polynomial ifk|, |m|.

Lastly, we showx(n)-entropic security for independent messages. IDét, ¢) be the distribution defined by
the semantic-security of the encryption scheme. For anynpohial /(n) any PPT adversaryl which attacks the
obfuscation scheme, we define the simul&aevhich chooses a random ciphertextom the distributionD(n, £(n))
and runsA on a circuitC,. constructed using the ciphertextThen

— _ r Eom) (17 14) —
(k,m)ig(n,Yn) [A(O(I(k,m))) =1] (k,m)an,Yn) [SR (17,17) 1} ‘ (6)
= [prfaccy =1 | B S U | ey = 11 e D)

< negl(n) (7)

Where (7) follows by semantic-securityl

3.2 CPA Encryption and Composable Obfuscation for Indep. Mssages

In this section, we show equivalence between CPA secure/etiam with weak keys and self-composable MBPF
obfuscators foindependent messages

Theorem 3.2. Leta(n) € w(log(n)). There exisself-composableMBPF obfuscators witlx(n)-entropic security
for independent messages if and only if there eRBA secure encryption schemes fo(n)-weak keys and the
wrong-key detection property. The above also holds if wiaoeg'«(n)” with “fully”.

We prove the two sides of the “if and only if” separately. Finge show that composable obfuscation implies
encryption (Lemma 3.3) and then we show that encryptionigspibfuscation (Lemma 3.4).

In the next lemma, going from obfuscation to encryption, dud be natural to definBncy,(m) = O([(;m))-
However, we instead defirincy.(m) = (O({ (), m @ r) for a uniformr. The reason for this is that the messages
m chosen by the adversary in the CPA game can depend adapivelsior ciphertexts. However, for composable
obfuscation, the distributions; of the messages,; are independent of prior obfuscated circuits. We get ardiisd
by making sure that the obfuscation is applied to a randommeval

Lemma 3.3. Leta(n) € w(log(n)) be an arbitrary function. Le® be aself-composableMBPF obfuscator with
a(n)-entropic security for independent messages. We défime Dec) by

Enci(m) £ (O(Ij,)m & 1) , Deck(C.y) 2 C(k) @y

wherer is uniformly random, and’ is interpreted as a circuit. The resulting encryption scledsCPA secure with
a(n)-weak keys.

Proof. The correctness of decryption, and the wrong-key detegiroperty, follow from the correctness of ob-
fuscation. For the CPA security of the encryption schemé wit:)-weak keys, we define the distributidi(n, ¢)
which chooses a uniformly randoin« U, in the beginning, and then, on each invocation, output® (1 ,/)))
for uniformly random and independentr’ < U,. We need to show that for all PPT adversariésand all
distribution-ensemble$ X, },,cny With Ho (X,,) > «(n), we have:

| Pr[CPA; " (A, n) = 1] — Pr[CPA " (A, n) = 1]| < negl(n) (8)

for the CPA attack game defined in Definition 2.5.



Fix a PPT adversaryl and lett be an upper-bound on the number of queries thaends to its encryption oracle
(including the challenge query). Then there are some valfige random coinéry, ..., ;) used by the encryption
algorithm during the computation of ciphertexts © m, [ ,,)) that maximizes the difference in equation (8). For
this value, set the distributiodél(o), . ,Yt(ﬂ to the point-valuesy, ..., r;. Set the distributionsfl(l), . ,Yt(l) to
be uniform on{0, 1}*. We define an adversaly,, . ,,)(C1,...,C;) that attacks the obfuscation scheme. Namely,
B simulates the CPA game witl so that, whenever queries its oracle on messages or asks for a challenge
ciphertext (fori = 1,...,t), the adversary3 responds with(C;,r; & m;). Notice that, wherC1,...,C; are

obfuscations of points;, ..., r; < Yl(o), . ,Yt(ﬂ under a random — X, then the above simulation is equivalent
to CPAé(’D. On the other hand whef, . . ., C; are obfuscation of uniformly random, . ..,r; «— Yl(l), . ,Ytﬁ
under a uniformly random kely — Uy, then the above is equivalent @&PA;".

Therefore,

| Pr[CPA; " (A, n) = 1] — Pr[CPAY P (A, n) = 1]]

(kori,. ) — X0, 1070

B(Cy,...,C¢) =1 v
(Ch,....C) Ci — O ()

§‘ Pr

(kyre, o) — Un, YO v

—Pr t+1
Ci — O(I (1))

B(Ch,...,Cp) =1

< negl(n)

where, the last inequality follows since, by the definitidrself-composable obfuscation, there is a simulator that
simulates both sides of the difference equivaleriily.

The other direction is shown via the same construction dsaritase of semantic security.

Lemma 3.4. Let(Enc, Dec) be an encryption scheme wiltPA security fora(n)-weak keys and having theong-
key detectiorproperty. We define the obfuscatOGrwhich, on input/(, ,,,), computes a ciphertext= Ency(m) and
outputs the circuiC.(-) defined byC.(z) = Dec,(c). Then,O is aself-composableMBPF obfuscator withx(n)-
entropic security for independent messages.

Proof. The correctness and polynomial slowdown properties foftmam the same argument as that in the proof of
Lemma 3.2.

We show thatO is self-composable witlx(n)-entropic security for independent messages. For any PPT ad
versary A and for anyt = poly(n),¢ = poly(n), we define the simulata$ which, on inputl”™ chooseg ran-
dom ciphertexts:, ..., ¢, from the distributionD(n, ¢) as defined by CPA encryption, and rudson a circuits
(Cqy, ..., C,,) constructed using the ciphertexts ..., c; . Then, for any distribution ensembl{eX,, } ,eny Where
X, is distributed ovef0, 1} with H.,(X,,) > a(n), andt messagesiy, ..., m; € {0,1}(™) we have

[PrLA(O Uy )s- s On,)) = 1| = Xy] = Pr [ STkl (17,1F) = 1] |

IN

Pr [A (Cy) =1 beXn ] CPr[A{CY) = 1 | {e; — Dm0}y ]

< negl(n)

where the last inequality simply follows from CPA security.
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4 Encryption/Obfuscation with Auxiliary Input

In this section we define semantic/CPA secure encryptiim auxiliary input familyF, where the adversary gets to
learn f (k) for any f € F.° Similarly, we define (self-composable) MBPF obfuscatiothveiuxiliary input family
F, where the adversary and simulator both §gt) for somef € F and the obfuscated poikt(we only consider
this notion for obfuscation with independent messages)h Botions can be defined far(n)-weak keys as well as
fully weak keys. Then, we show that all of the results of SBt8 extend naturally to the auxiliary input setting.

4.1 Definitions

Definition 4.1 (Symmetric Encryption with Weak Keys and Auxiliary Inputs). We say that an encryption
scheme ha€PA security for «(n)-weak keys and auxiliary inputs A if there exists an efficient algorithi(n, £)
running in timepoly(n, ¢), such that, for all PPT adversaried and all distribution-ensemble$.X,, },cn with
Ho(X,) > a(n), we have:

| Pr[CPA P (A, n) = 1] — Pr[CPAY " (A, n) = 1]| < negl(n)
where the game@PA‘Z(’D(A, n) for b = 0,1 are defined via the following experiment:

k— X,

A submits a functiorf € F and gets backf (k).

Repeat.A submits a queryn. Setcy < Enci(m), ¢1 < D(n,|m/|) and givec, to A.
The output of the game is the outputbf

rwbdPE

We definesemantic securitywith a(n)-weak keys and auxiliary inputs iff via the gameSEM, " SEM; ",
which are equivalent to the CPA gamesceptthat step (3) is performed only once.

Definition 4.2 (Self composability). A multi-bit point function obfuscato®© with «(n)-entropic security with
auxiliary inputs fromF is said to beself-composablef for any PPT adversaryd with 1 bit output, any polynomials
t(-),4(-), there exists a PPT simulat& such that for everyf € F and all distributions{(X,, Y,,) }nen, Where
Y, =, v, and X, taking values in{0,1}", V;\" taking values in{0, 1}*™ and Ho(X,,) > a(n), we
have:

| PrLA(f(K), O rom))s - - - » OUgmy))) = 1] — Pr[STtemn Olim O f (), 1) = 1]| < negl(n),

where the probabilities are ovéky, ..., k;,my,...,m;) — (X,,Y,) and over the randomness 4f S, O.

The notion of self composability extends naturally to otditsrs with fully-entropic security, where we require
that the above definition holds for all(n) € w(log(n)). It also extends to obfuscators for independent messages,
where we restrict the definition to the case wheéfg and Y,, are independent. (It is stressed that there is no
independence assumption among the coordinates wihior Y,,.)

4.2 Sem. Sec. Encryption and Obfuscation with Independent Elssages

In this section, we show equivalence between semanticattyre encryption with weak keys and auxiliary inputs
and MBPF obfuscators with auxiliary inputs fimdependent messages

Theorem 4.1. Leta(n) € w(log(n)) and letF be a family of efficiently computable functions. There eMBPF
obfuscators that arev(n)-entropic secure with auxiliary inputs froft, for independent messages, if and only if
there exist semantically secure encryption schemeas (foj-weak keys and auxiliary inputs froff, that also have
the wrong key detection property. Furthermore, the abose hblds if we replace(n)” with “fully”.

SThis is only interesting for familie where eachf € F is hard to invert, as otherwisg (k) completely reveal& and no security is
possible. Often, it makes sense to restfiatnuch further, such as requiring thitk) is exponentially-hard to invert.
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The proof of the above theorem is very similar to that of TkeoB.1. As before, we prove the “if” and “only
if” directions separately, in Lemmas 4.1 and 4.2, respelstiv

Lemma 4.1. Leta(n) € w(log(n)) and letF be a family of efficiently computable functions. ebe a MBPF
obfuscator that isx(n)-entropic secure with auxiliary inputs froif, for independent messages. [Eeic;(m) =
O(L(k,m)), Deck(C) £ (C(k) where the ciphertext is interpreted as a circuit. Then the encryption scheme
(Enc, Dec) is semantically secure with(n)-weak keys and auxiliary inputs frorf, and has the wrong-key de-
tection property.

Proof. The correctness of decryption follows from the correctreéssbfuscation. For the security of the encryption
scheme withn(n)-weak keys and auxiliary inputs i Fix any adversary4d and any distribution{ X, },,cn with
H(X,) > a(n). The distribution{Y,, } is defined by runningd(1™), and outputting the messagethat.A gives
to its challenger, after obtaining some auxiliary ingk).

Define the distributionD(n, £) = O(I ) where(k',m’) « (Un, Uy). Then, by then(n)-entropic security
of obfuscation w.r.t. auxiliary inputs fror#, there must be a simulatér such that

PrSEMYXP (A, n) = 1] — Pr[SEMP (A4, n) = 1]‘

= | Py AU O =11 = Pr - TAG(R), O ) = 11\

< | P AU O = 1= P ST () = 1] ©
. 31;( - [STtm) (f(k)) =1] — (k’,m’)EIEUn,Ug) [SIW’"L” (f(k)) = 1} ‘ (10)
P ST (£ () = 1] - o Pr ) AU ), Ol ) = 1}' (11)

< negl(n)

where (9) follows by the definition of entropic security offescation with auxiliary inputs; (10) follows since the
only way that a PPT simulator can get anything from its oralby querying it on the inpuk, which happens
with negligible probability wherk comes from a source of super-logarithmic entregy); and (11) follows by the
definition of entropic security of obfuscationl

Conversely, we show than an encryption scheme with the wkeggletection property implies obfuscation.

Lemma 4.2. LetF be a family of efficiently computable functions. [tc, Dec) be an encryption scheme with
semantic security fot(n)-weak keys and auxiliary inputs frof, that has thevrong-key detectiomproperty. We
define the obfuscata® which, on input/(; ,,,), computes a ciphertext= Ency(m) and outputs the circuiC.(-)
defined byC,(z) £ Dec,(c). Then the obfuscata® with auxiliary inputs fromF has«(n)-entropic security for
independent messages.

Proof. The proof of correctness and polynomial slowdown of the stéitor follows exactly the proof of Lemma 3.2.
We next show that the obfuscatordgn )-entropic secure with auxiliary inputs froff, for independent messages.
Let D(n,¢) be the distribution defined by the semantic-security of tiaygption scheme. For any polynomidh)
any PPT adversaryl which gets an auxiliary inpuf (k) (for somef € F) and attacks the obfuscation scheme, we
define the simulatof which chooses a random cipherteXtom the distributionD(n, ¢(n)) and runsA on a circuit

C. constructed using the ciphertextThen,

P k), O(I =1| — P Sl(k,m)(') ARK 19 =1 12
oy E, g AT (8), O m))) = 1] (k,mw&n,m[ (f(k), 17,17 ] (12)

kE,m) — (Xp,Y,)
¢ «— Enci(m)

Py [A<f<k>, cy=1] ¢ } CPEAF(R).C) =1 e e D<n,m\ < negl(n) (13)
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Where (13) follows by semantic-securify.

4.3 CPA Encryption and Composable Obfuscation for Indep. Mssages

In this section, we show equivalence between CPA secureygimm with weak keys and auxiliary inputs, and
self-composable MBPF obfuscators with auxiliary inputsifmependent messages

Theorem 4.2. Leta(n) € w(log(n)) and letF be a family of efficiently computable functions. . Theretexis
self-composableMBPF obfuscators that are((n)-entropic secure with auxiliary inputs frodf, for independent
messages, if and only if there ex@&PA secure encryption schemes fom)-weak keys and auxiliary inputs frof,
that have the wrong-key detection property. The above alkishif we replace &(n)” with “fully”

The proof of the above theorem is very similar to that of TkepB.2. We prove the two sides of the “if and only
if” separately. First we show that composable obfuscatidth auxiliary inputs implies encryption with auxiliary
inputs, (Lemma 4.3) and then we show that encryption withliamyx inputs implies obfuscation with auxiliary
inputs (Lemma 4.4).

Lemma 4.3. Leta(n) € w(log(n)) be an arbitrary function and lef be any family of efficiently computable
functions. Le®O be aself-composableMBPF obfuscator that is(n)-entropic secure with auxiliary inputs froff,
for independent messages. We define the encryption furmtion

Enci.(m) 2 (O(I k), m @),
wherer is a random message. We define the decryption function by
Deck(C,y) £ C(k) @ v,

whereC' is interpreted as a circuit. Then, the resulting encryptsmheméEnc, Dec) is CPA secure withy(n)-weak
keys and auxiliary inputs fror#.

Proof. The correctness of decryption, and the wrong-key detegioperty, follow from the correctness of ob-
fuscation. For the CPA security of the encryption schemé wiin)-weak keys and auxiliary inputs frofi, we
define the distributionD(n, ¢) which chooses a uniformly randoki < U,, in the beginning, and then, on each
invocation, output$O (I ,+),r) for uniformly random and independent”’ «r U,. We need to show that for all
PPT adversariegl and all distribution-ensemblgsX, } ey With Hoo(X5,) > a(n), we have:

| Pr[CPA; " (A, n) = 1] — Pr[CPA (A, n) = 1]] < negl(n) (14)

for the CPA attack game defined in Definition 4.1.

Fix a PPT adversaryl and lett be an upper-bound on the number of queries thatends to its encryption
oracle (including the challenge query), and fete F be the auxiliary input tha#d takes. Then there are some
values of the random coing+, ..., ) used by the encryption algorithm during the computation iphertexts
(L(,m), m: & m) that maximizes the difference in equation (14). For thisigaket the distribution)s’l(o), o ,Yt(o),
to the point-values, ..., ;. Setthe distributionéfl(l), . ,Y;(l) to be uniform on{0, 1}¢. We define an adversary
B, ...y (f(k),C1, ..., Cy) that attacks the obfuscation scheme. Nam@lsimulates the CPA game with so that,
wheneverA queries its oracle on messages or asks for a challenge ciphertext (foe 1, ... ,t), the adversarB
responds wit{ C;, r; @& m;). Notice that, wherC1, ..., C; are obfuscations of points, ..., r; «— Yl(o), . ,Yt(o)
under the ke (which was chosen according £6,,) then the above simulation is equivalentG@Ag(’D. On the
other hand wheid, ..., C; are obfuscation of uniformly random, ..., r, «— Yl(l), o ,Y;(l) under a uniformly
random keyk’ — Uy, then the above is equivalent @PA; .

Therefore,
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| Pr[CPAYP (A, n) = 1] — Pr[CPAY P (A, n) = 1]]

kyri, .. r) — Xn, VO O
< ' Pr |B(f(k),Ch,....C) =1 Ci)<—0(1(k,:i)) :
k— X,
—Pr |B(f(k),C1,...,C) =1 | (K.7,....r)— U, vV, vV
Ci = O 1))
< negl(n)

where the last inequality follows from the definition of seimposable obfuscation with auxiliary inputs, since
there exists a simulator for both cases, and these simsilatput the same thing, since they cannot tell their oracles
apart.0

The other direction is shown via the same construction asditase of semantic security.

Lemma 4.4. LetF be a family of efficiently computable functions. [tc, Dec) be an encryption scheme with
CPA security fora(n)-weak keys and auxiliary inputs frofi. In addition assume thdEnc, Dec) has thewrong-
key detectionproperty. We define the obfuscator which, on input/(;, ,,,, computes a ciphertext = Enc(m)
and outputs the circuiC.(-) defined byC.(x) = Dec;(c). Then,O is a self-composableMBPF obfuscator for
a(n)-entropic secure and auxiliary inputs A, for independent messages.

Proof. The correctness and polynomial slowdown properties foftmm the same argument as that in the proof of
Lemma 3.2.

We show thatO is self-composable fot(n)-entropic security and auxiliary inputs frorf, for independent
messages. For any PPT adversdrand for anyt = poly(n), ¢ = poly(n), we define the simulata$ which, on
input 1™ chooseg random ciphertexts, ..., ¢; from the distributionD(n, ¢) as defined by CPA encryption, and
runs.A on a circuits(C., , . . ., C¢,) constructed using the ciphertexis . .., ¢; . Then, for any distribution ensemble
{ X, }nen WhereX,, is distributed ovef0, 1} with H.,(X,,) > a(n), andt messagesu,, ..., m; € {0,1}) we
have

PrLACF(R), Okmy )+ Okm,)) = 1| k= Xy] = Pr [ SThomeiome (£(k), 17,1%) = 1] |

k— X,

<
- {ci — Enc(mg)}i_,

Pe [A (109, 1C. Y = 1

< negl(n)

:| —Pr ["4 (f(k)’{ccz'}gzl) =1 | {Ci — D(n,f) 2:1]

where the last inequality simply follows from CPA security.

5 KDM Encryption and MBPF Obfuscation

5.1 Semantically Secure KDM Encryption and Obfuscation

In this section, we show equivalence between encryptioh keiy dependent messad&® M) and obfuscation with
dependent messages. First, we define the notion of senlbntieaure KDM encryption withy(n)-weak keys.

Definition 5.1 (Semantic KDM Encryption with Weak Keys). A symmetric encryption scheniEnc, Dec) is
semantically secure fdey dependent messages (KDMgnd «(n)-weak keysf there exists a distributio (n, ¢),
which is efficiently sampleable in timsly(n,¢), such that for all functionsf, all PPT adversaries4, and all
distribution-ensemble§ X, },,en With Ho (X)) > a(n), we have:

| Pr[KDM; " (A, n) = 1] — Pr[KDM{"P (A4, n) = 1]| < negl(n), (15)
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whereKDMf’D(A, n) is defined via the following experiment:

k— X,
co < Encg(f(k)),c1 « D(n,¢) wherel is the output size of.
Output: A(cp)

Note that, unlike standard definitions of KDM security, oefidition is stronger in that we do not necessarily
insist thatf is an efficient function. We now show that semantically seamcryption with KDM and weak key
security is equivalent to MBPF obfuscation.

Theorem 5.1. Leta(n) € w(log(n)). There exist MBPF obfuscators witt{n)-entropic security for thetandard
notion of dependent message$ and only if there exist semantically-secl®M encryption schemes witl(n )-
weak keys and the “wrong-key detection” property. In partg, the above also holds if we replace()” with
“fully”.

The proof of the above theorem is very similar to that of Tkeni3.2. We simply observe that allowing the
adversary to get encryptions of valuggk) corresponds to having a distributidn, that depends orX,,; that is
Y, = f(X,). Conversely, for any joint distributiod X,,,Y,,}, we can define some (probabilistic, and possibly
inefficient) functionf so thatY,, = f(X,). We give the details below. Again, we prove the two sides ef‘thand
only if” separately. First we show that obfuscation implil®M encryption in Lemma 5.1 and then we show that
encryption implies obfuscation in Lemma 5.2.

Lemma 5.1. Leta(n) € w(log(n)) be an arbitrary function. Le© be a MBPF obfuscator with(n)-entropic

security. We define the functiofsc,(m) = O(I( ), Deck(C) = C(k) where the ciphertext is interpreted

as a circuit. The resulting encryption scherttinc, Dec) is semanticallKkDM secure witha(n)-weak keys and
wrong-key detection.

Proof. The correctness of decryption follows from the correctregssbfuscation. For the security of the resulting
KDM encryption scheme witly(n)-weak keys, let us fix any adversady, function f, and distribution{ X, },,ex
with H.(X,,) > a(n). DefineY,, = f(X,). By the entropic-security of obfuscation wittependentmessages,
there exists a simulatd such that:

|Pr[KDMy(A,n) = 1] — PriKDM; (A, n) = 1]|

Pr [AOUgm)) =1~ Py [A(ou(k,ozm:u\

(ksm) (X7, Yn) kX,
S P o myn)[A(O(f@,m))) =1 - . S [SI(W(')(l"“‘, 19 = 1]‘ (16)
L gm Pi [87 (150) = 1] = P[00 (1811) =1 an
b [Py s (190 = 1) - Py (4@ = 1] a9
< negl(n)

where (16),(18) follow by the definition of entropic secyriif obfuscation with dependent messages, and (17)
follows since the only way that a PPT simulator can get angttifom its oracle is by querying it on the inpk
which happens with negligible probability whércomes from a source of super-logarithmic entrogy). O

Lemma 5.2. Let(Enc, Dec) be an encryption scheme wisemantic KDM security fora(n)-weak keys and with
theywrong-key detectiorproperty. We define the obfuscatOrwhich, on input/(;, ,,,j, computes a ciphertext =

Enci(m) and outputs the circuit’,(-) (with hard-coded ciphertext) defined byC.(x) = Dec,(c). Then the
obfuscatorO hasa(n)-entropic security for dependent messages.
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Proof. For any PPT adversary, we define the simulataf which, on inputl”™, finds the message siZeby
querying thel, ,,,) oracle on L, chooses a random ciphertexfrom the distributionD(n, ¢) as defined by the
pseudorandom ciphertexggoperty, and runsd on a circuitC, constructed using the ciphertext Then, for any
distribution ensemblé¢X,,, Y,, },en WhereX,, is distributed ovef 0, 1}" with H,,(X,,) > «(n), define the function
f (k) which, on inputk, outputs a random sample from the distribut{dfy | X,, = k) of Y,, conditioned onX,, = k.
Note that this function may not be efficient (but our defimitmf KDM encryption allows this). Then

=1] — T () (17 1) =
Gy AOTEm) =1 = Fr ) [SEmPAn1 1”

k— (X,
= [A(CC) =1 c — Enc(k(f()k)) } —Pr[A(C,) =1]c+ D(n,@)]‘ < negl(n)

|

5.2 Multi-KDM Encryption and Self-Composable Obfuscation

In this section, we explore a notion of CPA security with KDNMdaweak-keys. We essentially show results analo-
gous to those in Section 3.2 connecting CPA encryption (wittiKDM) to obfuscation with independent messages,
but only if we restrict ourselves to a non-adaptive attaskbo chooses the functiofi of the secret key prior to
seeing any ciphertexts.

Definition 5.2 (Multi-KDM Encryption with Weak Keys). A symmetric encryption scherfienc, Dec) is Multi-
KDM securefor a(n)-weak keysf there exists a distributiorD (n, £) such that for any < poly(n), any functions
f1,--., ft, any PPT adversary, and any distribution-ensembleX,, },,cn wWith H(X,,) > «a(n), we have:

|Pr[A(Enck(f1(k)),...,Encip(fe(k)) = 1] — Pr[A(co,...,ct) = 1| ¢ <« D(n,¥;)]| < negl(n),
where/; is the output size of;.

Theorem 5.2. Leta(n) € w(log(n)) be an arbitrary function. Le© be a self-composable MBPF obfuscators with
a(n)-entropic security (for dependent messages). We definantmgpgion function by

Enck(m) £ O(Ixm),
and the decryption function by
Deck(c) £ C(k)’

where(C' is interpreted as a circuit. Then the resulting encrypti@heame(Enc, Dec) is multi-KDM secure with
a(n)-weak keys.

Proof. The correctness of decryption follows from the correctrafssbfuscation. For the multi-KDM security
of the encryption scheme, fix aty< poly(n), any poly-size circuitsfy,..., fi, any PPT adversary, and any
distribution-ensemblé X, },,cn With Hoo (X)) > a(n).

Pr [A(Enci(fi(k)). ... Enci(fi(k))) =1] — P

r T

kfgf [A(O(I(k,fl(k;)))a ceey O(I(kaf(k)))) = 1] - kfg(' ['A(O(I(k,oel))’ ceey O(I(k,Oéi))) = 1]' < negl(n)

[A(Enci(01), ... Ency(0%)) = 1]‘ —

where the latter equation follows from the fact tidats a self-composable obfuscator w.r.t. dependent messages
hence, if the probability ofd outputtingl was non-negligibly different between the left and righttisides above,
than there would be a PPT simulator that could distinguishathove distributions, but that cannot be the case.
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Theorem 5.3. Let (Enc, Dec) be an encryption scheme withulti-KDM security fora(n)-weak keys and with
the wrong-key detectiomproperty. We define the obfuscatorwhich, on input/(;, ,,,), computes a ciphertext =
Enci(m) and outputs the circuiC,(-) (with hard-coded ciphertext) defined byC.(z) = Dec,(c). Then,O is a
self-composableMBPF obfuscator withy(n)-entropic security for dependent messages.

Proof. First, the correctness property of the obfuscator and thepmial slowdown property follow the same way
as in the proof of Lemma 3.1.
We must show tha® is self-composable witly(n)-entropic security for dependent messages. For any PPT
adversaryA and for anyt < poly(n), we define the simulato§ which, on inputl™, finds the message size
¢ by querying thel;. .,y oracle onL, choosest random ciphertextg,...,c; from the distributionD(n, () as
defined by the the multi-KDM security definition, and rudson a circuits(C.,, ..., C.,) constructed using the
ciphertext3c1, ..., ¢ . Then, for any distribution ensembleX,, },,cny Where X, is distributed over0, 1}" with
H(X,) > a(n), andt functionsfy, ..., f;, we have

Pr [AO(k yx))s - - OU gi1)) = 1| b — Xp] —Pr [51’“”‘1"“)"”’[’““(’“)(1”7 1) = 1} ‘

k — Xn
|: 017 ) =1 C; Enck(fz(k))

IN

] —Pr[A(C,,,...,Ce) =1|c¢; — D(n,ﬁ)]‘
< negl(n

where the last mequallty follows from the fact that the gption schemé&Enc, Dec) is multi-KDM secure.0

6 Implications

We now show how to use the above equivalence results betwesppgion with weak keys and obfuscation of
multi-bit point functions to derive new results in both ditiens.

6.1 Encryption with Fully Weak Keys

Encryption with «(n)-weak keys vs. fully-weak keys. Prior work on leakage-resilient encryption and encryption
with weak-keys has given results of the following form:

1. Fix any constant > 0 and leta(n) = n°.

2. Construct an encryption scheme, which depends and achieves security far(n)-weak keys.

We note that there are several issues with the above twaagt@pach. Firstly, we may not know the exact level of
key-entropy, or correspondingly the valuesopfat design time. Therefore, in practice, it may be difficaldecide
on whate to use when choosing the encryption scheme. A scheme whidbsigned for some specificdoes
not provide any security guarantees for key-distributiof®se entropy is strictly less thaii, and so we may be
tempted to be conservative with the choice @it design time. On the other hand, when taking an excessweh}
value of¢ in the above constructions, we are forced to reduce the -aeactrity of the system (e.g. working in a
group of description-length?) or reduce the efficiency of the system proportionally with¢, leading to poorer
security or performance even if the system is later only wsigd uniformly random keys! Secondly, none of the
prior results generalize to allow for specific super-loteic entropy thresholds such agn) = log! ¢ (n), even if
e is specified a-priori.

In contrast, an encryption scheme with security for fullgak keys provides the corresponding advantages.
More specifically, the order of quantifiers now requires thate is asingle encryption schemparameterized only
by the security parameter (but not by ¢), which simultaneously achieves security for@ll:) € w(log(n)). The
exact-security of the scheme may depenchén) (since there is always a way to break the scheme in #iftf¢),
but this relationship is now more fluid, with the exact-séguyracefully degrading for smallet(n). In particular,
the security guarantees are meaningful evenfar) = log! ¢ (n), and there is no single threshold above which the
scheme is secure and below which it is insecure. This is dfisignt advantage, as it does not require one to decide
at design time on the tradeoff between allowed entropy $eaptl achieved security/efficiency.
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New construction of encryption with fully-weak keys. We now describe the point-function obfuscation scheme
of Canetti [10], and notice that it yields a self-composaliBPF obfuscator withfully-entropic securityfor in-
dependent messages. It is based on a strengthened verdtiom DDH assumption, which we describe shortly.
Using this simple observation and our connection betwedmsohtion and encryption (Lemma 3.3), we get the first
symmetric-key encryption scheme with CPA security fidly-weakkeys (albeit under a strong assumption). We
begin by defining thetrengthened DDFssumption for a prime-ordered groGp

Definition 6.1 (Strengthened DDH Assumption [10]). LetG be a group of prime ordep = 2P°Y(") and letg be
a random generator ofs. Thestrengthened DDH assumptistates that, for any distributiof.X,,} overZ, with
entropy Ho. (X,,) > w(log(n)), we have(g?, ¢, g?°) ~ (g%, ¢°, ¢°) wherea —p X,,, andb, ¢ + g Z,.

We now define the functiofr : Z, — G x G by F(k) = (r,r*) wherer <z G. In [10], this was shown to be a
securepoint-function obfuscator (with fully-entropic security) undbe strengthened DDH assumption. In addition,
this point-function obfuscator is self-composable sirgieen a (random) obfuscatiofy;, g») of some pointz, it is
easy to generate freshly random (and independent) newaattfors ofz by taking(g{', g4) for arandonmu € Z,,. We
use the construction of Canetti and Dakdouk [11] to turn atpfeinction obfuscator into a multi-bit point-function
obfuscator. Define the function:

Samplerg,r1,...,1p g Gfor £ = |m|.
_ Setgy = 7“6“
OUwm) =\ For each ¢ {1,...,4} : if m; =1setg; =¥ elseg; < g G.

OUtpUt:C = (<T05 gO>a ) <T€)gf>)'

Using the techniques of [11], it is easy to show tlais a self-composablebfuscator with fully-entropic security
for independent messaganader the strengthened DDH assumption. Combining this étimma 3.3, we get the
following theorem.

Theorem 6.1. Under the strengthened DDH assumption, there exists a @eArs symmetric encryption scheme
with security againstully-weak keys In particular, this means that there isstnglescheme, parameterized only by
the security parameter, such that security of the scheme is maintained when thes kypsen fronanydistribution

of entropya(n) € w(log(n)).

The strengthened DDH assumption is indeed a strong one. éapally weaker formulation would be to limit
the min-entropy ofX,, to be at least some specific super-logarithmic functign). This way, we would obtain
a parameterized version of Theorem 6.1 that relates thegskreof the security guarantee to the strength of the
assumption. It is important to note that the constructisalitis independent of the parameterThat is, we obtain a
single encryption scheme that provides a range of secuwidyagtees, depending on the strength of the assumption.

6.2 Obfuscation

Entropically Secure Obfuscation for Independent Messages |t is fairly simple to constructy(n)-entropically
secure obfuscation for independent messages, wiien = n° for some constant > 0. First we construct a
semantically secure encryption scheme wiim)-weak keys. This can be done by simply extracting a sufficient
amount of uniform randomness from the Keyusing a strong randomness extradigt, and then using the result
as a one time pad to encrypt the message. For variable-lengfisages, we also need to expand the extracted
randomness to an appropriate size, using a pseudo-randugnag@PRG. In particular, we define

Enci(m) = (r, PRG(Ext(k;r)) & m)

wherer is a uniformly random seed for the extractor. The outputtlerd Ext and the input length dPRG are set
to some valuey which is sufficiently small that the outputs of the extradto(statistically) close to uniform, and
sufficiently large that the output of tHRRG is pseudo-randorh.

®For example, if we choose = n°/2, then an extractor based on universal-hash functions walilyce an output which i87%/2 =
negl(n)-close to uniform, and the output of tiRG is negl(n®/2) = negl(n)-pseudorandom. However, this does not generalize to smalle
values ofa such as(n) = log?(n).
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One can use this encryption scheme to construct one whiohhals the wrong-key detection property using
Lemma 2.1. Such a scheme yields an multi-bit point functisiuscator withy(n)-entropic security for independent
messages, by Lemma 3.2.

Self-Composable Entropically Secure Obfuscation for Independent Messages One problem with the above
construction of semantically-secure encryption usingaetors, is that it does not generalize to CPA security. In
fact, achieving CPA secure encryption with weak keys seemseta much harder problem, which has received
much attention in recent works [1, 13, 24]. We now show howge these results to achieve self-composable
entropically secure obfuscation for independent messages high level, we would simply like to just apply our
result connecting such encryption and obfuscation (Lem@pg‘8ut of the box”. However, there are several issues
that we must deal with first.

e Efficiently-Sampleable Distributionsthe works of [1, 13, 24] are concerned with “key leakage”, rehthe
adversary gets to learn some (short) function of the se@gtwhose output length is bounded hybits.
Conditioned on such leakage, the key can be thought of ag keirived from a (special type) of weak source
with entropya(n) ~ n — A. It turns out that the constructions are also secure whekethés chosen from an
arbitrary, butefficiently-sampleableeak source of entropy(n) [24]. Therefore, our results for obfuscation
will only translate to the case where the distribution ob&ied program is efficiently sampleable.

e Public Keys/ParametersOnly the scheme of [13] is explicitly designed for the symiiackey setting. The
schemes of [1, 24] are public-key encryption schemes. Asdatuch schemes are secure when the key-
generation procedure uses randomness that comes from aseeale. Therefore such schemes naturally
translate to the symmetric key setting, where the randosoiethe key-generation algorithm is the shared se-
cret key. Unfortunately, these schemes also relpualic parametersvhich are chosen uniformly at random,
and are available to the key-generation algorithm. Theeefee will only get an obfuscator in the presence
of public parameters. Note that in the context of standafdsmation, public parameters are never needed
since the obfuscatd® could always sample fresh parameters each time it runs. YHoaywehen considering
composable obfuscatipthis equivalence does not hold since future uses of thesohfar might compromise
security of prior uses. Therefore, having randomness ifidime of public parameters, which are re-used for
all invocations of the obfuscator, can be useful in this ernt

e Uniform Ciphertexts:Recall that our definition of CPA security is slightly diféart than the standard (we
require that the ciphertexts of any message are indisshgbie from some universally specified distribution)
and has not been explicitly analyzed by these schemes. Huowawall of these schemes explicitly show in
their proofs that the ciphertexts are indistinguishabtenfruniform, which satisfies our definition.

e Wrong-Key DetectionThe wrong-key detection property is explicitly analyzedi8]. For the schemes of
[1, 24], we get the property that, given the public paransetieis computationally difficult to find:, £’ such
thatDecy/ (Encg(m)) # L. This translates to eomputational-correctnegsroperty for the obfuscator where,
given the public parameters, it is computationally difftdolfind &, m, z such thatO (I, ,,,))(z) # Lk m) (@)

Using our connection between CPA-secure symmetric keyyption and self-composable obfuscation with
independent messages, we get the following new constngctb obfuscators as a corollary of Lemma 3.4, using
the schemes of [1, 13, 24].

Theorem 6.2. For any constant > 0, there exists aelf-composabl®BPF obfuscator with independent messages
underany of the following assumptions:

1. Decisional Diffie-Hellman (DDH) with?-entropic security, based on [24{"1).
2. Learning With Errors (LWE) with:-entropic security, based on [1{*1).

3. Learning Subspaces with Noise (LSN) withentropic security, based on [13{).
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where the restrictions are:
* Only works forefficiently sampleable key-distributions.

T Requires public parameters and only achieves computdticoraectness.

Difficulty of Achieving Obfuscation with Dependent Messags. The connection between encryption and ob-
fuscation also yields new negative results for the moredstahnotion of obfuscation that allows fdependent
messages, and in particular for the standard VBB notion. &ean a recent result of Haitner and Holenstein
[16], which shows that there can @ black-box reduction from a semantically secure encryptioheme with
security against key-dependent messages to, essendiallystandard cryptographic assumptiohe notion of
“cryptographic assumption” is formalized in [16] as (es&#dly) any game between an attacker and a challenger in
which we assume that all PPT attackers have a negligibleesagarobability. In particular, this includes all standard
assumptions such as existence of Trapdoor One-Way Peromstatr Claw-Free Permutations, as well as specific
algebraic assumptions like the hardness of factoring, DID#drning with Errors and many othefsSince, by The-
orem 5.1, we have a reduction from a semantically securegyptien schemes with security against key-dependent
messages to obfuscation of multi-bit point functions witlentropic security (i.e. even uniformly random keys),
we see that this latter notion of obfuscation cannot bezedlfrom essentially any cryptographic assumption under
black-box reductions.

Theorem 6.3. No construction of an MBPF obfuscator witfin )-entropic securityfor dependent messagesn be
proven secure via a black-box reductionaioy “standard cryptographic assumption”, even fafn) = n (i.e. even
uniformly random keys).

We note that Canetti and Dakdouk [11] showed tt@hposable obfuscation of point functions (with no output)
(i.e. functionsly(z) which outputl whenz = k and_L otherwise) implies multi-bit point function obfuscatarith
dependent messagekhus we get the following as a corollary.

Corollary 6.1. No construction of a&omposablebfuscator forsingle-value point functionsiith «(n)-entropic
security can be proven secure via a black-box reductioany“standard cryptographic assumption”, for arny()
(even fora(n) = n, namely uniformly random keys).

We note that the impossibility result of [16] only consideesmnantically secure encryption witariable length
messageand does not rule out KDM security when the message size iseshiban the key. Correspondingly, the
work of [11] constructs MBPF obfuscators witi{n)-entropic security (for some(n) < n) andfor dependent
messagen this special case, where the message size is (signifigasmialler than the key size (i.e. functions
Ikm) where|m| < |k[). These constructions only relied standard cryptographic assumptiossch as collision-
resistant hash functions. The above theorem shows that@udtructions do not generalize to variable-length
messages, where the message size can exceed the key semathlely, in this work we show how to leverage
prior results on leakage-resilient cryptography to carttself-composable MBPF obfuscators wittn )-entropic
security (for somex(n) < n), under standard assumptions, in the special case of Ijlediength)independent
messagedt seems that there is little hope in generalizing this apph to the standard notion of obfuscation, which
also allows key-dependent messages.

References

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simdtous hardcore bits and cryptography against memorkattac
In TCC, pages 474-495, 2009.

"On the other hand, the impossibility result does not exchrdefs of security in the Random Oracle model, reductionsoto-standard
assumptions (which cannot be formulated as a game betwesdvarsary and a challenger) such as “Knowledge of Exponention-black-
box reductions.

20



[2] J.Alwen, Y. Dodis, and D. Wichs. Leakage-resilient gafey cryptography in the bounded-retrieval modelCRYPTQ
pages 36-54, 2009.

[3] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fasttogmaphic primitives and circular-secure encryption llase
hard learning problems. IBRYPTQ pages 595-618, 2009.

[4] M. Backes, M. Durmuth, and D. Unruh. Oaep is secure ukdgrdependent messages.ABIACRYPTpages 506-523,
2008.

[5] M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependersisage security under active attacks - brsim/uc-soundifiess o
symbolic encryption with key cycles. @SF, pages 112-124, 2007.

[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. 8als. Vadhan, and K. Yang. On the (im)possibility of obfus-
cating programs. ICRYPTQvolume 2139 ot ecture Notes in Computer Scienpages 1-18. Springer, 2001.

[7] J. Black, P. Rogaway, and T. Shrimpton. Encryption-seesecurity in the presence of key-dependent messages. In
Selected Areas in Cryptograplpages 62—75, 2002.

[8] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Ciestsecure encryption from decision diffie-hellman. In
CRYPTOQpages 108-125, 2008.

[9] J. Camenisch, N. Chandran, and V. Shoup. A public keyygritmn scheme secure against key dependent chosen plaintex
and adaptive chosen ciphertext attacksEWROCRYPTpages 351-368, 2009.

[10] R. Canetti. Towards realizing random oracles: Haslcfions that hide all partial information. GRYPTQvolume 1294
of Lecture Notes in Computer Scienpages 455-469. Springer, 1997.

[11] R. Canetti and R. R. Dakdouk. Obfuscating point funesiavith multibit output. INEUROCRYPTvolume 4965 of
Lecture Notes in Computer Scienpages 489-508. Springer, 2008.

[12] R. Canetti, D. Micciancio, and O. Reingold. Perfectlyeeway probabilistic hash functions. Rroceedings of the 30th
ACM Symposium on Theory of Computipgges 131-140, 1998.

[13] Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography vawuxiliary input. INSTOGC pages 621-630, 2009.

[14] S. Dziembowski and K. Pietrzak. Leakage-resilienptography. IlFOCS pages 293-302, 2008.

[15] S. Goldwasser and Y. T. Kalai. On the impossibility ofadration with auxiliary input. I+OCS pages 553-562, 2005.
[16] I. Haitner and T. Holenstein. On the (im)possibilityle@y dependent encryption. TFTCC, pages 202—-219, 2009.

[17] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark8nPaul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest we remember: cold-boot attacks on enianyeys. Commun. ACM52(5):91-98, 2009.

[18] S. Haleviand H. Krawczyk. Security under key-deperidgouts. INACM Conference on Computer and Communications
Security pages 466-475, 2007.

[19] D. Hofheinz and D. Unruh. Towards key-dependent messagurity in the standard model. FUROCRYPTpages
108-126, 2008.

[20] J. Katz and V. Vaikuntanathan. Signature schemes witinbded leakage resilience, 2009. To Appear in Asiacrypt '09
http://www.mit.edu/ ~vinodv/papers/asiacrypt09/KV-Sigs.pdf

[21] B. Lynn, M. Prabhakaran, and A. Sahai. Positive resautid techniques for obfuscation. FUROCRYPTvolume 3027
of Lecture Notes in Computer Scienpages 20—39. Springer, 2004.

[22] S. Micali and L. Reyzin. Physically observable cryptaghy (extended abstract). TCC, pages 278-296, 2004.

[23] D. Micciancio and B. Warinschi. Completeness theordansthe abadi-rogaway language of encrypted expressions.
Journal of Computer Security2(1):99-130, 2004.

[24] M. Naor and G. Segev. Public-key cryptosystems ratilie key leakage. ICRYPTQvolume 5677 otecture Notes in
Computer Scieng@ages 18-35. Springer, 2009.

[25] H. Wee. On obfuscating point functions. Rroceedings of the 37th ACM Symposium on Theory of Compuaatges
523-532, 2005.

21



A Fully-entropic security and the virtual black-box proper ty

In this section, we prove Theorem 2.1, which states that d&umsobtor® with fully-entropic security satisfies the
virtual black-box property in Definition 2.2. The virtualdak-box definition appears to be stronger than fully-
entropic security because it does not impose any constaitite min-entropy of the distributioX’,,. However, we
show in this section that this is not the case.

We do not work with the virtual black-box definition diregtlyut rather use two intermediate definitions.

Definition A.1 (Distributional indistinguishability [10] ). For any PPT adversaryd with 1 bit output and for any
distribution{ X,,, Y;, }nen With Hoo (X)) € w(log(n)), the distributionsk, m, A(O(k,m))) and(k, m, A(O(k',m’)))
are computationally indistinguishable, whefle, m), (k', m') — {X,, Y, } independently.

Definition A.2 (Oracle indistinguishability [10]). For any PPT adversaryl with 1 bit output and any polynomial
p, there exists a polynomial-sized family of sets of Kéys},<n such that for all large enough, all k, k&’ ¢ L,, and
all m,m’,
L
p(n)

We prove Theorem 2.1 by showing that fully-entropic seguirtplies the distributional indistinguishability
property, which in turn implies oracle indistinguishatyiliwhich finally implies the virtual black-box property. &h
main ideas in these proofs are adapted from [10] to the rhitlgetting.

|Pr[A(O(k,m)) = 1] — PrlA(O(K',m")) = 1]| <

Lemma A.1l. If an obfuscatorO satisfies fully-entropic security, then it satisfies dizitional indistinguishability.

Proof. Suppose for the sake of contradiction tldatdoes not satisfy distributional indistinguishability, geere
exists an adversary, distribution{X,,, Y, } with H.(X,) € w(log(n)), distinguisherD, and polynomiap such
that for infinitely many values af,

Pe[D(k, m, A(O(k,m)) = 1] — Pr[D(k, m, AOK ,m')) = 1]| Y%n), (19)

where(k,m) and (k’,m’) are independently sampled frofX,,,Y,,}. Let3(n) = Hy(X,). We show that the
same adversaryl breaks the fully-entropic security @ because it breaks-entropic security forv(n) = 5(n) —
log(10p(n)). Note thate € w(log(n)) as desired.

Define Py, ,,, = Pr[A(O(k,m)) = 1], where the probability is taken over the randomnesd ahdO. It follows
from (19) that there exist two sefs , 7, C {0,1}" such that:

e Forany(k,m) € Zy, (K',m’) € Z, we havePy ,,, — Py s > —mpl(n).

e The sets are large: fgk, m) — {X,,, Y, }, Pr[(k,m) € Z1] = Pr[(k,m) € Zy] = ﬁ(n).

Let{X!, V,!} and{ X", Y,%} be the distributions formed by takifg¥,,, Y;,} and conditioning on the event that a
key-message pair is chosen fréfnor Z,, respectively. We claim that the two distributiop&?, Y;*} for b € {0,1}
each have min-entropy. This holds because for aky m,

Pr[{X2 YV} = (k,m)] < Pr[{X,,Y,} = (k,m)] - 10p(n)

n’-n

since equality holds ifk, m) € Z, or the left side probability equals O {k,m) ¢ Z,. Therefore, by the union
bound,
Pr[X% = k] < Pr[X,, = k] - 10p(n) < 277 - 10p(n) = 27

As a result, given any PPT simulatS/ - where (k,m) is chosen from eithef X}, Y,1} or {X0,Y,%}, the
simulator only queries the correct kéywith negligible probability. Hence,

Pr[§tm) <1lk\) =1 (k,m) — {X1,V!}] — Pr[ST®m (1“@') =1 (k,m) — {X°, Y}
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is negligible. On the other hand, we know that

1
As aresult, it follows by the triangle inequality that foryasimulatorS, either
1
= 1yl TIeomy (1R — 1 y1
PHLA(O(T () = 1 (k) = (X0, ¥} = PrfsTem (19) = 1] (hm) — (0,1 > 5,

or the corresponding inequality holds fak, Y,1. Hence, one of these distributions breaksdhentropic security
of O and thus the fully-entropic security ¢, as desiredd

Lemma A.2. If an obfuscatorO satisfies distributional indistinguishability, then ittsdies oracle indistinguisha-
bility.

Proof. Assume for the sake of contradiction that there exists a RR&raary.4 and a polynomiap that break
oracle indistinguishability. We define the following cossts:

Pi.yn = PrJA(O(k,m)) = 1], mj, = argmax{ Py}, m} =argmin{P; .}, Pl = Pt P} = Blomb-
m m

Because4 andp break oracle indistinguishability, for any polynomiatad family of sets{L,, },cny and for
infinitely many values of, there existk, ¥’ ¢ L,, andm,m’ such thatPy ,,, — Py > ﬁ. Without loss of
generality, we can assume = m;, andm’ = my,, sinceP, ;1 > Pim and Py o, < Prt -

Hence, for any polynomial-sized family of s€t&,, } ,cy and for infinitely many values of, there exist, k&’ ¢

L,, such that
1

Pl - P} > —. (20)
T p(n)

For a given constant € N, construct the family of setSL¢ },,cw in the following manner. The sétt, = SCUTY,
whereS¢ is the set of thex® keysk with the maximal values oP!, andT}, is the set of.¢ keysk’ with the minimal
P, Clearly,|LS| < [S%| + |T5| = 2n° so the family{L¢ } is polynomially-bounded in size. Hence, for ang¢ N,
and for alln such that (20) holds for the familyLs, }, we have that any keys € S;; andk’ € T} satisfy

1 0 1
Pl—Pl>—

p(n)’

Next, we form the families{S‘n}neN anql{Tn}neN as follows. Givem, let ¢, be the largest value such that (20)
is satsfied with respect toand LS. Then,S,, is defined recursively, as follows.

1. The base case k& = S;° andTy = T;°.
2. Forn > 0, letn’ be such thab,,_; = Sf;’_’l. Then,S,, equals the largest set out §f" andS, .

We defineT;, analogously. Finally, we form the distributidiX,,, ¥;,} that is uniform over the key-message pairs
(k,m}) forall k € S, and the key-message paig, m},) for all k' € T;,. This distribution is well-spread, because
given any polynomiah?, there exists a value, such thatS,,| = |T,,| > n? for all n > ng.

We show that there exists a distinguistieisuch that for infinitely many values af,

Pr[D(k,m, A(O(k,m))) = 1] — Pr[D(k,m, A(O(K',m"))) = 1] > (21)

3p(n)’

where(k,m) and(k’,m') are independently drawn frofnX,,, Y, }.

We construct the distinguishdp as follows. LetP be a constant such th@1 - P> ﬁ(n) forall k € Sn

andP, — P,? > #(n) for all k € T,,. This is known toD by non-uniformity. The distinguisher receives as input a

23



key k, a messagen, and a bitb. It estimatesp;, ,,, by samplingA(O(k,m)) for many independent choices of the
randomness fadl andO. If its estimate ofP, ,,, is at leastP, thenD outputsh. Otherwise, it outputs — b.

We demonstrate that the distinguistesatisfies (21) for atk such thatS,, = S¢ for somec. There are infinitely
many such’s. Our distribution has the property that fgr, m) — {X,,,Y,}, the valueP, ,,, is bigger than?,, with
probability% and is smaller with probability%. Also, the distinguisher will make the correct determioation
whetherP;, ,,, is bigger or smaller thai,, with overwhelming probability.

The distinguisher receives as ingytm, and a bitb = A(O(K',m’)), where(k’, m’) either equalgk, m) or is
an independent sample frofiX,,, Y;,}. Some basic probability calculations show that

—negl(n) whenP;,, andPy . are either both larger or both smaller thBp,
55ty + negl(n)  whenP,, and Py, are separated b,

where this probability is taken ovék, m) — {X,,Y,,} and the randomness @, A, andO. When(k',m’) =
(k,m), the first case always holds, and wh@g, m’) is an independent sample, the two cases each hold with
probability 3. Therefore,

Pr[D = 1|(K',m') = (k,m)] — Pr[D = 1|(K',m/) is indep sample froMd X,,, Y, }] > ﬁ — negl(n),
p(n

as desiredd
Lemma A.3. If an obfuscatorO satisfies oracle indistinguishability, then it satisfies thirtual black-box property.

Proof. Assume that oracle indistinguishability holds. Léte a PPT adversary that outputs 1 bit and{let } be
the polynomial-sized family of sets associated4toWe form a simulatoS’=m) that queries its oracle on all of the
keysinL,. If k € L,, then the simulator learrisandm, and it emulates an execution df O(k, m)). In this case,
its simulation is perfect.

Otherwise, the simulator can rub(O(k',m’)) for anyk’ ¢ L,, and anym’. By a-oracle indistinguishability,

Pr(sTm) (1) = 1] = PrLA(O I ) = 1] &~ PrLAO (Tt my)) = 1

where thex~ denotes a negligible difference in probability. Finallye tsimulator’s runtime is bounded by the size of
L,, and the runtime of4, soS runs in polynomial time as desired.

B Comparison of a-obfuscation definitions

In this section, we discuss the definition@fentropic security. The goal of the definition is to weakea virtual
black-box property in Definition 2.2, which is very strongdatius far can only be satisfied under non-standard
assumptions such as a strong variant of the DDH assumpt@ijndt exponentially hard to invert one-way function
[25], or the random oracle model [21].

We believe there are two natural ways to weaken the virtwalksbox property. First, we can increase the min-
entropy requirement, as-entropic security does. Second, we can give the simulasapar-polynomial runtime so
it can make more queries to its oracle.

In the paper, we chose to do the former. This section justifiasdecision by showing that-entropic security
implies a virtual black-box style definition in which the sitator receives a boost to its running time.

Definition B.1 (a-runtime security). For any PPT adversaryl with 1 bit output, there exists a negligible function
¢(n) and a simulatorS running in times(n) - 22(n) sych that for all distributions X,,, Y}, }nen With X, taking
values in{0, 1}" andY,, taking values in{0, 1}P° (") we have:

Pr [A(O(Ijpm) = 1] = Pr [s%m (1““) - 1} ( < negl(n)

where the probability is taken over the randomnesgiofn) — (X,,Y,), A, S, andO.
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In this definition, we choose to give the simulategl(n) - 2¢ running time so that it does not quite have enough
time to query everything in the support of a distributionhwitin-entropyc, but other than this restrictioi has the
“largest” runtime possible.

Theorem B.1. If an obfuscator satisfies-entropic security, then it satisfiesruntime security.

The rest of this section is devoted to a proof of this theoréra.do not prove the theorem directly, but rather go
through an intermediate definition from [10].

Definition B.2 («-oracle indistinguishability [10]). For any PPT adversary4d with 1 bit output, there exists a
negligible functiore(n) and a family of set§ L, } ey such that|L,,| < e(n) - 22 and for all k, k' ¢ L, and all
m,m’,

|Pr[A(O(k,m)) = 1] = Pr[A(O(K',m")) = 1]| < negl(n)
Lemma B.1. If an obfuscator satisfies-oracle indistinguishability, then it satisfiesruntime security.

Proof. Let A be a PPT adversary that outputs 1 bit. We form a simul&trm that queries its oracle on all of the
keysinL,. If k € L,, then the simulator learrisandm, and it emulates an execution df{ O(k, m)). In this case,
its simulation is perfect.

Otherwise, the simulator can rub(O(k',m’)) foranyk’ ¢ L,, and anym’. By a-oracle indistinguishability,

Pr[S!tkm) (1"?‘) = 1] = PrA(OI ) = 1] ~ PrA(O(L ) = 1]
where thex~ denotes a negligible difference in probability, as desired

Lemma B.2. If an obfuscator satisfies-entropic security, then it satisfiesoracle indistinguishability.

Proof. Let O be an obfuscator satisfying-entropic security, and letl be an adversary. We wish to show the
existence of a negligible functionand family of set§ L,, },en that satisfya-oracle indistinguishability.
Given anyk andm, we definePy, ,, = Pr[A(O(k,m)) = 1]. Also, we define the following constants:

px = average{ P}, mj = argmax{P; .}, my =argmin{Py,,}, op = Pimt = Py o
m m m

(Note that if thearg max or arg min are simultaneously fulfilled by many messages, then it s4fio pick any one
of them arbitrarily.) Also, letS be the PPT simulator associated withby a-entropic security. Clearlys’¢-= does
not learn any information about unless it queries the correct kéy which it can only do for polynomially many
keys. Bya-entropic security, it follows that there exists a negligifunctions’ such that at most’ - 2¢ keys have a
non-negligibleoy.

If this were not the case, then there exists some polynomialsuch that there are at Iea%"%% keys k with

op > ﬁ Let X,, be the distribution that is uniform over the%%%) keys and2(™) — % other keys chosen
arbitrarily, and lety,! and Y, be two distributions on messages such that for a givenkkepe distributiony;?

always chooses the messagg. Both distributions{ X,,, Y,*} have min-entropyy, and we know that

1

= m) «— 1 — Pr m)) = m) «— ) A V()
Pr{A(Ok, m)) = 1| (k,m) — {Xu, Y;}] = PrlAO(k,m) =1 (kym) — {Xu, Y} > 2o

On the other hand, the simulator cannot distinguish betvtieese two distributions, so by the triangle inequality
property, either

PHA(O(,m)) = 1] (k.m) — (X, Y = Prfstem (19) = 1] (ko) — (X0 V)] > o

or the corresponding inequality holds foK,, Y,}, which breaks thew-entropic security.
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Hence, there are at mast- 2* keysk such thaty, is non-negligible. Lef !, be the set of these keys. Next, we
look at i, and claim that there exists a negligible functidhand a sefl! of size at most” - 2 such that for all
k,k' ¢ L, |ux — pir| is negligible.

If this were not the case, then there exists some polynontial such that at Iea%} keys haveu, that are
noticably separated from = average, {u }. Using a similar proof to the one fer; above, we can then form two
well-spread distributions over these keys such that theradwy can distinguish them but the simulator cannot.

Finally, lete = ¢’ + ¢” and let{L,, } ,en be a family of sets with_,, = L/, U L”. For all keysk, k" ¢ L,,, we
know thatoy, |u;, — p},|, andoy are negligible, which means that for all messageandm’,

PrlA(O(I(my)) = 1] = e = iy, = PrA(O(I (1 mr))) = 1],

where= denotes a negligible difference in probability, as desifed

Finally, Theorem B.1 follows immediately from Lemmas B.ddh 2.
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