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Abstract

We show tight connections between several cryptographic primitives, namely encryption with weakly random
keys, encryption with key-dependent messages (KDM), and obfuscation of point functions with multi-bit output
(which we call multi-bit point functions, or MBPFs, for short). These primitives, which have been studied mostly
separately in recent works, bear some apparent similarities, both in the flavor of their security requirements and
in the flavor of their constructions and assumptions. Still,rigorous connections have not been drawn.

Our results can be interpreted as indicating that MBPF obfuscators imply a very strong form of encryption
that simultaneouslyachieves security for weakly-random keys and key-dependent messages as special cases.
Similarly, each one of the other primitives implies a certain restricted form of MBPF obfuscation. Our results
carry both constructions and impossibility results from one primitive to others. In particular:

• The recent impossibility result for KDM security of Haitnerand Holenstein (TCC ’09) carries over to MBPF
obfuscators.

• The Canetti-Dakdouk construction of MBPF obfuscators based on a strong variant of the DDH assumption
(EC ’08) gives an encryption scheme which is secure w.r.t.anyweak key distribution of super-logarithmic
min-entropy (and in particular, also has very strong leakage resilient properties).

• All the recent constructions of encryption schemes that aresecure w.r.t. weak keys imply a weak form of
MBPF obfuscators.
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1 Introduction

Symmetric encryption is an algorithmic tool that allows a pair of parties to communicate secret information over
open communication media that are accessible to eavesdroppers. In order to achieve this goal, the communicating
parties need to have some shared secret randomness (akey). The classic view of symmetric encryption allows the
encryption scheme to determine the distribution of the key precisely (typically it is a uniformly random string). It also
assumes that the encryption and decryption algorithms are executed in a completely sealed way, so no information
about the key is leaked to the eavesdroppers. Finally, the classic model assumes that the parties only use the key in
the encryption and decryption routines and not for any otherpurpose. In particular, their messages are never related
to the key.

In recent years, much research has been done to investigate various relaxations of this classic (and somewhat
naı̈ve) model. One relaxation is to consider the case where the key is chosen using a “defective” source of random-
ness that does not generate uniform and independent random bits. (See e.g. [1, 2, 13, 20, 24] and the references
therein). Namely, the key is assumed to be taken from a distribution that is adversarially chosen under some restric-
tion. Typically the restriction is that the min-entropy of the distribution of the secret key is at leastα, for some value
of α. In this case the scheme is said to be secure w.r.t.α-weak keys.

A different relaxation of the classic model considers the case where the key is chosen uniformly but some
arbitrary information on the key is leaked to the adversary (see e.g. [1, 24]). This models both direct attacks where
the adversary gains access to the internal storage of the parties, such as the cold-boot attack of [17], and indirect
information leakage that occurs when the shared key is derived from the communication between the parties, such
as the information exchange used to agree on the key. Of course, all security is lost if the adversary learns the key
in its entirety, and therefore some restriction needs to be imposed on theamountof information that the adversary
can get. One possibility is to require that the key has some significant statistical entropy left, even given the leakage.
We call this theentropicsetting. Another, stronger, security notion only insists that it iscomputationallyinfeasible
to compute the secret key from the leaked information, but allows the leakage to completely determine the key
statistically. We call this type of leakageauxiliary input.1 It turns out that encryption resilient to weak keys is also
resilient to a comparable amount of leakage in the entropic setting. Conversely, in some settings there is a simple
transformation from leakage resilient encryption to one that withstands comparably weak keys.2

Yet another relaxation of the classic model considers the case where the messages may depend on the shared
key. Security in this more demanding setting was termedkey-dependent message security(KDM security) by Black,
Rogaway and Shrimpton in [7]. In the last few years, the notion of KDM security has been extensively studied
[3, 4, 5, 8, 9, 16, 18, 19], and several positive results emerged, most notably the results of [3, 8] who showed how to
obtain KDM security w.r.t. the class of affine functions (theformer under the DDH assumption and the latter under
the LWE assumption). In contrast, [16] show that there existno black-box reductions from the KDM security of any
encryption scheme w.r.t. all efficient functions to “any standard cryptographic assumption.”

While the constructions for KDM-secure schemes and the constructions of schemes that are secure w.r.t.α-weak
keys bear significant similarities to each other (eg., see [8, 24], [3, 13], and [1, 3]), no formal connections between
the problems have been made so far.

Another recently studied primitive, which may seem unrelated at a cursory look, is obfuscation of point functions
(programs) with multi-bit output. Obfuscation is the task of constructing an algorithm, called anobfuscatorO, that
takes as input a programp from a familyP of programs and outputs a programq = O(p) that has essentially the
same functionality asp, but where the code ofq only gives information that can also be determined with oracle
access top. A central point here is thatO should work correctly and securely foreveryprogram inP .

A point function with multi-bit output (or a MBPF) is a function I(k,m) which, on inputx, outputsm if x = k
and⊥ otherwise. In the special case of point functions, the valuem is fixed to some constant, say 1. Obfuscators
for point functions are constructed in [10, 25] under strongassumptions, and in [21] in the random oracle model.

1Many other models of leakage-resilience, such as the “only computation leaks information” model [14, 22], place further restrictions on
the type of information that may be leaked, and are not considered in this work.

2In the case of semantic security for symmetric-key encryption (without chosen-plaintext attacks), we can use the following transforma-
tion: Given a scheme(Enc, Dec) that’s secure against key leakage, construct the weak-key scheme(Enc′k(m) = (r, Enck+r(m)) for a
random|k|-bit r, Dec′k(r, c) = Deck+r(c)).
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Obfuscators for MBPFs are only known based on very strong andspecific assumptions, such as the existence of
fully-composable point function obfuscators [11]. Different constructions exist for restricted settings, such as the
case wherem is shorter thank, or the case wherem andk are distributed independently from each other [11, 13].
In all of these constructions the obfuscator is given the valuesk andm explicitly.

The applicability of MBPF obfuscation to symmetric encryption has been pointed out in [11], who proposed to
encrypt a messagem with key k by lettingO(I(k,m)) be the ciphertext. The fact that security holds for anyk was
used to suggest thatm remains hidden even whenk is taken from a distribution which is not uniform, as long as it
has sufficient min-entropy that it cannot be guessed in polynomial time. Also, [13] show that their construction of
leakage resilient encryption can be used as a restricted variant of MBPF obfuscation.

1.1 Our Results

We show tight relations between the primitives of symmetric-key encryption and MBPF obfuscation. Specifically,
we show that symmetric-key encryption with weak key resilience, leakage resilience, and KDM security, each with
its own variants, can all be viewed as natural special cases of the MBPF obfuscation problem. In fact, MBPF
obfuscation incorporates weak key resilience and KDM security simultaneously. In addition to providing some
insight and intuition to these primitives, the drawn connections provide new results – both constructions and hardness
results – for the primitives considered.

As a preliminary step towards drawing these connections, weset up a framework for relaxing the standard notion
of security of MBPF obfuscation. This notion, called virtual black-box (VBB) security [6], essentially requires that
for any adversary with binary output there exists a simulator such that, for anyk,m, the output of the adversary
givenO(I(k,m)) is indistinguishable from the output of the simulator givenoracle access toI(k,m). We wish to
consider the relaxed case wherek andm are taken from an unknowndistribution from a given class. We capture
this relaxation by replacing the “for anyk,m” requirement in the VBB definition with “for any distribution onk,m
from a given class of distributions.” Note that the simulator knows the class of distributions, but not the distribution
itself. We relate the different notions of encryption to MBPF obfuscation for different classes of distributions.

Obfuscation vs. Weak-Key and Leakage Resilient Encryption. We say that an MBPF obfuscator isα-entropic
with independent messagesif it satisfies the above definition for product distributions onk,m where the distribution
of k has min-entropy at leastα. Note that the product distribution ensures thatm is drawnindependentlyof k, and
that we impose no restriction on the entropy ofm.

Our first result is thatα-entropic MBPF obfuscators with independent messages are equivalent to symmetric key
encryption withα-weak keys.3 We describe both directions of the equivalence.

From obfuscation to encryption.Given an obfuscatorO, we construct an encryption scheme by the transformation
Enck(m) = O(I(k,m)) andDeck(c) = c(k), wherec is interpreted as the description of a circuit.

From encryption to obfuscation.Conversely, given an encryption scheme, we construct an obfuscator as follows.
On input the pairk,m, simply encryptm with key k to obtain a ciphertextc. Then, the obfuscated program
simply hasc hard-coded, and on inputx, runsDecx(c) and outputs the result. Here, for the correctness of
obfuscation, we require that the encryption scheme candetectif it is decrypting a ciphertext with an incorrect
secret key. We show that this property can be added generically to any semantically secure encryption scheme.

CPA security vs. self-composability. If we start with aCPA secureencryption scheme, then the resulting MBPF
obfuscatorO is self-composable, in the sense that security is preserved even ifO is run multiple times with the
sameinput k and (possibly) different inputsmi. As was shown by [11], this property is not, in general, implied by
obfuscation alone. The converse is true as well.

3The traditional notion of encryption without leakage resilience, where the secret key is chosen uniformly at random, iscaptured by the
α(n) = 2n case of the equivalence.
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Semantically secure encryption with:Is equivalent to MBPF obfuscator for:
α-weak keys α-entropic sec. for indep. messages
auxiliary input auxiliary input
CPA security self-composability
fully weak keys fully-entropic sec.
KDM security dependent messages

Table 1: Equivalence between symmetric-key encryption (left) and obfuscation (right) terminology. The five rows
can be combined arbitrarily, except that row 1 is required along with rows 3-5, and we do not consider the combina-
tion of rows 2 and 5.

Fully-entropic obfuscation and fully-weak key security. We say that an MBPF obfuscator for independent mes-
sages isfully entropicif it satisfiesα-entropic security for all super-logarithmicα. If we start with such an obfuscator,
the transformation produces an encryption scheme with semantic security for fully-weak keys (i.e. security for any
key distribution with super-logarithmic entropy).

To connect our newα-entropic definition to previous works, we show that any MBPFobfuscator that is fully-
entropic also satisfies the virtual black-box property, i.e., it works foranyk,m. We note that the proof of this result
is trickier than it might seem, the main difficulty being thatin the case ofα-entropic security the simulator has the
boundα, whereas in the virtual black-box case no such bound exists.

Auxiliary input. If we start from a leakage-resilient encryption w.r.t. auxiliary input, then the resulting MBPF
obfuscator is secure with respect to auxiliary input as well, as defined in [15]. The converse is true as well.

KDM security. All of the above equivalence results were stated with respect to the restricted notion of obfuscation
to independentmessages. Interestingly, the standard notion of MBPF obfuscation provides the additional (and very
powerful) security guarantee for encryption withkey-dependent messages(KDM).

We say thatO is anα-entropic (dependent message) MBPF obfuscatorif it withstands anyjoint distribution
on k,m where the projection distribution onk has min-entropy at leastα, and the messagem may depend on
k. Typically, we viewm as a function ofk. Such an obfuscator is equivalent to anα-KDM semantically secure
encryption scheme, via the same transformations as before.

Multiple extensions. Finally, we note that the four extensions of the original connection between obfuscation
and encryption can be achieved concurrently, with two caveats. First, when combining CPA and KDM security,
we require that the function connecting the message to the key be chosen non-adaptively prior to viewing any
ciphertexts. Second, we do not consider KDM security with auxiliary input.

1.2 Implications

We describe some implications of the above correspondence results. See Section 6 for more details.

Secure encryption w.r.t. (fully) weak keys. The known constructions ofα-weak key secure encryption schemes
require that the boundα be chosen in advance, and then the scheme is constructed based onα. Using our transforma-
tions, we get that, under the strong DDH assumption in [10], the [10, 11] MBPF obfuscator provides an encryption
scheme that simultaneously achievesα-weak key security for all super-logarithmic functionsα. The main advantage
of this scheme is that the min-entropyα does not need to be chosen in advance.

We remark that the hardness assumption we use has a similar flavor – it explicitly makes an assumption for every
distribution with super logarithmic min-entropy. The crucial point is however that the construction doesnot depend
onα and so it provides a tradeoff between the strength of the assumption and the strength of the obtained guarantee.
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Impossibility for MBPF obfuscators and fully composable point function obfuscators. Using our transforma-
tions, the negative result due to Haitner and Holenstein [16] implies that MBPF obfuscators cannot be proven secure
via a “black box reduction to standard cryptographic primitives.” Since full MBPF obfuscators can be constructed
in a black-box way from fully composable point function obfuscators [11], the impossibility carries over to this
primitive as well.

Constructing self-composable MBPF obfuscators with independent messages. Using our transformations, we
can use constructions of encryption schemes that are securew.r.t. α-weak keys, to get self composable MBPF
obfuscators with independent messages. More specifically,we construct self composable obfuscators for MBPFs
{I(k,m)} as long as the distribution ofm is independent of the distribution ofk, both distributions are efficiently
sampleable, and the distribution ofk has min-entropyα.

1.3 Organization

Section 2 contains some basic definitions for obfuscation and encryption. Section 3 draws connections between
obfuscation and weak key encryption, for both semantic and CPA security. Section 4 extends the connection to the
auxiliary input setting. Section 5 draws connections between obfuscation and KDM encryption. Section 6 states the
implications that we draw from the general connections. Some proofs are located in the appendices.

2 Definitions

2.1 Obfuscation of Point Functions with Multi-bit Output

Let I(k,m) : {0, 1}∗ ∪ {⊥} → {0, 1}∗ ∪ ⊥ denote the function

I(k,m)(x) =

{

m if x = k
⊥ otherwise

which outputs themessagem given thekeyk, and⊥ otherwise. LetI = {I(k,m) | k,m ∈ {0, 1}∗} be the family of
all such functions, which we call the family ofpoint functions with multi-bit outputor justmulti-bit point functions
(MBPF) for short.

Definition 2.1 (Obfuscation of Point Functions with Multi-bit Output). A multi-bit point function (MBPF)
obfuscator is a PPT algorithmO which takes as input values(k,m) describing a functionI(k,m) ∈ I and outputs
a circuit C. We will abuse notation and writeO(I(k,m)), but will always assume thatO getsk and m as clearly
delineated inputs.
Correctness:For all (k,m) ∈ {0, 1}∗ with |k| = n, |m| = poly(n), all x ∈ {0, 1}n,

Pr[C(x) 6= I(k,m)(x) | C ← O(I(k,m))] ≤ negl(n)

where the probability is taken over the randomness of the obfuscator algorithm.
Polynomial Slowdown:For anyk,m, the size of the circuitC = O(I(k,m)) is polynomial in|k|+ |m|.
Entropic Security: We say that the scheme hasα(n)-entropic security if for any PPT adversaryAwith 1 bit output,
any polynomialℓ(·), there exists a PPT simulatorS such that for all jointly-distributed{Xn, Yn}n∈N whereXn takes
values in{0, 1}n, Yn takes values in{0, 1}ℓ(n) andH∞(Xn) ≥ α(n), we have:

∣

∣

∣
Pr

[

A(O(I(k,m))) = 1
]

− Pr
[

SI(k,m)(·) (1n) = 1
]
∣

∣

∣
≤ negl(n)

where the probability is taken over the randomness of(k,m)← (Xn, Yn), the randomness of the obfuscatorO and
the randomness ofA,S. We say that a scheme hasfully-entropic security if it has α(n)-entropic security for all
α(n) ∈ ω(log(n)).
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We relate the notion of fully-entropic security, defined above, to the standard security guarantee provided by
obfuscation called thevirtual black-box property:

Definition 2.2 (Virtual black-box property [6, 10, 25]). For any PPT adversaryA with 1 bit output and any
polynomialsp(·), ℓ(·), there exists a PPT simulatorS such that for all distributions{Xn, Yn}n∈N with Xn taking
values in{0, 1}n andYn taking values in{0, 1}ℓ(n), we have:

∣

∣Pr
[

A(O(I(k,m))) = 1
]

− Pr
[

SI(k,m) (1n) = 1
]
∣

∣ ≤
1

p(n)
.

The probability is taken over the randomness of(k,m)← (Xn, Yn),A, S, andO.

Note the differences between the fully-entropic definitionand the VBB definition: the former allows a different
simulator for each entropy thresholdα(·), but requires a negligible error in simulation, while the latter allows a
different simulator for each simulation-errorp(·), but requires the simulator to work for all distributions regardless
of entropy. Interestingly, we show that the fully-entropicdefinition implies VBB (but don’t know whether the
converse holds as well).

Theorem 2.1. If O is a MBPF obfuscator that satisfiesfully-entropic security(as in Definition 2.1) thenO also
satisfiesvirtual black-box obfuscation(as in Definition 2.2).

This theorem is proved in Appendix A. The idea is to extend thetechnique used in [10] to show that a
distribution-based definition implies the virtual black box property in the case of point functions. At a high level, the
distributional definition says that if a user chooses a key from a well-spread distribution, then an adversary cannot
learn anything from an obfuscated point function beyond thefact that the key is from this distribution, so in particular
the key is hard to determine. We show how to extend the distributional definition to the MBPF setting and prove that
fully-entropic security implies this distributional requirement, and therefore the virtual black-box property as well.

Fully entropic security, as well as virtual black box security, are quite strong, and difficult to satisfy. The notion
of α(n)-entropic security, for some particularα(n) ∈ ω(log(n)), corresponds to a meaningful weakening of that
notion where security is only provided when the input comes from a reasonably random source. A similar weakening
of obfuscation, in the special case of point functions, was also considered by Canetti, Micciancio and Reingold [12]
in the context of perfectly one-way hash functions.

Instead of restricting attention to distribution withα(n) min-entropy, one might instead give the simulator the
ability to ask its oracle more queries, by a factor of2α(n) (i.e. the simulator is no longer polynomial time). In
Appendix B, we show that this alternative relaxed notion is actually implied byα-entropic security.

We consider several additional variants of obfuscation throughout the paper. First, we propose an additional
weakening of the definition, which we call security forindependent messages, and where we require that the distri-
bution on the outputm is independent from that of the inputk for a point functionI(k,m).

Definition 2.3 (Independent Messages).We say that an obfuscatorO is α(n)-entropically securefor independent
messagesif we restrict the definition ofα(n)-entropic security only to distributions{Xn, Yn} whereXn andYn are
independentlydistributed. We define the notion offully-entropic security for independent messagesanalogously.

We also define a stronger variant of plain obfuscation, whichprovides somecomposabilityguarantees. There
are two variants: Forfull compositionwe require that the security of obfuscation is preserved even if the adversary
gets (freshly and independently) obfuscated circuits for many functions, where the various obfuscated functions
are related in arbitrary ways (i.e., both the keys and the messages may differ). Forself compositionwe require
that all the obfuscated functions have the same value of the key k. That is, one should obfuscate the functions
I(k,m1), . . . , I(k,mt) with the same keyk but potentially different messagesm1, . . . ,mt. (For point functions, self
composition boils down to the case of many obfuscated versions of the same function.)

Definition 2.4 (Composability). A multi-bit point function obfuscatorO with α(n)-entropic security is said to
be fully-composable if for any PPT adversaryA with 1 bit output, any polynomialst(·), ℓ(·), there exists a PPT
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simulatorS such that for all distributions{(Xn, Yn)}n∈N, whereXn = X
(1)
n , . . . ,X

(t)
n , Yn = Y

(1)
n , . . . , Y

(t)
n , and

X
(i)
n taking values in{0, 1}n, Y

(i)
n taking values in{0, 1}ℓ(n) andH∞(Xn) ≥ α(n), we have:

|Pr[A(O(Ik1,m1), . . . ,O(Ikt,mt)) = 1]− Pr[SI(k1,m1),...,I(kt,mt)(1n) = 1]| ≤ negl(n),

where the probabilities are over(k1, . . . , kt,m1, . . . ,mt)← (Xn, Yn) and over the randomness ofA,S,O.
If the above holds only for the distributionsXn wherePr[k1 = k2 . . . = kt] = 1, then we say thatO is

self-composable.
The notions of composability extend naturally to obfuscators with fully-entropic security, where we require that

the above definition holds for allα(n) ∈ ω(log(n)). It also extends to obfuscators for independent messages, where
we restrict the definition to the case whereXn andYn are independent. (It is stressed that there is no independence
assumption among the coordinates withinXn or Yn.)

2.2 Definitions for Encryption with Weak Keys

A symmetric encryption scheme consists of efficient algorithms (Enc,Dec).4 We say that the encryption scheme
is semantically securefor α(n)-weak keysif the usual notion of semantic security holds even when the key comes
from any weak-source of entropyα(n). We propose the following definition of symmetric key encryption with weak
keys.

Definition 2.5 (Symmetric Encryption with Weak Keys ). We say that an encryption scheme hasCPA security
for α(n)-weak keys if there exists an efficient algorithmD(n, ℓ) running in timepoly(n, ℓ), such that, for all PPT
adversariesA and all distribution-ensembles{Xn}n∈N with H∞(Xn) ≥ α(n), we have:

|Pr[CPAX,D
0 (A, n) = 1]− Pr[CPAX,D

1 (A, n) = 1]| ≤ negl(n)

where the gamesCPAX,D
b (A, n) for b = 0, 1 are defined via the following experiment:

1. k ← Xn

2. Repeat:A submits a querym and receives a ciphertextc where:
In gameCPAX,D

0 , the challenger setsc← Enck(m).
In gameCPAX,D

1 , the challenger setsc← D(n, |m|).
3. The output of the game is the output ofA.

The algorithmD(n, ℓ) can keep persistent state during stage 2. We definesemantic securitywith α(n)-weak keys
via the gamesSEMX,D

0 ,SEMX,D
1 , which are equivalent to the CPA gamesexceptthat step (2) is performed only

once.
We say that an encryption scheme is CPA-secure (resp. semantically-secure) forfully weak keys if it is CPA-

secure (resp. semantically-secure) secure forα(n)-weak keys for allα(n) ∈ ω(log(n)).

Note that, in case ofα(n) = n (i.e. uniformly random secret keys), the above definition isequivalent to
the standard notion of CPA/semantic security, since we can always simply defineD(n, ℓ) to always output fresh
encryptionsEnck(0

ℓ), wherek is initially chosen uniformly at random and re-used for all queries. On the other
hand, when consideringα(n)-weak keys, the above definition is somewhat stronger than just requiring that the
adversary cannot distinguish between an encryption ofm and that of some set message, such as0ℓ. In particular,
it requires that there is a singleuniversaldistributionD on ciphertexts, which is indistinguishable from encryption
with any key distributionXn of sufficient entropy. For example, consider an encryption scheme which, along
with the ciphertext, always outputs the first bit of the secret key. Although such scheme might satisfy a natural
definition where encryption ofm0 andm1 are indistinguishable, it could never satisfy the above definition, even for
α(n) = n − 1. The reason is that the ciphertext distribution is now different depending on whether the keys come
from a distribution that fixes the first bit at0 versus one which fixes the first bit at1. Although our definition is

4That is, the key generation algorithm is implicit and is assumed to always generate a uniformn-bit string.
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stronger than one may need, we will show that it is necessary and sufficient for our equivalence with obfuscation to
hold. Moreover, all natural constructions of encryption schemes with weak-keys that we know of achieve the above
definition.

We also define a “wrong-key detection” property, which will be needed to achieve correctness in obfuscation.

Definition 2.6 (Wrong-Key Detection). We say that an encryption scheme satisfies thewrong-key detectionprop-
erty if for all k 6= k′ ∈ {0, 1}n, all m ∈ {0, 1}poly(n), Pr[Deck′(Enck(m)) 6= ⊥] ≤ negl(n).

We note that a similar, but weaker, property called confusion freeness, was defined in [23]. For confusion free-
ness, the keysk, k′ are random and independent, while we consider a worst-case choice ofk, k′ and the probability
above is only over the randomness of the encryption scheme.

Lemma 2.1 shows that, in the case of semantic security, wrong-key detection can always be achieved via a simple
transformation. We note, however, that this transformation no longer works in the case of CPA security.

Lemma 2.1. Let (Enc,Dec) be a semantically-secure encryption scheme forα(n)-weak keys and letH be a
pairwise-independent permutation family. Define an encryption scheme(Enc

′,Dec
′) by:

Enc
′
k(m) ,

{

Choose:h← H, r← Un

Output: 〈r, h, c = Ench(k)(r||m)〉

Dec
′
k(〈r, h, c〉) ,

{

Compute:(r′||m′) = Dech(k)(c)

Output: m′ if r′ = r and⊥ otherwise

Then(Enc
′,Dec

′) is a semantically-secure encryption scheme forα(n)-weak keys, withwrong-key detection. The
above also holds if we replace “α(n)” with “fully”.

Proof. Let us first show that the modification preserves semantic security for α(n)-weak keys. LetD(n, ℓ) be the
distribution for which the semantic security of(Enc,Dec) is satisfied, and defineD′(n, ℓ) = D(n, ℓ + n). Then, for
any adversaryA attacking the modified scheme(Enc

′,Dec
′), and any distribution-ensemble{Xn}n∈N we have

|Pr[SEM0(A, n) = 1]− Pr[SEM1(A, n) = 1]|

=

∣

∣

∣

∣

∣

∣

Pr





m← A(1n)
r ← Un, h←Hk ← Xn, c← Ench(k)(r||m0)

A(1n, c) = 1



− Pr





m← A(1n)
c← D′(n,m) = D(n, |m|+ n)

A(1n, c) = 1





∣

∣

∣

∣

∣

∣

≤ max
r∈{0,1}n,h∈H

∣

∣

∣

∣

∣

∣

Pr





m,← A(1n)
k ← h(Xn), c← Enck(r||m)

A(1n, c) = 1



− Pr





m← A(1n)
c← D(n, |m|+ n)
A(1n, c) = 1





∣

∣

∣

∣

∣

∣

≤ negl(n) (1)

where the last inequality simply follows from the semantic-security of the original(Enc,Dec) scheme and noting
that, for any fixed permutationh, the distributionh(Xn) has the same entropy asXn.

Now we show that modified scheme haswrong-key detection. Assume otherwise, that there is some polynomial
p(·) and infinitely many valuesn for which there existsk 6= k′ ∈ {0, 1}n, m ∈ {0, 1}poly(n) such that

Pr[Dec
′
k′(Enck(m)) 6= ⊥] = Pr

h←H,r←Un

[Dech(k′)(Ench(k)(r||m)) has a prefixr]

= Pr
k←Un,k′←Un,r←Un

[Deck′(Enck(r||m)) has a prefixr] ≥ p(n) (2)

We now show that (2) contradicts the semantic security of(Enc,Dec) (even for uniform keys). In particular, consider
an adversaryA which queries the challenger on the messagesm∗ = r||m, for a randomr and for them which
contradicts correctness and satisfies (2). On inputc, the adv.A picks a randomk′ ← Un and outputs1 iff Deck′(c)
begins withr. By (2), we see that in the semantic-security gameSEM0 (where the encryption is of the message
m) A outputs1 with probability p(n). On the other hand, inSEM1, no matter what distributionD the challenger
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samples from, the result is independent ofr and therefore, the probability thatA outputs1 is the probability that
Deck′(Enck(m0)) begins withr, which is at most1/2n. Therefore the adversaryA has a non-negligible advantage
in the semantic-security game (for anyD), which gives a contradiction.✷

3 Encryption with Weak Keys and MBPF Obfuscation

3.1 Sem. Sec. Encryption and Obfuscation with Independent Messages

In this section, we show equivalence between semantically secure encryption with weak keys and MBPF obfuscators
for independent messages.

Theorem 3.1. Let α(n) ∈ ω(log(n)). There exist MBPF obfuscators withα(n)-entropic security for independent
messages if and only if there exist semantically secure encryption schemes with wrong key detection forα(n)-weak
keys. Furthermore, the above also holds if we replace “α(n)” with “fully”.

We prove the “if” and “only if” directions in Lemmas 3.1 and 3.2, respectively.

Lemma 3.1. Letα(n) ∈ ω(log(n)) and letO be a MBPF obfuscator withα(n)-entropic security for independent
messages. LetEnck(m) , O(I(k,m)), Deck(C) , C(k) where the ciphertextC is interpreted as a circuit. Then the
encryption scheme(Enc,Dec) is semantically secure withα(n)-weak keys and has the wrong-key detection property.

Proof. The correctness of decryption follows from the correctnessof obfuscation. For the security of the encryption
scheme withα(n)-weak keys. Fix any adversaryA and any distribution{Xn}n∈N with H∞(Xn) ≥ α(n). The
distribution{Yn} is defined by runningA(1n) and outputting the messagem thatA gives to its challenger. Define
the distributionD(n, ℓ) = O(I(k,m)) where(k,m)← (Un, Uℓ). Then, by theα(n)-entropic security of obfuscation,
there must be a simulatorS such that

∣

∣

∣
Pr[SEMX,D

0 (A, n) = 1]− Pr[SEMX,D
1 (A, n) = 1]

∣

∣

∣

=

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
(k,m)←(Un,Uℓ)

[A(O(I(k,m))) = 1]

∣

∣

∣

∣

≤

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
(k,m)←(Xn,Yn)

[

SI(k,m)(·)(1n) = 1
]

∣

∣

∣

∣

(3)

+

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[

SI(k,m) (1n) = 1
]

− Pr
(k,m)←(Un,Uℓ)

[

SI(k,m) (1n) = 1
]

∣

∣

∣

∣

(4)

+

∣

∣

∣

∣

Pr
(k,m)←(Un,Uℓ)

[

SI(k,m) (1n) = 1
]

− Pr
(k,m)←(Un,Uℓ)

[

A(O(I(k,m))) = 1
]

∣

∣

∣

∣

(5)

≤ negl(n)

where (3),(5) follow by the definition of entropic security of obfuscation, and (4) follows since the only way that
a PPT simulator can get anything from its oracle is by querying it on the inputk, which happens with negligible
probability whenk comes from a source of super-logarithmic entropyα(n). ✷

Lemma 3.2. Let (Enc,Dec) be an encryption scheme with semantic security forα(n)-weak keys and with the
wrong-key detectionproperty. We define the obfuscatorO which, on inputI(k,m), computes a ciphertextc =

Enck(m) and outputs the circuitCc(·) defined byCc(x) , Decx(c). Then the obfuscatorO hasα(n)-entropic
security for independent messages.

Proof. First, we show the correctness property of the obfuscator. Fix k, x ∈ {0, 1}n andm ∈ {0, 1}poly(n). If
k = x then

Pr[C(x) 6= I(k,m)(x) | C ← O(I(k,m))] = Pr[Deck(Enck(m)) 6= m] ≤ negl(n)
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by the correctness of encryption. On the other hand, ifk 6= x then

Pr[C(x) 6= I(k,m)(x) | C ← O(I(k,m))] = Pr[Decx(Enck(m)) 6= ⊥] ≤ negl(n)

by thewrong-key detectionof encryption.
The polynomial slowdown property of the obfuscator followsfrom the fact that the size of the circuit is only

proportional to the ciphertext size and the size of the decryption circuit, which are polynomial in|k|, |m|.
Lastly, we showα(n)-entropic security for independent messages. LetD(n, ℓ) be the distribution defined by

the semantic-security of the encryption scheme. For any polynomial ℓ(n) any PPT adversaryA which attacks the
obfuscation scheme, we define the simulatorS which chooses a random ciphertextc from the distributionD(n, ℓ(n))
and runsA on a circuitCc constructed using the ciphertextc. Then

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[

A(O(I(k,m))) = 1
]

− Pr
(k,m)←(Xn,Yn)

[

SI(k,m)(1n, 1ℓ) = 1
]

∣

∣

∣

∣

(6)

=

∣

∣

∣

∣

Pr

[

A(Cc) = 1

∣

∣

∣

∣

(k,m)← (Xn, Yn)
c← Enck(m)

]

− Pr [A(Cc) = 1 | c← D(n, ℓ)]

∣

∣

∣

∣

≤ negl(n) (7)

Where (7) follows by semantic-security.✷

3.2 CPA Encryption and Composable Obfuscation for Indep. Messages

In this section, we show equivalence between CPA secure encryption with weak keys and self-composable MBPF
obfuscators forindependent messages.

Theorem 3.2. Letα(n) ∈ ω(log(n)). There existself-composableMBPF obfuscators withα(n)-entropic security
for independent messages if and only if there existCPA secure encryption schemes forα(n)-weak keys and the
wrong-key detection property. The above also holds if we replace “α(n)” with “fully”.

We prove the two sides of the “if and only if” separately. First we show that composable obfuscation implies
encryption (Lemma 3.3) and then we show that encryption implies obfuscation (Lemma 3.4).

In the next lemma, going from obfuscation to encryption, it would be natural to defineEnck(m) = O(I(k,m)).
However, we instead defineEnck(m) = (O(I(k,r)),m⊕ r) for a uniformr. The reason for this is that the messages
m chosen by the adversary in the CPA game can depend adaptivelyon prior ciphertexts. However, for composable
obfuscation, the distributionsYi of the messagesmi are independent of prior obfuscated circuits. We get aroundthis
by making sure that the obfuscation is applied to a random value.

Lemma 3.3. Letα(n) ∈ ω(log(n)) be an arbitrary function. LetO be aself-composableMBPF obfuscator with
α(n)-entropic security for independent messages. We define(Enc,Dec) by

Enck(m) , (O(I(k,r)),m⊕ r) , Deck(C, y) , C(k)⊕ y

wherer is uniformly random, andC is interpreted as a circuit. The resulting encryption scheme isCPA secure with
α(n)-weak keys.

Proof. The correctness of decryption, and the wrong-key detectionproperty, follow from the correctness of ob-
fuscation. For the CPA security of the encryption scheme with α(n)-weak keys, we define the distributionD(n, ℓ)
which chooses a uniformly randomk ← Un in the beginning, and then, on each invocation, outputs(r,O(I(k,r′)))
for uniformly random and independentr, r′ ←R Uℓ. We need to show that for all PPT adversariesA) and all
distribution-ensembles{Xn}n∈N with H∞(Xn) ≥ α(n), we have:

|Pr[CPAX,D
0 (A, n) = 1]− Pr[CPAX,D

1 (A, n) = 1]| ≤ negl(n) (8)

for the CPA attack game defined in Definition 2.5.
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Fix a PPT adversaryA and lett be an upper-bound on the number of queries thatA sends to its encryption oracle
(including the challenge query). Then there are some valuesof the random coins(r1, . . . , rt) used by the encryption
algorithm during the computation of ciphertexts(ri ⊕m, I(k,m)) that maximizes the difference in equation (8). For

this value, set the distributionsY (0)
1 , . . . , Y

(0)
t+1, to the point-valuesr1, . . . , rt. Set the distributionsY (1)

1 , . . . , Y
(1)
t to

be uniform on{0, 1}ℓ. We define an adversaryB(r1,...,rt)(C1, . . . , Ct) that attacks the obfuscation scheme. Namely,
B simulates the CPA game withA so that, wheneverA queries its oracle on messagesmi or asks for a challenge
ciphertext (fori = 1, . . . , t), the adversaryB responds with(Ci, ri ⊕ mi). Notice that, whenC1, . . . , Ct are

obfuscations of pointsr1, . . . , rt ← Y
(0)
1 , . . . , Y

(0)
t+1 under a randomk ← Xn then the above simulation is equivalent

to CPAX,D
0 . On the other hand whenC1, . . . , Ct are obfuscation of uniformly randomr1, . . . , rt ← Y

(1)
1 , . . . , Y

(1)
t+1

under a uniformly random keyk ← Uℓ, then the above is equivalent toCPAX,D
1 .

Therefore,

|Pr[CPAX,D
0 (A, n) = 1]− Pr[CPAX,D

1 (A, n) = 1]|

≤

∣

∣

∣

∣

∣

Pr

[

B(C1, . . . , Ct) = 1

∣

∣

∣

∣

∣

(k, r1, . . . , rt)← Xn, Y
(0)
1 , . . . , Y

(0)
t+1

Ci ← O(I(k,ri))

]

−Pr

[

B(C1, . . . , Ct) = 1

∣

∣

∣

∣

∣

(k, r1, . . . , rt)← Un, Y
(1)
1 , . . . , Y

(1)
t+1

Ci ← O(I(k,ri))

] ∣

∣

∣

∣

∣

≤ negl(n)

where, the last inequality follows since, by the definition of self-composable obfuscation, there is a simulator that
simulates both sides of the difference equivalently.✷

The other direction is shown via the same construction as in the case of semantic security.

Lemma 3.4. Let(Enc,Dec) be an encryption scheme withCPA security forα(n)-weak keys and having thewrong-
key detectionproperty. We define the obfuscatorO which, on inputI(k,m), computes a ciphertextc = Enck(m) and
outputs the circuitCc(·) defined byCc(x) = Decx(c). Then,O is a self-composableMBPF obfuscator withα(n)-
entropic security for independent messages.

Proof. The correctness and polynomial slowdown properties followfrom the same argument as that in the proof of
Lemma 3.2.

We show thatO is self-composable withα(n)-entropic security for independent messages. For any PPT ad-
versaryA and for anyt = poly(n), ℓ = poly(n), we define the simulatorS which, on input1n choosest ran-
dom ciphertextsc1, . . . , ct from the distributionD(n, ℓ) as defined by CPA encryption, and runsA on a circuits
(Cc1 , . . . , Cct) constructed using the ciphertextsc1, . . . , ct . Then, for any distribution ensemble{Xn}n∈N where
Xn is distributed over{0, 1}n with H∞(Xn) ≥ α(n), andt messagesm1, . . . ,mt ∈ {0, 1}

ℓ(n) we have
∣

∣

∣
Pr [A(O(Ik,m1), . . . ,O(Ik,mt)) = 1 | k ← Xn]− Pr

[

SIk,m1
,...,Ik,mt (1n, 1ℓ) = 1

]∣

∣

∣

≤

∣

∣

∣

∣

Pr

[

A
(

{Cci}
t
i=1

)

= 1

∣

∣

∣

∣

k ← Xn

{ci ← Enck(mi)}
t
i=1

]

− Pr
[

A
(

{Cci}
t
i=1

)

= 1
∣

∣ {ci ← D(n, ℓ)}ti=1

]

∣

∣

∣

∣

≤ negl(n)

where the last inequality simply follows from CPA security.✷
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4 Encryption/Obfuscation with Auxiliary Input

In this section we define semantic/CPA secure encryptionwith auxiliary input familyF , where the adversary gets to
learnf(k) for anyf ∈ F .5 Similarly, we define (self-composable) MBPF obfuscation with auxiliary input family
F , where the adversary and simulator both getf(k) for somef ∈ F and the obfuscated pointk (we only consider
this notion for obfuscation with independent messages). Both notions can be defined forα(n)-weak keys as well as
fully weak keys. Then, we show that all of the results of Section 3 extend naturally to the auxiliary input setting.

4.1 Definitions

Definition 4.1 (Symmetric Encryption with Weak Keys and Auxiliary Inputs). We say that an encryption
scheme hasCPA security for α(n)-weak keys and auxiliary inputs inF if there exists an efficient algorithmD(n, ℓ)
running in timepoly(n, ℓ), such that, for all PPT adversariesA and all distribution-ensembles{Xn}n∈N with
H∞(Xn) ≥ α(n), we have:

|Pr[CPAX,D
0 (A, n) = 1]− Pr[CPAX,D

1 (A, n) = 1]| ≤ negl(n)

where the gamesCPAX,D
b (A, n) for b = 0, 1 are defined via the following experiment:

1. k ← Xn

2. A submits a functionf ∈ F and gets backf(k).
3. Repeat:A submits a querym. Setc0 ← Enck(m), c1 ← D(n, |m|) and givecb toA.
4. The output of the game is the output ofA.

We definesemantic securitywith α(n)-weak keys and auxiliary inputs inF via the gamesSEMX,D
0 ,SEMX,D

1 ,
which are equivalent to the CPA gamesexceptthat step (3) is performed only once.

Definition 4.2 (Self composability). A multi-bit point function obfuscatorO with α(n)-entropic security with
auxiliary inputs fromF is said to beself-composableif for any PPT adversaryA with 1 bit output, any polynomials
t(·), ℓ(·), there exists a PPT simulatorS such that for everyf ∈ F and all distributions{(Xn, Yn)}n∈N, where

Yn = Y
(1)
n , . . . , Y

(t)
n , andXn taking values in{0, 1}n, Y

(i)
n taking values in{0, 1}ℓ(n) andH∞(Xn) ≥ α(n), we

have:

|Pr[A(f(k),O(I(k,m1)), . . . ,O(I(k,mt))) = 1]− Pr[SI(k,m1)(·),...,I(k,mt)
(·)(f(k), 1n) = 1]| ≤ negl(n),

where the probabilities are over(k1, . . . , kt,m1, . . . ,mt)← (Xn, Yn) and over the randomness ofA,S,O.
The notion of self composability extends naturally to obfuscators with fully-entropic security, where we require

that the above definition holds for allα(n) ∈ ω(log(n)). It also extends to obfuscators for independent messages,
where we restrict the definition to the case whereXn and Yn are independent. (It is stressed that there is no
independence assumption among the coordinates withinXn or Yn.)

4.2 Sem. Sec. Encryption and Obfuscation with Independent Messages

In this section, we show equivalence between semantically secure encryption with weak keys and auxiliary inputs
and MBPF obfuscators with auxiliary inputs forindependent messages.

Theorem 4.1. Letα(n) ∈ ω(log(n)) and letF be a family of efficiently computable functions. There existMBPF
obfuscators that areα(n)-entropic secure with auxiliary inputs fromF , for independent messages, if and only if
there exist semantically secure encryption schemes forα(n)-weak keys and auxiliary inputs fromF , that also have
the wrong key detection property. Furthermore, the above also holds if we replace “α(n)” with “fully”.

5This is only interesting for familiesF where eachf ∈ F is hard to invert, as otherwisef(k) completely revealsk and no security is
possible. Often, it makes sense to restrictF much further, such as requiring thatf(k) is exponentially-hard to invert.
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The proof of the above theorem is very similar to that of Theorem 3.1. As before, we prove the “if” and “only
if” directions separately, in Lemmas 4.1 and 4.2, respectively.

Lemma 4.1. Let α(n) ∈ ω(log(n)) and letF be a family of efficiently computable functions. LetO be a MBPF
obfuscator that isα(n)-entropic secure with auxiliary inputs fromF , for independent messages. LetEnck(m) ,

O(I(k,m)), Deck(C) , C(k) where the ciphertextC is interpreted as a circuit. Then the encryption scheme
(Enc,Dec) is semantically secure withα(n)-weak keys and auxiliary inputs fromF , and has the wrong-key de-
tection property.

Proof. The correctness of decryption follows from the correctnessof obfuscation. For the security of the encryption
scheme withα(n)-weak keys and auxiliary inputs inF : Fix any adversaryA and any distribution{Xn}n∈N with
H∞(Xn) ≥ α(n). The distribution{Yn} is defined by runningA(1n), and outputting the messagem thatA gives
to its challenger, after obtaining some auxiliary inputf(k).

Define the distributionD(n, ℓ) = O(I(k′,m′)) where(k′,m′) ← (Un, Uℓ). Then, by theα(n)-entropic security
of obfuscation w.r.t. auxiliary inputs fromF , there must be a simulatorS such that

∣

∣

∣
Pr[SEMX,D

0 (A, n) = 1]− Pr[SEMX,D
1 (A, n) = 1]

∣

∣

∣

=

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[A(f(k),O(I(k,m))) = 1]− Pr
(k′,m′)←(Un,Uℓ)

[A(f(k),O(I(k′,m′))) = 1]

∣

∣

∣

∣

≤

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[A(f(k),O(I(k,m))) = 1]− Pr
(k,m)←(Xn,Yn)

[

SI(k,m)(f(k)) = 1
]

∣

∣

∣

∣

(9)

+

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[

SI(k,m) (f(k)) = 1
]

− Pr
(k′,m′)←(Un,Uℓ)

[

SI(k′,m′) (f(k)) = 1
]

∣

∣

∣

∣

(10)

+

∣

∣

∣

∣

Pr
(k′,m′)←(Un,Uℓ)

[

SI(k′,m′) (f(k)) = 1
]

− Pr
(k′,m′)←(Un,Uℓ)

[

A(f(k),O(I(k′,m′))) = 1
]

∣

∣

∣

∣

(11)

≤ negl(n)

where (9) follows by the definition of entropic security of obfuscation with auxiliary inputs; (10) follows since the
only way that a PPT simulator can get anything from its oracleis by querying it on the inputk, which happens
with negligible probability whenk comes from a source of super-logarithmic entropyα(n); and (11) follows by the
definition of entropic security of obfuscation.✷

Conversely, we show than an encryption scheme with the wrong-key detection property implies obfuscation.

Lemma 4.2. LetF be a family of efficiently computable functions. Let(Enc,Dec) be an encryption scheme with
semantic security forα(n)-weak keys and auxiliary inputs fromF , that has thewrong-key detectionproperty. We
define the obfuscatorO which, on inputI(k,m), computes a ciphertextc = Enck(m) and outputs the circuitCc(·)

defined byCc(x) , Decx(c). Then the obfuscatorO with auxiliary inputs fromF hasα(n)-entropic security for
independent messages.

Proof. The proof of correctness and polynomial slowdown of the obfuscator follows exactly the proof of Lemma 3.2.
We next show that the obfuscator isα(n)-entropic secure with auxiliary inputs fromF , for independent messages.
Let D(n, ℓ) be the distribution defined by the semantic-security of the encryption scheme. For any polynomialℓ(n)
any PPT adversaryA which gets an auxiliary inputf(k) (for somef ∈ F) and attacks the obfuscation scheme, we
define the simulatorS which chooses a random ciphertextc from the distributionD(n, ℓ(n)) and runsA on a circuit
Cc constructed using the ciphertextc. Then,

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[

A(f(k),O(I(k,m))) = 1
]

− Pr
(k,m)←(Xn,Yn)

[

SI(k,m)(·)(f(k), 1n, 1ℓ) = 1
]

∣

∣

∣

∣

(12)

=

∣

∣

∣

∣

Pr

[

A(f(k), Cc) = 1

∣

∣

∣

∣

(k,m)← (Xn, Yn)
c← Enck(m)

]

− Pr [A(f(k), Cc) = 1 | c← D(n, ℓ)]

∣

∣

∣

∣

≤ negl(n) (13)
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Where (13) follows by semantic-security.✷

4.3 CPA Encryption and Composable Obfuscation for Indep. Messages

In this section, we show equivalence between CPA secure encryption with weak keys and auxiliary inputs, and
self-composable MBPF obfuscators with auxiliary inputs for independent messages.

Theorem 4.2. Let α(n) ∈ ω(log(n)) and letF be a family of efficiently computable functions. . There exist
self-composableMBPF obfuscators that areα(n)-entropic secure with auxiliary inputs fromF , for independent
messages, if and only if there existCPA secure encryption schemes forα(n)-weak keys and auxiliary inputs fromF ,
that have the wrong-key detection property. The above also holds if we replace “α(n)” with “fully.”

The proof of the above theorem is very similar to that of Theorem 3.2. We prove the two sides of the “if and only
if” separately. First we show that composable obfuscation with auxiliary inputs implies encryption with auxiliary
inputs, (Lemma 4.3) and then we show that encryption with auxiliary inputs implies obfuscation with auxiliary
inputs (Lemma 4.4).

Lemma 4.3. Let α(n) ∈ ω(log(n)) be an arbitrary function and letF be any family of efficiently computable
functions. LetO be aself-composableMBPF obfuscator that isα(n)-entropic secure with auxiliary inputs fromF ,
for independent messages. We define the encryption functionby

Enck(m) , (O(I(k,r)),m⊕ r),

wherer is a random message. We define the decryption function by

Deck(C, y) , C(k)⊕ y,

whereC is interpreted as a circuit. Then, the resulting encryptionscheme(Enc,Dec) is CPA secure withα(n)-weak
keys and auxiliary inputs fromF .

Proof. The correctness of decryption, and the wrong-key detectionproperty, follow from the correctness of ob-
fuscation. For the CPA security of the encryption scheme with α(n)-weak keys and auxiliary inputs fromF , we
define the distributionD(n, ℓ) which chooses a uniformly randomk′ ← Un in the beginning, and then, on each
invocation, outputs(O(I(k′,r′)), r) for uniformly random and independentr, r′ ←R Uℓ. We need to show that for all
PPT adversariesA and all distribution-ensembles{Xn}n∈N with H∞(Xn) ≥ α(n), we have:

|Pr[CPAX,D
0 (A, n) = 1]− Pr[CPAX,D

1 (A, n) = 1]| ≤ negl(n) (14)

for the CPA attack game defined in Definition 4.1.
Fix a PPT adversaryA and lett be an upper-bound on the number of queries thatA sends to its encryption

oracle (including the challenge query), and letf ∈ F be the auxiliary input thatA takes. Then there are some
values of the random coins(r1, . . . , rt) used by the encryption algorithm during the computation of ciphertexts

(I(k,m), ri ⊕m) that maximizes the difference in equation (14). For this value, set the distributionsY (0)
1 , . . . , Y

(0)
t ,

to the point-valuesr1, . . . , rt. Set the distributionsY (1)
1 , . . . , Y

(1)
t to be uniform on{0, 1}ℓ. We define an adversary

B(r1,...,rt)(f(k), C1, . . . , Ct) that attacks the obfuscation scheme. Namely,B simulates the CPA game withA so that,
wheneverA queries its oracle on messagesmi or asks for a challenge ciphertext (fori = 1, . . . , t), the adversaryB
responds with(Ci, ri ⊕mi). Notice that, whenC1, . . . , Ct are obfuscations of pointsr1, . . . , rt ← Y

(0)
1 , . . . , Y

(0)
t

under the keyk (which was chosen according toXn) then the above simulation is equivalent toCPAX,D
0 . On the

other hand whenC1, . . . , Ct are obfuscation of uniformly randomr′1, . . . , r
′
t ← Y

(1)
1 , . . . , Y

(1)
t under a uniformly

random keyk′ ← Uℓ, then the above is equivalent toCPAX,D
1 .

Therefore,
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|Pr[CPAX,D
0 (A, n) = 1]− Pr[CPAX,D

1 (A, n) = 1]|

≤

∣

∣

∣

∣

∣

Pr

[

B(f(k), C1, . . . , Ct) = 1

∣

∣

∣

∣

∣

(k, r1, . . . , rt)← Xn, Y
(0)
1 , . . . , Y

(0)
t

Ci ← O(I(k,ri))

]

−Pr






B(f(k), C1, . . . , Ct) = 1

∣

∣

∣

∣

∣

∣

∣

k ← Xn

(k′, r′1, . . . , r
′
t)← Un, Y

(1)
1 , . . . , Y

(1)
t

Ci ← O(I(k′,r′i)
)







∣

∣

∣

∣

∣

∣

∣

≤ negl(n)

where the last inequality follows from the definition of self-composable obfuscation with auxiliary inputs, since
there exists a simulator for both cases, and these simulators output the same thing, since they cannot tell their oracles
apart.✷

The other direction is shown via the same construction as in the case of semantic security.

Lemma 4.4. LetF be a family of efficiently computable functions. Let(Enc,Dec) be an encryption scheme with
CPA security forα(n)-weak keys and auxiliary inputs fromF . In addition assume that(Enc,Dec) has thewrong-
key detectionproperty. We define the obfuscatorO which, on inputI(k,m), computes a ciphertextc = Enck(m)
and outputs the circuitCc(·) defined byCc(x) = Decx(c). Then,O is a self-composableMBPF obfuscator for
α(n)-entropic secure and auxiliary inputs inF , for independent messages.

Proof. The correctness and polynomial slowdown properties followfrom the same argument as that in the proof of
Lemma 3.2.

We show thatO is self-composable forα(n)-entropic security and auxiliary inputs fromF , for independent
messages. For any PPT adversaryA and for anyt = poly(n), ℓ = poly(n), we define the simulatorS which, on
input 1n choosest random ciphertextsc1, . . . , ct from the distributionD(n, ℓ) as defined by CPA encryption, and
runsA on a circuits(Cc1 , . . . , Cct) constructed using the ciphertextsc1, . . . , ct . Then, for any distribution ensemble
{Xn}n∈N whereXn is distributed over{0, 1}n with H∞(Xn) ≥ α(n), andt messagesm1, . . . ,mt ∈ {0, 1}

ℓ(n) we
have

∣

∣

∣
Pr [A(f(k),O(Ik,m1), . . . ,O(Ik,mt)) = 1 | k ← Xn]− Pr

[

SIk,m1
,...,Ik,mt (f(k), 1n, 1ℓ) = 1

]∣

∣

∣

≤

∣

∣

∣

∣

Pr

[

A
(

f(k), {Cci}
t
i=1

)

= 1

∣

∣

∣

∣

k ← Xn

{ci ← Enck(mi)}
t
i=1

]

− Pr
[

A
(

f(k), {Cci}
t
i=1

)

= 1
∣

∣ {ci ← D(n, ℓ)}ti=1

]

∣

∣

∣

∣

≤ negl(n)

where the last inequality simply follows from CPA security.✷

5 KDM Encryption and MBPF Obfuscation

5.1 Semantically Secure KDM Encryption and Obfuscation

In this section, we show equivalence between encryption with key dependent messages(KDM) and obfuscation with
dependent messages. First, we define the notion of semantically-secure KDM encryption withα(n)-weak keys.

Definition 5.1 (Semantic KDM Encryption with Weak Keys). A symmetric encryption scheme(Enc,Dec) is
semantically secure forkey dependent messages (KDM)andα(n)-weak keysif there exists a distributionD(n, ℓ),
which is efficiently sampleable in timepoly(n, ℓ), such that for all functionsf , all PPT adversariesA, and all
distribution-ensembles{Xn}n∈N with H∞(Xn) ≥ α(n), we have:

|Pr[KDMX,D
0 (A, n) = 1]− Pr[KDMX,D

1 (A, n) = 1]| ≤ negl(n), (15)
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whereKDMX,D
b (A, n) is defined via the following experiment:

k ← Xn

c0 ← Enck(f(k)), c1 ← D(n, ℓ) whereℓ is the output size off .

Output:A(cb)

Note that, unlike standard definitions of KDM security, our definition is stronger in that we do not necessarily
insist thatf is an efficient function. We now show that semantically secure encryption with KDM and weak key
security is equivalent to MBPF obfuscation.

Theorem 5.1. Letα(n) ∈ ω(log(n)). There exist MBPF obfuscators withα(n)-entropic security for thestandard
notion of dependent messagesif and only if there exist semantically-secureKDM encryption schemes withα(n)-
weak keys and the “wrong-key detection” property. In particular, the above also holds if we replace “α(n)” with
“fully”.

The proof of the above theorem is very similar to that of Theorem 3.2. We simply observe that allowing the
adversary to get encryptions of valuesf(k) corresponds to having a distributionYn that depends onXn; that is
Yn = f(Xn). Conversely, for any joint distribution{Xn, Yn}, we can define some (probabilistic, and possibly
inefficient) functionf so thatYn = f(Xn). We give the details below. Again, we prove the two sides of the “if and
only if” separately. First we show that obfuscation impliesKDM encryption in Lemma 5.1 and then we show that
encryption implies obfuscation in Lemma 5.2.

Lemma 5.1. Let α(n) ∈ ω(log(n)) be an arbitrary function. LetO be a MBPF obfuscator withα(n)-entropic
security. We define the functionsEnck(m) = O(I(k,m)), Deck(C) = C(k) where the ciphertextC is interpreted
as a circuit. The resulting encryption scheme(Enc,Dec) is semanticallyKDM secure withα(n)-weak keys and
wrong-key detection.

Proof. The correctness of decryption follows from the correctnessof obfuscation. For the security of the resulting
KDM encryption scheme withα(n)-weak keys, let us fix any adversaryA, functionf , and distribution{Xn}n∈N

with H∞(Xn) ≥ α(n). DefineYn = f(Xn). By the entropic-security of obfuscation withdependentmessages,
there exists a simulatorS such that:

|Pr[KDM0(A, n) = 1]− Pr[KDM1(A, n) = 1]|

=

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
k←Xn

[A(O(I(k,0ℓ))) = 1]

∣

∣

∣

∣

≤

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
(k,m)←(Xn,Yn)

[

SI(k,m)(·)(1|k|, 1ℓ) = 1
]

∣

∣

∣

∣

(16)

+

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[

SI(k,m)

(

1|k|, 1ℓ
)

= 1
]

− Pr
k←Xn

[

S
I
(k,0ℓ)

(·)
(

1|k|, 1ℓ
)

= 1
]

∣

∣

∣

∣

(17)

+

∣

∣

∣

∣

Pr
k←Xn

[

S
I
(k,0ℓ)

(·)
(

1|k|, 1ℓ
)

= 1
]

− Pr
k←Xn

[

A(O(Ik,0ℓ)) = 1
]

∣

∣

∣

∣

(18)

≤ negl(n)

where (16),(18) follow by the definition of entropic security of obfuscation with dependent messages, and (17)
follows since the only way that a PPT simulator can get anything from its oracle is by querying it on the inputk,
which happens with negligible probability whenk comes from a source of super-logarithmic entropyα(n). ✷

Lemma 5.2. Let (Enc,Dec) be an encryption scheme withsemantic KDM security forα(n)-weak keys and with
theywrong-key detectionproperty. We define the obfuscatorO which, on inputI(k,m), computes a ciphertextc =

Enck(m) and outputs the circuitCc(·) (with hard-coded ciphertextc) defined byCc(x) , Decx(c). Then the
obfuscatorO hasα(n)-entropic security for dependent messages.
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Proof. For any PPT adversaryA, we define the simulatorS which, on input1n, finds the message sizeℓ by
querying theI(k,m) oracle on⊥, chooses a random ciphertextc from the distributionD(n, ℓ) as defined by the
pseudorandom ciphertextsproperty, and runsA on a circuitCc constructed using the ciphertextc. Then, for any
distribution ensemble{Xn, Yn}n∈N whereXn is distributed over{0, 1}n with H∞(Xn) ≥ α(n), define the function
f(k) which, on inputk, outputs a random sample from the distribution(Yn |Xn = k) of Yn conditioned onXn = k.
Note that this function may not be efficient (but our definition of KDM encryption allows this). Then

∣

∣

∣

∣

Pr
(k,m)←(Xn,Yn)

[

A(O(I(k,m))) = 1
]

− Pr
(k,m)←(Xn,Yn)

[

SI(k,m)(·)(1n, 1ℓ) = 1
]

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr

[

A(Cc) = 1

∣

∣

∣

∣

k ← (Xn)
c← Enck(f(k))

]

− Pr [A(Cc) = 1 | c← D(n, ℓ)]

∣

∣

∣

∣

≤ negl(n)

✷

5.2 Multi-KDM Encryption and Self-Composable Obfuscation

In this section, we explore a notion of CPA security with KDM and weak-keys. We essentially show results analo-
gous to those in Section 3.2 connecting CPA encryption (without KDM) to obfuscation with independent messages,
but only if we restrict ourselves to a non-adaptive attackerwho chooses the functionf of the secret key prior to
seeing any ciphertexts.

Definition 5.2 (Multi-KDM Encryption with Weak Keys). A symmetric encryption scheme(Enc,Dec) is Multi-
KDM securefor α(n)-weak keysif there exists a distributionD(n, ℓ) such that for anyt ≤ poly(n), any functions
f1, . . . , ft, any PPT adversaryA, and any distribution-ensemble{Xn}n∈N with H∞(Xn) ≥ α(n), we have:

|Pr[A(Enck(f1(k)), . . . ,Enck(ft(k)) = 1]− Pr[A(c0, . . . , ct) = 1 | ci ← D(n, ℓi)]| ≤ negl(n),

whereℓi is the output size offi.

Theorem 5.2. Letα(n) ∈ ω(log(n)) be an arbitrary function. LetO be a self-composable MBPF obfuscators with
α(n)-entropic security (for dependent messages). We define the encryption function by

Enck(m) , O(Ik,m),

and the decryption function by
Deck(C) , C(k),

whereC is interpreted as a circuit. Then the resulting encryption scheme(Enc,Dec) is multi-KDM secure with
α(n)-weak keys.

Proof. The correctness of decryption follows from the correctnessof obfuscation. For the multi-KDM security
of the encryption scheme, fix anyt ≤ poly(n), any poly-size circuitsf1, . . . , ft, any PPT adversaryA, and any
distribution-ensemble{Xn}n∈N with H∞(Xn) ≥ α(n).

∣

∣

∣

∣

Pr
k←Xn

[A(Enck(f1(k)), . . . ,Enck(ft(k))) = 1]− Pr
k←Xn

[A(Enck(0
ℓ1), . . . ,Enck(0

ℓt)) = 1]

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr
k←Xn

[A(O(I(k,f1(k))), . . . ,O(I(k,ft(k)))) = 1]− Pr
k←Xn

[A(O(I(k,0ℓ1 )), . . . ,O(I(k,0ℓt ))) = 1]

∣

∣

∣

∣

≤ negl(n)

where the latter equation follows from the fact thatO is a self-composable obfuscator w.r.t. dependent messagesand
hence, if the probability ofA outputting1 was non-negligibly different between the left and right-hand sides above,
than there would be a PPT simulator that could distinguish the above distributions, but that cannot be the case.✷
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Theorem 5.3. Let (Enc,Dec) be an encryption scheme withmulti-KDM security forα(n)-weak keys and with
the wrong-key detectionproperty. We define the obfuscatorO which, on inputI(k,m), computes a ciphertextc =
Enck(m) and outputs the circuitCc(·) (with hard-coded ciphertextc) defined byCc(x) = Decx(c). Then,O is a
self-composableMBPF obfuscator withα(n)-entropic security for dependent messages.

Proof. First, the correctness property of the obfuscator and the polynomial slowdown property follow the same way
as in the proof of Lemma 3.1.

We must show thatO is self-composable withα(n)-entropic security for dependent messages. For any PPT
adversaryA and for anyt ≤ poly(n), we define the simulatorS which, on input1n, finds the message size
ℓ by querying theI(k,m) oracle on⊥, choosest random ciphertextsc1, . . . , ct from the distributionD(n, ℓ) as
defined by the the multi-KDM security definition, and runsA on a circuits(Cc1 , . . . , Cct) constructed using the
ciphertextsc1, . . . , ct . Then, for any distribution ensemble{Xn}n∈N whereXn is distributed over{0, 1}n with
H∞(Xn) ≥ α(n), andt functionsf1, . . . , ft, we have

∣

∣

∣
Pr

[

A(O(Ik,f1(k)), . . . ,O(Ik,ft(k))) = 1 | k ← Xn

]

− Pr
[

SIk,f1(k),...,Ik,ft(k)(1n, 1ℓ) = 1
]
∣

∣

∣

≤

∣

∣

∣

∣

Pr

[

A(Cc1, . . . , Cct) = 1

∣

∣

∣

∣

k ← Xn

ci ← Enck(fi(k))

]

− Pr [A(Cc1, . . . , Cct) = 1 | ci ← D(n, ℓ)]

∣

∣

∣

∣

≤ negl(n)

where the last inequality follows from the fact that the encryption scheme(Enc,Dec) is multi-KDM secure.✷

6 Implications

We now show how to use the above equivalence results between encryption with weak keys and obfuscation of
multi-bit point functions to derive new results in both directions.

6.1 Encryption with Fully Weak Keys

Encryption with α(n)-weak keys vs. fully-weak keys. Prior work on leakage-resilient encryption and encryption
with weak-keys has given results of the following form:

1. Fix any constantε > 0 and letα(n) = nε.

2. Construct an encryption scheme, which depends onε, and achieves security forα(n)-weak keys.

We note that there are several issues with the above two-stepapproach. Firstly, we may not know the exact level of
key-entropy, or correspondingly the value ofε, at design time. Therefore, in practice, it may be difficult to decide
on whatε to use when choosing the encryption scheme. A scheme which isdesigned for some specificε does
not provide any security guarantees for key-distributionswhose entropy is strictly less thannε, and so we may be
tempted to be conservative with the choice ofε at design time. On the other hand, when taking an excessivelysmall
value ofε in the above constructions, we are forced to reduce the exact-security of the system (e.g. working in a
group of description-lengthnε) or reduce the efficiency of the system proportionally withn1/ε, leading to poorer
security or performance even if the system is later only usedwith uniformly random keys! Secondly, none of the
prior results generalize to allow for specific super-logarithmic entropy thresholds such asα(n) = log1+ε(n), even if
ε is specified a-priori.

In contrast, an encryption scheme with security for fully-weak keys provides the corresponding advantages.
More specifically, the order of quantifiers now requires thatthere is asingle encryption scheme, parameterized only
by the security parametern (but not by ε), which simultaneously achieves security for allα(n) ∈ ω(log(n)). The
exact-security of the scheme may depend onα(n) (since there is always a way to break the scheme in time2α(n)),
but this relationship is now more fluid, with the exact-security gracefully degrading for smallerα(n). In particular,
the security guarantees are meaningful even forα(n) = log1+ε(n), and there is no single threshold above which the
scheme is secure and below which it is insecure. This is a significant advantage, as it does not require one to decide
at design time on the tradeoff between allowed entropy levels and achieved security/efficiency.
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New construction of encryption with fully-weak keys. We now describe the point-function obfuscation scheme
of Canetti [10], and notice that it yields a self-composableMBPF obfuscator withfully-entropic securityfor in-
dependent messages. It is based on a strengthened version ofthe DDH assumption, which we describe shortly.
Using this simple observation and our connection between obfuscation and encryption (Lemma 3.3), we get the first
symmetric-key encryption scheme with CPA security forfully-weakkeys (albeit under a strong assumption). We
begin by defining thestrengthened DDHassumption for a prime-ordered groupG.

Definition 6.1 (Strengthened DDH Assumption [10]). LetG be a group of prime orderp = 2poly(n) and letg be
a random generator ofG. Thestrengthened DDH assumptionstates that, for any distribution{Xn} over Zp with
entropyH∞(Xn) ≥ ω(log(n)), we have〈ga, gb, gab〉 ≈ 〈ga, gb, gc〉 wherea←R Xn, andb, c←R Zp.

We now define the functionF : Zp → G × G by F (k) = 〈r, rk〉 wherer ←R G. In [10], this was shown to be a
securepoint-function obfuscator (with fully-entropic security) under the strengthened DDH assumption. In addition,
this point-function obfuscator is self-composable since,given a (random) obfuscation〈g1, g2〉 of some pointx, it is
easy to generate freshly random (and independent) new obfuscation ofx by taking〈gu

1 , gu
2 〉 for a randomu ∈ Zp. We

use the construction of Canetti and Dakdouk [11] to turn a point-function obfuscator into a multi-bit point-function
obfuscator. Define the function:

O(I(k,m)) =















Sampler0, r1, . . . , rℓ ←R G for ℓ = |m|.
Setg0 = rk

0

For eachi ∈ {1, . . . , ℓ} : if mi = 1 setgi = rk
i elsegi ←R G.

Output:c = (〈r0, g0〉, . . . , 〈rℓ, gℓ〉).

Using the techniques of [11], it is easy to show thatO is aself-composableobfuscator with fully-entropic security
for independent messagesunder the strengthened DDH assumption. Combining this withLemma 3.3, we get the
following theorem.

Theorem 6.1. Under the strengthened DDH assumption, there exists a CPA-secure symmetric encryption scheme
with security againstfully-weak keys. In particular, this means that there is asinglescheme, parameterized only by
the security parametern, such that security of the scheme is maintained when the key is chosen fromanydistribution
of entropyα(n) ∈ ω(log(n)).

The strengthened DDH assumption is indeed a strong one. A potentially weaker formulation would be to limit
the min-entropy ofXn to be at least some specific super-logarithmic functionα(n). This way, we would obtain
a parameterized version of Theorem 6.1 that relates the strength of the security guarantee to the strength of the
assumption. It is important to note that the construction itself is independent of the parameterα. That is, we obtain a
single encryption scheme that provides a range of security guarantees, depending on the strength of the assumption.

6.2 Obfuscation

Entropically Secure Obfuscation for Independent Messages: It is fairly simple to constructα(n)-entropically
secure obfuscation for independent messages, whenα(n) = nε for some constantε ≥ 0. First we construct a
semantically secure encryption scheme withα(n)-weak keys. This can be done by simply extracting a sufficient
amount of uniform randomness from the keyk, using a strong randomness extractorExt, and then using the result
as a one time pad to encrypt the message. For variable-lengthmessages, we also need to expand the extracted
randomness to an appropriate size, using a pseudo-random generatorPRG. In particular, we define

Enck(m) = 〈r,PRG(Ext(k; r))⊕m〉

wherer is a uniformly random seed for the extractor. The output length of Ext and the input length ofPRG are set
to some valuev which is sufficiently small that the outputs of the extractoris (statistically) close to uniform, and
sufficiently large that the output of thePRG is pseudo-random.6

6For example, if we choosev = nε/2, then an extractor based on universal-hash functions will produce an output which is2−v/2 =
negl(n)-close to uniform, and the output of thePRG is negl(nε/2) = negl(n)-pseudorandom. However, this does not generalize to smaller
values ofα such as,α(n) = log2(n).
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One can use this encryption scheme to construct one which also has the wrong-key detection property using
Lemma 2.1. Such a scheme yields an multi-bit point function obfuscator withα(n)-entropic security for independent
messages, by Lemma 3.2.

Self-Composable Entropically Secure Obfuscation for Independent Messages: One problem with the above
construction of semantically-secure encryption using extractors, is that it does not generalize to CPA security. In
fact, achieving CPA secure encryption with weak keys seems to be a much harder problem, which has received
much attention in recent works [1, 13, 24]. We now show how to use these results to achieve self-composable
entropically secure obfuscation for independent messages. On a high level, we would simply like to just apply our
result connecting such encryption and obfuscation (Lemma 3.4) “out of the box”. However, there are several issues
that we must deal with first.

• Efficiently-Sampleable Distributions:The works of [1, 13, 24] are concerned with “key leakage”, where the
adversary gets to learn some (short) function of the secret key, whose output length is bounded byλ bits.
Conditioned on such leakage, the key can be thought of as being derived from a (special type) of weak source
with entropyα(n) ≈ n− λ. It turns out that the constructions are also secure when thekey is chosen from an
arbitrary, butefficiently-sampleableweak source of entropyα(n) [24]. Therefore, our results for obfuscation
will only translate to the case where the distribution obfuscated program is efficiently sampleable.

• Public Keys/Parameters:Only the scheme of [13] is explicitly designed for the symmetric key setting. The
schemes of [1, 24] are public-key encryption schemes. As noted, such schemes are secure when the key-
generation procedure uses randomness that comes from a weaksource. Therefore such schemes naturally
translate to the symmetric key setting, where the randomness of the key-generation algorithm is the shared se-
cret key. Unfortunately, these schemes also rely onpublic parameterswhich are chosen uniformly at random,
and are available to the key-generation algorithm. Therefore, we will only get an obfuscator in the presence
of public parameters. Note that in the context of standard obfuscation, public parameters are never needed
since the obfuscatorO could always sample fresh parameters each time it runs. However, when considering
composable obfuscation, this equivalence does not hold since future uses of the obfuscator might compromise
security of prior uses. Therefore, having randomness in theform of public parameters, which are re-used for
all invocations of the obfuscator, can be useful in this context.

• Uniform Ciphertexts:Recall that our definition of CPA security is slightly different than the standard (we
require that the ciphertexts of any message are indistinguishable from some universally specified distribution)
and has not been explicitly analyzed by these schemes. However, in all of these schemes explicitly show in
their proofs that the ciphertexts are indistinguishable from uniform, which satisfies our definition.

• Wrong-Key Detection:The wrong-key detection property is explicitly analyzed in[13]. For the schemes of
[1, 24], we get the property that, given the public parameters it is computationally difficult to findk, k′ such
thatDeck′(Enck(m)) 6= ⊥. This translates to acomputational-correctnessproperty for the obfuscator where,
given the public parameters, it is computationally difficult to findk,m, x such thatO(I(k,m))(x) 6= I(k,m)(x).

Using our connection between CPA-secure symmetric key encryption and self-composable obfuscation with
independent messages, we get the following new constructions of obfuscators as a corollary of Lemma 3.4, using
the schemes of [1, 13, 24].

Theorem 6.2. For any constantε > 0, there exists aself-composableMBPF obfuscator with independent messages
underanyof the following assumptions:

1. Decisional Diffie-Hellman (DDH) withnε-entropic security, based on [24].(∗,†).

2. Learning With Errors (LWE) withnε-entropic security, based on [1].(∗,†).

3. Learning Subspaces with Noise (LSN) withεn-entropic security, based on [13].(∗).
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where the restrictions are:

* Only works forefficiently sampleable key-distributions.

† Requires public parameters and only achieves computational-correctness.

Difficulty of Achieving Obfuscation with Dependent Messages. The connection between encryption and ob-
fuscation also yields new negative results for the more standard notion of obfuscation that allows fordependent
messages, and in particular for the standard VBB notion. We rely on a recent result of Haitner and Holenstein
[16], which shows that there can beno black-box reduction from a semantically secure encryptionscheme with
security against key-dependent messages to, essentially,any standard cryptographic assumption. The notion of
“cryptographic assumption” is formalized in [16] as (essentially) any game between an attacker and a challenger in
which we assume that all PPT attackers have a negligible success probability. In particular, this includes all standard
assumptions such as existence of Trapdoor One-Way Permutations or Claw-Free Permutations, as well as specific
algebraic assumptions like the hardness of factoring, DDH,Learning with Errors and many others.7 Since, by The-
orem 5.1, we have a reduction from a semantically secure encryption schemes with security against key-dependent
messages to obfuscation of multi-bit point functions withn-entropic security (i.e. even uniformly random keys),
we see that this latter notion of obfuscation cannot be realized from essentially any cryptographic assumption under
black-box reductions.

Theorem 6.3. No construction of an MBPF obfuscator withα(n)-entropic securityfor dependent messagescan be
proven secure via a black-box reduction toany“standard cryptographic assumption”, even forα(n) = n (i.e. even
uniformly random keys).

We note that Canetti and Dakdouk [11] showed thatcomposable obfuscation of point functions (with no output)
(i.e. functionsIk(x) which output1 whenx = k and⊥ otherwise) implies multi-bit point function obfuscatorswith
dependent messages. Thus we get the following as a corollary.

Corollary 6.1. No construction of acomposableobfuscator forsingle-value point functionswith α(n)-entropic
security can be proven secure via a black-box reduction toany “standard cryptographic assumption”, for anyα()
(even forα(n) = n, namely uniformly random keys).

We note that the impossibility result of [16] only considerssemantically secure encryption withvariable length
messagesand does not rule out KDM security when the message size is shorter than the key. Correspondingly, the
work of [11] constructs MBPF obfuscators withα(n)-entropic security (for someα(n) ≪ n) and for dependent
messagesin this special case, where the message size is (significantly) smaller than the key size (i.e. functions
I(k,m) where|m| < |k|). These constructions only relied onstandard cryptographic assumptionssuch as collision-
resistant hash functions. The above theorem shows that suchconstructions do not generalize to variable-length
messages, where the message size can exceed the key size. Alternatively, in this work we show how to leverage
prior results on leakage-resilient cryptography to construct self-composable MBPF obfuscators withα(n)-entropic
security (for someα(n) ≪ n), under standard assumptions, in the special case of (variable-length) independent
messages. It seems that there is little hope in generalizing this approach to the standard notion of obfuscation, which
also allows key-dependent messages.
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A Fully-entropic security and the virtual black-box proper ty

In this section, we prove Theorem 2.1, which states that an obfuscatorO with fully-entropic security satisfies the
virtual black-box property in Definition 2.2. The virtual black-box definition appears to be stronger than fully-
entropic security because it does not impose any constrainton the min-entropy of the distributionXn. However, we
show in this section that this is not the case.

We do not work with the virtual black-box definition directly, but rather use two intermediate definitions.

Definition A.1 (Distributional indistinguishability [10] ). For any PPT adversaryA with 1 bit output and for any
distribution{Xn, Yn}n∈N withH∞(Xn) ∈ ω(log(n)), the distributions〈k,m,A(O(k,m))〉 and〈k,m,A(O(k′,m′))〉
are computationally indistinguishable, where(k,m), (k′,m′)← {Xn, Yn} independently.

Definition A.2 (Oracle indistinguishability [10]). For any PPT adversaryA with 1 bit output and any polynomial
p, there exists a polynomial-sized family of sets of keys{Ln}n∈N such that for all large enoughn, all k, k′ /∈ Ln and
all m,m′,

∣

∣Pr[A(O(k,m)) = 1]− Pr[A(O(k′,m′)) = 1]
∣

∣ <
1

p(n)

We prove Theorem 2.1 by showing that fully-entropic security implies the distributional indistinguishability
property, which in turn implies oracle indistinguishability, which finally implies the virtual black-box property. The
main ideas in these proofs are adapted from [10] to the multi-bit setting.

Lemma A.1. If an obfuscatorO satisfies fully-entropic security, then it satisfies distributional indistinguishability.

Proof. Suppose for the sake of contradiction thatO does not satisfy distributional indistinguishability, sothere
exists an adversaryA, distribution{Xn, Yn} with H∞(Xn) ∈ ω(log(n)), distinguisherD, and polynomialp such
that for infinitely many values ofn,

∣

∣Pr[D(k,m,A(O(k,m)) = 1]− Pr[D(k,m,A(O(k′,m′)) = 1]
∣

∣ ≥
1

p(n)
, (19)

where(k,m) and (k′,m′) are independently sampled from{Xn, Yn}. Let β(n) = H∞(Xn). We show that the
same adversaryA breaks the fully-entropic security ofO because it breaksα-entropic security forα(n) = β(n)−
log(10p(n)). Note thatα ∈ ω(log(n)) as desired.

DefinePk,m = Pr[A(O(k,m)) = 1], where the probability is taken over the randomness ofA andO. It follows
from (19) that there exist two setsZ1, Z0 ⊂ {0, 1}

n such that:

• For any(k,m) ∈ Z1, (k′,m′) ∈ Z0 we havePk,m − Pk′,m′ > 1
10p(n) .

• The sets are large: for(k,m)← {Xn, Yn}, Pr[(k,m) ∈ Z1] = Pr[(k,m) ∈ Z0] = 1
10p(n) .

Let {X1
n, Y 1

n } and{X0
n, Y 0

n } be the distributions formed by taking{Xn, Yn} and conditioning on the event that a
key-message pair is chosen fromZ1 or Z0, respectively. We claim that the two distributions{Xb

n, Y b
n} for b ∈ {0, 1}

each have min-entropyα. This holds because for anyk, m,

Pr[{Xb
n, Y b

n} = (k,m)] ≤ Pr[{Xn, Yn} = (k,m)] · 10p(n)

since equality holds if(k,m) ∈ Zb or the left side probability equals 0 if(k,m) /∈ Zb. Therefore, by the union
bound,

Pr[Xb
n = k] ≤ Pr[Xn = k] · 10p(n) ≤ 2−β · 10p(n) = 2−α.

As a result, given any PPT simulatorSI(k,m) where(k,m) is chosen from either{X1
n, Y 1

n } or {X0
n, Y 0

n }, the
simulator only queries the correct keyk with negligible probability. Hence,

Pr[SI(k,m)

(

1|k|
)

= 1 | (k,m)← {X1
n, Y 1

n }]− Pr[SI(k,m)

(

1|k|
)

= 1 | (k,m)← {X0
n, Y 0

n }]
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is negligible. On the other hand, we know that

Pr[A(O(I(k,m))) = 1 | (k,m)← {X1
n, Y 1

n }]− Pr[A(O(I(k,m))) = 1 | (k,m)← {X0
n, Y 0

n }] >
1

10p(n)
.

As a result, it follows by the triangle inequality that for any simulatorS, either

Pr[A(O(I(k,m))) = 1 | (k,m)← {X1
n, Y 1

n }]− Pr[SI(k,m)

(

1|k|
)

= 1 | (k,m)← {X1
n, Y 1

n }] >
1

20p(n)
,

or the corresponding inequality holds for{X0
n, Y 0

n }. Hence, one of these distributions breaks theα-entropic security
of O and thus the fully-entropic security ofO, as desired.✷

Lemma A.2. If an obfuscatorO satisfies distributional indistinguishability, then it satisfies oracle indistinguisha-
bility.

Proof. Assume for the sake of contradiction that there exists a PPT adversaryA and a polynomialp that break
oracle indistinguishability. We define the following constants:

Pk,m = Pr[A(O(k,m)) = 1], m1
k = arg max

m
{Pk,m}, m0

k = arg min
m
{Pk,m}, P 1

k = Pk,m1
k
, P 0

k = Pk,m0
k
.

BecauseA andp break oracle indistinguishability, for any polynomial-sized family of sets{Ln}n∈N and for
infinitely many values ofn, there existk, k′ /∈ Ln andm,m′ such thatPk,m − Pk′,m′ ≥ 1

p(n) . Without loss of

generality, we can assumem = m1
k andm′ = m0

k′, sincePk,m1
k
≥ Pk,m andPk′,m0

k′
< Pk′,m′ .

Hence, for any polynomial-sized family of sets{Ln}n∈N and for infinitely many values ofn, there existk, k′ /∈
Ln such that

P 1
k − P 0

k′ ≥
1

p(n)
. (20)

For a given constantc ∈ N, construct the family of sets{Lc
n}n∈N in the following manner. The setLc

n = Sc
n∪T c

n,
whereSc

n is the set of thenc keysk with the maximal values ofP 1
k , andT c

n is the set ofnc keysk′ with the minimal
P 0

k′ . Clearly,|Lc
n| ≤ |S

c
n|+ |T

c
n| = 2nc so the family{Lc

n} is polynomially-bounded in size. Hence, for anyc ∈ N,
and for alln such that (20) holds for the family{Lc

n}, we have that any keysk ∈ Sc
n andk′ ∈ T c

n satisfy

P 1
k − P 0

k′ ≥
1

p(n)
.

Next, we form the families{S̃n}n∈N and{T̃n}n∈N as follows. Givenn, let cn be the largest value such that (20)
is satsfied with respect ton andLcn

n . Then,S̃n is defined recursively, as follows.

1. The base case is̃S0 = Sc0
0 andT̃0 = T c0

0 .

2. Forn > 0, let n′ be such that̃Sn−1 = S
cn′

n−1. Then,S̃n equals the largest set out ofScn
n andS

cn′
n .

We defineT̃n analogously. Finally, we form the distribution{Xn, Yn} that is uniform over the key-message pairs
(k,m1

k) for all k ∈ S̃n and the key-message pairs(k′,m0
k′) for all k′ ∈ T̃n. This distribution is well-spread, because

given any polynomialnd, there exists a valuen0 such that|S̃n| = |T̃n| > nd for all n > n0.
We show that there exists a distinguisherD such that for infinitely many values ofn,

Pr[D(k,m,A(O(k,m))) = 1]− Pr[D(k,m,A(O(k′,m′))) = 1] ≥
1

3p(n)
, (21)

where(k,m) and(k′,m′) are independently drawn from{Xn, Yn}.
We construct the distinguisherD as follows. LetP̃ be a constant such thatP 1

k − P̃ ≥ 1
2p(n) for all k ∈ S̃n

andP̃n − P 0
k ≥

1
2p(n) for all k ∈ T̃n. This is known toD by non-uniformity. The distinguisher receives as input a
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key k, a messagem, and a bitb. It estimatesPk,m by samplingA(O(k,m)) for many independent choices of the
randomness forA andO. If its estimate ofPk,m is at leastP̃ , thenD outputsb. Otherwise, it outputs1− b.

We demonstrate that the distinguisherD satisfies (21) for alln such that̃Sn = Sc
n for somec. There are infinitely

many suchn’s. Our distribution has the property that for(k,m)← {Xn, Yn}, the valuePk,m is bigger thanP̃n with
probability 1

2 and is smaller with probability12 . Also, the distinguisher will make the correct determination on
whetherPk,m is bigger or smaller thañPn with overwhelming probability.

The distinguisher receives as inputk, m, and a bitb = A(O(k′,m′)), where(k′,m′) either equals(k,m) or is
an independent sample from{Xn, Yn}. Some basic probability calculations show that

Pr[D = 1]

{

≥ 1
2 + 1

2p(n) − negl(n) whenPk,m andPk′,m′ are either both larger or both smaller thanP̃n,

≤ 1
2 −

1
2p(n) + negl(n) whenPk,m andPk′,m′ are separated bỹPn,

where this probability is taken over(k,m) ← {Xn, Yn} and the randomness ofD, A, andO. When(k′,m′) =
(k,m), the first case always holds, and when(k′,m′) is an independent sample, the two cases each hold with
probability 1

2 . Therefore,

Pr[D = 1|(k′,m′) = (k,m)] − Pr[D = 1|(k′,m′) is indep sample from{Xn, Yn}] ≥
1

2p(n)
− negl(n),

as desired.✷

Lemma A.3. If an obfuscatorO satisfies oracle indistinguishability, then it satisfies the virtual black-box property.

Proof. Assume that oracle indistinguishability holds. LetA be a PPT adversary that outputs 1 bit and let{Ln} be
the polynomial-sized family of sets associated toA. We form a simulatorSI(k,m) that queries its oracle on all of the
keys inLn. If k ∈ Ln, then the simulator learnsk andm, and it emulates an execution ofA(O(k,m)). In this case,
its simulation is perfect.

Otherwise, the simulator can runA(O(k′,m′)) for anyk′ /∈ Ln and anym′. By α-oracle indistinguishability,

Pr[SI(k,m)

(

1|k|
)

= 1] = Pr[A(O(I(k′,m′))) = 1] ≈ Pr[A(O(I(k,m))) = 1]

where the≈ denotes a negligible difference in probability. Finally, the simulator’s runtime is bounded by the size of
Ln and the runtime ofA, soS runs in polynomial time as desired.✷

B Comparison ofα-obfuscation definitions

In this section, we discuss the definition ofα-entropic security. The goal of the definition is to weaken the virtual
black-box property in Definition 2.2, which is very strong and thus far can only be satisfied under non-standard
assumptions such as a strong variant of the DDH assumption [10], an exponentially hard to invert one-way function
[25], or the random oracle model [21].

We believe there are two natural ways to weaken the virtual black-box property. First, we can increase the min-
entropy requirement, asα-entropic security does. Second, we can give the simulator asuper-polynomial runtime so
it can make more queries to its oracle.

In the paper, we chose to do the former. This section justifiesthat decision by showing thatα-entropic security
implies a virtual black-box style definition in which the simulator receives a boost to its running time.

Definition B.1 (α-runtime security). For any PPT adversaryA with 1 bit output, there exists a negligible function
ε(n) and a simulatorS running in timeε(n) · 2α(n) such that for all distributions{Xn, Yn}n∈N with Xn taking
values in{0, 1}n andYn taking values in{0, 1}poly(n), we have:

∣

∣

∣
Pr

[

A(O(I(k,m))) = 1
]

− Pr
[

SI(k,m)

(

1|k|
)

= 1
]∣

∣

∣
≤ negl(n)

where the probability is taken over the randomness of(k,m)← (Xn, Yn),A, S, andO.

24



In this definition, we choose to give the simulatornegl(n) ·2α running time so that it does not quite have enough
time to query everything in the support of a distribution with min-entropyα, but other than this restrictionS has the
“largest” runtime possible.

Theorem B.1. If an obfuscator satisfiesα-entropic security, then it satisfiesα-runtime security.

The rest of this section is devoted to a proof of this theorem.We do not prove the theorem directly, but rather go
through an intermediate definition from [10].

Definition B.2 (α-oracle indistinguishability [10]). For any PPT adversaryA with 1 bit output, there exists a
negligible functionε(n) and a family of sets{Ln}n∈N such that|Ln| ≤ ε(n) · 2α(n) and for all k, k′ /∈ Ln and all
m,m′,

∣

∣Pr[A(O(k,m)) = 1]− Pr[A(O(k′,m′)) = 1]
∣

∣ < negl(n)

Lemma B.1. If an obfuscator satisfiesα-oracle indistinguishability, then it satisfiesα-runtime security.

Proof. LetA be a PPT adversary that outputs 1 bit. We form a simulatorSI(k,m) that queries its oracle on all of the
keys inLn. If k ∈ Ln, then the simulator learnsk andm, and it emulates an execution ofA(O(k,m)). In this case,
its simulation is perfect.

Otherwise, the simulator can runA(O(k′,m′)) for anyk′ /∈ Ln and anym′. By α-oracle indistinguishability,

Pr[SI(k,m)

(

1|k|
)

= 1] = Pr[A(O(I(k′,m′))) = 1] ≈ Pr[A(O(I(k,m))) = 1]

where the≈ denotes a negligible difference in probability, as desired. ✷

Lemma B.2. If an obfuscator satisfiesα-entropic security, then it satisfiesα-oracle indistinguishability.

Proof. Let O be an obfuscator satisfyingα-entropic security, and letA be an adversary. We wish to show the
existence of a negligible functionε and family of sets{Ln}n∈N that satisfyα-oracle indistinguishability.

Given anyk andm, we definePk,m = Pr[A(O(k,m)) = 1]. Also, we define the following constants:

µk = average
m
{Pk,m}, m1

k = arg max
m

{Pk,m}, m0
k = arg min

m
{Pk,m}, σk = Pk,m1

k
− Pk,m0

k

(Note that if thearg max or arg min are simultaneously fulfilled by many messages, then it suffices to pick any one
of them arbitrarily.) Also, letS be the PPT simulator associated withA by α-entropic security. Clearly,SI(k,m) does
not learn any information aboutm unless it queries the correct keyk, which it can only do for polynomially many
keys. Byα-entropic security, it follows that there exists a negligible functionε′ such that at mostε′ · 2α keys have a
non-negligibleσk.

If this were not the case, then there exists some polynomialsp, q such that there are at least2α(n)

p(n) keysk with

σk > 1
q(n) . Let Xn be the distribution that is uniform over these2α(n)

p(n) keys and2α(n) − 2α(n)

p(n) other keys chosen

arbitrarily, and letY 1
n andY 0

n be two distributions on messages such that for a given keyk, the distributionY b
n

always chooses the messagemb
k. Both distributions{Xn, Y b

n} have min-entropyα, and we know that

Pr[A(O(k,m)) = 1 | (k,m)← {Xn, Y 1
n }]− Pr[A(O(k,m)) = 1 | (k,m)← {Xn, Y 0

n }] >
1

p(n)q(n)
.

On the other hand, the simulator cannot distinguish betweenthese two distributions, so by the triangle inequality
property, either

Pr[A(O(k,m)) = 1 | (k,m)← {Xn, Y 1
n }]− Pr[SI(k,m)

(

1|k|
)

= 1 | (k,m)← {Xn, Y 1
n }] >

1

2p(n)q(n)
,

or the corresponding inequality holds for{Xn, Y 0
n }, which breaks theα-entropic security.
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Hence, there are at mostε′ · 2α keysk such thatσk is non-negligible. LetL′n be the set of these keys. Next, we
look atµk, and claim that there exists a negligible functionε′′ and a setL′′n of size at mostε′′ · 2α such that for all
k, k′ /∈ L′′n, |µk − µk′ | is negligible.

If this were not the case, then there exists some polynomialr(n) such that at least2α

r keys haveµk that are
noticably separated fromµ = averagek{µk}. Using a similar proof to the one forσk above, we can then form two
well-spread distributions over these keys such that the adversary can distinguish them but the simulator cannot.

Finally, let ε = ε′ + ε′′ and let{Ln}n∈N be a family of sets withLn = L′n ∪ L′′n. For all keysk, k′ /∈ Ln, we
know thatσk, |µk − µ′k|, andσk′ are negligible, which means that for all messagesm andm′,

Pr[A(O(I(k,m))) = 1] ≈ µk ≈ µ′k ≈ Pr[A(O(I(k′,m′))) = 1],

where≈ denotes a negligible difference in probability, as desired. ✷

Finally, Theorem B.1 follows immediately from Lemmas B.1 and B.2.
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