
A Principle for Cryptographic Protocols Beyond Security,

Less Parameters

Zhengjun Cao

Département d’informatique, Université Libre de Bruxelles, Belgium

zhencao@ulb.ac.be or caoamss@gmail.com

Abstract Almost cryptographic protocols are presented with security arguments.
None of them, however, did explain why a protocol should like this, not like that. The
reason is that there are short of any principles for designing and analyzing cryptographic
protocols. In this paper, we put forth such a principle beyond security, called Less Pa-
rameters, which says that the involved parameters should be reduced as less as possible.
Actually, the principle ensures a protocol better cost. In different scenarios, the principle is
not easy to grasp. Intuitively, we advise to introduce public parameters as less as possible.
In the light of the principle, we investigate some signatures. We believe the techniques
developed in this paper will be helpful to better some cryptographic protocols.

Keywords Less Parameters, Schnorr signature, group signature

1 Introduction

What are the fundamental requirements for a cryptographic protocol? So far, almost cryptographic
protocols are presented with security arguments. None of them, however, did explain why a protocol
should like this, not like that. That is, the psychological activities relating to design a cryptographic
protocol have always been unveiled. The reason of the phenomenon, we think, is that there are short
of any principles for designing cryptographic protocols. In this paper, we put forth such a principle
beyond security. It is called Less Parameters, which says that the involved parameters should be
reduced as less as possible. Actually, the Less Parameters ensures a protocol better cost. In different
scenarios, the principle is not easy to grasp. Intuitively, we advise to introduce public parameters as
less as possible. In the light of the principle, we investigate some signatures [3, 5, 7, 8, 10]. We believe
the techniques developed in this paper will be helpful to better some cryptographic protocols.

2 Preliminary

2.1 The Schnorr signature

The Schnorr signature [8] is popular with researchers. The scheme can be described as follows.

1

Setup Pick a large prime p and g ∈ Z∗p with a large prime order q. Pick x
R← Z∗q . Compute

y = gx mod p (For convenience, we will omit the notations mod p and mod q later). Choose a hash
function H : {0, 1}∗ −→ Zq. Set the public key as {p, q, g, y,H}, the private key as {x}.

Sign For a message m, pick k
R← Z∗q . Compute c = H(m||gk), a = xc + k. Output the signature

(a, c) for m.
Verification Check that H(m||gay−c) = c.

2.2 What are intractable in Schnorr signature

The security of Schnorr signature is based on two intractable problems:
(1) A one-way hash function is intractable;
(2) The Discrete Logarithm (DLog for short) is intractable.

In the scheme, the first intractable problem which has rarely been mentioned, is embodied by that
the input of the hash function is naturally independent of its output (usually called challenge value).
Concretely, suppose that gay−c = gδ, H(m||gδ) = c, it requires that δ can be freely assigned. To
further explain the subtle property, we investigate the following example.

Example 1 In the example, the Setup is the same as that of the Schnorr signature. To sign a
message m, randomly choose secret α, k ∈ Z∗q and compute

c = H(m||gk), A = gα, b = xc + k − α

The resulting signature for m is (A, b, c). The verification is H(m||Agby−c) = c.
Notice that the scheme is not secure. Given a random challenge value c, an adversary solves

H(m||Agby−c) = c for (A, b). Without less of generality, the adversary can set

A = gδ1yδ2

where δ1, δ2 are undetermined. Hence, Agby−c = gδ1+byδ2−c. To ensure the input of the hash function,
gδ1+byδ2−c, is naturally independent of the output, c, he can set

δ2 = c

This leads to Agby−c = gδ1+byδ2−c = gδ1+b, which is independent of c because of both δ1 and b can be
freely assigned by the adversary, although the other parameter δ2 should be assigned as c. Therefore,
to forge a signature (A, b, c) for m, the adversary chooses random α, k ∈ Z∗q and computes

c = H(m||gk), A = gαyc, b = k − α

It is easy to verify that Agby−c = (gαyc)gk−αy−c = gk.

2.3 The Schnorr signature is of optimal cost

In the light of the Less Parameters principle, the Schnorr signature is of optimal cost because: (1) the
user’s secret key consists of only one parameter x; (2) to blind the secret key x, only one parameter
k is used; (3) The resulting signature consists of only a pair (a, c), where c is the challenge value

2

which is necessary in such a cryptographic scenario. In a DLog-based cryptographic protocol, one
random secret parameter is at lest required to blind the encrypted message or the user’s secret key.
To highlight the merit of Schnorr signature, we investigate the following example.

Example 2 In the example, the Setup is the same as that of the Schnorr signature. To sign a
message m, randomly choose secret k ∈ Z∗q and compute

c = H(m||gk||yk), a = k + xc, B = yk+c

The resulting signature for m is (a,B, c). The verification is H(m||gay−c||By−c) = c.
Notice that the scheme in the Example 2 is as secure as the Schnorr signature scheme. In fact,

the additional term By−c equals to yk. An adversary can not derive the session key k from the
additional term. However, the term By−c is not necessary since the secret key x is not used to
compute B. To reduce the involved parameters as less as possible, it is better to remove B. Therefore,
the corresponding term, By−c, can be reasonably discarded.

See the Table 1 for the differences between the Schnorr signature, the scheme in the Example 1
and the scheme in the Example 2.

Table 1

The Schnorr signature The Example 1 The Example 2

Setup PK : {p, q, g, y,H} PK : {p, q, g, y,H} PK : {p, q, g, y,H}
SK : {x} SK : {x} SK : {x}

Sign k
R← Z∗q , c = H(m||gk), α, k

R← Z∗q , c = H(m||gk), k
R← Z∗q , c = H(m||gk||yk),

a = xc + k A = gα, b = xc + k − α a = k + xc, B = yk+c

σ : {m,a, c} σ : {m,A, b, c} σ : {m,a, B, c}
Verification H(m||gay−c) = c H(m||Agby−c) = c H(m||gay−c||By−c) = c

Security Yes No Yes

2.4 The Schnorr signature VS the Okamoto signature

The Okamoto signature [7] is a variation of the Schnorr signature, which extends the single secret key
x to a tuple (x1, x2). We now describe it as follows.

Setup Pick a large prime p and g1, g2 ∈ Z∗p with a large prime order q. Pick x1, x2
R← Z∗q . Compute

y = gx1
1 gx2

2 mod p. Choose a hash function H : {0, 1}∗ −→ Zq. Set the public key as {p, q, g1, g2, y,H},
the private key as {x1, x2}.

Sign For a message m, pick k1, k2
R← Z∗q . Compute c = H(m||gk1

1 gk2
2), a1 = x1c+k1, a2 = x2c+k2.

Output the signature (a1, a2, c) for m.
Verification Check that H(m||ga1

1 ga2
2 y−c) = c.

See the Table 2 for the differences between the Schnorr signature and the Okamoto signature.

3

Table 2

The Schnorr signature The Okomoto signature

Setup PK : {p, q, g, y = gx,H} PK : {p, q, g1, g2, y = gx1
1 gx2

2 ,H}
SK : {x} SK : {x1, x2}

Sign k
R← Z∗q , c = H(m||gk), k1, k2

R← Z∗q , c = H(m||gk1
1 gk2

2),
a = xc + k a1 = x1c + k1, a2 = x2c + k2

σ : {m,a, c} σ : {m,a1, a2, c}
Verification H(m||gay−c) = c H(m||ga1

1 ga2
2 y−c) = c

Apparently, the Okamoto signature is inefficient than the Schnorr signature. We here stress that
the claim that the security assumptions for the Okamoto signature are weaker than those for the
Schnorr signature [8], is not sound. Actually, the security of the Okamoto signature is reduced to the
following assumptions:

(1) The hash function H is intractable, which is the same as that for the Schnorr signature.

(2) Both logy g1, logy g2 are intractable. It is a bit different from the assumption for the Schnorr
signature that logy g is intractable.

Definitely, the assumption both logy g1, logy g2 are intractable is more stronger than the assumption
logy g is intractable.

By the comparisons of the Schnorr signature and the Okamoto signature, we know it is better to
introduce parameters as less as possible. (We’d like to stress that the Okamoto signature is more apt
for constructing subliminal channels.) But in different scenarios, the principle is not easy to grasp.
Intuitively, we advise to introduce public parameters as less as possible. According to the instruction,
we will investigate some signature schemes in the sections that followed.

3 The investigation of the BBS04 group signature

Group signatures, introduced by Chaum and Heyst [6], allow individual members to make signatures
on behalf of the group. Formally, a group signature should satisfy [1, 4]: Unforgeability Only group
members are able to sign messages on behalf of the group. Anonymity Given a valid signature of some
message, identifying the actual signer is computationally hard for everyone but the group manager.
Unlinkability Deciding whether two different valid signatures were produced by the same group member
is computationally hard. Exculpability Neither a group member nor the group manager can sign on
behalf of other group member. Traceability The group manager is always able to open a valid signature
and identity of the actual signer.

3.1 Review of the BBS04 group signature

In Crypto’2004, Boneh, Boyen, and Shacham [3] proposed a group signature (BBS04 for short). The
scheme can be described as follows.

4

Setup Choose groups G1, G2 of prime order p with a bilinear map e(·, ·), and a hash function H
with respective range Zp. Randomly pick generators g1, g2 in G1, G2. Pick h

R← G∗
1, ξ1, ξ2

R← Z∗p,
and set u, v ∈ G1 such that uξ1 = vξ2 = h. Pick γ

R← Z∗p, and set ω = gγ
2 . Generate for each

user i, 1 ≤ i ≤ n, a tuple (Ai, xi) where xi
R← Z∗p, Ai = g

1/(γ+xi)
1 . The group public key is gpk =

{G1, G2, e(·, ·), p,H, g1, g2, u, v, h, ω}. The private key of the group manager is gmsk = {ξ1, ξ2}. Each
user’s private key is her tuple gsk[i] = (Ai, xi). No party is allowed to possess γ; it is only known to
the private-key issuer.

Sign Given gpk, gsk[i] and a message m ∈ {0, 1}∗, it proceeds as follows.
1. Pick α, β, rα, rβ , rx, rδ1 , rδ2

R← Z∗p, and compute

T1 = uα, T2 = vβ, T3 = Ahα+β , δ1 = xα, δ2 = xβ

R1 = urα , R2 = vrβ , R4 = T rx
1 · u−rδ1 , R5 = T rx

2 · v−rδ2

R3 = e(T3, g2)rx · e(h, ω)−rα−rβ · e(h, g2)−rδ1
−rδ2

c = H(m,T1, T2, T3, R1, R2, R3, R4, R5)

sα = rα + αc, sβ = rβ + βc, sx = rx + xc, sδ1 = rδ1 + δ1c, sδ2 = rδ2 + δ2c

2. Output the signature σ = (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2) for m.
Verify Given gpk, m and σ, verify it as follows:
1. Compute

R̃1 = usα · T−c
1 , R̃2 = vsβ · T−c

2 , R̃4 = T sx
1 · u−sδ1 , R̃5 = T sx

2 · v−sδ2

R̃3 = e(T3, g2)sx · e(h, ω)−sα−sβ · e(h, g2)−sδ1
−sδ2 · (e(T3, ω)/e(g1, g2))c

2. Check c = H(m,T1, T2, T3, R̃1, R̃2, R̃3, R̃4, R̃5).
Open Verify that σ is a valid signature for m and recover A = T3/(T ξ1

1 · T ξ2
2).

3.2 The BBS04 scheme is not a standard group signature

The BBS04 scheme is not a standard group signature because it requires an additional participant,
the private-key issuer. By the equation Ai = g

1/(γ+xi)
1 , where (Ai, xi) is the secret key for the group

member i and the claim that γ is only known to the private-key issuer, we know in the scheme the
private-key issuer who also knows (Ai, xi) should be an absolutely trustworthy third party. That is,
the BBS04 scheme is not of perfect Exculpability since the private-key issuer can sign on behalf of
any group member. In the presence of an absolutely trustworthy third party, almost cryptographic
protocols become easy to achieve. As for the role of a trustworthy third party in cryptographic
protocols, we refer to [2]:

A trustworthy third party is a disinterested third party trusted to complete a protocol.
Trusted means that all people involved in the protocol accept what he says as true, what
he does as correct, and that he will complete his part of the protocol.

Notice that a protocol with the presence of a trustworthy third party does not entail that the third
party knows all private keys of the involved users.

In the later sections, we put aside the discussion about the reasonability of the model and focus
on how to better its cost according to the Less Parameters principle.

5

3.3 The BBS04 scheme revisited

In the BBS04 scheme, the involved parameters are

gpk = {G1, G2, e(·, ·), p,H, g1, g2, u, v, h, ω}, gmsk = {ξ1, ξ2}, gsk[i] = (Ai, xi)

By uξ1 = vξ2 = h,A = T3/(T ξ1
1 ·T ξ2

2) and the singing procedure, we know u and v are used in parallel.
Likewise, ξ1 and ξ2 are used in parallel, too. Intuitively, by the analysis of the Schnorr signature and
the Okamoto signature we can discard {u, ξ1} or {v, ξ2}. We now relate the case without {v, ξ2} as
follows.

Setup Choose groups G1, G2 of prime order p with a bilinear map e(·, ·), and a hash functionH with
respective range Zp. Pick h

R← G∗
1, ξ1

R← Z∗p, and set u ∈ G1 such that uξ1 = h. Pick γ
R← Z∗p, and set

ω = gγ
2 . Generate for each user i, 1 ≤ i ≤ n, an SDH tuple (Ai, xi) where xi

R← Z∗p, Ai = g
1/(γ+xi)
1 . The

group public key is gpk = {G1, G2, e(·, ·), p,H, g1, g2, u, h, ω}. The private key of the group manager
is gmsk = {ξ1}. Each user’s private key is her tuple gsk[i] = (Ai, xi). No party is allowed to possess
γ; it is only known to the private-key issuer.

Sign Given gpk, gsk[i] and a message m ∈ {0, 1}∗, it proceeds as follows.
1. Pick α, rα, rx, rδ1

R← Z∗p, and compute

T1 = uα, T3 = Ahα, δ1 = xα,

R1 = urα , R4 = T rx
1 · u−rδ1 , R3 = e(T3, g2)rx · e(h, ω)−rα · e(h, g2)−rδ1 ,

c = H(m,T1, T3, R1, R3, R4),

sα = rα + αc, sx = rx + xc, sδ1 = rδ1 + δ1c

2. Output the signature σ = (T1, T3, c, sα, sx, sδ1) for m.
Verify Given gpk, m and σ, verify it as follows:
1. Compute

R̃1 = usα · T−c
1 , R̃4 = T sx

1 · u−sδ1

R̃3 = e(T3, g2)sx · e(h, ω)−sα · e(h, g2)−sδ1 · (e(T3, ω)/e(g1, g2))c

2. Check c = H(m,T1, T3, R̃1, R̃3, R̃4).
Open Verify that σ is a valid signature and recover A = T3/T ξ1

1 .
Correctness

R̃1 = usα · T−c
1 = usα−αc = urα = R1

R̃4 = T sx
1 · u−sδ1 = T rx+xc

1 u−rδ1
−δ1c = T rx

1 (uα)xcu−rδ1
−xαc = T rx

1 · u−rδ1 = R4

R̃3 = e(T3, g2)sx · e(h, ω)−sα · e(h, g2)−sδ1 · (e(T3, ω)/e(g1, g2))c

= e(T3, g2)rx+xc · e(h, ω)−rα−αc · e(h, g2)−rδ1
−δ1c · (e(T3, ω)/e(g1, g2))c

= R3 ·
[
e(T3, g2)xc · e(h, ω)−αc · e(h, g2)−δ1c · (e(T3, ω)/e(g1, g2))c

]

= R3 ·
[
e(T3, g2)x · e(h, ω)−α · e(h, g2)−δ1 · e(T3, ω)/e(g1, g2)

]c

= R3 ·
[
e(T3, g

x
2ω) · e(h, ω)−α · e(h, g2)−xα/e(g1, g2)

]c

6

= R3 ·
[
e(T3, g

x
2ω) · e(h−α, gx

2ω)/e(g1, g2)
]c

= R3 ·
[
e(T3h

−α, gx
2ω)/e(g1, g2)

]c = R3 ·
[
e(A, gx+γ

2)/e(g1, g2)
]c

= R3 ·
[
e(g1/(γ+x)

1 , gx+γ
2)/e(g1, g2)

]c
= R3

Security The argument for the security of the revisited BBS04 scheme can be directly reduced to
the other group signature proposed by Boneh and Shacham [5] (BS04 for short). For details, see the
sections that followed.

3.4 Review of BS04 group signature

Setup Choose groups G1, G2 of prime order p with isomorphism ψ, a bilinear map e(·, ·) and hash
functions H0 and H, with respective ranges G2

2 and Zp. Randomly pick a generator g2 ∈ G2, and

set g1 ← ψ(g2). Pick γ
R← Z∗p and set ω = gγ

2 . Using γ, generate for each user an SDH tuple

(Ai, xi) by selecting xi
R← Z∗p such that γ + xi 6= 0, and set Ai ← g

1/(γ+xi)
1 . The group public key is

gpk = {G1, G2, p, ψ, g1, g2, ω, e(·, ·),H0,H}. Each user’s private key is her tuple gsk[i] = (Ai, xi). The
revocation token corresponding to a user’s key (Ai, xi) is grt[i] = Ai. No party is allowed to possess
γ; it is only known to the private-key issuer.

Sign Given a message m ∈ {0, 1}∗, it proceeds as follows.
S1. Pick a nonce r

R← Z∗p. Obtain generators (û, v̂) in G2
2 from H0 as (û, v̂) ← H0(gpk, m, r), and

compute their images in G1: u ← ψ(û), v ← ψ(v̂).
1. Pick α, rα, rx, rδ

R← Z∗p and compute

T1 = uα, T2 = Aiv
α, δ = xiα,

R1 = urα , R3 = T rx
1 u−rδ , R2 = e(T2, g2)rx · e(v, ω)−rα · e(v, g2)−rδ ,

c = H(gpk, m, r, T1, T2, R1, R2, R3),

sα = rα + αc, sx = rx + xic, sδ = rδ + δc

2. Output the signature σ = (r, T1, T2, c, sα, sx, sδ) for m.
Verify Given gpk, m, σ and a set RL of revocation tokens, verify it as follows.
V1. Compute (û, v̂) in G2

2 from H0 as (û, v̂) ← H0(gpk, m, r), and compute their images in G1:
u ← ψ(û), v ← ψ(v̂).

1. Compute

R̃1 = usα/T c
1 , R̃3 = T sx

1 u−sδ , R̃2 = e(T2, g2)sxe(v, ω)−sαe(v, g2)−sδ(e(T2, ω)/e(g1, g2))c

Check that c = H(gpk, m, r, T1, T2, R̃1, R̃2, R̃3). If it is, accept. Otherwise, reject.
2. For each element A ∈ RL, check wether A is encoded in (T1, T2) by checking if: e(T2/A, û) ?=

e(T1, v̂). If no element of RL is encoded in (T1, T2), the signer of σ has not been revoked. The algorithm
outputs valid if both phases accepts, invalid otherwise.

Remark 1 Notice that the nonce r is equally used in the phase S1 and V1. That is, the security
of scheme is independent of the nonce r. For simplification, it is better to set the corresponding u, v

in the Setup.

7

3.5 The revisited BBS04 scheme VS the simplified BS04 scheme

To investigate the similarities between the revisited BBS04 scheme and the simplified BS04 scheme,
we will rewrite some subscripts and notations. For details, see the Table 3.

Table 3

Revisited BBS04 scheme Simplified BS04 scheme

Setup gpk = {G1, G2, e(·, ·), p,H, g1, g2, u, v, ω} gpk = {G1, G2, e(·, ·), p,H, ψ, g1, g2,

u, v, û, v̂, ω}
ω = gγ

2 , uξ1 = v, gmsk = {ξ1}, ω = gγ
2 , g1 = ψ(g2), u = ψ(û), v = ψ(v̂)

xi
R← Z∗p, Ai ← g

1/(γ+xi)
1 xi

R← Z∗p, Ai ← g
1/(γ+xi)
1

gsk[i] = (Ai, xi) gsk[i] = (Ai, xi)
γ is only known to the private-key issuer γ is only known to the private-key issuer

Sign For m, pick α, rα, rx, rδ
R← Z∗p, compute For m, pick α, rα, rx, rδ

R← Z∗p, compute
T1 = uα, T2 = Aiv

α, δ = xiα, T1 = uα, T2 = Aiv
α, δ = xiα,

R1 = urα , R3 = T rx
1 u−rδ , R1 = urα , R3 = T rx

1 u−rδ ,

R2 = e(T2, g2)rx · e(v, ω)−rα · e(v, g2)−rδ , R2 = e(T2, g2)rx · e(v, ω)−rα · e(v, g2)−rδ ,
c = H(m,T1, T2, R1, R2, R3), c = H(gpk, m, T1, T2, R1, R2, R3),
sα = rα + αc, sx = rx + xic, sδ = rδ + δc, sα = rα + αc, sx = rx + xic, sδ = rδ + δc,
Output σ = (T1, T2, c, sα, sx, sδ) Output σ = (T1, T2, c, sα, sx, sδ)

Verify Compute R̃1 = usα/T c
1 , R̃3 = T sx

1 u−sδ , Compute R̃1 = usα/T c
1 , R̃3 = T sx

1 u−sδ ,

R̃2 = e(T2, g2)sxe(v, ω)−sαe(v, g2)−sδ R̃2 = e(T2, g2)sxe(v, ω)−sαe(v, g2)−sδ

·(e(T2, ω)/e(g1, g2))c ·(e(T2, ω)/e(g1, g2))c

Check c = H(m,T1, T2, R̃1, R̃2, R̃3) Check c = H(gpk, m, T1, T2, R̃1, R̃2, R̃3)
Revocation: For each element A ∈ RL,

check e(T2/A, û) ?= e(T1, v̂)

Open Recover A = T2/T ξ1
1

In the revisited BBS04 scheme, it sets a group manager secret key ξ1 such that uξ1 = v, which is
used to recover the signer for a signature by A = T2/T ξ1

1 . In the simplified BS04 signature, it revokes
the signer of a signature by searching for the token A ∈ RL such that e(T2/A, û)=e(T1, v̂). Apparently,
the revisited BBS04 scheme can be directly derived from the simplified BS04 scheme. That is, the
security of the revisited BBS04 scheme is reduced to that of the BS04 scheme.

4 The investigation of the YSM09 scheme

The identity-based cryptography is due to Shamir [9]. It aims to simplify the authentication of a
public key by merely using an identity string as a certain user’s public key. In the common identity-
based cryptosystem, there is a trusted party, called the private key generator (PKG), who generates
the secret key for each user’s identity. As the PKG generates and holds the secret key for all users, a

8

complete trust must be placed on the PKG. Clearly, this may not be desirable in a real world scenario
because a malicious PKG can impersonate users. This is known as the key escrow problem.

In EuroPKI’2009, Yuen et al [10] proposed an escrow-free identity-based signature scheme (YSM09
for short). In this model, each signer has his own public key and secret key. The PKG generates the
identity-based secret key for the signer with respect to the user public key. Then, the signer uses both
secret keys to sign a message. Therefore, the signer is protected against a malicious PKG. To verify
the signature, it only requires the signer’s identity, the system public key and the message. It is very
impressive that the YSM09 scheme has to introduce six generators in the underlying group. We now
review the scheme as follows.

4.1 Review of the YSM09 scheme

Setup Let G,GT be groups of order prime p. e : G×G → GT is a bilinear mapping. Pick generators
g, u, v, g0, g1, g2

R← G. Choose hash functions H1 : {0, 1}∗ → Z∗p and H2 : {0, 1}∗ → G. The authority

(PKG) who is responsible for keeping system secret parameters selects α
R← Z∗p and computes ga = gα.

Set the system public keys mpk as {e(·, ·), G, GT , p, g, u, v, g0, g1, g2, ga,H1,H2}. The system secret
key msk is α (only known to the PKG).

Extract The user picks x
R← Z∗p and sets y = gx, v′ = vx. He also computes a non-interactive

zero-knowledge (NIZK) proof
∑

of x with respect to v′ and v. He sends v′, ID, y, a joining proof Pf

and the NIZK proof
∑

to the PKG. The PKG checks the validity of Pf,
∑

. If so, the PKG computes

A = (uv′−1)
1

α+i

where i = H1(ID) and returns A to the user. The PKG stores the transcript (v′,
∑

, ID, y, Pf).
A, y, v′ are viewed as the user’s tokens (only known to the PKG and the user). The user’s secret key
usk is x (only known to the user).

Sign For a message m, the user with the identity ID picks s, r, r2
R← Z∗p, R1

R← G and computes

t0 = gs
0, t1 = Ags

1, t2 = vxgs
2, τ0 = gr

0, τ1 = R1g
r
1, i = H1(ID)

τ2 = vr2gr
2, τ3 = [e(g1, gag

i)e(g2, g)]r, τ4 = e(g2,H2(m))r

c = H3(t0, t1, t2, τ0, · · · , τ4,m, mpk, ID)

z0 = r − cs, Z1 = R1A
−c, z2 = r2 − cx, S = e(v,H2(m))x

Output the signature σ = (t0, t1, t2, c, z0, Z1, z2, S).
Verify Given σ for m and the identity ID, compute

i = H1(ID), τ̃0 = gz0
0 tc0, τ̃1 = Z1g

z0
1 tc1, τ̃2 = vz2gz0

2 tc2,

τ̃3 = [e(g1, gag
i)e(g2, g)]z0 [e(t1, gag

i)e(t2, g)e(u, g)−1]c

τ̃4 = e(g2,H2(m))z0 [e(t2,H2(m))S−1]c

and check that
c = H3(t0, t1, t2, τ̃0, · · · , τ̃4,m, mpk, ID)

Blame Omitted (see the original description).

9

4.2 A simple analysis of the YSM09 scheme

First, the authors specified the hash function H1,H2, but forgot to specify the hash function H3. As
we know, the intractability of H3 is very important to the security argument.

Second, it is very impressive that the YSM09 scheme has to introduce six generators g, u, v, g0, g1, g2 ∈
G. Tracing the usage of the generator g0,

(in the Sign) t0 = gs
0, τ0 = gr

0, z0 = r − cs, where s, r
R← Z∗p, c is a challenge value

(in the Verify) τ̃0 = gz0
0 tc0 = gr−cs

0 gcs
0 = gr

0

we know the user’s secret key x and the token A are definitely not involved. That means the generator
g0 is not necessarily introduced.

Third, tracing the usage of the picked random element R1 ∈ G,

(in the Sign) τ1 = R1g
r
1, Z1 = R1A

−c,

(in the Verify) τ̃1 = Z1g
z0
1 tc1 = (R1A

−c)gz0
1 (Ags

1)
c = R1g

z0+sc = R1g
r
1 = τ1

we know it is used to only blind A−c instead of the token A. In view of the challenge value c is assumed
to be random, the blinding element R1 can be reasonably removed.

Finally, in view of that z0 = r− cs, z2 = r2− cx, where s, r, r2
R← Z∗p, x is the user’s secret key and

c is the challenge value, we can replace r2 with r without any loss of security. That is, the quantity of
the involved random numbers can be reduced as well.

4.3 An explicit analysis of the YSM09 scheme

In this section, we further investigate a concrete forging attempt. It will be helpful to understand why
the scheme should like this, not like that.

Given the system public keys e(·, ·), G, GT , p, g, u, v, g0, g1, g2, ga,H1,H2, a message m and a ran-
dom challenge value c, the adversary has to solve c = H3(t0, t1, t2, τ̃0, · · · , τ̃4,m, mpk, ID) for σ =
(t0, t1, t2, z0, Z1, z2, S), where

τ̃0 = gz0
0 tc0, τ̃1 = Z1g

z0
1 tc1, τ̃2 = vz2gz0

2 tc2,

τ̃3 = [e(g1, gag
i)e(g2, g)]z0 [e(t1, gag

i)e(t2, g)e(u, g)−1]c

τ̃4 = e(g2,H2(m))z0 [e(t2,H2(m))S−1]c

(1) ⇒ t0, z0 (On generating t0, z0). By τ̃0 = gz0
0 tc0, the adversary can pick β1

R← Z∗p and set t0 = gβ1
0 .

He then has τ̃0 = gz0
0 gcβ1

0 = gz0+cβ1
0 . Taking z0 = α1 − cβ1 where α1 is freely assigned, τ̃0 = gα1

0 is
independent of the challenge value c.

(2) ⇒ Z1 (On generating Z1). By τ̃1 = Z1g
z0
1 tc1 and z0 = α1 − cβ1, the adversary takes Z1 =

(gβ1
1 t−1

1)c. Thus, τ̃1 = gα1
1 is independent of the challenge value c.

(3) ⇒ z2, t2 (On generating z2, t2). By τ̃2 = vz2gz0
2 tc2 and z0 = α1 − cβ1, the adversary can pick

β2
R← Z∗p and set t2 = gβ1

2 vβ2 . Thus, τ̃2 = vz2gz0
2 (gβ1

2 vβ2)c = vz2+cβ2gα1
2 . Taking z2 = α1 − cβ2,

τ̃2 = gα1
2 vα1 is independent of the challenge value c.

10

(4) ⇒ S (On generating S). By τ̃4 = e(g2,H2(m))z0 [e(t2,H2(m))S−1]c, z0 = α1 − cβ1 and t2 =
gβ1
2 vβ2 , the adversary has

τ̃4 = e(g2,H2(m))α1 [e(g−β
2 t2,H2(m))S−1]c = e(g2,H2(m))α1 [e(vβ2 ,H2(m))S−1]c

Taking S = e(vβ2 ,H2(m)), τ̃4 = e(g2,H2(m))α1 is also independent of the challenge value c.
(5) Can the adversary ensure τ̃3 is independent of the challenge value c ? By

τ̃3 = [e(g1, gag
i)e(g2, g)]z0 [e(t1, gag

i)e(t2, g)e(u, g)−1]c, z0 = α1 − cβ1, t2 = gβ1
2 vβ2

the adversary has

τ̃3 = [e(g1, gag
i)e(g2, g)]z0 [e(t1, gag

i)e(t2, g)e(u, g)−1]c

= [e(g1, gag
i)e(g2, g)]α1 [e(g−β1

1 t1, gag
i)e(g−β1

2 t2, g)e(u, g)−1]c

= [e(g1, gag
i)e(g2, g)]α1 [e(g−β1

1 t1, gag
i)e(vβ2 , g)e(u, g)−1]c

= [e(g1, gag
i)e(g2, g)]α1 [e(g−β1

1 t1, gag
i)e(vβ2u−1, g)]c

Now the adversary is confronting the following problem: giving {e(·, ·), ga, g, u, i, v, β1, β2}, solve

e(g−β1
1 t1, gag

i)e(vβ2u−1, g) = 1 (1)

for t1 (notice that β1, β2 can be freely assigned by the adversary). Hence, he has to solve

(g−β1
1 t1)α+i = v−β2u or loggagi (vβ2u−1) (2)

for t1. Without loss of generality, he can set t1 = gβ1
1 θ where θ is undetermined. Thus he has to solve

θα+i = v−β2u (3)

for θ, where α is only known to the PKG. We now consider the following cases:

1) The user who knows (A, x) such that Aα+i = v−xu can simply set θ = A, β2 = x. Therefore, t1
is of the form gβ1

1 A and t2 is of the form gβ1
2 vx.

2) The PKG who knows α can simply set θ = (v−β2u)
1

α+i . Taking into account S = e(vβ2 ,H2(m)),
the forgery can be constrained by checking S = e(v′,H2(m)). That is, the token y is not
necessary for the Blame phase in the original scheme. Therefore, y can be discarded.

3) Removing the generator u and corresponding terms in the original scheme, the Eq.(3) becomes

θα+i = v−β2 (4)

Given the fixed i, v and α (only known to the PKG), the adversary can not generate proper θ

and β2 (6= 0) satisfying Eq.(4). That is, the generator u can be reasonably discarded.

11

4.4 The YSM09 scheme revisited

Setup Let G,GT be groups of order prime p. e : G×G → GT is a bilinear mapping. Pick generators
g, v, g1

R← G. Choose hash functions H1 : {0, 1}∗ → Z∗p , H2 : {0, 1}∗ → G and H1 respective Z∗p. The

authority (PKG) who is responsible for keeping system secret parameters picks α
R← Z∗p and computes

ga = gα. The system public keys mpk consist of e(·, ·), G, GT , p, g, v, g1, ga,H1,H2,H3. The system
secret key msk is α.

Extract The user picks x
R← Z∗p and sets v′ = vx. He also computes a non-interactive zero-knowledge

(NIZK) proof
∑

of x with respect to v′ and v. He sends v′, ID a joining proof Pf and the NIZK
proof

∑
to the PKG. The PKG checks the validity of Pf,

∑
. If so, the PKG computes

A = (v′−1)
1

α+i

where i = H1(ID) and returns A to the user. The PKG stores the transcript (v′,
∑

, ID, Pf). A, v′

are viewed as the user’s tokens. The user’s secret key usk is x.
Sign For a message m, the user with the identity ID picks s, r

R← Z∗p and computes

i = H1(ID), t1 = Ags
1, t2 = v′gs

1, τ1 = gr
1

τ2 = vrgr
1, τ3 = [e(g1, gag

i)e(g1, g)]r, τ4 = e(g1,H2(m))r

c = H3(t1, t2, τ1, · · · , τ4,m, mpk, ID)

z0 = r − cs, Z1 = A−c, z2 = r − cx, S = e(v′,H2(m))

Output the signature σ = (t1, t2, c, z0, Z1, z2, S).
Verify Given σ for m and the identity ID, compute

i = H1(ID), τ̃1 = Z1g
z0
1 tc1, τ̃2 = vz2gz0

1 tc2,

τ̃3 = [e(g1, gag
i)e(g1, g)]z0 [e(t1, gag

i)e(t2, g)]c

τ̃4 = e(g1,H2(m))z0 [e(t2,H2(m))S−1]c

and check that
c = H3(t1, t2, τ̃1, · · · , τ̃4,m, mpk, ID)

Blame Given σ for m and the identity ID, The judge checks its validity, then asks the PKG to
provide the transcript (v′,

∑
, ID, Pf) and checks that S = e(v′,H2(m)). If it holds, the judge can

affirm that the signature is produced by the user. If S 6= e(v′,H2(m)), the judge can affirm that it is
produced by the PKG.

Correctness

τ̃1 = Z1g
z0
1 tc1 = A−cgr−cs

1 (Ags
1)

c = gr
1 = τ1

τ̃2 = vz2gz0
1 tc2 = vr−cxgr−cs

1 (v′gs
1)

c = vrgr
1 = τ2

τ̃3 = [e(g1, gag
i)e(g1, g)]z0 [e(t1, gag

i)e(t2, g)]c = [e(g1, gag
i)e(g1, g)]r[e(g−s

1 t1, gag
i)e(g−s

1 t2, g)]c

= [e(g1, gag
i)e(g1, g)]r[e(A, gag

i)e(v′, g)]c = [e(g1, gag
i)e(g1, g)]r = τ3

τ̃4 = e(g1,H2(m))z0 [e(t2,H2(m))S−1]c = e(g1,H2(m))r[e(g−s
1 t2,H2(m))S−1]c

= e(g1,H2(m))r[e(v′,H2(m))S−1]c = e(g1,H2(m))r = τ4

12

Remark 2 In the revisited scheme, the generator g2 is replaced with g1. The change does not
endanger its security. This can be directly derived from the following security argument.

Security To differ from the general arguments, we here present a short security argument for it.
The presentation is more apt for unveiling the psychological activities during the investigation.

Without loss of generality, suppose that z0 = ξ1 − cρ1, z2 = ξ2 − cρ2, where ξ1, ξ2, ρ1, ρ2 are
undetermined. By τ̃2 = vz2gz0

1 tc2, we have τ̃2 = vξ2gξ1
1 (v−ρ2g−ρ1

1 t2)c. To ensure that vξ2gξ1
1 (v−ρ2g−ρ1

1 t2)c

is independent of c, ξ1 and ξ2 must be freely assigned, and t2 must be of the form vρ2gρ1
1 .

By τ̃3 = [e(g1, gag
i)e(g1, g)]z0 [e(t1, gag

i)e(t2, g)]c, we have

τ̃3 = [e(g1, gag
i)e(g1, g)]ξ1 [e(t1g

−ρ1
1 , gag

i)e(t2g
−ρ1
1 , g)]c

To ensure that [e(g1, gag
i)e(g1, g)]ξ1 [e(t1g

−ρ1
1 , gag

i)e(t2g
−ρ1
1 , g)]c is independent of c, where ξ1 is freely

assigned, e(t1g
−ρ1
1 , gag

i)e(t2g
−ρ1
1 , g) is constrained to 1. Hence,

e(t1g
−ρ1
1 , gag

i)e(vρ2 , g) = 1 (5)

Since loggagi(v) is not known to anybody, the Eq.(5) becomes

(t1g
−ρ1
1)α+i = v−ρ2 (6)

Suppose that t1 = λgρ1
1 , where λ is undetermined. Thus

λα+i = v−ρ2 (7)

By τ̃4 = e(g1,H2(m))z0 [e(t2,H2(m))S−1]c, we have

τ̃4 = e(g1,H2(m))ξ1 [e(t2g
−ρ1
1 ,H2(m))S−1]c = e(g1,H2(m))ξ1 [e(vρ2 ,H2(m))S−1]c

where ξ1 is freely assigned. To ensure that the above equation is independent of c, one has to set

S = e(vρ2 ,H2(m)) (8)

Combining Eq.(7), Eq.(8), and a Blame phase, ρ2 can be directly constrained to x. Consequently, λ

is constrained to the token A.

5 Conclusion

In the past, the psychological activities relating to design a cryptographic protocol have always been
unveiled. As a result, it becomes difficult to explain why a protocol should like this, not like that.
Likewise, it is difficult to check whether a protocol is of better cost. The principle Less Parameters and
some investigations presented in this paper will promote the techniques for designing and analyzing
cryptographic protocols.

Acknowledgements We acknowledge the Cryptasc Project (Institute for the Encouragement of
Scientific Research and Innovation of Brussels), the National Natural Science Foundation of China
(Project 60873227), the Shanghai Leading Academic Discipline Project (S30104) and the Innovation
Program of the Shanghai Municipal Education Commission.

13

References

[1] G. Ateniese, J.Camenisch, M. Joye, and G.Tsudik. A practical and provably secure coalition-
resistant group signature scheme. In proceedings of Crypto’2000, LNCS 1880, pp. 255-270,
Springer, 2000

[2] B. Schneier. Applied Cryptography Second Edition: Protocols, Algorthms, and Source Code in
C, Wiley, 1996

[3] D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. In proceedings of CRYPTO’2004,
LNCS 3152, pp. 41-55, Springer, 2004

[4] M. Bellare, D. Micciancio, and Bogdan Warinschi. Foundations of Group Signatures: Formal
Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In
proceedings of EUROCRYPT’2003, LNCS 2656, pp.614-629, Springer, 2003

[5] D. Boneh and H. Shacham. Group Signatures with Verifier-Local Revocation. In proceedings of
the 11’th ACM conference on Computer and Communications Security (CCS), pp. 168-177, 2004

[6] D. Chaum and E. van Heyst. Group signatures, In proceedings of EUROCRYPT’1991, LNCS
950, pp. 257-265, Springer, 1992

[7] T. Okamoto. Provably Secure and Practical Identification Schemes and Corresponding Signature
Schemes. In proceedings of CRYPTO’1992, pp. 31-53, Springer, 1992

[8] C. Schnorr. Efficient signature generation for smart cards. In proceedings of CRYPTO’1989,
LNCS 435, pp. 239-252, Springer, 1989

[9] A. Shamir. Identity-based cryptosystems and signature schemes. In proceedings of CRYPTO’1984,
LNCS 196, pp. 47-53, Springer, 1984

[10] T. Yuen, W. Susilo, and Y. Mu. How to Construct Identity-Based Signatures without the Key
Escrow Problem. In proceedings of EuroPKI’2009. (http://eprint.iacr.org/2009/421)

14

