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Abstract—Network coding allows the routers to mix the re-
ceived information before forwarding them to the next nodes.
Though this information mixing has been proven to maximize
network throughput, it also introduces security challenges such
as pollution attacks. A malicious node could insert a malicious
packet into the system and this corrupted packet will propagate
more quickly than in traditional copy-and-forward networks.
Several authors have studied secure network coding from both
information theoretic and probabilistic viewpoints. In this paper,
we show that there are serious flaws in several of these schemes
(the security “proofs” for these schemes were presented in these
publications). Furthermore, we will propose a secure homomor-
phic authentication scheme for network coding.

I. INTRODUCTION

Maximum flow minimum cut (MFMC) theory [14] has
been one of the most important principles for network traffic
routing. However, MFMC theorem works only for the case that
there is one sender and one receiver. When there are multiple
receivers (multicast scenario), the maximum flow problems
become NP-hard and there is no efficient way to multicast
the same message to all receivers with maximum network
capacity. Network coding [2] has been designed to overcome
these problems and it has been shown that network coding can
maximize network throughput [2], [22], [27], while traditional
copy-and-forward networking technology cannot. In particular,
it has been shown [19], [22], [27], [30] that random linear
code can be used to broadcast a message to multiple recipients
with maximum network capacity and probabilistic reliability.
Deterministic polynomial time network coding schemes have
also been designed to achieve maximum network capacity
[22], [27], [30]. Since these seminal works, network coding
techniques have been extensively used in other applications
such as wireless networks [12], [24], [25], [32], content
distribution [16], and distributed storage [23].

Though network coding techniques have been extensively
studied and mature techniques are now available for practical
network coding, secure network coding techniques have rel-
atively been less addressed. Without efficient techniques for
reliable and private network coding, it is infeasible to widely
deploy network coding techniques.

A malicious node in a network coding environment may
inject/forward corrupted packets into the information flow.

Since network coding makes the intermediate node mix re-
ceived packets, a single corrupted packet can corrupt the entire
information reaching the destination. This kind of attack is
commonly known as the pollution attack. Several researchers
have tried to address this problem in a series of papers with
important contributions. However, our analysis below shows
that several of them are not suitable and several others could
be easily broken.

Cai and Yeung [5], [39], [7] have proposed a general
framework and obtained theoretical bounds for network error
correction. Based on these theoretical bounds, Cai and Yeung
[8] have designed algorithms for achieving network coding
based information theoretic secure communication against pas-
sive adversaries (wire tappers). Several other papers [7], [3],
[18], [20], [21], [39] studied network coding based information
theoretic secure communication techniques against Byzan-
tine/active adversaries. It should be noted that in these papers,
the adversary model is based on the threshold number of
communication links that could be controlled by the adversary.
This is very different from the more powerful model based on
the number of nodes that could be controlled by the adversary.
The link based adversary model may be realistic in some
wire based networks, it is unrealistic in wireless networks [12]
or overlay networks such as peer-to-peer networks where the
participants are open to the public. Thus the scope of these
results could be limited.

It should be noted that non-network-coding based per-
fectly secure (information theoretic) message transmission
techniques have been extensively studied in a series of papers.
For example, Wang and Desmedt [36], [37] have designed
information theoretic secure message transmission techniques
against Byzantine adversaries in the non network coding based
environment.

Cryptographic (or probabilistic) techniques have also been
designed by researchers to protect network coding security
against pollution attacks. It should be noted that traditional
digital signature approaches are not suitable for network
coding process since each intermediate node needs to mix
the incoming packets and then forward it to the next node.
This process destroys the sender’s original signature. In order
to address this challenge, several homomorphic cryptographic
schemes have been proposed for network coding. The exam-
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ples are: homomorphic hashing [17], [15], [28], homomorphic
digital signatures [40], [42], [15], [9], [4], homomorphic MAC
[1], [29], [33], and other schemes [26], [12].

In this paper, we will show that several of the existing
cryptographic protocols for secure network coding could be
easily broken and several others are impractical for network
coding. This paper will also propose a secure and efficient
homomorphic authentication scheme for network coding.

II. RANDOM LINEAR NETWORK CODING

In this section, we briefly discuss the concept and notations
of network coding. The network is modeled by a directed
graph. There is a source node and several sink nodes. In
network coding, the source node generates the data packets
that she wishes to deliver to the sink nodes over the network.
To do so, the source node encodes her data and transmits
the encoded data via its outgoing edges, according to some
encoding algorithm that we will discuss later. Each interme-
diate node receives data packets from its incoming edges,
combines them by some encoding algorithms, and transmits
the encoded data via its outgoing edges. Note that the node
may transmits different data packets on different outgoing
edges. The advantage of network coding is showed in the
Figure 1 from [2]. In this Figure, we assume that the source
node has two data packets A and B and wants to deliver
them to the two sink nodes at the bottom. Assuming that
all links have a capacity of one packet per unit of time, for
traditional copy-and-forward network communication, there is
no possibility for the source node to deliver these two packets
to the two sink nodes in one unit time. However, if the upper
intermediate node XORs the received packets and forward
A⊕B to the middle link, both sink nodes obtain two distinct
packets in every unit of time.

Fig. 1. Network coding

Network coding has been extensively studied by researchers
in the past few years. The works in [19], [22], [27], [30] show
that simple random linear coding is sufficient for achieving
maximum capacity bounds in multicast traffic. In the follow-
ing, we introduce notations for the random linear coding.

Without loss of generality, we assume that the source node
generates the messages w1, . . . , wt ∈ Fn−tp , where Fp is the
finite field. In another word, each wi consists of n−t elements

from Fp. First, the source node pads the messages with the
t× t identity matrix I as follows:

M1

M2

· · ·
Mt

 =


w1

w2

· · ·
wt

I


Thus we can consider the messages as M1, . . . ,Mt ∈ Fnp .

For one message transmission session, each node with k
incoming edges receives v1, · · · , vk ∈ Fnp from its k incoming
edges respectively. For each outgoing edge, the node chooses
random α1, . . . , αk ∈ Fp and transmits α1v1 + · · ·+αkvk on
this outgoing edge.

Without loss of generality, we also assume that there are t
virtual nodes which transmit the values M1, . . . ,Mt to the
source node. So the source node transmits random linear
combinations of these messages on its outgoing edges instead
of the original messages.

Note that if one sink node receives vi =
(ui,1, . . . , ui,n−t, βi,1, . . . , βi,t), then we have the following
property

vi = (βi,1, . . . , βi,t)


M1

M2

. . .
Mt


Thus if the receiver node could collect t packets v1, . . . , vt,
then with high probability she could recover the original
message as

M1

M2

. . .
Mt

 =

 β1,1 · · · β1,t

· · · · · · · · ·
βt,1 · · · βt,t

−1


v1
v2
. . .
vt


III. INFORMATION THEORETIC APPROACH TO NETWORK

CODING

Cai and Yeung [5], [39], [7] have proposed a general
framework and obtained theoretical bounds for network error
correction. Based on these theoretical bounds, Cai and Yeung
[8] designed algorithms for achieving network coding based
secure communication against passive adversaries (wire tap-
pers).

Several other papers [7], [3], [18], [20], [21], [39] studied
network coding based information theoretic secure commu-
nication techniques against Byzantine/active adversaries. It
should be noted that in these papers, the adversary model is
based on the threshold number of communication links that
could be controlled by the adversary. This is very different
from the more powerful model based on the number of nodes
that could be controlled by the adversary. The link based
adversary model may be realistic in some wire based networks,
it is unrealistic in wireless networks [12] or overlay networks
such as peer-to-peer networks where the participants are open
to the public.

For example, in Figure 2 (from Cai and Yeung [8]), the
sender s generates a random key k1 and sends the encrypted
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versions of the message m1 + k1 and m1 − k1 on the two
outgoing links respectively. It is clear that any single link
will not be able to recover the message m1 nor the key
k1. Thus this message transmission protocol is secure against
any single corrupted link. However, the node a0 could easily
recover the message by summing up the two received packets:
(m1− k1) + (m1 + k1) = 2m1. In another word, the protocol
proposed by Cai and Yeung [8] is not private against one single
eavesdropping node.

Fig. 2. Cai and Yeung’s private network coding

The same model is used by other researchers (see, e.g., [7],
[3], [18], [20], [21], [39]) to design secure message transmis-
sion protocols in network coding against active (Byzantine
style) adversaries. Since the adversary model is based on
the maximum number of links controlled by the adversary,
these network coding message transmission protocols are NOT
secure against an adversary who controls one single node
and generates k-outgoing corrupted messages where k is the
threshold bounds in these protocols. Thus the scope of these
network coding transmission protocols could be limited. Note
that the authors in [38] propose to reduce the adversary’s
capability by only allowing nodes to broadcast at most once.
This model requires trusted nodes and are impractical for open
systems such as practical wireless networks [13] or peer-to-
peer networks.

Though the link based adversary models may be sufficient in
some applications where it is hard for the adversary to control
one single node with several output channels, these models
are not valid in many applications where the adversary could
control several nodes. For example, in peer-to-peer networks
(indeed, one of the major applications of network coding is
peer-to-peer networks) or wireless networks [12]. Thus it is
preferred to study information theoretic message transmission
network coding protocols in the node based adversary models.

IV. PROBABILISTIC APPROACH TO SECURE NETWORK
CODING

In addition to the information theoretic approaches for
secure network coding that we have discussed in the previous

section. Several efforts have been made to design crypto-
graphic protocols (essentially all of them are based on homo-
morphic message authentication schemes) for secure network
coding. In this section, we describe these efforts and show that
these efforts are far from suitable solutions.

A. Homomorphic MACs and Security Models

In this section, we will briefly describe the definitions
for homomorphic message authentication codes and security
models. A (p, n, t) homomorphic MAC consists of three
components:

• MAC generation: for the input (k, id,Mi) where k is the
secret key, id is the session identifier, and Mi ∈ Fnp is a
message, it will generate an MAC tag MACi for Mi.

• Combine: assume the received message and MAC pairs
for the session id are (id, v1,MAC1), · · ·, (id, vk,MACk).
For each outgoing edge, the node chooses random
α1, . . . , αk ∈ Fp and computes the MAC tag MACv on
the combined message v = α1v1 + · · ·+ αkvk.

• Verification: for a received message and MAC pair
(id, v,MAC) of session id, it outputs 0 as reject and 1 as
accept.

The protocol should satisfy the following correctness property:
Let (M1,MAC1), · · · , (Mt,MACt) be the base messages and
corresponding MAC tags generated by the source node. For
any α1, . . . , αk ∈ Fp and v = α1M1 + · · · + αkMk, the
verification output on (id, v,MAC) is “accept” if and only if
MAC is the same as the Combine process output tag for the
message v.

Next, we discuss the security model for homomorphic
MACs. There are two kinds of security models that we will
consider. In the first model, we allow the attacker to observe
the MAC tags (signatures) on several message spaces but it is
not allowed to choose its own session id and message space
to obtain MAC tags for the base messages from that message
space. The homomorphic MAC scheme is observation secure
if, after observing MAC tags on message spaces at most
polynomial in |p|+n+t, the attacker has negligible advantage
in producing a valid triple (id, v,MAC) where either id is new
or id is the identifier for a previous session but v is not in the
message space of that session.

The second model is similar but different to Agrawal and
Boneh’s model [1]. In this model, in addition to allowing the
attacker to observe message authentication tags on polynomial
many message spaces, we allow the attacker to obtain the
MAC tags (signatures) on arbitrary message spaces (at most
polynomial in |p| + n + t) of its choice which is similar
to chosen message attacks. The restriction on the queries is
that the attacker is not allowed to submit a query with same
identifiers that she has already submitted or observed (in the
model from [1], there is no such restriction). Each message
space submitted by the attack should contain a session id. The
homomorphic MAC scheme is chosen message secure if, after
polynomial many observations and queries, the attacker has
negligible advantage in producing a valid triple (id, v,MAC)
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where either id is new or id is the identifier for a previous
session but v is not in the message space of that session.

In the next sections, we will show that several of the
previous message authentication schemes for network coding
are not even observation secure. In section V, we will propose
a chosen message secure message authentication scheme for
network coding.

B. Digital signature on orthogonal vectors from ISIT 07

Zhao, Kalker, Medard, and Han [42] introduce a different
scheme to authenticate messages in network coding. Roughly
speaking, their technique is based on the following ideas:
• In order for the source node to authenticate messages
M1, · · · ,Mt, the source node finds a vector u which is
orthogonal to all these messages (that is, Mi · u = 0 for
all 1 ≤ i ≤ t) and digitally sign u. The intermediate and
receiver nodes will accept a received message M if and
only if M · u = 0.

The intuition for this scheme is that a received message M
should be accepted if and only if it belongs to the linear
space spanned by the vectors M1, · · · ,Mt. The authors [42]
think that this is “equivalent” to the fact that M · u = 0.
Unfortunately, this argument is not valid. There are many
vectors M ′ with the property M ′ · u = 0 but M ′ does not
belong to the linear space spanned by the vectors M1, · · · ,Mt.
In the following, we describe the signature scheme and simple
observation attacks on the scheme.

The parameters for the system consist of a generator g for
the group G of order p. The private key for the source node
is n random elements {α1, · · · , αn} from Fp. The public key
for the source node is {gα1 , · · · , gαn}. We assume that all
nodes in the network have an authentic copy of the system
parameters (g,G, p) and the public key of the source node.

For the source node to sign the messages Mi =
(mi,1, · · · ,mi,n) (1 ≤ i ≤ t), the source node finds a nonzero
vector u ∈ Fnp with the property that

u ·Mi = 0 i = 1, · · · , t

Then the digital signature for the message space is x =
(u1α

−1
1 , · · · , unα−1

n ) together with a standard digital signature
on x.

To verify whether x is a valid signature on a message M =
(m1, · · · ,mn), one needs to check whether

n∏
i=1

(gαi)ximi = 1

The correctness of the signature scheme is straightforward and
is omitted here. The authors in [42] have provided a security
proof for the above signature scheme. In the following, we
show a few observation attacks on this signature scheme (thus
the scheme is not observation secure).

1) Attack 1 described in [42]: This attack was noticed by
the authors in their original paper [42]. Assume that x is the
digital signature for session one (of file F ) and x′ is the digital
signature for session two (of file F ′). Furthermore, assume that

the message M = (m1, . . . ,mn) is from session one. Then
one can construct a message M ′ = (m′1, · · · ,m′n) for session
two, where m′i = ximi/x

′
i. This is true since

n∏
i=1

(gαi)x
′
im

′
i =

n∏
i=1

(gαi)ximi = 1.

Obviously, M ′ is not a valid message for session two. This
attack shows that each session needs the secure deployment
of a different public/private keys, which could use too much
of the network coding capacity.

2) Attack 2: It is straightforward that if the adversary can
collect t messages, then she will be able to recover the original
message. At the same time, the adversary will also be able to
compute the original orthogonal vector u. Here we assume
that the implementation for computing u from the messages
is public so u can be uniquely recovered. By the fact that x =
(u1α

−1
1 , · · · , unα−1

n ), the adversary will be able to recover the
private key of the source node. Thus she will be able to create
any signature on any coined message.

3) Attack 3: This attack shows that the digital scheme based
on orthogonal vectors are completely infeasible for practical
purposes.

Let M1, · · · ,Mt be the message vectors where Mi =
(mi,1, · · · ,mi,n−t, 0, · · · , 0, 1, 0, . . . , 0). It is straightforward
to check that the following vector u is orthogonal to all of these
messages and satisfies the requirements for the orthogonal
signature.

(11, · · · , 1n−t,−
n−t∑
j=1

m1,j ,−
n−t∑
j=1

m2,j , . . .−
n−t∑
j=1

mt,j)

Now let M ′i = (m′i,1, · · · ,m′i,n−t, 0, · · · , 0, 1, 0, . . . , 0) where
m′i,1, · · · ,m′i,n−t is any permutation of mi,1, · · · ,mi,n−t. It is
clear that M ′i is orthogonal to u. Thus it will be accepted as
a valid message. However, M ′i is not a linear combination of
the original messages.

The reason why this attack is successful is as follows:

• The linear space spanned by the original messages
M1, · · · ,Mt is t-dimensional.

• Assume that u is any fixed vector which is orthogonal to
the message space. Then u is orthogonal to a subspace of
dimension n−1 which contains the message space. Thus,
for n− 1 > t, there is a huge room for the adversary to
generate fake messages.

Recently, Kehdi and Li [26] designed a different scheme
based on the orthogonal space. In their scheme, the vectors
of the orthogonal spaces (that is, orthogonal to the linear
space spanned by the message vectors) are distributed to
all intermediate nodes (using a scheme that is similar to
the network coding). There are several challenges for this
scheme to be practical. First, the adversary may try to attack
the orthogonal space distribution phase. The authors in [26]
propose to use digital signature schemes to protect this phase.
But then we have the egg and chicken problem.
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C. Signature Scheme from INFOCOM 2008

Yu, Wei, Ramkumar, and Guan [40] designed a homo-
morphic digital signature scheme for network coding against
pollution attacks. The homomorphic signature scheme was
designed with the purpose that each intermediate node can
verify whether a received packet has a valid signature and,
without access to the private key, each intermediate node
can generate a random linear combination of the incoming
messages together with a digital signature on the combined
message.

Specifically, their signature scheme is as follows. The source
node has an RSA private key d, and public key (N, e). Without
loss of generality, we assume that these parameters are chosen
securely and meets the security requirements (e.g., N is 1024
bits or 2048 bits). Furthermore, let p and q be two primes
such that q|(p− 1) and g1, · · · , gn ∈ Zp be randomly chosen
numbers with order q (mod p). We assume that all nodes in
the network have an authentic copy of the system parameters
(N, e), p, q, g1, · · · , gn.

In one session, the source node generates the dig-
ital signatures (message authentication codes) for mes-
sages M1, . . . ,Mt as follows. The signature on Mi =
(mi,1, · · · ,mi,n) is computed as:

S(Mi) =

 n∏
j=1

g
mi,j

j

d

mod N

Now assume that an intermediate node receives message-
signature pair (v, S(v)), where v = (u1, . . . , un), it can verify
the digital signature as follows:

S(v)e =
n∏
j=1

g
uj

j mod p mod N

Furthermore, assume that the intermediate node receives
(v1, S(v1)), · · · , (vk, S(vk)) from its k incoming edges respec-
tively, where S(vk) is the digital signature on vk. For each
outgoing edge, the node chooses random α1, . . . , αk ∈ Fp
and computes the digital signature on the combined message
v = α1v1 + · · ·+ αkvk as follows:

S(v) =
n∏
j=1

S(vj)αj

Though the correctness of the signature scheme is proved in
[40], it is pointed out in a recent paper [15] that this protocol
is incorrect indeed (the protocol produced signatures could
not be verified). The authors in [40] provide a security proof
for the above signature scheme. In the following, we describe
several observation attacks on this signature scheme (thus the
scheme is not observation secure).

1) Attack 1: This attack is derived from the “batch verifica-
tion” properties provided by the authors in their original paper
[40]. Assume that the adversary observes a message-signature
pair (M ′, S(M ′)) from session one and a message-signature
pair (M ′′, S(M ′′)) from session two. For any random numbers
β1, β2, the adversary can generate the “digital signature”

S(M) on the coined message M = β1M
′ + β2M

′′ as
S(M ′)β1S(M ′′)β2 . It should be noted that this message M
belongs neither to session one nor to session two. One may
propose that a session ID could be embedded into the message
space, but there is no easy way to do that. One may also
propose that the system parameters g1, · · · , gn be changed for
each session. That is, different sessions do not share the same
parameters. But then the protocol will become very inefficient
and one may wonder what is the advantage of network
coding for these applications (compared to traditional copy-
and-forward techniques) since the useful network capacity may
be significantly reduced. Our next attack shows that even if
one adds some kind of session identification to the signatures,
it may still be easily broken.

2) Attack 2: Assume that the adversary observes a digital
signature S(M) on the message M = (m1,m2, · · · ,mn). For
any message M ′ = (m,m2, · · · ,mn) chosen by the adversary,
she may compute a number x such that m = m1 + e ·x. Then
the signature on the message M ′ is S(M ′) = S(M) · gx1 . The
reason is due to the following fact:

S(M ′)e = S(M)ege·x1 = ge·x1

n∏
j=1

g
mj

j = gm1+ex
1 · · · gmn

n

Similarly, the adversary can generate a digital signature
S(M ′′) for any message M ′′ = (m′1, · · · ,m′n) at her choice.
This attack shows that even if the source node distributes
different system parameters for different sessions, it still does
not work!

Recently, the same group of researchers have proposed an
efficient scheme [41] for XOR based network coding. The
scheme relies solely on symmetric key encryption schemes by
avoiding using expensive public key cryptographic primitives,
and may not be extended to general random linear network
coding.

D. RIPPLE from INFOCOM 2010, Agrawal and Boneh’s
scheme, and other homomorphic schemes

Gkantsidis and Rodriguez [17] introduces the homomorphic
hashing for network coding which requires expensive exponen-
tiation computations for each intermediate nodes. In particular,
the hashing output for a message Mi = (mi,1, . . . ,mi,n) is
defined as h(Mi) =

∏n
k=1 g

mi,k

k . Thus it is not practical for
many applications [13].

Based on a classic MAC system due to Carter and Wagman
[6], Agrawal and Boneh introduced a homomorphic MAC
scheme [1] for network coding. In this scheme [1], the source
node and the receiver node share the secret (k1, k2). In order
for the source node to generate an MAC tag on a message
Mi ∈ Fnp in session id, it first uses pseudorandom functions
to generate u = (u1, . . . , un) ∈ Fnp from k1 and generate
b ∈ Fp from (id, i, k2). The MAC tag on Mi is then
defined as u · Mi + b. Though the intermediate node may
not generate the exact MAC tags for a linear combination of
incoming messages, they can attach the linear combination of
the incoming tags to the linearly combined message. A node
(e.g., the receiver node) could verify the combined MAC tags



6

if it knows the value of the key (k1, k2). The shortcoming of
the scheme in [1] is that it will only help the receiver node
(but not the intermediate nodes) to detect malicious packets. In
another word, the scheme will not be able to defeat pollution
attacks.

Authors in [1] proved that their homomorphic MAC is
secure in their security model. Their model is similar to
our chosen message security model except that they allow
the adversary to make any queries of the format (id,M)
where M is a message subspace while, in our model (see,
section IV-A), the adversary is not allowed to make queries
with observed or already queried identifiers. In their model,
their scheme [1] is obviously insecure. The attack is as
follows: assume that the adversary has observed the MAC
tags on (id,M1, · · · ,Mt). Without loss of generality, assume
that (M1, · · · ,Mt,M

′
1, · · · ,Mn−t) is a base for the entire

space Fnp . The adversary can make a query for MAC tags
on (id,M ′1, · · · ,Mn−t). After this query, the adversary will
be able to generate MAC tags for any message M = α ·M1 +
β ·M ′1 for the session id, though M is neither in the original
message subspace or the queried message subspace. Thus the
scheme in [1] could not be secure in their model [1].

The authors in [1] further extended their scheme to broad-
cast homomorphic MACs by pre-distributing some keys to the
intermediate nodes (based on the cover free family concept)
so that intermediate nodes could verify the MAC tags (thus
avoiding pollution attacks). However, this scheme is only c-
collusion resistant for some pre-determined c. Furthermore,
when c becomes larger, the scheme will become impractical
(e.g., for the key pre-distribution).

Based on the multi-receiver/multi-sender authentication
scheme [11], Oggier and Fathi [33] recently designed a mes-
sage authentication scheme for network coding. However, due
to the complicated pre-key distribution scheme, the scheme in
[33] has limited applications.

Dong, Curtmola, and Nita-Rotaru [12] proposed a TESLA-
like scheme DART to defend against pollution attacks in intra-
flow network coding for wireless mesh networks. In their
scheme, the source node periodically computes and dissemi-
nates a digitally signed random checksum packet (CHKs, s, l)
where CHKs is a t× b matrix and b is the security parameter.
This protocol works fine for wireless mesh networks with suf-
ficient generations of packets. However, for general networks
(such as peer-to-peer networks), there are several limitations
for this protocol. In particular, the frequent broadcast of the
large size checksum CHKs will use up much of the network
bandwidth and each intermediate node needs to verify the
public key digital signature on each checksum which could
be impractical for many applications.

Another TESLA-like scheme RIPPLE was recently pro-
posed by Li, Yao, Chen, Jaggi, and Rosen in [31] at INFO-
COM 2010. In the RIPPLE scheme, the source node chooses
random seeds (r11, · · · , rT1 ) and commits (r1N , · · · , rTN ) where
rjN = HN (rj1) = H(· · · (H(rj1))) at the beginning of message
transmission. Here we assume there are at most N sessions, T
is the maximum network hops for each packet to arrive at its

destination, and H is a pseudorandom function. For a session
with identifier i ≤ N , the key consists of (K1

i ,K
2
i , · · · ,KT

i )
where Kj

i ∈ Fn+T−j
p is derived from rji . The MAC tags for

a message v is defined as (j = 1, · · · , T ):

MACj(v) = KT−j+1
i · (v,MAC1(v), · · · ,MACj−1(v))

At the beginning of RIPPLE message transmission, the
source node digitally signs and broadcasts rjN to all nodes
in the network. At time j ≤ T of session i, the source node
broadcasts Kj

i . When an intermediate node at hop j receives
packets with MAC tags MAC1, · · · ,MACT−j+1, it will hold
the packets and wait for the value Kj

i from the source node.
After it receives this value, it can verify the validity of Kj

i and
MACT−j+1(v). It will then continue with the network coding
protocol by generating and attaching the combined MAC tags
MAC1, · · ·, MACT−j for its outgoing messages.

The RIPPLE scheme is not secure for the following reasons:
The source node will broadcast Kj

i and Kj+1
i at time j and

j + 1 respectively. Kj
i arrives at a hop j node A at time 2j.

At time 2j, a colluding node B (which could be at hop j − 1
or earlier) has already learned the value of Kj+1

i . Thus A
and B could collaborate together to generate valid MAC tags
MACT−j on bogus messages for hop j+1 at time 2j. Thus the
node at hop j + 1 will accept these bogus messages at future
time when Kj+1

i arrives at them. Thus the RIPPLE scheme
will not be able to defeat pollution attacks.

E. Charles, Jain, and Lauter’s signature scheme and other
schemes

Charles, Jain, and Lauter [9] have designed a signature
scheme for network coding. The scheme is based on bilinear
maps which we will discuss first.

1) Bilinear maps and the bilinear Diffie-Hellman assump-
tions: In the following, we briefly describe the bilinear maps
and bilinear map groups.

1) G1, G2, and GT are three (multiplicative) cyclic groups
of prime order q.

2) g1, g2 are generators of G1, G2 respectively.
3) ê : G1 ×G2 → GT is a bilinear map.

A bilinear map is a map ê : G×G→ G1 with the following
properties:

1) bilinear: for all x, y ∈ Z, we have ê(gx1 , g
y
2 ) =

ê(g1, g2)xy .
2) non-degenerate: ê(g1, g)2 6= 1.

We say that G1, G2 are bilinear groups if the group action in
G1, G2 can be computed efficiently and there exists a group
GT and an efficiently computable bilinear map ê : G1×G2 →
GT as above. For convenience, throughout the paper, we view
G1, G2, and GT as multiplicative groups though the concrete
implementation of G1, G2 could be additive elliptic curve
groups.

2) The signature scheme: We first briefly discuss the net-
work coding signature scheme by Charles, Jain, and Lauter
[9].

The system parameter consists of the bilinear group G =
〈G,G,GT , ê〉 and (n + 1) elements g1, · · · , gn, g ∈ G that
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are chosen by the source node. Note that here we assume that
G = G1 = G2 for the bilinear groups.

For each session, the source node chooses a secret
key (s1, · · · , sn). The signature on the message Mi =
(mi,1, · · · ,mi,n) is (gs1 , · · · , gsn , S(Mi)) where

S(Mi) =
n∏
j=1

g
mi,jsj

j

Now assume that an intermediate node receives a
message-signature pair (v, (h1, · · · , hn, S(v))), where v =
(u1, . . . , un), it can verify the digital signature as follows:

n∏
j=1

ê(guj

j , hj) = ê(S(v), g)

Furthermore, assume that the intermediate node receives
(v1, (h1, · · · , hn, S(v1))), · · ·, and (vk, (h1, · · · , hn, S(vk)))
from its k incoming edges respectively, where S(vi) is the
digital signature on vi = (ui,1, · · · , ui,n). For each outgo-
ing edge, the node chooses random α1, . . . , αk ∈ Fp and
computes the digital signature on the combined message
v = α1v1 + · · ·+ αkvk as (h1, · · · , hn, S(v)) where

S(v) =
n∏
j=1

g
sj
∑t

i=1 αiui,j

j =
t∏
i=1

n∏
j=1

g
αisjui,j

j =
t∏
i=1

S(vi)αi

The correctness of the signature scheme is straightforward
and omitted here. The authors in [9] provide a security proof
for the above signature scheme. In the following, we show a
few attacks on this signature scheme.

3) Attacks: Our first analysis shows that the values
(gs1 , · · · , gsn) have to be distributed to all nodes in a secure
channel for each session. The reason is as follows (by as-
suming the values are not securely distributed, we present an
attack).
• Assume that the adversary observes one

signature (gs1 , · · · , gsn , S(Mi)) on the message
Mi = (mi,1,mi,2, · · · ,mi,n). For any message
M ′ = (m,mi,2, · · · ,mi,n) chosen by the adversary,
the adversary can compute a number β such that
m = mi,1β

−1. Then
(
gβs1 , · · · , gsn , S(Mi)

)
is a

signature for M ′. Thus it is straightforward for the
adversary to generate signatures on any message M ′′ by
modifying the values of (gs1 , · · · , gsn).

Boneh, Freeman, Katz and Waters [4] observed that, for this
signature scheme, if both sessions share (gs1 , · · · , gsn), then
the adversary can easily combine the signatures on messages
from two sessions to generate a new signature on a fake
message:
• Assume that M ′ is from session one and M ′′ is from

session two. The signatures on the two messages are
h1, · · · , hn, S(M ′) and h1, · · · , hn, S(M ′′).

• For any β1 and β2, one can compute the signature on the
message β1M

′ + β2M
′′ as S(M ′)β1S(M ′′)β2 .

Combining these attacks, it is clear that the network coding
signature in [9] requires a secure channel for each session.

This may be achieved by letting the source node digitally sign
the value (gs1 , · · · , gsn) using a traditional digital signature
scheme.

In a summary, the signature scheme from [9] is not suitable
for network coding for the following reasons:

1) High computational overhead: bilinear operations are
very inefficient

2) Bandwidth non-efficiency: for the distribution of each file
(session), the source node needs to securely broadcast
(gs1 , · · · , gsn) to all nodes.

Recently, Boneh, Freeman, Katz, and Waters [4] designed
two provably secure digital signature schemes NCS1 and
NCS2 for network coding. However, the first scheme NCS1
is based on bilinear maps, which may require more powerful
computing capabilities for the intermediate nodes (could be
routers). Thus it may be impractical for most applications (see,
e.g., [12] for some discussions).

The second digital signature scheme NCS2 from [4] requires
longer signatures to be delivered for each session, which
will reduce the advantage of the network coding by using
much of the bandwidth for signature delivery. Furthermore,
the scheme NCS2 requires each intermediate node to compute
n expensive public key exponentiation operations which could
be impractical for many applications.

Gennaro, Katz, Krawczyk, and Rabin [15] proposed a RSA
based homomorphic signature scheme and a homomorphic
hashing scheme for linear network coding over integers.
Though these two schemes are good in several aspects, they
still need several exponentiation operations for intermediate
node which is too expensive for many applications.

V. SECURE MESSAGE AUTHENTICATION CODE FOR
NETWORK CODING

In this section, we propose a chosen message secure ho-
momorphic message authentication code for network coding
based on delayed key release (TESLA-like) schemes. The most
related schemes to our scheme is DART [12] and RIPPLE [31].

Typical authenticated broadcast channels require asymmet-
ric cryptographic techniques, otherwise any compromised re-
ceiver could forge messages from the sender. Cheung [10]
proposed a symmetric cryptography based source authentica-
tion technique in the context of authenticating communication
among routers. Cheung’s technique is based on delayed dis-
closure of keys by the sender. Later, Perrig, Szewczyk, Tygar,
Wen, and Culler adapted delayed key disclosure based TESLA
protocols [34], [35] to sensor networks for sensor broadcast
authentication (the new adapted protocol is called µTESLA).

The delayed checksum release idea has also been proposed
for network coding in wireless mesh networks [12] and more
recently in the RIPPLE scheme [31]. As we have mentioned
in previous sections, the scheme in [12] is suitable to wire-
less mesh networks and requires frequent broadcast of large
amount of checksum packets, and it has disadvantages in other
environments such as peer-to-peer networks.

Assume that the maximum network hops for each packet to
arrive at its destination is bounded by T and δ is the maximal
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time needed for a node to deliver a packet to its next hop.
For a session starting at time t0, in the following protocol
description, we use time r to denote the time interval [t0 +
rδ, t0 + (r + 1)δ) for 0 ≤ r ≤ T . We assume that the clock
for each node in the network has been loosely synchronized
[34], [35]. Furthermore, without loss of generality, we assume
that n ≥ T .

In the following, we describe our homomorphic message
authentication scheme and the corresponding message trans-
mission protocol.
Session key setup. For each session with identification id,
the source node chooses a random seed s and computes
bu = Hu

1 (s, id) ∈ Fp and auj = H2(j, bu) ∈ Fp for
j = 1, · · · , n+T and u = 1, · · · , T +1, where H1 and H2 are
pseudo-random functions and Hu

1 (·) = H1(H1(· · ·H1(·))).
Let au = (au1 , · · · , aun).

At the beginning time 0 of the session id, the source
node digitally signs and broadcasts bT+1 to all nodes in the
network, using a traditional cryptographic digital signature
scheme (such as RSA or DSA). At time r(r+1)

2 (1 ≤ r ≤ T ),
the source node broadcasts bT−r+1 (no digital signature is
needed here) to all nodes in the network.
MAC generation. For a message Mi =
(mi,1,mi,2, · · · ,mi,n) ∈ Fnp , the source node generates
T MAC tags for the message Mi as follows.

MAC1(Mi) = a1 ·Mi

MACu(Mi) = au ·Mi +
∑u−1
j=1 a

u
n+jMACj(Mi)

MAC Combine. For a session id and r ≤ T , assume that an
intermediate node (which is r hops away from the source node)
receive k tuples (id, v1,MAC1(v1), · · · ,MACT−r+1(v1)), · · ·,
(id, vk,MAC1(vk), · · · ,MACT−r+1(vk)). For each outgoing
edge, the node chooses random α1, . . . , αk ∈ Fp and sends
the tuple (id, v,MAC1(v), · · · ,MACT−r(v)) on this outgoing
edge, where v is the combined message v = α1v1+· · ·+αkvk
and MAC tags on v are computed as follows (1 ≤ u ≤ T −r):

MACu(v) =
k∑
j=1

αjMACu(vj)

Message Transmission and MAC Verification. Assume that
the base of the message space consists of M1, · · · ,Mt. The
source node initiates the message transmission at time 0 of
session id by transferring the message base together with their
MAC tags: (id,Mi,MAC1(Mi), · · · ,MACT (Mi)) for all i ≤
t. For an intermediate node at hop r (i.e., r is the distance
from this intermediate node to the source node), it receives a
tuple

(
id, v,MAC′1(v), · · · ,MAC′T−r+1(v)

)
, approximately at

time r(r+1)
2 of session id. It buffers the tuple and waits for

the value bT−r+1 from the source node which is broadcasted
by the source node at time r(r+1)

2 . Thus this node should get
bT−r+1 approximately at time r + r(r+1)

2 .
After it receives the value of bT−r+1, it can verify its

validity by checking whether Hr
1 (bT−r+1) = bT+1. Note that

the source node has broadcast bT+1 and the digital signature
on it at time 0, so this node should have received an authentic

value of bT+1 already. Now assume that this intermediate
node has received a valid bT−r+1. It continues by generating
(aT−r+1

0 , · · · , aT−r+1
n ) using aT−r+1

j = H2(j, bT−r+1) and
for each buffered tuple

(
id, v,MAC′1(v), · · · ,MAC′T−r+1(v)

)
with v = (v1, . . . , vn), it checks whether the following
equation holds:

MAC′T−r+1(v) = aT−r+1 · v +
T−r∑
j=1

aT−r+1
n+j MAC′j(v).

If the equation holds, then the MAC tag MAC′T−r+1(v) is
valid. Otherwise, the MAC tag is not valid and it will discard
this buffered packet.

After all buffered tags for the key derived from bT−r+1 is
checked, the intermediate node will continue with the network
coding protocol by combining all valid messages and their
corresponding MAC tags using the MAC Combine process at
time r+ r(r+1)

2 and the node at hop r+ 1 will get the packet
at time 1+ r+ r(r+1)

2 = (r+1)(r+2)
2 . Here we assume that the

time for the intermediate node to do the MAC verification and
message mix computation are included in the value of δ which
is defined as the maximal time needed for a node to deliver a
packet to the next hop. This completes the description of our
homomorphic message authentication protocol.

Next we show the correctness of the protocol. First, it is
straightforward that for any α ∈ Fp and v ∈ Fnp , we have
α ·MAC1(v) = MAC1(αv). By a simple induction, it is also
straightforward that α ·MACu(v) = MACu(αv) for u ≤ T .

Now assume that v = α1M1 + · · · + αtMt. For u = 1, it
is straightforward that MAC1(v) =

∑t
i=1 αiMAC1(Mi). For

u = 2, · · · , T , we have
t∑
i=1

αiMACu(Mi)

=
t∑
i=1

αi

au ·Mi +
u−1∑
j=1

aun+j ·MACj(Mi)


= au ·

t∑
i=1

αiMi +
u−1∑
j=1

aun+j ·MACj

(
t∑
i=1

αiMi

)

= au · v +
u−1∑
j=1

aun+j ·MACj(v)

= MACu(v)

We conclude this section by showing the above homomor-
phic message authentication scheme is chosen message secure
within the model discussed in Section IV-A. First we show
that scheme is observation secure.

Theorem 5.1: Assume that both H1 and H2 are pseudoran-
dom functions and n > max{t, T}. Before the session keys
for the hop u is broadcasted, an attacker is unable to generate a
message v and valid MAC tag MACu(v) such that the message
is not in the original message space.

Proof. The source node generates MAC tags on messages
M1, · · · ,Mt. Thus, for each u = 1, · · · , T , we get t equations
with n unknowns. The solution for the session keys au =
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(au1 , · · · , aun) consists of a (n− t)-dimension space in Fnp . If
an observation attacker could generate a message v and its
valid MACu(v) such that v is not a linear combination of
M1, · · · ,Mt, then this could be used to add a new equation
to the previous equation systems. Thus the dimension of the
solution space for the unknowns au = (au1 , · · · , aun) is reduced
to n− t+ 1. This is a contradiction. Q.E.D

Next we show that the scheme is chosen message secure.
Theorem 5.2: Assume that both H1 and H2 are secure

pseudorandom functions, the public key cryptographic scheme
is secure, and n > max{t, T}. Then the above homomorphic
message authentication scheme is chosen message secure. In
particular, let A,A1,A2,A3 be the chosen message adversary,
pseudorandom adversary for H1, pseudorandom adversary for
H2, and public key signature scheme adversary respectively.
Then the advantage Adv[A,HomMAC] for A is bounded by

Adv[A1, H1] + Adv[A2, H2] + Adv[A3,PubK] +
T 2

p

Sketch of Proof. The adversary A adaptively chooses
queries (id,M) where M is a message subspace and id
is an identifier that has not been observed or queried by
A. The challenger responds to these queries by oracle
access to the pseudorandom adversaries A1,A2, and the
public key adversary A3. Eventually, the adversary outputs
(id, v,MAC1(v), · · · ,MACT (v), bT+1, Sig(bT+1), s). The ad-
versary A succeeds if Sig(bT+1) is a valid public key sig-
nature on bT+1, bT+1 = HT+1

1 (s, id), all MACs are valid,
and either id is different from any identifiers observed or
queried by A or id is observed or queried by the A but v
is not from the corresponding message space. A reduction
can then be used to reduce the success of the adversary
A to one of the following cases: pseudorandom function
adversary A1 success, pseudorandom function adversary A2

success, public key signature scheme adversary A3 success,
and random guess. Thus the bound is proved. Q.E.D
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