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Abstract. SMS4 is a 128-bit block cipher used in the WAPI standard
for wireless networks in China. In this paper, we analyze the security of
SMS4 block cipher against differential cryptanalysis. Firstly, we prove
three theorems and one corollary that reflect relationships of 5- and 6-
round SMS4. Nextly, by these relationships, we clarify the minimum
number of differentially active S-boxes in 6-, 7- and 12-round SMS4 re-
spectively. Finally, based on the above results, we present a family of
about 214 differential characteristics for 19-round SMS4, which leads to
an attack on 23-round SMS4 with 2115 chosen plaintexts and 2124.3 en-
cryptions. Our attack is the best known attack on SMS4 so far.
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1 Introduction

SMS4 is the underlying block cipher used in the WAPI (WLAN Authentication
and Privacy Infrastructure) standard for securing wireless LANs in China. SMS4
has a 128-bit block size, a 128-bit user key, and a total of 32 rounds. It employs
a kind of 4-branch generalized Feistel network in which only 32 bits are modified
in each round. The main part of its round function is a simple SP network,
firstly the subkey XOR-addition, secondly 4 S-boxes in parallel, lastly a linear
transformation L.

SMS4 was made public [1] in January 2006 by the Chinese government ([4]
gives an English translation). Since then, SMS4 has attracted much attention due
to its simplicity and Chinese standard prominence. In [9], F.Liu et al. investigated
the origin of the S-box employed in the cipher and presented an integral attack
on 13-round SMS4. In [7], W.Ji et al. analyzed SMS4 from the viewpoint of
algebraic attacks, and estimated the complexity of solving the equation system.
In [10], J.Lu presented a rectangle attack on 14-round SMS4 and an impossible
differential attack on 16-round SMS4. In [5], D.Toz et al. made a detailed analysis
of the attacks in [10] and further improved these attacks. In [11], L.Zhang et al.
presented a differential attack on 21-round SMS4 and a rectangle attack on 16-
round SMS4. In [6], J.Etrog et al. presented a linear attack on 22-round SMS4. In
[8], T.Kim et al. presented a linear attack and a differential attack on 22-round
SMS4, as well as a boomerang attack and a rectangle attack on 18-round SMS4.
In [12], W.T.Zhang et al. gave three observations on the design of the linear
transformation of SMS4, then they presented a differential attack on 22-round



SMS4, which was an improvement of the previous work due to L.Zhang et al. [11]
and T.Kim et al. [8]. Among the previous cryptanalytic work on SMS4, the best
two distinguishers are as follows: One is an 18-round differential characteristic
with a probability of 2−114; The other is an 18-round linear approximation with a
bias of 2−56.2. Both of these distinguishers can be used to attack up to 22-round
SMS4 [6, 12].

In this paper, we make a more comprehensive study of the security of SMS4
against differential cryptanalysis. Here are our main results: (1) We give a clar-
ification of the minimum number of differential active S-boxes for 6-, 7- and
12-round SMS4 respectively. (2) Based on the above result, we obtain a fam-
ily of (27 − 1)2 effective differential characteristics for 19-round SMS4, one with
probability 2−124, 254 with probability 2−125 each, and all the others with proba-
bility 2−126 each. Then, we present a differential attack on 23-round SMS4 using
the newly-found 19-round distinguishers, with 2115 chosen plaintexts and 2124.3

encryptions. For comparison, the best previous attack on SMS4 can only reach
22 rounds.

The rest of this paper is organized as follows. Section 2 provides a description
of SMS4. Section 3.1 presents four relationships among the input and output dif-
ferences of the T functions in 5- and 6-round SMS4, which is the very important
basis for our follow-up work. Sections 3.2-3.4 respectively present a clarification
of the minimum number of differentially active S-boxes for 6-, 7- and 12-round
SMS4. Section 4 presents a family of (27 − 1)2 effective 19-round differential
characteristics. Based on this family of 19-round distinguishers, Section 5 gives
a differential cryptanalysis of 23-round SMS4. Finally, Section 6 summarizes this
paper.

2 Description of SMS4

SMS4 is a block cipher with a 128-bit block size and a 128-bit key size. Its overall
structure is a kind of unbalanced Feistel network. The encryption procedure and
the decryption procedure of SMS4 are identical except that the round subkeys
are used in the reverse order.

2.1 Notation

The following notations are used throughout this paper.
− Z32

2 denotes the set of 32-bit words, and Z8
2 denotes the set of 8-bit bytes;

− Sbox(·) is the 8× 8 bijective S-box used in the round function F ;
− ≪ i : left rotation by i bits;
− (Xi, Xi+1, Xi+2, Xi+3) ∈ (Z32

2 )4 denotes the input of the i-th round, and RKi

is the corresponding 32-bit subkey in the i-th round (0 ≤ i ≤ 31);
− ProbT (α → β) the probability that the output difference of the function T is
β when the input difference is α (T can be omitted when the context is clear);
− We call an S-box active if its input difference is nonzero; otherwise, we call it
passive if its input difference is zero;



− Let Hw(X) (X ∈ (Z8
2 )4) denote the number of non-zero bytes of X;

− Let ∆X denote the difference of X and X∗, in this paper, ∆X = X ⊕X∗.
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Fig. 1. The i-th round of SMS4

2.2 Encryption Procedure of SMS4

Let (X0, X1, X2, X3) ∈ (Z32
2 )4 and (Y0, Y1, Y2, Y3) ∈ (Z32

2 )4 denote the 128-bit
plaintext P and the 128-bit ciphertext C respectively. Let RKi ∈ Z32

2 , (i =
0, 1, 2, . . . , 31) denote the round subkeys. Note that the first round is referred to
Round 0.

The encryption procedure of SMS4 is as follows:

Xi+4 = F (Xi, Xi+1, Xi+2, Xi+3, RKi) = Xi ⊕ T (Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕RKi),

for i = 0, 1, . . . , 31. In the end, the 128-bit ciphertext is generated by applying
the switch transformation R to the output of Round 31:

(Y0, Y1, Y2, Y3) = R(X32, X33, X34, X35) = (X35, X34, X33, X32).

Specifically, the i-th round of SMS4 can be expressed as follows:

(Xi, Xi+1, Xi+2, Xi+3) −→ (Xi+1, Xi+2, Xi+3, Xi+4),

where Xi+4 = Xi ⊕ T (Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ RKi). The transformation T is
composed of a non-linear transformation S and a linear diffusion function L,
namely T (·) = L(S(·)). Fig. 1 depicts one round of the encryption procedure of
SMS4.

The non-linear transformation S applies the same 8× 8 S-box four times in
parallel to the 32-bit input. Let U = (u0, u1, u2, u3) ∈ (Z8

2 )4 denote the input of
the transformation S, and V = (v0, v1, v2, v3) ∈ (Z8

2 )4 denote the corresponding
output. Then the transformation S is defined as follows:

V = (v0, v1, v2, v3) = S(U) = (Sbox(u0), Sbox(u1), Sbox(u2), Sbox(u3)).



The diffusion transformation L is a simple linear function whose input is the
output of the transformation S. Let V ∈ Z32

2 and L(V ) ∈ Z32
2 denote the input

and output of L respectively. Then the linear function L is defined as follows.

L(V ) = V ⊕ (V ≪ 2)⊕ (V ≪ 10)⊕ (V ≪ 18)⊕ (V ≪ 24).

We omit the key schedule algorithm of SMS4 as it is not involved in our
analysis; Interested readers can refer to [1] for details.

3 Minimum Number of Differentially Active S-boxes in
6-, 7- and 12-Round SMS4

Our goal is to search for the best effective differential characteristics of SMS4
(i.e., differential characteristics with probability as large as possible, yet not
lower than 2−128), so as to evaluate the security of SMS4 against differential
cryptanalysis. It is known that the probability of differential characteristics can
be evaluated by the minimum number of differentially active S-boxes and the
maximal differential probability of S-boxes. For the S-box of SMS4, there ex-
ist 127 possible output differences for any nonzero input difference, of which 1
output difference occurs with probability 2−6, and each of the other 126 out-
put differences occurs with probability 2−7. Therefore, we believe that the best
differential characteristics generally have the minimum number of differentially
active S-boxes for a fixed number of rounds in SMS4. In this section, we will
clarify the minimum number of differentially active S-boxes in some consecutive
rounds.

The overall structure of SMS4 is a kind of generalized Feistel network, which
produces some relationships among different rounds. In the following, we will
present two relationships of 5-round SMS4, and two relationships of 6-round
SMS4. We will see later that these four relationships are very helpful for clari-
fying the minimum number of differential active S-boxes in certain numbers of
consecutive rounds. Next, using these relationships, we will study the minimum
number of differential active S-boxes in 6-, 7- and 12-round SMS4 respectively.

Let “1” denote that the input difference of a T function is non-zero, and “0”
denote that the difference is zero. Then, for an r-round differential characteristic,
the sequence (bi, bi+1, . . . , bi+r−1) (bi+j = 0 or 1 for 0 ≤ j ≤ (r − 1)) specifies
the differentially active or passive T functions in the r rounds. This sequence is
called the differential pattern of the r-round differential characteristic.

3.1 Some Relationships of 5- and 6-Round SMS4

Let Ini and Outi respectively denote the input and output of the T function in
the i-th round, for i = 0, 1, 2, . . . , 31. The round subkeys are XORed with the
input of the T function, thus subkey addition has no influence on the number of
differentially active S-boxes.



Theorem 1. For any 5 consecutive rounds (from i-th round to (i+4)-th round),
the following relationship holds:

Ini ⊕ Ini+4 = Outi+1 ⊕Outi+2 ⊕Outi+3.

Proof. According to Fig.1, we have

Outi+1 = Xi+1 ⊕Xi+5,

Outi+2 = Xi+2 ⊕Xi+6,

Outi+3 = Xi+3 ⊕Xi+7.

On the other hand, we have

Ini ⊕ Ini+4 = Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕Xi+5 ⊕Xi+6 ⊕Xi+7.

Thus, we have

Ini ⊕ Ini+4 = Outi+1 ⊕Outi+2 ⊕Outi+3. ¤

The following gives the definition of the branch number of L.

Definition 1. (Branch number [2]) The branch number of a function F : Z32
2 →

Z32
2 is defined by

β(F ) = min
X 6=0,X∈Z32

2

(Hw(X) + Hw(F (X))).

It is easy to see that β(F ) 6 5. For the linear transformation L of SMS4,
the branch number reaches the maximum 5, which can be easily verified by a
computer experiment.

Theorem 2. For any 5 consecutive rounds (from i-th round to (i+4)-th round),
if ∆Ini⊕∆Ini+4 6= 0, then there are at least five differentially active S-boxes in
the 5 consecutive rounds.

Proof. According to Theorem 1 and the linearity of L, we know that

∆Ini ⊕∆Ini+4 = ∆Outi+1 ⊕∆Outi+2 ⊕∆Outi+3

= L(L−1(∆Outi+1)⊕ L−1(∆Outi+2)⊕ L−1(∆Outi+3))
= L(∆L−1(Outi+1)⊕∆L−1(Outi+2)⊕∆L−1(Outi+3)). (1)

Clearly Hw(∆Ini) = Hw(∆L−1(Outi)).
According to the formula Hw(X) + Hw(Y ) ≥ Hw(X ⊕ Y ), we have

Hw(∆Ini) + Hw(∆Ini+4)
≥ Hw(∆Ini ⊕∆Ini+4). (2)

Similarly,

Hw(∆Ini+1) + Hw(∆Ini+2) + Hw(∆Ini+3)
= Hw(∆L−1(Outi+1)) + Hw(∆L−1(Outi+2)) + Hw(∆L−1(Outi+3))
≥ Hw(∆L−1(Outi+1)⊕∆L−1(Outi+2)⊕∆L−1(Outi+3))). (3)



The branch number of L is 5. If ∆Ini⊕∆Ini+4 6= 0, then we get the following
result using the above 3 relationships:

Hw(∆Ini) + Hw(∆Ini+1) + Hw(∆Ini+2) + Hw(∆Ini+3) + Hw(∆Ini+4) ≥ 5. ¤

Theorem 3. For any 6 consecutive rounds (from i-th round to (i+5)-th round),
if the i-th round and the (i + 1)-th round are both differentially passive, then the
following relationship holds:

∆Ini+4 ⊕∆Outi+4 = ∆Ini+5.

Proof. The i-th round is differentially passive, we have

∆Xi+1 ⊕∆Xi+2 ⊕∆Xi+3 = 0.

The (i + 1)-th round is also differentially passive, we have

∆Xi+2 ⊕∆Xi+3 ⊕∆Xi+4 = 0, ∆Xi+1 = ∆Xi+5.

Then, we get ∆Xi+1 = ∆Xi+4 = ∆Xi+5.
Since ∆Ini+4 = ∆Xi+5 ⊕ ∆Xi+6 ⊕ ∆Xi+7, and also ∆Ini+5 = ∆Xi+6 ⊕

∆Xi+7 ⊕∆Xi+8, we can finally get

∆Ini+4 ⊕∆Ini+5 = ∆Xi+5 ⊕∆Xi+8

= ∆Xi+4 ⊕∆Xi+8

= ∆Outi+4. ¤

Corollary 1. For any 6 consecutive rounds (from i-th round to (i+5)-th round),
if the (i + 4)-th round and the (i + 5)-th round are both differentially passive,
then the following relationship holds:

∆Ini+1 ⊕∆Outi+1 = ∆Ini.

We omit the proof, since it is similar in nature to Theorem 3.

3.2 6 Rounds

There are 26 = 64 differential patterns for 6-round differential characteristics.
Using Theorem 1, Theorem 3 and Corollary 1, we can easily know that 18 pat-
terns are impossible. Then, there remain 64− 18 = 46 possible patterns. Using
Theorem 2, Theorem 3 and Corollary 1, we get the following results: there are
at least 2 differentially active S-boxes for one pattern, at least 5 differentially
active S-boxes for 12 patterns, and at least 6 differentially active S-boxes for
33 patterns. Table 1 gives the details, and we give two patterns for illustration
below.

The first example is the 6-round pattern (0, 0, 0, 1, 1, 0). Applying Theorem
3, we get that ∆In4 ⊕ ∆Out4 = ∆In5 = 0 which means ∆In4 = ∆Out4.
Thus, T4 has at least 3 active S-boxes because the branch number of the linear
transformation L is 5. On the other hand, we get that ∆Out4 = ∆Out3 by



Table 1. The Number of Active S-boxes in 6-round Differential Patterns

The number of Active S-boxes Patterns

At least 2 active S-boxes (0,0,1,1,0,0)

(0, 1, 0, 0, 1, 0), (1, 0, 1, 0, 1, 0), (0, 1, 1, 0, 1, 0)
(1, 0, 0, 1, 1, 0), (0, 1, 0, 1, 1, 0), (1, 0, 1, 1, 1, 0)

At least 5 active S-boxes (0, 1, 1, 1, 1, 0), (0, 1, 0, 1, 0, 1), (0, 1, 1, 0, 0, 1)
(1, 1, 1, 0, 1, 1), (0, 1, 1, 1, 0, 1), (1, 1, 0, 1, 1, 1)

(0, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 0), (1, 1, 0, 1, 1, 0)
(0, 1, 1, 0, 0, 0), (1, 1, 1, 0, 0, 0), (0, 1, 0, 1, 0, 0)
(1, 1, 0, 1, 0, 0), (1, 1, 1, 1, 0, 0), (1, 1, 0, 0, 1, 0)
(0, 0, 1, 0, 1, 0), (1, 1, 1, 0, 1, 0), (0, 0, 0, 1, 1, 0)
(1, 1, 1, 1, 1, 0), (1, 1, 0, 0, 0, 1), (1, 0, 1, 0, 0, 1)

At least 6 active S-boxes (1, 1, 1, 0, 0, 1), (1, 0, 0, 1, 0, 1), (1, 1, 0, 1, 0, 1)
(1, 0, 1, 1, 0, 1), (1, 1, 1, 1, 0, 1), (1, 0, 0, 0, 1, 1)
(0, 1, 0, 0, 1, 1), (1, 1, 0, 0, 1, 1), (0, 0, 1, 0, 1, 1)
(1, 0, 1, 0, 1, 1), (0, 1, 1, 0, 1, 1), (0, 0, 0, 1, 1, 1)
(1, 0, 0, 1, 1, 1), (0, 1, 0, 1, 1, 1), (0, 0, 1, 1, 1, 1)
(1, 0, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)

(0, 0, 0, 0, 1, 1), (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0)
(1, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0)

Impossible patterns (0, 0, 0, 1, 0, 0), (1, 0, 0, 1, 0, 0), (1, 0, 1, 1, 0, 0)
(0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)
(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1)
(0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 0, 1), (0, 0, 0, 0, 0, 0)

applying Theorem 1 to the last 5 consecutive rounds, hence T3 also has at least
3 active S-boxes. Therefore, there are at least 6 active S-boxes in the pattern
(0, 0, 0, 1, 1, 0).

The second example is (0, 0, 1, 0, 0, 1). We can deduce from Theorem 3 that
∆In4⊕∆Out4 = ∆In5. However, both ∆In4 and ∆Out4 are zero, and ∆In5 is
non-zero. This is a contradiction. Therefore, the differential pattern (0, 0, 1, 0, 0, 1)
is impossible.

3.3 7 Rounds

There are 27 = 128 differential patterns for 7-round differential characteristics.
Examining them one by one by using the three theorems and Corollary 1, we find
that 47 patterns are impossible, the other 81 patterns are possible. Among the 81
possible patterns, there are at least 5 differentially active S-boxes for 2 patterns
(Table 3 lists the 2 patterns), and at least 6 differentially active S-boxes for 79
patterns. For each of the 2 patterns which have at least 5 differentially active
S-boxes, we make experiments to search for optimal differential characteristics
having the corresponding pattern. Our results show that there exist character-
istics which have just 5 active S-boxes for each pattern. Here are the details: (1)
For the first pattern, the number of differentially active S-boxes in each of the 7
rounds is 3, 0, 0, 1, 1, 0, 0 respectively, and the differential probability is 2−33; (2)



For the second pattern, the number of differential active S-boxes in each of the
7 rounds is 0, 0, 1, 1, 0, 0, 3 respectively, and the differential probability is 2−33.

Table 2. 7-round Differential Patterns which can have 5 Active S-boxes

Two Patterns The Optimal Probability

(1, 0, 0, 1, 1, 0, 0) 2−33

(0, 0, 1, 1, 0, 0, 1) 2−33

3.4 12 Rounds

There are 212 = 4096 differential patterns for 12-round differential characteris-
tics. A 12-round differential characteristic can be regarded as a concatenation of
two 6-round differential characteristics, hence we can easily know that there are
at least 7 differentially active S-boxes for the 12 rounds. After examining some
possible 12-round differential patterns, we set our goal on the search for patterns
which have at most 10 differentially active S-boxes (actually, there are at least
10 differentially active S-boxes in any effective 12-round differential character-
istic, which will be shown below). Because of the symmetry of encryption and
decryption of SMS4, we assume that there are at most 5 differentially active
S-boxes in the first 6 rounds (if we reverse the round order of a pattern, we can
get another pattern which has at most 5 differentially active S-boxes in the last
6 rounds). According to Table 1, there are 13 possible patterns for the first 6
rounds, there are 46 possible patterns for the last 6 rounds. Hence, we will only
focus our attention on these 13× 46 = 598 possible patterns.

As we know, there are 18 impossible patterns for 6-round differential charac-
teristics. For a 12-round differential pattern, if it includes an impossible 6-round
pattern as a subsegment, then this 12-round differential pattern is also impossi-
ble. Using this property, we can easily get that 233 patterns are impossible by a
computer experiment.

There are 598−233 = 365 possible patterns remaining. Examining them one
by one by using the three theorems and Corollary 1, we find that all of the 365
patterns are possible. Here are the details: there are at least 10 differentially
active S-boxes for 2 patterns, at least 11 differentially active S-boxes for 174
patterns, at least 12 differentially active S-boxes for 105 patterns, at least 13
differentially active S-boxes for 51 patterns, at least 14 differentially active S-
boxes for 16 patterns, at least 15 differentially active S-boxes for 9 patterns, at
least 16 differentially active S-boxes for 6 patterns, and at least 17 differentially
active S-boxes for 2 patterns.

Take the 12-round differential pattern (1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0) for exam-
ple. Considering the two 6-round segments: one is (0, 0, 1, 0, 1, 0) (from 5th round
to 10th round), the other is (0, 1, 0, 1, 0, 0) (from 6th round to 11th round). By
applying Theorem 3 and Corollary 1 to the two segments respectively, we get



that ∆In9 = ∆Out9 and ∆In7 = ∆Out7. Thus, we can know that each of T7

and T9 has at least 3 active S-boxes. On the other hand, considering the two
5-round segments: one is (1, 0, 0, 1, 0) (from 4th round to 8th round), the other
is (0, 0, 1, 1, 0) (from 1th round to 5th round), we can deduce from Theorem 1
that ∆Out7 = ∆In4 and ∆Out4 = ∆Out3. Thus, we also get that each of T4

and T3 has at least 3 active S-boxes. Therefore, there are at least 3× 4 + 1 = 13
active S-boxes in this 12-round differential pattern.

By considering the reverse order of the 2 patterns which have at least 10 dif-
ferentially active S-boxes, we arrive at the conclusion that there are only three
12-round patterns which can possibly have 10 differentially active S-boxes. Table
2 lists the three patterns. For each of the three patterns, we conducted exper-
iments to search for optimal differential characteristics. And our results show
that there exist some differential characteristics having just 10 active S-boxes
for each pattern. Here are the details: (1) For the first pattern, the number of
differentially active S-boxes in each of the 12 rounds is 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 1, 1
respectively, and the differential probability is 2−67; (2) For the second pat-
tern, the number of differentially active S-boxes in each of the 12 rounds is
1, 1, 0, 0, 3, 3, 0, 0, 1, 1, 0, 0 respectively, and the differential probability is 2−67;
(3) For the third pattern, the number of differentially active S-boxes in each
of the 12 rounds is 0, 1, 1, 0, 0, 3, 3, 0, 0, 1, 1, 0 respectively, and the differential
probability is 2−68.

Table 3. 12-round Differential Patterns which can have 10 Active S-boxes

Three Patterns The Optimal Probability

(0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1) 2−67

(1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0) 2−67

(0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0) 2−68

4 19-Round Differential Characteristics

In this section, we will present (27−1)2 ≈ 214 19-round differential characteristics
of SMS4, which are the best effective differential characteristics of SMS4 we have
found. Among them, one with probability 2−124, 2 × (27 − 1) = 254 ones with
probability 2−125, and all the other (27 − 1)2 − 255 ones with probability 2−126.
In Section 5, we will present an attack on 23-round SMS4, which is based on
these newly-found 19-round differential characteristics.

We can regard a 19-round differential characteristic as a concatenation of one
12-round and one 7-round differential characteristic. There are three 12-round
differential patterns, each of them has 10 differentially active S-boxes (see Table
2). There are two 7-round differential patterns, each has 5 differentially active
S-boxes (see Table 3). By fixing the first 12 rounds as one of the 3 patterns
and the second 7 rounds as one of the 2 patterns, we get 6 different patterns.



Examining the 6 patterns one by one by using Theorem 3 and Corollary 1, we
find that 3 patterns are impossible, and the other 3 patterns are possible, Table
4 lists the 3 possible patterns. By using the three Theorems and Corollary 1, we
find that there are at least 18 differentially active S-boxes for the first pattern,
and at least 19 differentially active S-boxes for the other two patterns.

Table 4. Some 19-round Differential Patterns which have at least 18/19 Active S-boxes

The number of Active S-boxes Patterns

at least 18 Active S-boxes (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1)

(0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0)
at least 19 Active S-boxes (0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1)

Table 5. A Family of 19-round Differential Characteristics

Round(i) ∆Xi ∆Xi+1 ∆Xi+2 ∆Xi+3 Prob.

0 (a0, a1, a1, a2) −
1 (a1, a1, a2, a3) 2−14/2−13/2−12

2 (a1, a2, a3, a1) 1
3 (a2, a3, a1, a1) 1
4 (a3, a1, a1, a4) 2−14

5 (a1, a1, a4, a5) 2−14

6 (a1, a4, a5, a1) 1
7 (a4, a5, a1, a1) 1
8 (a5, a1, a1, a5) 2−14

9 (a1, a1, a5, a4) 2−14

10 (a1, a5, a4, a1) 1
11 (a5, a4, a1, a1) 1
12 (a4, a1, a1, a3) 2−14

13 (a1, a1, a3, a2) 2−14

14 (a1, a3, a2, a1) 1
15 (a3, a2, a1, a1) 1
16 (a2, a1, a1, a6) 2−14

17 (a1, a1, a6, a7) 2−14

18 (a1, a6, a7, a1) 1
19 (a6, a7, a1, a1) 1

For the first pattern in Table 4, we make an experiment to search for optimal
differential characteristics satisfying this pattern. We finally obtain (27 − 1)2 ≈
214 19-round differential characteristics, each one with 18 active S-boxes. Let
a1 = 0xf3f30033, a2 = 0xf3000030, a3 = 0x00f30003, a4 = 0x00cf0033,
a5 = 0xf33c0000, a6 = 0x3f0000cf , a7 = 0xccf300fc. Define DiffSet = {x ∈
Z32

2 |ProbT (a2 → x) 6= 0}, there are 1272 ≈ 214 elements in DiffSet. Define



Ω = {y ∈ Z32
2 |y = x⊕a3, x ∈ DiffSet}. Table 5 illustrates the family of about

214 19-round differential characteristics in detail, where a0 ∈ Ω, (a0, a1, a1, a2) is
the input difference and (a6, a7, a1, a1) is the output difference. There exists one
element which satisfies ProbT (a2 → x) = 2−12, this element corresponds to a 19-
round differential characteristic with probability 2−124. There exist 2×(27−1) =
254 elements which satisfies ProbT (a2 → x) = 2−13, these elements correspond
to some 19-round differential characteristics with probability 2−125. All the other
(27− 1)2− 255 elements correspond to 19-round differential characteristics with
probability 2−126.

5 Differential Cryptanalysis of 23-Round SMS4

In this section, we will present a differential attack on 23-round SMS4 using the
19-round differential characteristics illustrated in Table 5.

We apply the 19-round differential characteristics to Rounds 0 ∼ 18. If the
output difference of Round 18 is (a6, a7, a1, a1), then the input difference of the
T function in Round 19 equals a7. For the S-box of SMS4, there are 127 possible
output differences for any nonzero input difference, thus the output difference
of the T function in Round 19 has only about 27∗3 = 221 possible values. Let Λ
denote the set of these 221 possible values. Then, the output differences of the
following four rounds (Rounds 19-22) must belong to (a7, a1, a1, Λ), (a1, a1, Λ, ∗),
(a1, Λ, ∗, ∗), and (Λ, ∗, ∗, ∗) respectively, where ∗ denotes an unknown word, as
illustrated in Figure 2.

We need to choose plaintext pairs with difference (a0, a1, a1, a2), where a0 ∈
Ω. There are about 214 possible values of a0. Generate two pools S1 and S2 of
232 plaintexts each:

S1 = (x, const1, const2, const3)
S2 = (y, const1 ⊕ a1, const2 ⊕ a1, const3 ⊕ a2)

where const1, const2, const3 are 3 fixed words, x and y take all 232 possible
values respectively. We call the pair (S1, S2) a structure. One structure includes
233 different plaintexts, and can produce about 232 × 232 × 214

232 = 246 candidate
plaintext pairs.

5.1 Attack Procedure

1. Select m structures, then we can get about m × 246 plaintext pairs using
m× 233 plaintexts.

2. For each plaintext pair (P, P ∗), compute the difference of the corresponding
ciphertext pair (C, C∗), and check if the first word of the ciphertext difference
belongs to the set Λ. If this is not the case, discard the pair. After this test,
about m× 246 × 221

232 = m× 235 pairs are expected remain.
3. For every guess of the 0th byte of RK22, i.e., RK22,0, do as follows:
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Fig. 2. Differential Cryptanalysis of 23-round SMS4



(a) For each remaining ciphertext pair (C,C∗), let C = (Y0, Y1, Y2, Y3) ∈
(Z32

2 )4, C∗ = (Y ∗
0 , Y ∗

1 , Y ∗
2 , Y ∗

3 ) ∈ (Z32
2 )4, partially decrypt to get the

output difference of the 0th Sbox in Round 22: γ = Sbox((Y0 ⊕ Y1 ⊕
Y2)0 ⊕ RK22,0) ⊕ Sbox((Y ∗

0 ⊕ Y ∗
1 ⊕ Y ∗

2 )0 ⊕ RK22,0), and compute δ =
(L−1(Y3⊕ Y ∗

3 ⊕ a1))0. If RK22,0 is guessed correctly, then we must have
γ = δ for right pairs. If not, discard the pair. After this test, about
m× 235 × 2−8 = m× 227 ciphertext pairs are expected to remain.

(b) For each of the other 3 bytes of RK22, each of the 4 bytes of RK21

and each of the 4 bytes of RK20, continue making a guess, then com-
pute γ and δ with the guessed value. Similar to Step 3(a), discard
the disqualified ciphertext pairs in each step. After these tests, about
m× 227 × 2−11×8 = m× 2−61 ciphertext pairs are expected to remain.

(c) Guess RK19,0, do similarly as in Step 3(a). A probability of about 1
2

pairs are already discarded because of the selection of the set Λ. Hence,
after this test, about m × 2−61 × 2−7 = m × 2−68 ciphertext pairs are
expected to remain.

(d) For each of the other three bytes of RK19, make a guess and do similarly
as Step 3(a). After these tests, about m × 2−68 × 2−3×7 = m × 2−89

ciphertext pairs are expected to remain.
4. Output the 128-bit subkey guess RK22, RK21, RK20, RK19 as the correct

subkey, if it has maximal number of remaining pairs after Step 3(d).

5.2 Analysis of the Attack

For most of the 19-round differential characteristics in Table 5, the probability
is 2−126. For all the other 19-round differential characteristics in Table 5, the
probability is larger than 2−126. Thus, from the attacker’s point of view, we can
assume that the probability of each of the differential characteristics is 2−126 for
simplicity.

It is expected that there remain about m ·246 ·2−126 = m ·2−80 right pairs for
the correct key. However, for the wrong subkey guesses, the expected number of
remaining pairs after Step 3(d) is about m ·2−89. In the analysis that follows, we
exploit the concept of “signal-to-noise ratio” introduced by Biham and Shamir
in [3] to choose an appropriate value of m to make the differential attack succeed
with high probability.

The signal-to-noise ratio is defined as the proportion of the probability of
the right key being suggested by a right pair to the probability of a random key
being suggested by a random pair with the initial difference. According to [3],
the signal-to-noise ratio can be computed by the following formula:

S/N =
2k × p

α× β

where k is the number of guessed key bits, p is the probability of the differential
characteristic, α is the average number of keys suggested by a counted pair, and
β is the ratio of the counted pairs to all pairs (both counted and discarded).



In the above attack, we have guessed 128 subkey bits, and we assume the
probability of each of the differential characteristics is 2−126. For every test in
Step 3, there are 232 possible key guesses and a counted pair needs to satisfy a
32-bit condition, thus α = 1. In Step 2, a 11-bit condition is used to discard the
pairs, thus β = 2−11. Therefore, the signal-to-noise ratio of the above attack is
2128 · 2−126/2−11 = 213. According to the suggestions of Biham and Shamir in
[3], about 3 ∼ 4 right pairs are needed to mount a successful differential attack
when S/N = 213.

Therefore, we choose m = 282, the expectation of the remaining ciphertext
pairs is about 2−7 for a wrong key guess, and the expectation of the remaining
ciphertext pairs is about 4 for the right key guess.

The attack requires m · 232+1 = 2115 chosen plaintexts in all.
The time complexity is dominated by Step 3(a) - 3(d). In Step 3(a), 2117

ciphertext pairs are treated with 28 subkey candidates for K22,0, so the time
complexity is about 2117+8+1 × 1

23 × 1
4 ≈ 2119.5 23-round SMS4 encryptions.

Similarly, the time complexity of Step 3(b) is about 2119.5 × 11, the time com-
plexity of Step 3(c) is about 2119.5, and the time complexity of Step 3(d) is
about (214+112+1 + 27+120+1 + 2128+1)× 1

23 × 1
4 ≈ 2123.3. Hence, the total time

complexity is about 2124.3 23-round SMS4 encryptions.

6 Summary

In this paper, we firstly give a clarification for the minimum number of differ-
entially active S-boxes in 6-, 7- and 12-round SMS4 respectively. The key point
is the utility of four relationships for 5- and 6-round SMS4. These relationships
concern the input difference and the output difference of the T functions in dif-
ferent rounds, and result from the structure of SMS4 (i.e., the special 4-branch
generalized Feistel network of its overall structure and the SP network of the
T functions). Then, we present a family of effective 19-round distinguishers on
SMS4 (the previous best distinguishers can only reach 18 rounds), which leads
to a differential attack on 23-round SMS4. Our attack is the best known attack
on SMS4 so far. Table 6 summarizes our attack along with the previously known
ones on reduced-round SMS4.
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