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Abstract- This paper introduces a new intractable security problem whose 

intractability is due to the NP completeness of multivariate quadratic problem. This 

novel problem uses quaternion algebra in conjunction with MQ.  Starting with the 

simultaneous multivariate equations, we transform these equations into simultaneous 

quaternion based multivariate quadratic equations. A new scheme for computational 

zero knowledge proof based on this problem is proposed. It is proved that according 

to black box definition of zero knowledge proof (ZKP) system, the proposed scheme is 

ZKP. Our proof has two lemmas. The proof is done through two lemmas. In the first 

lemma it is shown that expected polynomial time machine *V
M halts in a polynomial 

time. In the second lemma, it is showed that the probability ensembles  
LxV

xM * 

and LxxVxP *, are polynomially indistinguishable. The scheme has low 

computational overhead and is particularly useful in cryptographic applications such 

as digital signature and key agreement.  

Keywords:  Multivariate Quadratic, Quaternion, Zero Knowledge Proof, 

Authentication  

1 Introduction 
The zero knowledge proof (ZKP) was first introduced by Goldwasser, Micali and 
Rackoff [1] in 1985. In ZKP, one entity attempts to prove to another that a statement 
is correct, without disclosing anything other than the veracity of the statement. ZKP is 
an interactive method and involves two entities: Prover (P) and Verifier (V). They are 
probabilistic Turing machines. They interact and eventually the Verifier replies 
Accept or Reject as a result. ZKP satisfies the following properties: 

1- Completeness: The legitimate Prover always gets acceptance. 
2- Soundness: The legitimate Prover will be rejected with some probability 

known as "soundness error".  
3- Zero-Knowledge: No cheating Verifier can learn anything other than the 

statement. To describe this property, suppose that every cheating Verifier has 
a simulator that, given only the statement to be proven, can produce an output 
that "looks like" an interaction between the honest Prover and cheating 
Verifier [3].   



The ZKP can be defined in a formal mathematical way known as black box definition 
for ZKP systems [2,3].

 
Definition 1: Let VP, be an interactive proof system for a language L. We say the 

proof system VP, is zero knowledge for L, if for every expected polynomial time 

interactive Turing machine *V , there exists an ordinary expected polynomial time 
machine *V

M such that the probability ensembles  
LxV

xM * and  LxxVxP *, 

are polynomially indistinguishable.   

This paper introduces a novel intractable problem based on the hardness of the 
multivariate quadratic problem in conjunction with quaternion algebra. Accordingly, 
it proposes a new scheme based on this problem. The scheme does not have the 
weaknesses of existing comparable schemes.  

The reminder of paper is organized as follows. Section 2 briefs some mathematical 
preliminaries such as quaternion and multivariate quadratic problem. Section 3 
presents the novel intractable problem, as well as the new zero knowledge proof 
scheme, and then compares the scheme with comparable existing ZKP schemes 
qualitatively. Section 4 concludes the paper.  

2. Related Works 
Fiat and Shamir [4] presented a simple identification and signature scheme that 
enables any user to prove his identity and the authenticity of his messages.  The 
hardness of this task is based on RSA problem. 

Micali and Shamir [5] presented an improvement to their previous scheme that 
reduces the verifier's complexity to less than 2 modular multiplications and leaves the 
prover's complexity unchanged. Although it is computationally fast, it is still based on 
RSA problem

  

Fiege et al [6] introduced the notion of interactive proofs of assertions to interactive
proofs of knowledge. This leads to the definition of unrestricted input zero-knowledge 
proofs of knowledge in which the Prover demonstrates possession of knowledge 
without revealing any computational information. Their identification scheme is 
provably secure if factoring is difficult and practical implementations are about 2 
orders of magnitude faster than RSA-based identification schemes

  

Ong-Schnorr identification and signatures [7] are variants of the Fiat-Shamir scheme 
with short and fast communication and signatures. This scheme uses secret keys that 
are square roots modulo N of the public keys, whereas Fiat-Shamir uses square roots 
modulo N. Its security is based on the intractability of certain discrete logarithm 
problems. It is also proven to be secure against passive and concurrent attacks under 
DLP assumption.  

Guillou and Quisquater (GQ) identification scheme [8] is an extension to Fiat-Shamir 
scheme, which reduces the number of exchanged messages and memory requirements 
for secret keys. Security of GQ is based on intractability of RSA problem

  



Goldwasser and Kalai [9] showed that the signature based on Fiat-Shamir (and also 
Fiege-Fiat-Shamir) is forgeable. 
Wolf [21] shows how zero know proofs can be used to solve authentication problems. 
Furthermore he demonstrates  how the Isomorphism of Polynomials  and Multivariate 
Quadratic equations  can be combined to obtain a new and practical Zero-Knowledge 
scheme.  
Courtois  [20]  proposes a new Zero-knowledge scheme based on an NP-complete 
problem known as  MinRank. It can be used to prove in Zero-knowledge a solution to 
any problem described by multivariate equations.   

2. Mathematical Preliminaries  

2.1 Quaternion  
Quaternion is the extension of complex numbers in 4 dimension which was 
introduced by Irish mathematician, William Hamilton in 1843 [10,11,12]. A 
quaternion number can be represented as kxjxjxixq 4321

 

or 

4321 xxxxq

 

in which 122 kji , jkiijkkij ;; and  

jikikjkji ;; . The conjugate of the quaternion number is shown as 

4321~ xxxxq , while the norm of q is represented as 2~ qNqq   
2
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The addition and subtraction of two quaternion numbers is similar to those of 
complex numbers. The multiplication of two quaternion numbers is shown as 

43213 zzzzq   in which : 

443322111 yxyxyxyxz

 

344312212 yxyxyxyxz .. 

241342313 yxyxyxyxz

 

142332414 yxyxyxyxz

  

The transformation of a vector v under a quaternion is defined as: 
qvqv ~].,0.[],0[

  

This transformation   can be in matrix form Mvv' , that is:  
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2.2 Multivariate Quadratic Problem 
In this section we review a multivariate quadratic problem. Let  1p and mp denote    

multivariate polynomials and   1y  , 

 

, my F

 

represent filed elements. The 

Simultaneous Multivariate quadratic Equation (SME) is defined as follows:  

nxxpy ,...,111
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The polynomial ip   is denoted by: 
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Generally the SME can have n variables and m equations. Solution of SME is NP-
complete and is hard on average. Based on this MQ, some public key systems have 
been proposed. Some of them are HEF [13], MIA [14], and UOV [15]. Patarin [16] 
attacked MIA. Courtois [17] broke HEF. UOV was unsecured due to the successful 
attack by Braeken et al [18]. We are only concerned about MQ problem as a basis for 
our interactable problem.   

3.  Our Proposition 

3.1 A New Intractable Problem  

We would like to combine the quaternion algebra with MQ problem to construct a 
new intractable problem. The public key crypto (PKC) systems based on MQ problem 
have shorter key and signature lengths. The encryption and decryption time in these 
systems is shorter in comparison to other PKCs. Furthermore, in some cryptographic 
applications that require multiple keys, instead of a single key as a private key and 
public key, the conventional PKC systems have low computational overheads. 
Motivated by this, we would like to use MQ problem for such applications. We use 
quaternion algebra to achieve this goal. The quaternion based multivariate quadratic 
problem is formulated as in the following.  

Starting with the SME, we reorganize these equations such that:  
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We call this set of equations Simultaneous Quaternion Multivariate Quadratic 
(SQMQ). Note that there is an isomorphism between   SQMQ and SME. The number 
of   variables in quaternion form is n

 

and the number of equations is m . Instead of 



finding  ix , we would like to find iiiii xxxxq ,4,3,2,1 . Note that both ix and 

iq have several bits. The elements of the quaternion can be regarded as a key in a 

cryptographic system with multiple keys. The number of variables is much greater 
than the number of equations.   

In the next section we will propose our new ZKP scheme based on this problem.  

3.2 The Proposed Scheme for Zero Knowledge Proof 
The scheme for ZKP is described in this section. Any NP complete intractable 
security problem can be used to accomplish ZKP [19]. We use our intractable 
problem to propose a ZKP scheme.  

Prover and Verifier play several rounds of a game that is explained step by step 
below. Each time they use random coin tosses.  

1. At the beginning of each round, Prover generates two sets of simultaneous 
SQMQ and sends them to the verifier.  Two sets of equations are 
illustrated below:  
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     Set 2:  
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2. Verifier chooses randomly 1,0 , and sends it to Prover; intuitively, 
Verifier asks Prover to find the hash function of the solution of these two 
sets of SQMQ equations, that is to find 1qH , , iqH , , nqH or 

'
1qH , , '

iqH , , '
nqH . 

3. Verifier randomly chooses one of two questions to ask Prover. He can then 
ask either to find a solution to first set of SQMQ equations or the second 
one. 

4. In this step, Prover is asked to send the solution for these sets of equations. 
Prover does not send the exact solution of these two sets of equations. 



Instead, he uses  one way hash function of  their solutions. He uses  1qH    

instead of 1q . The hash function 1qH is the function that given the 

quaternion 1q , generates quaternion 1q . For Set 1 we have: 
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If Prover is asked to find the solution of first set of equations, he sends the 
hash function of the solution of these equations and the 1T , , mT . Verifier 

accepts if by inserting the hash function of the solutions in the SQMQ, the 
answers are 1T , , mT . 

5. Prover is asked to send the solution for the second set of equations. For 
Set2 we have :  
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Prover sends   '
iqH   , '

1mT , , '
mmT  . He sends the solution to Verifier. Verifier 

checks if by inserting the hash function of the solutions in the SQMQ, the 
answers are '

1T , and '
mT .  

During each round, Prover does not know which question he will be asked until after 
giving him the solution to the equation. So in order to answer both questions, he 
should know how to solve the QMQ and Verifier becomes convinced after some 
number of rounds that Prover knows this information.    

However, the Prover's answer does not reveal the solution of the QMQ equations. 
Each round, Verifier will gain only the hash function of the solution of these two sets 
of SQMQ equations and cannot obtain the exact solution of these equations. 
Therefore, the chance of fooling Verifier is n2/1 .   

If Verifier successfully completes m iterations of the above steps, he accepts.  

Theorem 1: The proposed scheme constitutes a zero knowledge interactive proof for 
quaternion multivariate quadratic according to Definition 1 (given in Section 1).  

Proof:  According to Definition 1, we must show that: 
1. The expected  interactive Turing machine stops polynomially 
2. The two probability distribution of  

LxV
xM *  and  LxxVxP *,  are 

indistinguishable 



  
Let *V be an arbitrary, fixed, expected polynomial time interactive machine. We 
consider that the expected polynomial time machine *V

M generates a probability 

distribution is identical to the probability distribution induced by *V tapes, while it 
interacts with Prover. The interactive machine *V is used in order to construct the 
machine *V

M . Intuitively speaking, *V
M attempts to guess which question he will be 

asked (computing the hash function of the solution of the first set of SQMQ equations 
or computing the second set of SQMQ equations). *V

M  is constructed in a lucky way, 

that is the cases which  *V
M fails is discarded and nothing appears in its  output. It is 

evident that the cases which lead to *V
M  success and the cases that lead to its failure 

are identical. The probability spaces of these two cases are similar and both of them 
are uniform.  

We would like to explain more about the simulation machine *V
M . When   the 

interactive machine is invoked for several times, machine *V
M will place the 

common input on the input tape of *V  and a fixed sequence of randomly chosen bits 
on its random tape. Hence, the contents of the random tape are not changed for the 
rest of the simulation. We encounter two cases. In the first case, all the rounds of the 

*V on input x

 

take at most n

 

steps, which is a fixed polynomial. On the contrary, in 
the second case, *V is expected to be polynomial and there may be no bound on the 
number of coin tosses that may be used on a specific input x . In simple words, the 
number of iterations (m) in the proposed scheme can be finite or infinite. *V requires 
some random string of bits (denoted by r ) when the simulation starts and never is 
changed during the simulation.  

The contents of the communication-record tape are constructed in the following m

 

rounds:  

Round i : 
1. *V

M  chooses  randomly 1,0  and sets its output o  with  1qH  ,  iqH , 

nqH . These are the solution that Prover sends in round i. Note that o is the 

message that *V  sends an input x. This input is in fact the two sets of SQMQ 
and internal coin tosses r  after receiving the solution of the equation.   

2. There are two cases: 

 

Case1 (lucky case): 
Machine  *V

M  appends 1qH , , iqH , , nqH to a communication tape; 

machine *V
M  asks *V to send the hash function of solution and validates the 

answer. 

 

Case2 (unlucky case): 
Machine *V

M repeats the current round. It is noteworthy that nothing is 

appended to the tape, i

 

is not increased and the steps 1 and  2 are repeated.  



If all the rounds are successfully completed, *V
M stops outputting 1, ro , where 1r is 

the prefix of string r scanned by *V on input x, and r is internal coin tosses.  

We should prove the validity of above communication-record tape construction. First 
in Lemma 1, we show that *V

M halts in expected polynomial time. Second, in 

Lemma 2, we prove that the output distribution generated by *V
M equals the 

distribution over *V  tape when interacting with P .  

Lemma 1: Machine  *V
M  halts in expected polynomial time. 

Proof: Let  o   show the output of machine *V
M ,  and for each iteration of the i-th 

round, the output of this machine is either null or o. Therefore, we have: 
2/1,Pr * orxV 

implying that the expected number of time that *V
M  repeats each round is exactly 2.  

Lemma 2: The probability distribution 
LxV

xM *  and LxxVxP *,  are identical. 

Proof:  Both of these distributions depend on r , the random sequence of coin tosses 
for Verifier, which is uniform. We need only to show that for every value of r , the 
conditional distributions are equal. For any fixed infinite sequence r , and mi0 , 
let irx

Mv

,,
*Pr represent the probability distribution defined by the first i

 

rounds of 

message exchange between Prover and interactive machine *V . Similarly, irx
M

,,Pr 

denotes the probability distribution defined by first  i

  

rounds of output by *V
M  on 

input x

 

and regarding r

 

as the Verifier's source of internal coin tosses. We prove the 
equality of irx

Mv

,,
*Pr = irx

Mv

,,
*Pr by induction on i  as follows: 

Induction Base ( 0i ) holds true.  

Induction Step ( 1ii )  
By induction hypothesis:   

irx

Mv

,,
*Pr = irx

M
,,Pr 

And set a condition on the event: 
irx

M
,,Pr =

  

We consider the i+1 th step in  irx

Mv

,,
*Pr  (and respectively   irx

Mv

,,
*Pr ).  

As noted before, both of these distributions are uniform and rely on r . The r

 

in *V
M 

is the internal coin tosses, and in the *V is the Verifier's source of internal coin tosses. 
So in the i-th round, the two probability distributions become equal. Since the two 
lemmas have been proved, therefore, the theorem is true and the proof is done.  

3.3 Comparison  
Table 1 shows a qualitative comparison of our proposed ZKP scheme with some of 
existing ZKP schemes. Three factors are used for comparison: 1) hardness of the 
scheme, 2) security of the scheme, and 3) computational speed.  



The ZKP schemes in the literature can be categorized into three groups. In the first 
group, the intractable problem is integer factorization. They are insecure and 
forgeable and have low computation speed in execution. Unlikely, in the second 
group, Schnorr scheme for example, the hardness of the schemes is based on discrete 
logarithm problem. They are fast in comparison to the first group. Up to now these 
schemes have remained secure. In the third group, the intractable problem is 
multivariate quadratic problem. They are computationally the fastest. 
The hardness of our proposed scheme is based on multivariate quadratic problem. 
Since any zero knowledge proof system is provably secure, our scheme is also secure. 
Since the proposed scheme does not use exponentiation, it is faster than previous 
schemes. The advantage of our scheme to third group is that its secrecy is not easier 
than third group. 
Definition :     

Table1: Comparison of our scheme with some existing schemes
Speed Security

 

Hardness  The ZKP schemes

 

Lower

 

No Integer factorization Fiat -Shamir 
Low No Integer factorization Guillou-

Quisquater 
Low No Integer factorization Fiege-Fiat-Shamir 
Fast Yes Discrete logarithm problem Schnorr 

Faster Yes Based on QMQ Our Scheme 

4. Conclusion  
We introduced a novel intractable problem bases on the hardness of the NP-
completeness of multivariate quadratic. This problem uses quaternion algebra. Based 
on this problem, we also proposed a scheme for zero knowledge proof. We proved 
that the proposed scheme has the two properties mentioned in black box definition for 
ZKP. The use of quaternion adds some advantages to conventional MQ problems. 
One advantage is that one can have multiple keys. The other benefit is that the key 
lengths can be short just like public key systems based on MQ. The proposed ZKP 
scheme can be used as a method for identification and is faster than some existing 
ZKP schemes.    
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