Solving a 676-bit Discrete Logarithm Problem
in GF(3%")

Takuya Hayashi!, Naoyuki Shinohara?, Lihua Wang?, Shin’ichiro Matsuo?,
Masaaki Shirase', and Tsuyoshi Takagi'

! Future University Hakodate, Japan.
2 National Institute of Information and Communications Technology, Japan.

Abstract. Pairings on elliptic curves over finite fields are crucial for con-
structing various cryptographic schemes. The nr pairing on supersingular
curves over GF(3™) is particularly popular since it is efficiently imple-
mentable. Taking into account the Menezes-Okamoto-Vanstone (MOV)
attack, the discrete logarithm problem (DLP) in GF(3°") becomes a con-
cern for the security of cryptosystems using nr pairings in this case. In
2006, Joux and Lercier proposed a new variant of the function field sieve
in the medium prime case, named JLO6-FFS. We have, however, not yet
found any practical implementations on JLO6-FFS over GF(3°"). There-
fore, we first fulfill such an implementation and we successfully set a new
record for solving the DLP in GF(3%"), the DLP in GF(3%™) of 676-
bit size. In addition, we also compare JL0O6-FFS and an earlier version,
named JLO2-FFS, with practical experiments. Our results confirm that
the former is several times faster than the latter under certain conditions.

Key words: function field sieve, discrete logarithm problem, pairing-
based cryptosystems

1 Introduction

Based on pairings, many novel cryptographic protocols have been successively
constructed, such as identity-based encryptions [8], forward-secure cryptosys-
tems, proxy cryptosystems, keyword searchable PKEs [7]. As a result, two re-
quirements arose: efficient pairing computation and security parameter selection.

The nr pairing [5] on supersingular curves over GF(3™) has been efficiently
implemented both in software and hardware [6,13,14]'. Along with the increase
in computation speed on the np pairing, one may ask whether cryptosystems
based on the nr pairing are still secure. It is well known that a discrete loga-
rithm problem (DLP) on supersingular curves over GF(q) can be converted to
a DLP in GF(¢™) (where ¢ is a prime power and m is not larger than 6) [24].
Therefore, the DLP in GF(3%") is one of the most important problems in analyz-
ing the cryptosystems constructed with the np pairing on supersingular curves
over GF(3™).

! Here, n is a prime number such as n = 97, 163 and 193 [25].

2 T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

The function field sieve (FFS) is the most efficient algorithm for solving the
DLP in finite fields of small characteristic. The complexity of the FF'S for solving
the DLP in GF(35") is Lsex[1/3, ¢] with constant ¢, where

Lgsn[1/3, ¢] = exp((c + o(1))(log 35™)/3 (log log 35™)%/3).

Here o(1) stands for a function that converges to zero as n approaches infinity.

The first FFS was proposed by Adleman [1] in 1994. Five years later, Adle-
man and Huang proposed an improved FFS (AH-FFS) with ¢ = (32/9)'/3 [2].
In 2002, Joux and Lercier proposed a practical improvement of the FFS (JL02-
FFS) [16]. Since a definition polynomial of the function field in JLO2-FFS can
select more flexibly, JLO2-FF'S is more practical than AH-FFS, though its asymp-
totic complexity is the same as that of AH-FFS. Furthermore, by using JLO02-
FFS, Joux and Lercier succeeded in solving the DLP in GF(2%13). This refreshed
the record for solving the DLP in finite fields of characteristic two with regard to
bit size [15]. In 2006, Joux and Lercier proposed another new variant of the FF'S
(JLO6-FFS) [18]. JLO6-FFS has the same asymptotic complexity with JL02-FFS
for solving the DLP in GF(3°"), where n is a prime number?. This work im-
plied that JLO6-FFS might be efficient for solving the DLP in extension fields of
GF(35) of degree n. However, to our knowledge, there have been no practical ex-
periments. Note that JLO2-FFS can also be applied to extension fields of GF(3%)
of degree n, but [12] showed no advantage using GF(3°) as the base field.

Our contributions. We have first conducted experiments on JLO6-FFS. In
JLO6-FFS, GF(3%") is constructed as extension fields of GF(3%) of degree n,
and thus the Galois action can be dealt for reducing required relations. By
our implementation, we succeeded in solving the DLP in GF(3%7!) of 676-bit
size with about 33 days computation, which is the new record for solving the
DLP in GF(3°"). Our work contributes to the selecting of security parameters.
Additionally, we compared JLO6-FFS [18] with JLO2-FFS [16], and according
to the experimental results, we confirmed that JLO6-FF'S is several times faster
than JLO2-FFS with n = 19, 61.

The rest of the paper is organized as follows. In Section 2, we briefly review
the FFS algorithm. In Section 3, we compare JLO2-FFS with JLO6-FFS according
to the polynomial selection method and experimental results. In Section 4, we
describe our implementation on how to solve the DLP in GF(3%™) in detail,
which is based on JLO6-FFS. Concluding remarks are made in Section 5.

2 Outline of Function Field Sieve

In this section, we describe an overview of the FFS [1], which consists of four
steps: polynomial selection, collection of relations, linear algebra, and individual
logarithm. We particularly deal with the FFS for solving the DLP in extension

2 When n is a composite number, this variant may have complexity Lson[1/3,3/3]
for solving the DLP in GF(3°") (When JLO6-FFS has complexity Lqm[1/3,3'/3], we
call it JLO6-FFS-2). We do not deal with this case in this paper.

Solving a 676-bit Discrete Logarithm Problem in GF(3%") 3

fields of GF(3%) of degree n and describe the four steps below. For more details,
refer to related work as [1,12,16,18].

Throughout this paper, let v be a generator of the multiplicative group of
GF(3°") and a € (v), then we try to find the smallest positive integer log., «

such that v1°8+® = o, which is called the discrete logarithm.

1. Polynomial selection: Select f € GF(3°)[z] such that f is a monic irreducible
polynomial of degree n, then GF(3%") = GF(3%)[x]/(f). Next, find a poly-
nomial H(z, y) € GF(3%)[x, y] satisfying the eight conditions proposed by
Adleman [1]. Then there is a surjective homomorphism

o . J GFE)z, y/(H) — GF(3°") = GF(3%)[z]/(f)
' y = m,

where m is in GF(3%)[z] such that H(x, m) =0 (mod f). Here we select the
smoothness bound B and define a rational factorbase Br and an algebraic
factorbase B4 as follows:

Br = {p € GF(3%)[z] | deg(p) < B, p is irreducible},

Ba={{p,y —t) € Div(GF(3%)[z,y]/(H)) |p € Br, t =m (mod p)},
where Div(GF(3%)[x, y]/(H)) is the divisor group of GF(3%)[z, y]/(H) and
(p, y — t) is a divisor generated by p and y — t.

2. Collection of relations: For r, s € GF(3%)[z] of degree not larger than B, find
at least (#Bg + #B4) relatively prime pairs (r, s) such that

rm+ s = H pit

pi€BR

(ry+s)=" > bilpj,y—t;). (1)

(pj;tj)€Ba

Such a pair (r, s) is called a double smooth pair. For each (r, s), compute
the following equations:

rm 4+ s, (2)

(=) H (z, —s/r). 3)

Equation (3) is said to be B-smooth if it is factorized into irreducible poly-
nomials of degree not larger than B, and then we have

(—r)H(z, —s/r)= [[»7. (4)
(pjstj)€EBA

where ¢; is uniquely determined by r, s and p;. Then the b; in Equation (4)
is exactly the same as the one in Equation (1). When both Equations (2)
and (3) are B-smooth, a pair (r, s) is a double smooth pair. Eventually, we
obtain the following relation:

> ailogypi=) bjlog, s (mod (3% —1)/(3°~1), (5

pi€BR (pj,t;)€EBa

4 T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

where
Kj =P\ () = hip; v —ty), (6)

for the class number h of the quotient field of GF(3%)(z)[y]/(H).

3. Linear algebra: For the number R of relations, construct an Rx (#£Br+#Ba)
matrix M from the relations in Equation (5) and (#Bgr+#B4) dimensional
column vector v as follows:

log,, p1
1 1 1 1 :
oD el Y .
M = : : : log, ppp
®) _m | togy 11
R —by ...—b#BA :
logv R#By
Then we solve the linear equation
Mv=0 (mod (3°" —1)/(3° - 1)). (7)

4. Individual logarithm: Find integers e;, f; such that

logya= Y elog pi+ Y filog,r; (mod (37" —1)/(3° - 1)),
p:€BR (pj,t;)EBa

then compute the discrete logarithm log,, . This is done using the special-q
descent method [16,18,19].

3 Comparison of Polynomial Selection on JLO2-FFS and
JLO6-FF'S

The two most efficient variants of the FFS for solving the DLP in GF(3%") are
JLO2-FFS and JLO6-FFS. Although they have the same asymptotic complexity,
there is a considerable difference between them in the fixed extension degree for
practical use. The time complexities of JLO2-FFS and JLO6-FFS depend on the
size of each sieving area, which is the number of pairs (r, s), and each size is
explained in the following subsections. Note that our comparison is done merely
by the size of the sieving area, and the detailed analysis should incorporate the
non-integer smoothness bound estimated by Granger [11].

3.1 Polynomial Selection of JLO2-FFS and Its Sieving Area

At first we describe an outline of the polynomial selection of JLO2-FFS, after that
we estimate the size of the sieving area. In order to distinguish from previous
section, we set the subindex “02” after the symbols.

Solving a 676-bit Discrete Logarithm Problem in GF(3%") 5

Let Hoz(z, y) of degree dpz in y be formed as C,yp, curves [23]:

HOQ(.'L'7 y) = ha’()ya + ho’bxb + Z hi’jyi.’lfj (hi’j € GF(3), ha,O; hO,b 75 0)
ib+ja<ab

Then randomly choose the polynomial uj, us € GF(3)[z] of degree at most
|6n/dg2]. We try to find an irreducible polynomial foo = ug” Hoo(z, —uy/ug) €
GF(3)[z] of degree 6n such that ged(us, fo2) = 1, then us is invertible modulo
fo2. Then, there is a surjective homomorphism

Bos - {GF(3)[$79}/(H02) — GF(3°") = GF(3)[z]/(fo2)

Yy = *Ul/’LLQ,

where Hos(z, y) holds Hoo(x, —u1/uz) =0 (mod fo2). In this polynomial selec-
tion, we need to modify Equation (2) to suz —ru;. Note that r and s are chosen
in GF(3)[z] of degree not larger than By in JLO2-FF'S, the size of the sieving
area in the collection of relation step is

3Boz+1 . 3Boz+1. (8)

From heuristic analysis in [16], JLO2-FFS becomes optimized when we choose
the smoothness bound By as

Boa = [(4/9)"/%(6n)"/* logs (6n)*/* . (9)

and the extension degree doz of Hoz(x, y) as do2 = [/6n/(Boz + 1)]. For exam-
ple, for n =97, 163, 193, we have (n, Bgp2) = (97, 21), (163, 26), (193, 28).

3.2 Polynomial Selection of JLO6-FFS and Its Sieving Area

Next we describe an outline of the polynomial selection of JLO6-FFS and estimate
the size of the sieving area of JLO6-FFS.

For each extension degree n of GF(3%), we choose the smallest smoothness
bound Byg in JLO6-FFS satisfying the following condition,

(Bos + 1) log(3°) > v/n/Bog log(1/ Bo) (10)

For example, for n = 97, 163, 193, we have (n, Byg) = (97, 3), (163, 4), (193, 4).
Next, we choose positive integers d and d' such that d = y/n/Bys and d' =~
VnBos, where dd’ > n. After that, we randomly generate g(y) € GF(3%)[y]
of degree d and set H(z, y) = g(y) + «. Finally, we try to find an irreducible
polynomial f in GF(3%)[x] of degree n, which divides H(z, m), where m €
GF(3%)[x] of degree d' is chosen randomly. In this polynomial selection, each
of the leading coefficients of Equations (2) and (3) depends on r, so we avoid
obtaining duplicate relations by fixing the leading coefficient of r as a monic
polynomial. Therefore, the size of the sieving area in the collection of relations
step is at most

(35)Boo+1 . (36) oo, (11)

6 T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

3.3 Comparison of Sieving Area

We compare JLO6-FFS with JLO2-FFS with respect to the size of the sieving area
in the collection of relations step in three classes of extension degree n: exper-
imental class as {19, 31, 47, 61}, medium-security class as {97, 163, 193}, and
high-security class as {239, 313, 353, 509}. Table 1 lists the smoothness bound
and size of the sieving area in each variant. For each n, we obtain the smooth-
ness bound Bys in Equation (9) and Bgs in Equation (10), and estimate the
size of the sieving area by Equation (8) in JLO2-FFS and by Equation (11) in
JLO6-FFS.

Table 1. Parameters and sieving area

Polynomial selection Polynomial selection
in JLO2-FFS in JLO6-FFS
n . .
6n Bos . 81.2e of n Bos . Slze of
sieving area sieving area
19114 10 3.1 x 10 19 1 3.9 x 10°
Experimental 31186 12 2.5 x 102 |31 2 2.1 x 10
class 471282 15 1.9 x 10*® 47 2 2.1 x 10*
61366 17 1.5x 107 |61 2 2.1 x 10*4
Medium- 97| 582 21 9.8 x 10%° 97 3 1.1 x 10%°
security 163|978 26 5.8 x 10®° |163 4 5.8 x 10%°
class 193(|1158 28 4.7 x 10%" |193 4 5.8 x 10%°
239[[1434 30 3.8 x 10 [239 4 5.8 x 10%°
High-security 313[/1878 34 2.5 x 1022 313 5 3.1 % 102
closs 353[[2118 36 2.0 x 1041 353 5 3.1 x 10°
509([3054 42 1.1 x 10 509 6 1.6 x 1037
1e+45 11— T
JLO6-FFS ——
JLO2-FFS <~

1e+40 | T
1e+35
1e+30

1e+25

size of sieving area

1e+20

1e+15

1e+10

100000 L1 1 1 L L L L L L L
1931 4761 97 163 193 239 313 353 509

n

Fig. 1. Size of sieving area over GF(3°") in JLO2-FFS and JLO6-FFS

Solving a 676-bit Discrete Logarithm Problem in GF(3%") 7

Figure 1 shows the size of the required sieving area over GF(3"). The siev-
ing area in JLO6-FF'S is much smaller than that in JLO2-FFS when n # 31, 163.
Moreover, the differences between the sieving areas in JLO6-FFS and in JL02-
FFS increase along with the increase in n. The computational cost in the col-
lection of relations step is closely related to the size of the sieving area, so the
collection of relations step in JLO6-FFS might be several times faster than that
in JLO2-FFS.

We have conducted experiments on the collection of relations step in JLO2-
FFS and JLO6-FFS to confirm the difference between their computational costs
of that step. Parameters in JLO2-FFS and JLO6-FFS are listed in Table 2. The
curves that we used in our experiments are superelliptic ones, but not C;, curves
as [12] Note that we have only experimented with the experimental class as
n € {19, 31, 47, 61}, not with medium and high-security classes.

Table 2. Parameters in our experiments

Experiments with | Experiments with
Bit size of JLO2-FFS JLO6-FFS

GF(3°"
() 6n B02 HOQ(ZL', y) n Bo@ IJ(ZE7 y)
19 181 114 10 y'4+2 [19 1 v+
31 295 186 12 y'+2x |31 2 v+
47 447 282 15 y*4+ax |47 2 Y
61 581 366 17 ¢’ +ax |61 2 4z
1000 T
JLO6-FFS ——

JL02-FFS -3¢

100

time (day)

0.01 |

0.001 |

0.0001

1e-05 L L
19 31 47 61

n

Fig. 2. Estimated time taken to compute entire sieving area in the collection of relations
step over GF(3%") in JLO2-FFS and JLO6-FFS

8 T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

In our experiments, we used 96 cores, each of which had the same performance
about Intel 2.83GHz Xeon. We implemented the lattice sieve [26] in JLO2-FFS as
[12, 15, 16]. On the other hand, we implemented the polynomial sieve [10] in JLO6-
FFS, since we fixed r as a monic poynomial in the collection of relations step
and so the lattice sieve might not be efficient. The details of our implementation
in JLO6-FFS are described in Section 4.

Figure 2 shows the time complexity of JLO2-FFS and JLO6-FFS to com-
pute the entire sieving area in the collection of relations step in GF(3") with
n =19, 31, 47, 61, respectively. Note that we estimated the time when the com-
putation lasts over one hour.

When n = 19, 61, our implementation on JLO6-FFS is faster than that on
JLO2-FFS, and we confirm that JLO6-FFS is more efficient than JLO2-FFS for
solving the DLP in GF(3°"). In particular, when n = 61, our implementation
of JLO6-FFS takes about 66 days for the collection of relations step, but our
implementation of JLO2-FF'S takes about 165 days for the same step. Therefore,
the former is 2.5 times faster than the latter. Accordingly, we expect that JL.06-
FFS will be efficient for solving the DLP in GF(3%") for larger n.

4 Solving the DLP in GF(3%™)

In this section, we report that the DLP in GF(357!) of 676-bit size is solved
by improving JLO6-FFS. In our implementation, we deal with four practical
improvements, polynomial sieve, free relation, Galois action, and parallel Lanczos
method.

Particularly, by using the polynomial H(x, y) = y% +x, we only need to find
about 1/8 of the originally required relations in the collection of relations step.
Furthermore, via the Galois action, the size of the matrix given by the relations
is also decreased to 1/6 of the original. To the best of our knowledge, the 676-bit
size is currently the record for solving the DLP in GF(3%").

4.1 Collection of Relations

In the collection of relations step, we collect many double smooth pairs (r, s).
The simple idea for collecting them is factoring Equations (2) and (3) for all pairs
(7, s). This is not practical since we have to factor them about (3°)5 x (36)B+1
times. In order to reduce the number of factorings, we use a sieving method.
The idea of sieving is merely factoring Equations (2) and (3) of the pair (r, s),
which has a high probability of becoming a double smooth pair. Such a pair is
called a candidate.

The polynomial sieve [10] and the lattice sieve [26] are well-known sieving
algorithms. Although the lattice sieve has been implemented in some experiments
of the FFS [12, 15, 16], we implemented the polynomial sieve since r is fixed as a
monic polynomial by the polynomial sieve in JLO6-FFS, whereas neither r nor
s is able to be fixed by the lattice sieve.

Solving a 676-bit Discrete Logarithm Problem in GF(3%") 9

Polynomial Sieve We describe the polynomial sieve in Equation (2), namely,
rm + s. Notice that we can also sieve in Equation (3) with the same procedure.
Moreover, we discuss the case where s is fixed and omit the details when r is
fixed. By fixed s, we can lead r such that rm + s is divisible by p € Bpg or its
power, where the degree of p is not larger than B. Additionally, rm + s + kp
with k& € GF(3%)[x] is also divisible by p. Hence, we can obtain all r of degree
less than or equal to B such that rm + s is divisible by p. After computing such
all r for each p, we can obtain the pair (r, s) such that rm + s is divisible by
some p. If the summation of the degree of all p, which divide rm + s, reaches
deg(rm + s), then rm + s has a high probability of becoming B-smooth and the
pair (r, s) becomes a candidate.

In this procedure, the most time-consuming work is to compute r 4+ kp for
all k € GF(3%)[z] whose degree is not larger than B. In characteristic two, Gor-
don and McCurley proposed a method using binary gray codes [10] to compute
these r + kp. Using ternary gray codes, we can also compute them efficiently in
characteristic three.

In the polynomial sieve, we sieve with all powers of p whose degree is not
larger than B. Since B is very small, such as 1 or 2 in JLO6-FFS, the power
of p is only p? when deg(p) = 1. Such polynomials are exceptional since there
are 3% monic irreducible polynomials of degree 1 in GF(3%)[x]. In this way, we
can obtain only candidates each of which generates a relation in Equation (5)
(except that r and s are not relatively prime). Thus, we only check the greatest
common divisor of r and s, but not the smoothness of Equations (2) and (3)
using the B-smooth test [10].

Free Relation By considering how a divisor (p) in Bp is factorized into divisors
in GF(3%)[z, y]/(H), namely, obtaining the following congruent expression that

d

H(z,y) = H(y —t;) (mod p),

i=1

where d is the degree of H(x, y) on y, we can obtain a relation virtually for free,
without the sieving procedure. We call such a relation a free relation.

The number of free relations depends on the degree d of H(x, y) on y and the
characteristic of the field treated in the FFS. In fact, there are about #B4/d free
relations in many cases and, furthermore, they increase when the characteristic
is small. For example, in the case of GF(3°") and H(z, y) = y°® + z, there are
about #Ba /2 free relations since y% +x is generally factored as (y —t1)%(y —t2)3
modulo p.

4.2 Linear Algebra

In the linear algebra step, we solve the linear equation depending on the relations.
Specifically, we construct a matrix from the relations and reduce it to a much
smaller one using the Galois action. After that, we solve the reduced linear

10 T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

equation modulo (3" — 1)/(3% — 1), by applying the parallel Lanczos method
described as [3]. In this section, we describe the Galois action and our ideas
about parallel computation of the matrix operation.

Galois Action Here, we consider to reduce unknowns of linear equations, using
the Galois action which was presented in [18].
Let M’ be the matrix given by the relations, whose row M’(;) means the

i-th relation and j-th column M’ @) corresponds to the factorbase p;. In order to
use the Galois action, we choose the polynomial f € GF(3%)[x] satisfying that
all coefficients of f are in GF(3) and deg f = n, then we construct GF(3°") as
GF(3%)[x]/(f). Let ¢ be the Frobenius power such that ¢(¢) = €3". As ¢ fixes
the element z in GF(3)[z]/(f), we also have ¢(x) = z in GF(3%)[z]/(f) by the
assumption of f. However, for an element ¢ € GF(35)\GF(3), ¢ does not fix c
in GF(3%)[z]/(f) by the above assumption that n is coprime to 6. The monic
irreducible polynomial p; € Bg of degree not larger than B, and we assume that
B =1 for convenience. In fact, p; = = + ¢; where ¢; € GF(3%) since B = 1, so
we have

P(p;) = oz +¢j) =z + ¢(c;)

in GF(3%)[z]/(f). If ¢; is not in GF(3), it is clear that ¢; # ¢(c;) in GF(3%)[z]/(f).
This fact implies that there are ordinarily many unknowns of linear equations,
which can be rewritten by the other one via the Galois action. Clearly, for such
p;, there exists p; satisfying that

log, pj = log, ¢(p;) = 3" log,, p; (12)

where p; # p;/. Therefore, we can remove the j’-th column M’ and set the J-

th column M"Y as M"9 437197 Then we denote the new matrix M* as the
reduced M’. Notice that this technique is also used for the algebraic factorbase.
Consequently, the number of unknowns is about 1/6 of the original; thus, the
number of relations is reduced to about 1/6. In our implementation, we do not re-
duce the factorbase in the sieving phase (the computation is the same as the case
without the Galois action). After sieving, we compress obtained relations using
rewritable elements of the factorbase via the Galois action as Equation (12), and
so the factorbase is reduced to about 1/6. Using this procedure, we almost do
not lose the probability of obtaining the relation. Hence, this technique enables
us to perform computations for the collection of relations step about 6 times as
fast as before, and the linear algebra step can be also done about 62 times faster.

Parallel Lanczos method The reduced matrix M* is reconstructed to opti-
mize first, then we apply the parallel Lanczos method to it. Before explaining
the reconstruction, we begin with the explanation of the parallel computation.
Assume that there are four nodes written as Ny 1, IV 2, N2 1, N2 2 and each node
has 4 or 8 cores. As the Figure 3, we partition the reconstructed matrix M into

four matrices M; j, and each M; ; is allotted to node IV; ; respectively. The given

Solving a 676-bit Discrete Logarithm Problem in GF(3%") 11

vector v is also partitioned into v, vg, and v; is given to nodes NV; j, Ny ; where
i # i'. Moreover, M, ; is partitioned into L matrices A, when N; ; has L cores.

Fig. 3. Partitioning M into four matrices M; ; and M, ; into L matrices A,.

A
Mo — M1 | Mo v M v = Av: — A .
v= My 1| Mo o vy)’ EAChRE A v
Ar

We now give the notation of the Lanczos method. The Lanczos method can
operate only a symmetric matrix; however, the given matrix M is usually non-
symmetric. Therefore, we try to solve the linear equation of the form M” Mwv =
«, where v is an unknown column vector consisting of the logarithms of the
factorbase and o is the given column vector. Note that computing MT M is not
efficient, so we compute the vector w = Mv and M7 u. For more details about
this computation is in [22].

After partitioning M, we perform a parallel computation for w := Mwv and
w := MTwu with M; ;. Let vy, va, uy, and uy be the partitioned vectors such
that v = v1 ®vs and u = u; G us. From Algorithm 1, we obtain the partitioned
vector w; such that w = w; & wy in node N, ;, where ¢ € {1,2} and ¢/ =3 — .
The symbol j’ also means that j' =3 — j for j € {1,2}.

Algorithm 1 (Computation with node N; ;.)
Input : the partitioned matrix M; ; and the partitioned vector v;.
Output : the partitioned vector w; such that w, ® wo = M T Mw, where j is
equal to 1 or 2.
[Step for computation of u := Mu]

1. Ui 5 = Mi,jvj.

2. Give u,;,; to Node N; ;- and receive u; ;s from Nj ;.

3. u; = uy +u
[Step for computation of w := MTu]

4. w; j = M,LT]’Uq

5. Give w; ; to Node Ny ; and receive wy ; from Ny ;.

6. w; = w; ; +wy ;.

Lines 4, 5, and 6 describe the computation of M7 u. Note that in each node N; j,
by regarding the column of M; ; as the row of M]T77 we do not have to trade M; ;
with M jTJ-,

‘We have discussed the parallel computations among nodes, and now we move
on to the parallel computations among cores in one node. Here, A, denotes the
partitioned matrix of M; ; such that M; ; = &% | A,. From Algorithm 2, we can
easily obtain A,v;, and then we set the new vector u; ; = (41v;,...,Arv;)7,
where L is the number of cores in the same node. Similarly, we can easily obtain
Al w; and compute w; ; = Zle Al w; by using Algorithm 3.

namely, we can cut unnecessary operations.

12 T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

Algorithm 2 (Parallel computation of M; jv; among L cores in the same node.)
Input : the partitioned matrix A := M; ; whose size is s X t and the partitioned
t-vector v;.
Output : the partitioned vector u; ; such that u; ; = Av;.

1. Compute by := Ayv; for £ =1 to ¢ = L in parallel.

2. Ui = @gL:1bl~

Algorithm 3 (Parallel computation of MZTJuz among L cores in the same node.)
Input : the partitioned matrix A := M; ; whose size is s X t and the partitioned
s-vector wu;.
Output : the partitioned vector w; ; such that w; ; = ATy,
1. Compute ¢4 := A;;Fui for £ =1 to £ = L in parallel.
L

2.wi ;= .

From the parallel computations of M; jv; and so on, we obtain the vector
MTMwv from Algorithm 1 and 2. Therefore, we need to reconstruct M so that
each node has the balanced calculation amount of computing M; ;v; and so
on. It is clear that the calculation amount depends on the number of non-zero
elements in the allotted matrix, and the distribution of non-zero elements in M
is not uniformity. In fact, the number of non-zero elements in a column of M
is not balanced, but that in a row is balanced. Thus, we reconstruct the new
matrix M so that the number of non-zero elements in M; ; and Ms ; is almost
equal to that in M; o and Ms 2 by sorting columns of M* defined in the section
of the Galois action. We perform a similar strategy as above for the parallel
computation among cores in the same node, namely, A is partitioned into 4 or
8 smaller matrices A, so that each A, has almost the same number of non-zero
elements.

4.3 Computation Results

In this section, we describe our computation results of the 676-bit DLP in
GF(3%™), which contains a multiplicative subgroup whose order is a 112-bit
prime. We construct GF(3%) as GF(3)[z]/(2% + 2z + 2) and define a mapping
Y 1 Z — GF(3%)[x], such that =1 : 2 — 3,2 +— 3% in order to represent the
element in GF(3%)[z].

In the polynomial selection step, we set H(z, y) = y® 4+ 2 in order to use the
Galois action. Moreover, we select m € GF(3%)[z] such that all its coefficients
are in GF(3) to construct f whose coefficients are also in GF(3). By an easy
computation, we obtain proper m and f as follows,

m = 1 (0x456bc 60e76c1l 1679735 c929fc55)

f=v/(0x9 2d3ebdaf 5ac01130 4e6909f7 09cc8833 baa757d3
17dc6£99 9c8b98bb ab8baall d68ec151 aec39e2e ed081c79
d851066b 3ffb2adf a3el9cle cefd6675 0918a26d 9c7cacd4
8d74ccfe 2c1d3b79 €81e6138 ab06aef4).

Solving a 676-bit Discrete Logarithm Problem in GF(3%") 13

Then, GF(3°") is constructed as GF(3%)[x]/(f). When we set the smoothness
bound B = 2, there are 266,085 elements in the rational factorbase and 265,721
elements in the algebraic factorbase, so we need to collect at least 531,806 rela-
tions. However, the size of the sieving area when B = 2 is too small to collect
enough relations.

We settle this problem by using the Galois action, since we can considerably
reduce the number of required elements in the factorbase described in Section 4.2.
In fact, we need only 88,674 relations, and so this number is about 1/6 the
number of the originally required relations.

Moreover, we deal with free relations which are obtained without sieving. If
we choose H(z, y) as y® + x, then it is fortunately factored as (y —t1)3(y — t2)?
(mod p) for most of elements p in the factorbase, and so there are 132,860 (=
#B4/2) free relations. Even if we delete many duplicates which are produced
by using the Galois action, 22,155 free relations remain. Thus, we only have to
find at least 66,519 relations in the collection of relations step, and this number
is about 1/8 that of the originally required relations.

In the collection of relations step, we use the polynomial sieve described
in Section 4.1 and compute relations using five nodes, each consisting of Intel
Quad-Core Xeon E5440 (2.83 GHz) x 2 CPUs with 16-GB RAM, one node
consisting of Intel Quad-Core Xeon X5355 (2.66 GHz) x 2 CPUs with 16-GB
RAM, and twelve nodes, each consisting of Intel Quad-Core Xeon 15420 (2.33
GHz) x 1 CPU with 4-GB RAM, total of 96 cores. In 18 days of computation,
after removing duplicates, we found 66,646 relations. Thus, we obtained a total
of 88,801 relations, which are enough to solve the linear equation in Equation (7).

The linear equation constructed from the relations has to be solved modulo
(357 —1)/(35 — 1); however, the Lanczos method may fail when the modulus
has a small prime factor. Therefore, we work modulo the factor N; of (367! —

1)/(3°-1),

(3%7 4+ 3™ £ 1)/(13 - 5113),

(3271 — 37 £ 1) /(7 - 210019 - 49682251 - 55126531),
(371 +1)/(2% - 853 - 2131 - 82219),

(3™ —1)/2.

N
N.
N3
Ny

where every prime factor of N; is larger than 30 bits and N; is relatively prime
to each other.

We use a cluster with four nodes, each consisting of Intel Quad-Core Xeon
E5440 (2.83 GHz) x 2 CPUs with 16-GB RAM, and three clusters with four
nodes, each consisting of Intel Quad-Core Xeon 1.5420 (2.33 GHz) x 1 CPU with
4-GB RAM. With about 12 hours computation, we solve the linear equation
modulo N; via the parallel Lanczos method with the four nodes described in
Section 4.2 on each cluster. With the Chinese remainder theorem and the Galois
action of ¢, we solved discrete logarithms of the elements in the factorbase
modulo N = H?:l N,. Some examples of the relation and discrete logarithms of
elements in factorbase are given in Appendix.

14 T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

In the individual logarithm step, our target of computing the logarithm is
the element

m(x) = ¢(|m x 1022])
=2+ 22+ 2224+ 120+ 4 (2P + 220 + 22+ 22+ 2)
in basis 7 = ¢(0x456). The complete value of 7(x), v and f is written in Ap-
pendix. We choose the representation of 7(z) as a product of elements of degree
at most 7 as follows:
Ym(x) = 2z1/22 (mod f), where

21 = 1(0x333) x 1)(0x345) x 1)(0x427) x 1)(0x43b) X 1)(0x4c3)
x1h(0xd909 66c7e3ec) x 1(0x293996d cc380672)
x1p(0x3££378e 3d4659d0) X 1)(0x6 27d6c281 0a0fc5a?2)
x1)(0x8 £4797e29 a9ec3bda),
25 = 1(0x318) x 1(0x45 4c6£bfd4) x 1)(0x54 c69e6£97)
x1)(0x1686d 42782189) X 1)(0x3cf67ab 84055cd8)
XI/)(OXS f68ab2e2 5d2bc04f) x w(OXb ccb6922c f6~"31b383)7
T = 0x2 0£822e8c ac48792a e2aea337 c9002b49 bbf1b864
43a6111b 24c5593d e44dafd3 e26de26e 1£85£982 1ba485b3
beda74bd £782626d 6cd38bb2 8£829867 5dcO4adc £8741c24,
and z7, 29 are 7-smooth. Then, we compute the logarithms of z; and 25 in basis
~ using the special-q descent technique [16, 18]. With about 14 days computation
using five nodes, each consisting of Intel Quad-Core Xeon E5440 (2.83 GHz) x
2 CPUs with 16-GB RAM, and one node consisting of Intel Quad-Core Xeon
X5355 (2.66 GHz) x 2 CPUs with 16-GB RAM, we compute the logarithms,
log,y 21 = 0x3 £c71c577 10be8e3f e7afOfba e00e711f 0ad6dd50
38fb8f26 cOfadb3b 448cab2f 67671247 285f9e95 dc501717
d9def844 a75f9e58 £04a9bd2 3a5d0fdb 8£8ebb9f feaddeea,
log,y 29 = 0x4 82febaec ae4382e0 e651£577 09df4e7d 99d99d34
03dbbdbe 521c4e2b da89ec33 6c9d45d6 2dd1£982 2£198fb2
6c069414 3b0b1544 ece8e4dbl 5304872f 6f£f261fd 03b271c7.
modulo N, and so we obtain log., 7(z) mod N.

The logarithm in multiplicative subgroups of less than 30 bits are computed
using the Pollard’s p method in a minute. Using the Pohlig-Hellman method, we
compute the logarithm log., 7 (x):

IOg“/ m(z) = 0x8 78b54797 2fb6££f9b 57addbdb 11£69de6 a3853f98
68d53cc0 5b531076 2872ac6a 320874bf ba6d66d6 8ebe245f
39778£02 31ae791a acbab8c7 5ee6850c 9f5df0e5 £6b8abOb
95d8bdb1l aea95blf bad82465 25590f66

Solving a 676-bit Discrete Logarithm Problem in GF(3%") 15

Table 3. Records for solving the DLP in finite fields

Finite Fields GF(p) GF(2") GF(p®) GF(p™) GF(3%™)
Reference [21] [15] [20] [18] This Work
Date Feb.5,2007 Sep. 22,2005 Aug.23,2006 Nov.9,2005 Dec. 9,2009
Algorithm NFS* JL02-FFS JLSV06-NFS' JL06-FFS-2f| JLO6-FFS
Collection of M q 4 node.zs of = 16 Alpha 16 Alpha Xeon (2.83GHz)
Relations any CPUs" 16 Itanium2 processors processors |g. e in total
(1.3GHz) (1.15GHz) (1.15GHz)

. 12 24 Xeon - nodesof =16 Alpha 16 Alpha |y o g3Gpy)
Linear Algebra (3.2GHz) 16 Itanium 2 processors Processors |o " e in total
’ (1.3GHz) (1.15GHz) (1.15GHz)

Timing 33 days 17 days 19 days 12 hours 33 days
Bit Size 532 613 394 556 676

*NFS: Number Field Sieve [9,17]. TJLSV06-NFS: NFS in the medium prime case [20].
¥See footnote 2 on page 2. Y There are no detailed descriptions of computational resources in [21].

and completely solve the DLP in GF(357!) of 676-bit.

4.4 For Larger Extension Degrees

We have solved the DLP in GF(35") for n in the experimental class, where the
smoothness bound B (i.e., Byg) is less than or equal to 2 (ref. Table 1). Note
that the size of the sieving area increases (3%)2-fold if the smoothness bound
B increases by one (see Equation (11)). However, we expect that, if we set
B = 3, the DLP in GF(3%97) might be computed for several years by using
dozens of our computational resources through various techniques such as large
prime variation, block sieving and sieving via bucket sort [29,4], and SIMD
implementation.

5 Concluding Remarks

In this study, we implemented a new variant of the FFS in GF(3%") (n is a
prime), proposed by Joux and Lercier in 2006 [18], and compared it with the
earlier variant, which was also proposed by Joux and Lercier in 2002 [16] with
practical experiments. In solving the DLP in GF(3°"), these two variants of the
FFS have the same asymptotic complexity, but we expected the new variant
to be more efficient than the earlier one in some extension degrees n. From
our experimental results, we confirmed this forecast when the extension degree
n = 19,61. Moreover, with our implementations, we succeeded in solving the
DLP in GF(3% ™) of 676-bit size with about 33 days computation.

We have experimented with the DLP in GF(35") required for pairing-based
cryptosystems. The security of pairing-based cryptosystems relies on the diffi-
culty of the DLP in various finite fields, for example, GF(2*") and GF(p'?).
Table 3 presents the current records for solving the DLP in various finite fields.
All the DLPs used for pairing-based cryptosystems have not examined yet. It is

16

T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

an open problem to analyze the hardness of the DLP with practical key sizes in
such finite fields.

References
1. L. M. Adleman. The function field sieve. ANTS-I, LNCS 877, pp. 108—121, 1994.
2. L. M. Adleman and M.-D. A. Huang. Function field sieve method for discrete

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

logarithms over finite fields. Inform. and Comput., Vol. 151, pp. 5-16, 1999.

K. Aoki, T. Shimoyama, and H. Ueda. Experiments on the linear algebra step in
the number field sieve. IWSEC 2007, LNCS 4752, pp. 58-73, 2007.

K. Aoki and H. Ueda. Sieving using bucket sort. ASTACRYPT 2004, LNCS 3329,
pp- 92-102, 2004.

P. S. L. M. Barreto, S. Galbraith, C. O hEigeartaigh, and M. Scott. Efficient
pairing computation on supersingular abelian varieties. Des., Codes Cryptogr.,
Vol. 42, No. 3, pp. 239271, 2007.

. J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, and T. Takagi.

Algorithms and arithmetic operators for computing the nr pairing in characteristic
three. IEEE Trans. Comput., Vol. 57, No. 11, pp. 1454-1468, 2008.

D. Boneh, D. Crescenzo, R. Ostrovsky and G. Persiano. Public key encryption
with keyword search. EUROCRYPT 2004, LNCS 3027, pp. 506-522, 2004.

D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. STAM
J. Comput., Vol. 32, No. 3, pp. 586—615, 2003.

D. M. Gordon. Discrete logarithms in GF(p) using the number field sieve. STAM
J. Discrete Math., vol. 6, no. 1, pp. 124-138, 1993.

D. M. Gordon and K. S. McCurley. Massively parallel computation of discrete
logarithms. CRYPTO’ 92, LNCS 740, pp. 312-323, 1992.

R. Granger. Estimates for discrete logarithm computations in finite fields of small
characteristic. Cryptography and Coding 2003, LNCS 2898, pp. 190-206, 2003.

R. Granger, A. J. Holt, D. Page, N. P. Smart, and F. Vercauteren. Function field
sieve in characteristic three. ANTS-VI, LNCS 3076, pp. 223-234, 2004.

R. Granger, D. Page, and M. Stam. Hardware and software normal basis arith-
metic for pairing-based cryptography in characteristic three. IEEE Trans. Com-
put., Vol. 54, No. 7, pp. 852-860, 2005.

D. Hankerson, A. Menezes, and M. Scott. Software implementation of pairings. In
Identity-Based Cryptography, pp. 188-206, 2009.

A. Joux et al. Discrete logarithms in GF(25°7) and GF(25'®). Posting to the
Number Theory List, available at http://listserv.nodak.edu/cgi-bin/wa.exe?
A2=ind0509&L=nmbrthry&T=0&P=3690, 2005.

A. Joux and R. Lercier. The function field sieve is quite special. ANTS-V, LNCS
2369, pp. 431-445, 2002.

A. Joux and R. Lercier. Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the Gaussian integer method. Math.
Comp., Vol. 72, No. 242, pp. 953-967, 2002.

A. Joux and R. Lercier. The function field sieve in the medium prime case. EU-
ROCRYPT 2006, LNCS 4004, pp. 254-270, 2006.

A. Joux, R. Lercier, D. Naccache, and E. Thome. Oracle-assisted static Diffie-
Hellman is easier than discrete logarithms. Cryptography and Coding 2009, LNCS
5921, pp. 351-367, 2009.

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Solving a 676-bit Discrete Logarithm Problem in GF(3°™) 17

. A. Joux, R. Lercier, N. P. Smart, and F. Vercauteren. The number field sieve in
the medium prime case. CRYPTO 2006, LNCS 4117, pp. 326-344, 2006.

T. Kleinjung et al. Discrete logarithms in GF(p) - 160 digits. Posting to the
Number Theory List, available at http://listserv.nodak.edu/cgi-bin/wa.exe?
A2=ind0702&L=nmbrthry&T=0&P=194, 2007.

B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over
finite fields. CRYPTO’ 90, LNCS 537, pp. 109-133, 1991.

R. Matsumoto. Using Cys curves in the function field sieve. IEICE Trans. Funda-
mentals, Vol. E82-A, pp. 551-552, 1999.

A. J. Menezes, T. Okamoto and S. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Inform. Theory, Vol. 39, No. 5, pp.
1639-1646, 1993.

D. Page, N. P. Smart, and F. Vercauteren. A comparison of MNT curves and
supersingular curves. Appl. Algebra Engrg. Comm. Comput., Vol. 17, No. 5, pp.
379-392, 2006.

J. Pollard. The lattice sieve. In The Development of the Number Field Sieve, pp.
43-49, 1991.

C. Pomerance and J. W. Smith. Reduction of huge, sparse matrices over finite
fields via created catastrophes. Ezperiment. Math., Vol. 1, No. 2, pp. 89-94, 1992.
O. Schirokauer. The special function field sieve. SIAM J. Discrete Math., Vol. 16,
No. 1, pp. 81-98, 2003.

G. Wambach and H. Wettig. Block sieving algorithms. Technical Report 190,
Informatik, Universitat zu Kéln, 1995.

D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans.
Inform. Theory, Vol. 32, No. 1, pp. 54-62, 1986.

18 T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

Appendix A: Some Solutions of the DLP in GF(3571)

We present some solutions (discrete logarithms) in factorbase used in our im-
plementation for solving the DLP in GF(3%7!). We have found 66,646 relations
satisfying Equation (5). We give one of them as an example,

6 4
Zlog7 pi = Z 3log, r; (mod (3°™ —1)/(3% - 1)), (13)
=0 =0

where each p; is in rational factorbase,

po = ¥(0x2d9), p; = 1(0x90581), ps = 1)(0x9ea2b), p; = 1(0xb1a07),
ps = 1(0xb942e), p5 = ¥(0Oxcadal), pg = 1 (0xd6d36),

and each k; corresponding to an element in algebraic factorbase by Equation (6)
is given as follows,

Ko : (¥(0x3c3), y — ¥(0x175)), k1 : ((0x3c4d), y — 1¥(0x200)),
ko ¢ (¥(0x533), y — ¥ (0x258)), K3 : (1(0xdad9c2), y — 1(0x4cc58)),
kg : ((0xed6ed), y — 1)(0x387b6)).

By the Galois action, we have

33-71 33»71

Pe = P3 (mod f), k4 = kK3 (mod f),

and so we can remove pg and k4 from unknowns of Equation (7).

Let N be the product of prime factors of (357! —1), where those prime factors
are not larger than 55,126, 531 (Note that N is a 602-bit integer). Equation (13)
also holds modulo N instead of (37" —1)/(3%® — 1), and so we obtain the fol-
lowing solutions of Equation (13) modulo N except for log, ps and log,, k4, after
performing the linear algebra step:

log., po = 0x8 9e0cOfaa 4190baab c885e3b7 308ae498 eb2d4al3
0dfab3d9 16437d96 bfd4e2b9 0145402 90aa2f83 7b9cc76b
16ae97ef dcc9c319 670£0£f9c 47e8ea96 4754cfbf 1529c311,
log,ypl = 0x2 e8b84752 70de651a b03ae702 €3268e86 77179013
0c9edabb 31d2acbhb 2a23da92 2e8352c5 321832bf ££36a8d5
2d16c9eb aed7c6fc 2ba7alch cc990233 34c3d6da 25e08d52,
logv po = 0x7 bb65cae8 39dc8d83 415b0b9%e 164c7b55 6e57ad98
80b8£232 7cf30ebe 972ac1fb 2d1133be 5cdd9604 c9eabe83
c1c8c9f3 2f9fadc6 51d65ded 33d2e4dc7 8££8d162 3a5408c9,

Solving a 676-bit Discrete Logarithm Problem in GF(3%") 19

log., p3 = 0x6 ae8laef6 7cOfddcf 7c23e69e c3f18e07 bf546751
8df9dlad 78113a85 9a2578c8 36764402 2598160b 5c055ed4
7d412a42 17c987c0 14aafff7 03ef6fad c6771dfd 150b88f2,
log,y Py = 0x7 2e418546 92ba2b75 8d0831df 1d5cabcO £6d48a05d
0528c97d 16c4£782 d9b59ce7 d55deefe bf85390a 23113680
b184d203 d1d3b6ad €9d9263a 8544acd7 5afc9974 78a4498a,
log,y ps = 0x1 c35f26bf 717ed338 c£d71243 b86c024b 98b18342
4710450a d9aaf2e3 557cebed debbc870 0£c840f2 19aca778
2ba931a2 cdd2cbb3 a2dafcaa 28ab5176e a378bf8c 9ab6cd33c,

and,

log, ko = 0x 92671082 6c£3288f 1c83edctf 66£fb9041 9bb2239c
10cd8445 820d975e 6£9730fb £4ca3005 279a500d b2fc0£60
b4425edb 65991a31 629d54e7 84ae64b6 080828b3 0fc6balb
log,Y K1 = 0x7 06c2cfcd 7fb4f7c8 386eab65b c0c259¢c3 £14888ec
ccda7bee 77ddddf4 065a7da6 981af728 98699166 c52484c6
73bbefbd a4660135 1244b297 42£3cf76 fdab7cad 3d01e8al,
log,y Ko = 0x5 4623bf43 Oede6e43 bbe3cb8b a79c1400 97f7acle
2320c70e 5a700159 4460b073 e5c670c5 d19921ea 59f4£9c6
41ce8203 28edb204 94bd322f 3551d5ee 472c£59b d58d0bdo,
log., K3 = 0x6 e063£01c 43624c96 30712701 2223edf3 95ddfdc2
aaldd9f6 dd3636ef 12d9260f 555a2101 cOe94feb 9ab24chb
c2c1d768 1499d7b6 41b71d4f b13566b3 b39794c5 90££78ch,

)

mod N. Finally, by the Galois action, we obtain that

log., ps = 337 log., p3 =

0x7 3deb8075 €e684576 073761e2 974cdeba 72df97ce

299f9e46 87ae3£f70 b6cd8b50 1c65cchb3 €9ed8f80 08387efe

9326eea8 7302clab 1£0671b5 2232949 81250923 9b072989,
log, k4 = 337 log., K3 =

0x4 0473a949 4056ac7c 76677e6f a284977a 2a2e539f

751d5e0b ee628ca8 63e7£732 a02886c2 0711d445 0006c79a

778c6fbf abb923e7 €89deb8d 0c7£5508 2d797bd2 2414eaal,

mod N.

Appendix B: Complete Value of Elements

Table 4 presents the complete value of a target elementw(x), a generator +, and
an irreducible polynomial f used in Section 4.3.

20 T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi

Table 4. Complete Value of w(z), v and f

deg. of term] 7 (x) | ~ [f
71 — — T
70 24423 4222 41 o] 2
69 225 423 4241 0 1
68 24423 2241 0 2
67 224 4 223 0 1
66 223 42 o] 2
65 2% 422342242 0 1
64 2423 42242241 ol 2
63 23 0 1
62 24 4222 4 2 0 2
61 223 422 41 0 1
60(225 + 224 4223 422 4241 ol 2
59 2% 4223 422 4 2 0 1
58 223 4222 4 2 0 2
57 225 4223 4222 4 242 of 1
56 244223 42241 ol 2
55 25 42t 423 4 22 0 1
54 224 4242 0 2
53 23 4222 42242 0 1
52 225 4224 4 222 ol 2
51 225 424 423 1222 42 0 1
50 225 4 2% 422 4 22 0 2
49 225 4223 4 22 4 2 0 1
48 224 423 422 p 2241 ol 2
47 2342242242 0 1
46| 225 + 2% 423 422 42241 ol 2
45 225 4 2% 422 42 0 1
44 225 4224 4223 4 242 0 2
43 224 4223 4 22 0 1
42 P 42442242402 ol 2
41 2% 4223 4222 4 241 0 1
40 25 42t 4222 4242 0 2
39 25 4 2% 4222 41 0 1
38 224 4223 42241 ol o
37 2% 4224 422 42241 0 0
36 2542t 423 p 2242 0 0
35 1 ol 1
34 24 4223 422 42241 0 2
33 2244223 4 242 0 1
32 224 4222 41 ol 2
31 225 424 423 4 2 0 1
30 24 4 23 4222 0 2
29(225 4 2% 4223 4 22 {22 4 2 ol 1
28 225 423 422 42242 ol 2
27 24222 4241 0 1
26 225 4223 4 241 0 2
25 23422 41 0 1
24225 4 24 4223 + 22 12241 0 2
23 224 423 4222 4 2 0 1
22 225 423 4222 4 2 0 2
21 224 4223 422 42241 0 1
20 25 4224 4223 4 222 ol 2
19 25 42442 0 1
18| 225 4224 4223 4222 4 22 0 2
17 2% 4223 4222 2241 0 1
16 2% 4223 42 0 2
15 25 4224 4 2 0 1
14 225 423 42224 2 ol 2
13 225 4224 423 42 0 1
12 24423 2242 0 2
11 22 42 0 1
10 B 4z42 ol 2
9 224 423 422242 0 1
8 223 4223 4 241 0 2
7 225 4224 4242 0 1
6 225 4 24 4 23 4 22 o] 2
5 225 424 4223 42 ol 2
4 224 423 422 42241 0 1
3 2542242 0 2
2|25 4224 4223 1222 4 2 42 ol o
1 254224422 42241 1 0
0 25 4224 4223 4 22 42|25 4 24 4223 4 2 1

