
Parallel Enumeration of Shortest Lattice Vectors

Özgür Dagdelen1 and Michael Schneider2

1 Center for Advanced Security Research Darmstadt - CASED
oezguer.dagdelen@cased.de

2 Technische Universität Darmstadt, Department of Computer Science
mischnei@cdc.informatik.tu-darmstadt.de

Abstract. Lattice basis reduction is the problem of finding short vec-
tors in lattices. The security of lattice based cryptosystems is based on
the hardness of lattice reduction. Furthermore, lattice reduction is used
to attack well-known cryptosystems like RSA. One of the algorithms
used in lattice reduction is the enumeration algorithm (ENUM), that
provably finds a shortest vector of a lattice. We present a parallel ver-
sion of the lattice enumeration algorithm. Using multi-core CPU systems
with up to 16 cores, our implementation gains a speed-up of up to factor
14. Compared to the currently best public implementation, our parallel
algorithm saves more than 90% of runtime.

Keywords: lattice reduction, shortest vector problem, cryptography,
parallelization, enumeration

1 Introduction

A lattice L is a discrete subgroup of the space Rd. Lattices are represented
by linearly independent basis vectors b1, . . . ,bn ∈ Rd, where n is called the
dimension of the lattice. Lattices have been known in number theory since the
eighteenth century. They already appear when Lagrange, Gauss, and Hermite
study quadratic forms. Nowadays, lattices and hard problems in lattices are
widely used in cryptography as the basis of promising cryptosystems.

One of the main problems in lattices is the shortest vector problem (SVP),
that searches for a vector of shortest length in the lattice. The shortest vector
problem is known to be NP-hard under randomized reductions. It is also con-
sidered to be intractable even in the presence of quantum computers. Therefore,
many lattice based cryptographic primitives, e.g. one-way functions, hash func-
tions, encryption, and digital signatures, leverage the complexity of the SVP
problem. In the field of cryptanalysis, lattice reduction is used to attack the
NTRU and GGH cryptosystems. Further, there are attacks on RSA and low
density knapsack cryptosystems.

Lattice reduction still has applications in other fields of mathematics and
number theory. It is used for factoring composite numbers and computing dis-
crete logarithms using diophantine approximations. In the field of discrete opti-
mization, lattice reduction is used to solve linear integer programs.

The fastest algorithm known to solve SVP is the enumeration algorithm of
Kannan [8] and the algorithm of Fincke and Pohst [3]. The variant used mostly
in practice was presented by Schnorr and Euchner in 1991 [14]. Nevertheless,
these algorithms solve SVP in exponential runtime. So far, enumeration is only
applicable in low lattice dimensions (n ≤ 60).3 For higher dimensions it is only
possible to find short vectors, but not a shortest vector. Mostly, these approx-
imate solutions of the SVP are sufficient in practice. In 1982 the famous LLL
algorithm was presented for factoring polynomials [9]. This algorithm does not
solve SVP rather it finds a vector with length exponential in the lattice di-
mension. However, LLL is the first algorithm having a polynomial asymptotic
running time. LLL can be run in lattice dimension up to 1000.

In practice, the most promising algorithm for lattice reduction in high di-
mensions is the BKZ block algorithm by Schnorr and Euchner [14]. It mainly
consists of two parts, namely enumeration in blocks of small dimension and LLL
in high dimension. BKZ finds shorter vectors than LLL, at the expense of a
higher runtime.

Considering parallelization, there are various works dealing with LLL, e.g.,
[15,2]. The more time-consuming part of BKZ, namely the enumeration step
(assuming the use of high block sizes) was considered in the master’s thesis of
Pujol [11] and in a very recent work [13]. A GPU version of enumeration was
shown in [7].

The enumeration in lattices can be visualized as a depth first search in a
weighted search tree, with different subtrees being independent from each other.
Therefore, it is possible to enumerate different subtrees in parallel threads with-
out any communication between threads. We have chosen multi-core CPUs for
the implementation of our parallel enumeration algorithm.

Our Contribution. In this paper, we parallelize the enumeration (ENUM) algo-
rithm by Schnorr and Euchner [14]. We implement the parallel version of ENUM
and test it on multi-core CPUs. More precisely, we use up to 16 CPU cores to
speed up the lattice enumeration, in lattice dimensions of 40 and above. Con-
sidering the search tree, the main problem is to predict the subtrees that are
examined during enumeration beforehand.

We gain speed-ups of up to factor 14 in comparison to our single core version.4

Compared to the fastest single-core ENUM implementation known our parallel
version of ENUM saves more than 90% of runtime. We add some clever additional
communication among threads, such that by using s processor cores we even gain
a speed-up of more than s in some cases.

By this work, we show that it is possible to parallelize the entire BKZ algo-
rithm for the search for short lattice vectors. The strength of BKZ is used to
assess the practical hardness of lattice reduction, which helps finding suitable
parameters for secure lattice based cryptosystems.

3 The recent work of [5] could no more be considered for our final version.
4 On a 24 core machine we gain speed-up factors of 22.

The algorithm of Pujol [11,13] uses a volume heuristic to predict the number
of enumeration steps that will be performed in a subtree. This estimate is used to
predict if a subtree is split recursively for enumeration in parallel. In contrast to
that, our strategy is to control the height of subtrees that can be split recursively.

Organization. Section 2 explains the required basic facts on lattices and paral-
lelization, Section 3 describes the ENUM algorithm by [14], Section 4 presents
our new algorithm for parallel enumeration, and Section 5 shows our experimen-
tal results.

2 Preliminaries

Notation. Vectors and matrices are written in bold face, e.g. v and M. The
expression dxc denotes the nearest integer to x ∈ R, i.e., dxc = dx− 0.5e. ‖v‖
denotes the Euclidean norm, other norms are indexed with a subscript, like
‖v‖∞. Throughout the paper, n denotes the lattice dimension.

Lattices. A lattice is a discrete additive subgroup of Rd. It can be represented
as the linear integer span of n ≤ d linear independent vectors b1, . . . ,bn ∈ Rd,
which are arranged in a column matrix B = [b1, . . . ,bn] ∈ Rd×n. The lat-
tice L(B) is the set of all linear integer combinations of the basis vectors bi,
namely L(B) = {

∑n
i=1 xibi : xi ∈ Z} . The dimension of the lattice equals

the number of linearly independent basis vectors n. If n = d, the lattice is
called full-dimensional. For n ≥ 2 there are infinitely many bases of a lattice.
One basis can be transformed into another using a unimodular transforma-
tion matrix. The first successive minimum λ1(L(B)) is the length of a short-
est non-zero vector of a lattice. There exist multiple shortest vectors of a lat-
tice, a shortest vector is not unique. Define the Gram-Schmidt-orthogonalization
B∗ = [b∗1, . . . ,b

∗
n] of B. It is computed via b∗i = bi−

∑i−1
j=1 µi,jb

∗
j for i = 1, . . . , n,

where µi,j = bTi b∗j/
∥∥b∗j∥∥2 for all 1 ≤ j ≤ i ≤ n. We have B = B∗ µT ,

where B∗ is orthogonal and µT is an upper triangular matrix. Note that B∗ is
not necessarily a lattice basis.

Lattice Problems and Algorithms. The most famous problem in lattices is the
shortest vector problem (SVP). The SVP asks to find a shortest vector in the
lattice, namely a vector v ∈ L\{0} with ‖v‖ = λ1(L). An approximation version
of the SVP was solved by Lenstra, Lenstra, and Lovász [9]. The LLL algorithm
is still the basis of most algorithms used for basis reduction today. It runs in
polynomial time in the lattice dimension and outputs a so-called LLL-reduced
basis . This basis consists of nearly orthogonal vectors, and a short, first basis
vector with approximation factor exponential in the lattice dimension. The BKZ
algorithm by Schnorr and Euchner [14] reaches better approximation factors, and
is the algorithm used mostly in practice today. As a subroutine, BKZ makes use
of an exact SVP solver, such as ENUM. In practice, SVP can only be solved in
low dimension n, say up to 60, using exhaustive search techniques or, a second

approach, using sieving algorithms that work probabilistically. An overview of
enumeration algorithms is presented in [12]. A randomized sieving approach for
solving exact SVP was presented in [1] and an improved variant in [10]. In this
paper, we only deal with enumeration algorithms.

Exhaustive Search. In [12] Pujol and Stehlé examine the floating point behaviour
of the ENUM algorithm. They state that double precision is suitable for lattice
dimensions up to 90. It is common practice to pre-reduce lattices before starting
enumeration, as this reduces the radius of the search space. In BKZ, the basis is
always reduced with the LLL algorithm when starting enumeration.

Publicly available implementations of enumeration algorithms are the estab-
lished implementation of Shoup’s NTL library and the fpLLL library of Stehlé
et al. Experimental data on enumeration algorithms using NTL can be found in
[4,10], both using NTL’s enumeration. A parallel implementation of ENUM is
available at Xavier Pujol’s website.5 To our knowledge there are no results pub-
lished using this implementation. Pujol mentions a speedup factor of 9.7 using
10 CPUs. Our work was developed independently of Pujol’s achievements.

Parallelization. Before we present our parallel enumeration algorithm, we need
to introduce definitions specifying the quality of the realized parallelization.
Furthermore, we give a brief overview of parallel computing paradigms.

There exist many parallel environments to perform operations concurrently.
Basically, on today’s machines, one distinguishes between shared memory and
distributed memory passing. A multi-core microprocessor follows the shared
memory paradigm in which each processor core accesses the same memory space.
Nowadays, such computer systems are commonly available. They possess sev-
eral cores, while each core acts as an independent processor unit. The operating
system is responsible to deliver operations to the cores.

In the parallelization context there exist notions that measure the achieved
quality of a parallel algorithm compared to the sequential version. In the sequel
of this paper, we will need the following definitions:

Speed-up factor: time needed for serial computation divided by the time re-
quired for the parallel algorithm. Using s processes, a speed-up factor of up
to s is expected.

Efficiency: speed-up factor divided by the number of used processors. An effi-
ciency of 1.0 means that s processors lead to a speed-up factor of s which can
be seen as a “perfect” parallelization. Normally the efficiency is smaller than
1.0 because of the communication overhead for inter-process communication.

Parallel algorithms such as graph search algorithms may benefit from communi-
cation, in such a way that fewer operations need to be computed. As soon as the
number of saved operations exceeds the communication overhead, an efficiency
of more than 1.0 might be achieved. For instance, branch-and-bound algorithms

5 http://perso.ens-lyon.fr/xavier.pujol/index_en.html

for Integer Linear Programming might have superlinear speedup, due to the in-
terdependency between the search order and the condition which enables the
algorithm to disregard a subtree. The enumeration algorithm falls into this cat-
egory as well.

3 Enumeration of the shortest lattice vector

In this chapter we give an overview of the ENUM algorithm first presented in
[14]. In the first place, the algorithm was proposed as a subroutine in the BKZ
algorithm, but ENUM can be used as a stand-alone instance to solve the exact
SVP. An example instance of ENUM in dimension 3 is shown by the solid line
of Figure 1. An algorithm listing is shown as Algorithm 1.

Algorithm 1: Basic Enumeration Algorithm
Input: Gram-Schmidt coefficients (µi,j)1≤j≤i≤n, ‖b∗1‖

2 . . . ‖b∗n‖
2

Output: umin such that
‚‚Pn

i=1 uibi

‚‚ = λ1(L(B))

1 A← ‖b∗1‖
2, umin ← (1, 0, . . . , 0), u← (1, 0, . . . , 0), l← (0, . . . , 0), c← (0, . . . , 0)

2 t = 1
3 while t ≤ n do
4 lt ← lt+1 + (ut + ct)2 ‖b∗t ‖

2

5 if lt < A then
6 if t > 1 then
7 t← t− 1 B move one layer down in the tree
8 ct ←

Pn
i=t+1 uiµi,t, ut ← dctc

9 else
10 A← lt, umin ← u B set new minimum
11 end

12 else
13 t← t+ 1 B move one layer up in the tree
14 choose next value for ut using the zig-zag pattern

15 end

16 end

To find a shortest non-zero vector of a lattice L(B) with B = [b1, . . . ,bn],
ENUM takes as input the Gram-Schmidt coefficients (µi,j)1≤j≤i≤n, the quadratic
norm of the Gram-Schmidt orthogonalization ‖b∗1‖

2
, . . . , ‖b∗n‖

2 of B, and an
initial bound A. The search space is the set of all coefficient vectors u ∈ Zn that
satisfy ‖

∑n
t=1 utbt‖ ≤ A. Starting with an LLL-reduced basis, it is common to

set A = ‖b∗1‖
2 in the beginning. If the norm of the shortest vector is known

beforehand, it is possible to start with a lower A, which limits the search space
and reduces the runtime of the algorithm. If a vector v of length smaller than A
is found, A can be reduced to the norm of v, that means A always denotes the
size of the current shortest vector.

The goal of ENUM is to find a coefficient vector u ∈ Zn satisfying the
equation ∥∥∥∥∥

n∑
t=1

utbt

∥∥∥∥∥ = min
x∈Zn

∥∥∥∥∥
n∑
t=1

xtbt

∥∥∥∥∥ . (1)

Therefore, all coefficient combinations u that determine a vector of norm less
than A are enumerated. In Equation 1 we replace all bt by their orthogonaliza-

tion, i.e., bt = b∗t +
∑t−1
j=1 µt,jb

∗
j and get Equation (2):

∥∥∥∥∥
n∑
t=1

utbt

∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
t=1

(
ut · (b∗t +

t−1∑
j=1

µt,jb∗j)
)∥∥∥∥∥∥

2

=
n∑
t=1

(ut +
n∑

i=t+1

µi,tui)2 · ‖b∗t ‖
2
.

Let c ∈ Rd with ct =
∑n
i=t+1 µi,tui (line 8), which is predefined by all co-

efficients ui with n ≥ i > t. The intermediate norm lt (line 4) is defined as
lt = lt+1 + (ut + ct)2 ‖b∗t ‖

2. This is the norm part of Equation 2 that is
predefined by the values ui with n ≥ i ≥ t.

The algorithm enumerates the coefficients in reverse order, from un to u1.
This can be considered as finding a minimum in a weighted search tree. The
height of the tree is uniquely determined by the dimension n. The root of the tree
denotes the coefficient un. The coefficient values ut for 1 ≤ t ≤ n determine the
values of the vertices of depth (n− t+1), leafs of the tree contain coefficients u1.
The inner nodes represent intermediate nodes, not complete coefficient vectors,
i.e., a node on level t determines a subtree (⊥, . . . ,⊥, ut, ut+1, . . . , un), where the
first t− 1 coefficients are not yet set. lt is the norm part predefined by this inner
node on level t. We only enumerate parts of the tree with lt < A. Therefore, the
possible values for ut on the next lower level are in an interval around ct with
(ut + ct)2 < (A− lt+1)/ ‖b∗t ‖, following the definition of lt.

ENUM iterates over all possible values for ut, as long as lt ≤ A, the current
minimal value. If lt exceeds A, enumeration of the corresponding subtree can
be cut off, the intermediate norm lt will only increase when stepping down in
the tree, as lt ≤ lt−1 always holds. The iteration over all possible coefficient
values is (due to Schnorr and Euchner) performed in a zig-zag pattern. The
values for ut will be sequenced like either ct, ct + 1, ct − 1, ct + 2, ct − 2, . . . or
ct, ct − 1, ct + 1, ct − 2, ct + 2,

ENUM starts at the leaf (1, 0, . . . , 0) and gives the first possible solution for a
shortest vector in the given lattice. The algorithm performs its search by moving
up (when a subtree can be cut off due to lt ≥ A) and down in the tree (lines 13
and 7). The norm of leaf nodes is compared to A. If l1 ≤ A, it stores A ← l1
and umin ← u (line 10), which define the current shortest vector and its size.
When ENUM moves up to the root of the search tree it terminates and outputs
the computed global minimum A and the corresponding shortest vector umin.

4 Algorithm for parallel enumeration of the shortest
lattice vector

In this section we describe our parallel algorithm for enumeration of the shortest
lattice vector. The algorithm is a parallel version of the algorithm presented in
[14]. First we give the main idea of parallel enumeration. Secondly, we present a
high level description. Algorithms 2 and 3 depict our parallel ENUM. Thirdly,
we explain some improvements that speed up the parallelization in practice.

4.1 Parallel Lattice Enumeration

The main idea for parallelization is the following. Different subtrees of the com-
plete search tree are enumerated in parallel independently from each other rep-
resenting them as threads (Sub-ENUM threads). Using s processors, s subtrees
can be enumerated at the same time. All threads ready for enumeration are
stored in a list L, and each CPU core that has finished enumerating a subtree
picks the next subtree from the list. Each of the subtrees is an instance of SVP
in smaller dimension; the initial state of the sub-enumeration can be represented
by a tuple (u, l, c, t).

When the ENUM algorithm increases the level in the search tree, the center
(ct) and the range ((A− lt+1)/ ‖b∗t ‖) of possible values for the current index are
calculated. Therefore, it is easy to open one thread for every value in this range.

E n d

S ta r t

1 . T h r e a d 2 . T h r e a d 3 . T h r e a d 4 . T h r e a d

5 . T h r e a d

Fig. 1. Comparison of serial (solid line) and parallel (dashed line) processing of the
search tree.

Figure 1 shows a 3-dimensional example and compares the flow of the serial
ENUM with our parallel version. Beginning at the starting node the procession
order of the serial ENUM algorithm follows the directed solid edges to the root.
In the parallel version dashed edges represent the preparation of new Sub-ENUM
threads which can be executed by a free processor unit. Crossed-out edges point
out irrelevant subtrees. Threads terminate as soon as they reach either a node
of another thread or the root node.

Extra Communication – Updating the Shortest Vector. Again, we denote the
current minimum, the global minimum, as A. In our parallel version, it is the
global minimum of all threads. As soon as a thread has found a new minimum,
the Euclidean norm of this vector is written back to the shared memory, i.e. A
is updated. At a certain point every thread checks the global minimum whether
another thread has updated A and, if so, uses the updated one. The smaller
A is, the faster a thread terminates, because subtrees that exceed the current
minimum can be cut off in the enumeration. The memory access for this update
operation is minimal, only one integer value has to be written back or read
from shared memory. This is the only type of communication among threads,
all other computations can be performed independently without communication
overhead.

4.2 The Algorithm for Parallel Enumeration

Algorithm 2 shows the main thread for the parallel enumeration. It is respon-
sible to initialize the first Sub-ENUM thread and manage the thread list L. A
Sub-ENUM thread (SET) is represented by the tuple (u, l, c, t), where u is the
coefficient vector, l the intermediate norm of the root to this subtree, c the search
region center and t the lattice dimension minus the starting depth of the parent
node in the search tree.

Algorithm 2: Main thread for parallel enumeration
Input: Gram-Schmidt coefficients (µi,j)1≤j≤i≤n, ‖b∗1‖

2 . . . ‖b∗n‖
2

Output: umin such that
‚‚Pn

i=1 uibi

‚‚ = λ1(L(B))

1 A← ‖b∗1‖
2, umin ← (1, 0, . . . , 0) B Global variables

2 u← (1, 0, . . . , 0), l← 0, c← 0, t← 1 B Local variables
3 L← {(u, l, c, t)} B Initialize list
4 while L 6= ∅ or threads are running do
5 if L 6= ∅ and cores available then
6 pick ∆ = (u, l, c, t) from L
7 start Sub-ENUM thread ∆ = (u, l, c, t) on new core

8 end

9 end

Algorithm 3: Sub-ENUM thread (SET)
Input: Gram-Schmidt coefficients (µi,j)1≤j≤i≤n, ‖b∗1‖

2 . . . ‖b∗n‖
2, (ū, l̄, c̄, t̄)

1 u← ū, l← (0, . . . , 0), c← (0, . . . , 0)

2 t← t̄, lt+1 ← l̄, ct ← c̄, bound← n
3 while t ≤ bound do
4 lt ← lt+1 + (ut + ct)2 ‖b∗t ‖

2

5 if lt < A then
6 if t > 1 then
7 t← t− 1 B move one layer down in the tree
8 ct ←

Pn
i=t+1 uiµi,t, ut ← dctc

9 if bound = n then
10 L← L ∪ (u, lt+2, ct+1, t+ 1) B insert new SET in list L
11 bound← t

12 end

13 else
14 A← lt, umin ← u B set new global minimum
15 end

16 else
17 t← t+ 1 B move one layer up in the tree
18 choose next value for ut using the zig-zag pattern

19 end

20 end

Whenever the list contains a SET and free processor units exist, the first SET
of the list is executed. The execution of SETs is performed by Algorithm 3. We
process the search tree in the same manner as the serial algorithm (Algorithm
1), except the introduction of the loop bound bound and the handling of new
SETs (lines 9−11). First, the loop bound controls the termination of the subtree
and prohibits that nodes are visited twice. Second, only the SET whose bound
is set to the lattice dimension is allowed to create new SETs. Otherwise, if we

allow each SET to create new SETs by itself, this would lead to an explosion of
the number of threads and each thread has too few computations to perform.
We denote the SET with bound set to n by unbounded SET (USET). At any
time, there exists only one USET that might be stored in the thread list L.

As soon as an USET has the chance to find a new minimum within the
current subtree (lines 5− 6), its bound is set to the current t value. Thereby, it
is transformed to a SET and the recent created SET becomes the USET.

4.3 Improvements

We presented a first solution for the parallelization of the ENUM algorithm
providing a runtime speed-up by a divide and conquer technique. We distribute
subtrees to several processor units to search for the minimum. Our improvements
deal with the creation of SETs and result in significantly shorter running time.
Recall the definitions of Sub-ENUM thread (SET) and unbounded Sub-ENUM
thread (USET). By now we call a node, where a new SET can be created, a
candidate. Note that a candidate can only be found in an USET.

The following paragraphs show worst cases of the presented parallel ENUM
algorithm and present possible solutions to overcome the existing drawbacks.

Threads within threads. Our parallel ENUM algorithm allows to create new SETs
only by an USET. The avoidance of producing immense overhead which happens
by permitting the creation of new SETs by any SET, backs our decision that
it suffices to let only USET create new instances. However, if an USET creates
a new SET at a node of depth 1, then this new SET is executed by a single
processor sequentially. Note that this SET solves the SVP problem in dimension
n − 1. It turns out that in the case the depth of a current analyzed node in
ENUM is sufficient far away from the depth t of the starting node, the creation
of a new SET is advantageous according to the overall running time and the
number of simultaneously occupied processors. Therefore, we introduce a bound
sdeep which expresses what we consider to be sufficient far away, i.e. if a SET
visits a node with depth k fulfilling the equation k− t ≥ sdeep where t stands for
the depth of the starting node and it is not an USET, then this SET is permitted
to create a new SET once.

Thread Bound. Although we avoid the execution of SETs where the dimension
of the subtree is too big, we are still able to optimize the parallel ENUM al-
gorithm by considering execution bounds. We achieve additional performance
improvements by the following idea. Instead of generating SETs in each pos-
sible candidate, we consider the depth of the node. This enables us to avoid
big subtrees for new SETs by introducing an upper bound sup representing the
minimum distance of a node to the root to become a candidate. If ENUM visits
a node with depth t fulfilling n − t > sup and this node is a candidate, we no
longer make a subtree ready for a new SET. We rather prefer to behave in that
situation like the serial ENUM algorithm. Good choices for the above bounds
sdeep and sup are evaluated in Section 5.

5 Experiments

We performed numerous experiments to test our parallel enumeration algorithm.
We created 5 different random lattices of each dimension n ∈ {42, . . . , 56} in the
sense of Goldstein and Mayer [6]. The bitsize of the entries of the basis matri-
ces were in the order of magnitude of 10n. We started with bases in Hermite
normal form, then LLL-reduced the bases (using LLL parameter δ = 0.99).
The experiments were performed on a compute server equipped with four AMD
Opteron (2.3GHz) quad core processors. We compare our results to the highly
optimized, serial version of fpLLL in version 3.0.12, the fastest ENUM imple-
mentation known, on the same platform. The programs were compiled using
gcc version 4.3.2. For handling parallel processes, we used the Boost-Thread-
sublibrary in version 1.40. Our C++ implementation uses double precision to
store the Gram-Schmidt coefficients µi,j and the ‖b∗1‖

2
, . . . , ‖b∗n‖

2. Due to [12],
this is suitable up to dimension 90, which seems to be out of the range of today’s
enumeration algorithms.

We tested the parallel ENUM algorithm for several sdeep values and con-
cluded that sdeep = 25

36 (n− t) seems to be a good choice, where t is the depth of
the starting node in a SET instance. Further, we use sup = 5

6n.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 42 44 46 48 50 52 54 56

Ti
m

e
[s

]

Dimension

1 core
fplll (1 core)

4 cores
8 cores

16 cores

Fig. 2. Average runtimes of enumeration
of 5 random lattices in each dimension,
comparing our multi-core implementation
to fpLLL’s and our own single-core version.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

oc
cu

pa
nc

y
[%

]

time [%]

avg. load of all cpu cores
max value
min value

Fig. 3. Occupancy of the cores. The x-axis
marks the percentage of the complete run-
time, the y-axis shows the average occu-
pancy of all CPU cores over 5 lattices.

n 42 44 46 48 50 52 54 56

1 core 3.81 27.7 37.6 241 484 3974 10900 223679
4 cores 0.99 7.2 8.8 55 107 976 2727 56947
8 cores 0.62 4.0 4.8 28 56 504 1390 28813

16 cores 0.52 2.6 3.5 18 36 280 794 16583
fpLLL 1 core 3.32 23.7 29.7 184 367 3274 9116 184730

Table 1. Average time in seconds for enumeration of lattices in dimension n.

Table 1 and Figure 2 present the experimental results that compare our
parallel version to our serial algorithm and to the fpLLL library. We only present
the timings, as the output of the algorithms is in all cases the same, namely a
shortest non-zero vector of the input lattice. The corresponding speed-ups are
shown in Figure 4.

To show the strength of parallelization of the lattice enumeration, we first
compare our multi-core versions to our single-core version. The best speed-ups
are 4.5 (n = 50) for 4 cores, 8.6 (n = 50) for 8 cores, and 14.2 (n = 52) for
16 cores. This shows that, using s processor cores, we sometimes gain speed-ups
of more than s, which corresponds to an efficiency of more than 1. This is a
very untypical behavior for (standard) parallel algorithms, but understandable
for graph search algorithms as our lattice enumeration. It is caused by the extra
communication for the write-back of the current minimum A.

The highly optimized enumeration of fpLLL is around 10% faster than our
serial version. Compared to the fpLLL algorithm, we gain a speed-up of up to
6.6 (n = 48) using 8 CPU cores and up to 11.7 (n = 52) using 16 cores. This
corresponds to an efficiency of 0.825 (8 cores) and 0.73 (16 cores), respectively.

Figure 3 shows the average, the maximum, and the minimum occupancy of
all CPU cores during the runtime of 5 lattices in dimension n = 52. The average
occupancy of more than 90% points out that all cores are nearly optimally
loaded; even the minimum load values are around 80%. These facts show a good
balanced behaviour of our parallel algorithm.

 2

 4

 6

 8

 10

 12

 14

 16

 42 44 46 48 50 52 54 56

Sp
ee

du
p

co
m

pa
re

d
to

 s
in

gl
e

co
re

Dimension

16 cores
 8 cores
 4 cores

fplll (1 core)

 2

 4

 6

 8

 10

 12

 14

 16

 42 44 46 48 50 52 54 56

Sp
ee

du
p

co
m

pa
re

d
to

 fp
lll

(s
in

gl
e

co
re

)

Dimension

16 cores
 8 cores
 4 cores

Fig. 4. Average speed-up of parallel ENUM compared to our single-core version (left)
and compared to fpLLL single-core version (right).

6 Conclusion and Further Work

In this paper we have presented a parallel version of the most common algo-
rithm for solving the shortest vector problem in lattices, the ENUM algorithm.
We have shown that a huge speed-up and a high efficiency is reachable using
multi-core processors. As parallel versions of LLL are already known, with our
parallel ENUM we have given evidence that both parts of the BKZ reduction
algorithm can be parallelized. It remains to combine both, parallel LLL and par-
allel ENUM, to a parallel version of BKZ. Our experience with BKZ shows that

in higher blocksizes of ≈ 50 ENUM takes more than 99% of the complete run-
time. Therefore, the speed-up of ENUM will directly speed up BKZ reduction,
which in turn influences the security of lattice based cryptosystems. Further-
more, to enhance scalability further, an extension of our algorithm to parallel
systems with multiple multicore nodes is considered as future work.

Acknowledgments

We thank Jens Hermans, Richard Lindner, Markus Rückert, and Damien Stehlé
for helpful discussions and their valuable comments. We thank Michael Zohner
for performing parts of the experiments. We thank the anonymous reviewers for
their comments.

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: STOC 2001. pp. 601–610. ACM (2001)

2. Backes, W., Wetzel, S.: Parallel lattice basis reduction using a multi-threaded
Schnorr-Euchner LLL algorithm. In: Euro-Par. LNCS, vol. 5704, pp. 960–973.
Springer (2009)

3. Fincke, U., Pohst, M.: A procedure for determining algebraic integers of given
norm. In: European Computer Algebra Conference. LNCS, vol. 162, pp. 194–202.
Springer (1983)

4. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Eurocrypt 2008. LNCS,
vol. 4965, pp. 31–51. Springer (2008)

5. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning
(2010), to appear in Eurocrypt 2010

6. Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Mathe-
maticum 2003, 15:2 pp. 165–189 (2003)

7. Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel
shortest lattice vector enumeration on graphics cards. In: Africacrypt. LNCS, vol.
6055, pp. 52–68. Springer (2010)

8. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: STOC 1983. pp. 193–206. ACM (1983)

9. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Mathematische Annalen 4, 515–534 (1982)

10. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: SODA 2010 (2010)

11. Pujol, X.: Recherche efficace de vecteur court dans un réseau euclidien. Masters
thesis, ENS Lyon (2008)

12. Pujol, X., Stehlé, D.: Rigorous and efficient short lattice vectors enumeration. In:
Asiacrypt 2008. LNCS, vol. 5350, pp. 390–405. Springer (2008)

13. Pujol, X., Stehlé, D.: Accelerating lattice reduction with FPGAs (2010), to appear
in Latincrypt 2010

14. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming 66, 181–199 (1994)

15. Villard, G.: Parallel lattice basis reduction. In: ISSAC 1992. pp. 269–277. ACM
(1992)

