
Constructing Verifiable Random Functions with Large Input Spaces

Susan Hohenberger∗

Johns Hopkins University
Brent Waters†

University of Texas at Austin

May 23, 2010

Abstract

We present a family of verifiable random functions which are provably secure for exponentially-large
input spaces under a non-interactive complexity assumption. Prior constructions required either an
interactive complexity assumption or one that could tolerate a factor 2n security loss for n-bit inputs.
Our construction is practical and inspired by the pseudorandom functions of Naor and Reingold and
the verifiable random functions of Lysyanskaya. Set in a bilinear group, where the Decisional Diffie-
Hellman problem is easy to solve, we require the `-Decisional Diffie-Hellman Exponent assumption in the
standard model, without a common reference string. Our core idea is to apply a simulation technique
where the large space of VRF inputs is collapsed into a small (polynomial-size) input in the view of the
reduction algorithm. This view, however, is information-theoretically hidden from the attacker. Since
the input space is exponentially large, we can first apply a collision-resistant hash function to handle
arbitrarily-large inputs.

1 Introduction

Verifiable Random Functions (VRFs) were proposed by Micali, Rabin, and Vadhan [25]. VRFs behave similar
to Pseudo Random Functions (PRFs) [16] in that an (efficient) attacker should not be able to distinguish
the value of fK(x) from a random value even if it is given oracle access to the function fK(·) at several
other points. However, VRFs have the additional property that the party holding the seed will publish
a commitment to the function and is able to non-interactively convince a verifier that a given evaluation
is correct (i.e., matches the public commitment) without sacrificing the pseudorandom property on other
inputs. In addition, the proof must be verifiable without the benefit of a common reference string (CRS).
Finally, the verification should remain secure even if the public commitment were setup in a malicious
manner.

The VRF definition of security limits the types of tools we can apply to solving the problem and restricts us
from using several “traditional” approaches. For example, at first glance it might seem possible to construct
VRFs in a straightforward manner by applying PRFs together with a Non-Interactive Zero Knowledge
Proof [4, 5] (NIZK) system. A tempting approach is to publish a commitment to a PRF seed and then
the seed holder can apply the NIZK machinery to produce non-interactive proofs. A typical proof would
at one stage allow a reduction algorithm to simulate proofs (via knowledge of the CRS setup) even when
the algorithm has no knowledge of the function’s seed. However, since the definition of a Verifiable Random
Function disallows the use of a trusted setup, the NIZK paradigm cannot be applied.

Without being able to simulate proofs, any reduction algorithm that proves pseudorandomness faces the
following predicament. First, for any x for which it is asked to give out fK(x) and a proof it must be able to

∗Supported by NSF CNS-0716142, Department of Homeland Security Grant 2006-CS-001-000001-02 (subaward 641) and a
Microsoft Research New Faculty Fellowship.
†Supported by NSF CNS-0716199, CNS-0915361, and CNS-0952692, Air Force Office of Scientific Research (AFO SR) under

the MURI award for “Collaborative policies and assured information sharing” (Project PRESIDIO), Department of Homeland
Security Grant 2006-CS-001-000001-02 (subaward 641), and the Alfred P. Sloan Foundation.

1

produce the actual (unique) output of fK(x). Since there is no interaction or trusted setup, the algorithm
is not able to “lie” at any stage. Second, the reduction must be able to use an attacker that can distinguish
fK(x∗) from a random value at a certain x∗. In order to make use of this attacker, it follows that the
reduction algorithm must not know how to evaluate fK(·) at certain points.

Meeting these two restrictions will require a new approach to constructing pseudorandom functions that
moves past traditional constructions. For instance, to prove that the Goldreich, Goldwasser and Micali PRF
construction [16] is pseudorandom one must go through several hybrid experiments, where the reduction
algorithm will not know how to correctly evaluate the PRF on any input. This approach will not work for
proving VRFs, since the reduction algorithm must provide an evaluation and prove (without lying) that it
is correct.

Constructing and Proving Security of VRFs. For the reasons above, existing VRF systems employ a
different strategy when proving the security of VRFs. Almost all proofs of VRF constructions (that do not
rely on interactive assumptions) [25, 14, 1] use a type of “all but one” technique for proving pseudorandoness.
In these proofs a reduction algorithm will first guess the attacker’s challenge input as some random string w
in {0, 1}n, where n is the bit length of inputs. Next, it will set up the commitment such that it knows the
function at all 2n − 1 inputs values x 6= w. The algorithm then must “hope” that the challenge input lands
on w. For instance, the Micali-Rabin-Vadhan (VUF1) reduction [25] publishes a commitment r (mod N)
such that it knows 2n − 1 roots of r for primes px where x 6= w and hopes that the attacker provides it the
pw-th root of r.

The main drawback of this style of proof is that the error and time component of the reduction respectively
degrade and blowup by a factor 2n, which is exponential in the input length n. The error reduction decreases
by a factor of 2n from the guessing of the challenge input and the time of the reduction requires 2n− 1 steps
to “plant” knowledge of fK(x) for all x 6= w. For this reason these VRF systems when applied to large
input sizes need to rely on strong assumptions that can absorb the loss of security. Furthermore, in the
`-type assumptions used in bilinear map constructions of Dodis-Yampolskiy [14], the number of terms (i.e.,
`) associated with the assumption increases exponentially in n. 2 In general, we would like to prove security
for large input spaces based on a “smaller” and more standard complexity assumption, which contains at
most a polynomial number of terms.

Indeed, in their recent paper, Abdalla, Catalano and Fiore [1] stated that an open problem was to
construct a VRF “supporting exponentially large (in the security parameter) identity spaces and provably
secure under non interactive assumptions”.

Our Approach. In this work, we aim to realize VRFs with large input sizes without applying complexity
leveraging or interactive assumptions. Our main technique is that we apply a reduction technique where
the input space of size 2n is compressed in the reduction algorithm’s view to a much smaller space. We can
parameterize this compression such that the reduction algorithm knows the PRF value for all but a set S
of size ≈ 1/q(λ) of the input, where q(λ) is the (polynomial) number of queries made by an attacker and λ
is a security parameter. We then “hope” that the challenge input lands in S and can finish the simulation
without aborting a non-negligible fraction of the time.

Our construction makes use of bilinear groups. It has a similar structure to the PRF of Naor-Reingold [28]
and the VRF of Lysyanskaya [24]. The setup algorithm will choose a group G of prime order p along with
random group elements g, h, U0 = gu0 , . . . , Un = gun for random u0, . . . , un ∈ Zp. The evaluation of the
VRF on input x = x1 . . . xn is

e(gu0
Qn

i=1 u
xi
i , h).

1VUF stands for verifiable unpredictable function. It relaxes the pseudorandomness requirement of the VRF, so that an
(efficient) attacker should not be able to predict the value of fK(x) even if it is given oracle access to the function fK(·) and
its proof at several other points.

2We note that the second construction of Abdalla-Catalano-Fiore [1] has a polynomial number of assumption terms, but
exponential degradation in the input size.

2

Proofs of the VRF are given using a step ladder approach in a manner similar to that appearing in other
works [24, 1].

We prove the security of our scheme under the `-Decisional Diffie-Hellman Exponent assumption [7] for
` = O(q(λ) · n). This assumption gives the reduction algorithm ga

i

for i = 1 to 2` except for a “hole”
at i = `. In our reduction, we associate each Ui value with a value ga

yj for some yj . (The terms are
further randomized so as to information-theoretically hide yj from the outside. We ignore the randomization
terms for this discussion.) For any input x, the reduction can evaluate the function and give a proof if
y0 +

∑n
i=1 y

xi
i 6= `. For all other inputs x ∈ S such that y0 +

∑n
i=1 y

xi
i = `, the reduction algorithm can

successfully use an answer to defeat the DDHE assumption.
To achieve a polynomial (in n) reduction we must find a way to put a proper fraction of the inputs in

S and to make the distribution of inputs in S close to random across the coins of the reduction. For this
final goal, we parameterize and analyze our scheme in a manner similar to the Waters’ [30] Identity-Based
Encryption system. In this system, Waters showed how to partition a fraction of ≈ 1/q(λ) of the inputs into
what he called a challenge set S. We will apply a similar partitioning approach, except we must adapt it to
the multiplicative structure of our VRF.

We finally note that once we achieve a VRF for large enough input size n, we can apply one of two
techniques to get a VRF for the input domain of {0, 1}∗. First, we could simply let the setup algorithm
choose a collision resistant hash function H : {0, 1}∗ → {0, 1}n. The VRF would first hash the input down
to n bits and then apply the core VRF. It is fairly straightforward to show that an attack would imply either
finding a collision or attacking the core VRF. Another technique is to apply the tree-based extension given
by Micali, Rabin, and Vadhan (MRV) [25] which allows extension to unbounded size inputs. This tree-based
technique works if there are no collisions discovered in the core VRF applied at each node (i.e., no two nodes
have the same label). In order for this to occur, the core input size must be large, which requires complexity
leveraging in the MRV RSA construction, but does not when using our techniques.

1.1 Related Work

The concept of pseudorandom functions was proposed by Goldreich, Goldwasser and Micali [16]. They
provided a definition and gave a generic method of constructing them from any one-way permutation. An
efficient PRF based on the Decisional Diffie-Hellman assumption was proposed by Naor and Reingold [28].

Micali, Rabin and Vadhan [25] proposed the extension to verifiable random functions. They gave an
RSA-type construction and proved security under what they called the RSA s(k)-Hardness Assumption.
Roughly, for input length a(k), the security of the VRF was s′(k) = s(k)1/3/(poly(k) · 2a(k)). They then
provided a tree-based method for extending the input size to {0, 1}∗. Their construction elegantly showed
how to first give a Verifiable Unpredictable Function (VUF) and then apply the Goldreich-Levin [17] hard
core bit technique to get a VRF.

We also note that in prior work Goldwasser and Ostrovsky [18] introduced a similar concept to VUFs
called Invariant Signatures. The primary distinction is that the GO solution of Invariant Signatures is
realized with the aid of a common reference string.

Lysyanskaya [24] provided the first VRF scheme from bilinear maps, which was also constructed as a
transformation from a VUF. Our VRF construction follows a similar structure and is inspired by that of
Lysyanskaya, although we will give a direct VRF construction without first providing a VUF. Dodis [13]
extended the work of Lysyanskaya and showed how to give efficient constructions of a VRF directly (i.e.,
without going through any generic transformations). His VRF was also distributed in the sense that a
collection of servers can hold shares of the seed and a certain threshold of these servers must cooperate to
compute fK(x) or distinguish its outputs from random. Unfortunately, both of these works rely on interactive
complexity assumptions (for large input spaces.)

Dodis and Yampolskiy [14] gave a very efficient VRF under a non-interactive assumption by applying the
deterministic version of Boneh-Boyen [6] signatures. In a bilinear group G of prime order p, its seed is a single
element of Zp and its proof is a single element of G. Its main drawback is that its security only holds for
small input spaces. For n-bit inputs, the scheme’s security relies on the (` = 2n)-Decisional Diffie-Hellman

3

Inversion assumption with a 2n factor blowup in the time component.
Recently, Abdalla, Catalano and Fiore [1] gave two VRF constructions and showed some connections to

Identity-Based Encryption [29, 8]. In particular, they showed that any IBE scheme with certain properties
(e.g., deterministic key generation) implies VRFs, although some of these properties only appear in random
oracle constructions of IBE systems.

Chase and Lysyanskaya [12] introduced a concept that they called a simultable VRF. Simultable VRFs
allow the use of a common reference string (CRS) in order to simulate a proof of the PRF output. Connections
to multi-theorem NIZKs were given. We note that reintroducing a CRS removes some of the fundamental
challenges in constructing a VRF that we described above.

Brakerski, Goldwasser, Rothblum and Vaikuntanathan [10] introduced a relaxation of VRFs that they
called weak VRFs. A weak VRF is similar to a VRF except it only needs to be secure if the attacker is
allowed to see queries at inputs chosen randomly. While this does not meet the full goals of VRFs, the authors
showed that weak VRFs imply NIZKs and provided constructions of weak VRFs from simple assumptions.

Applications of VRFs. VRFs have a variety of interesting applications, partially because they allow
a short commitment to an exponential number of pseudorandom bits. Abdalla et al. [1] provide a nice
summary of applications where VRFs are used as a building block, including resettable zero-knowledge
proofs [26], micropayment schemes [27], updatable zero-knowledge databases [23] and verifiable transaction
escrow schemes [22], to name a few. It also appears likely to us that suitable VRFs could be a useful
alternative in several applications which, as part of the system, output the value of the PRF together with
a proof (interactive or non-interactive) that the evaluation was correct and has some additional properties.
Examples of this include compact e-cash [11], keyword search [15], set intersection protocols [19], and adaptive
oblivious transfer protocols [21].

2 Definition

Definition 2.1 (Verifiable Random Function) Let F : {0, 1}seed(λ) × {0, 1}in(λ) → {0, 1}out(λ), where
seed, in, out are all polynomials in the security parameter 1λ, be an efficient function. We say that F is a
verifiable random function if there exist algorithms (Setup,Prove,Verify) such that

• Setup(1λ) outputs a pair of keys (pk , sk);

• Provesk (x) outputs a pair (Fsk (x), πsk (x)), where Fsk (x) is the function value and πsk (x) is the proof
of correctness; and

• Verifypk (x, y, π) verifies that y = Fsk (x) using the proof π.

Formally, we require the following properties:

1. Provability: For all (pk , sk) ∈ Setup(1λ) and inputs x ∈ {0, 1}in(λ), if (y, π) = Provesk (x), then
Verifypk (x, y, π) = 1.

2. Uniqueness: For all (pk , sk) ∈ Setup(1λ) and inputs x ∈ {0, 1}in(λ), there does not exist a tuple
(y1, y2, π1, π2) such that:
(1) y1 6= y2, (2) Verifypk (x, y1, π1) = 1, and (3) Verifypk (x, y2, π2) = 1.

3. Pseudorandomness: For all p.p.t. distinguishers D = (D1, D2), there exists a negligible function µ
such that:

Pr[(pk , sk)← Setup(1λ); (x, s)← D
Prove(·)
1 (1λ, pk); y0 = Fsk (x);

y1 ← {0, 1}out(λ); b← {0, 1}; b′ ← D
Prove(·)
2 (yb, s) :

b = b′ ∧ x 6∈ S] ≤ 1
2

+ µ(λ),

where S is the set of all inputs that D queries to its oracle Prove.

4

3 Algebraic Settings

Bilinear Groups Let G and GT be algebraic groups. A bilinear map is an efficient mapping e : G×G→ GT

which is both: (bilinear) for all g ∈ G and a, b← Z, e(ga, gb) = e(g, g)ab; and (non-degenerate) if g generates
G, then e(g, g) 6= 1.

Assumption 3.1 (`-Decisional Diffie-Hellman Exponent [7, 9]) Let G,GT be groups of prime order
p ∈ Θ(2λ). For all p.p.t. adversaries A, there exists a negligible function µ such that

Pr[g, h← G; a← Zp; y0 = e(g, h)a
`

; y1 ← GT ; b← {0, 1};

b′ ← A(g, h, ga, . . . , ga
`−1
, ga

`+1
, . . . , ga

2`

, yb) : b = b′] ≤ 1
2

+ µ(λ).

4 VRF Construction from the DDHE Assumption

Setup(1λ) We describe a system for inputs of length n, a polynomial in 1λ.3 The setup algorithm first
chooses a bilinear group G of prime order p. It selects random generators g, h ∈ G. It next selects random
values ũ, u0, u1, . . . , un ∈ Zp and sets Ũ = gũ, U0 = gu0 , U1 = gu1 , . . . , Un = gun . It then sets the keys as:

pk = (G, p, g, h, Ũ , U0, . . . , Un), sk = (G, p, g, h, ũ, u0, . . . , un).

Evaluate(sk , x) For x ∈ {0, 1}n, the function Fsk evaluates x = x1x2...xn as:

Fsk (x) = e(gũu0
Qn

i=1 u
xi
i , h)

Prove(sk , x) This algorithm outputs Fsk (x) together with a proof π comprised as follows. For i = 1 to n,
compute πi = gũ

Qi
j=1 u

xj
j . Next, compute π0 = gũu0

Qn
j=1 u

xj
j . Output the proof

π = (π1, . . . , πn, π0).

We observe that this formulation of π is redundant. It is not necessary to include πi when xi = 0, since
in this case, we have πi = πi−1 (for i > 1) and π1 = g (for i = 1).

Verify(pk , x, y, π) The first step is to verify that all parts of the input are properly encoded group elements;
in particular, that the proof π = (π1, . . . , πn, π0) contains legal encodings of elements in G. Next, the proof
is verified in a step-by-step manner by checking that

e(π1, g) =

{
e(g, Ũ) if x1 = 0;
e(U1, Ũ) otherwise.

and then for i = 2 to n, it holds that

e(πi, g) =

{
e(πi−1, g) if xi = 0;
e(πi−1, Ui) otherwise.

and finally that
e(π0, g) = e(πn, U0) and e(π0, h) = y.

Output 1 if and only if all checks verify.
3Due to the fact that n can be polynomial in the security parameter, we can accept inputs of arbitrary length by first

applying a collision resistant hash function.

5

Efficiency Discussion. The output of the PRF Fsk (·) is one element in GT . As noted above, our rep-
resentation of π is redundant and can be simplified. For an n-bit input x, the proof π requires at most
ones(x) + 1 ≤ n+ 1 elements in G, where ones(·) counts the number of bits set to 1 in the input. Individual
verification of the VRF output requires ones(x) + 3 ≤ n+ 3 pairings, if e(g, g) is provided in the public key.

For applications where several VRF outputs need to be verified at the same time, one can apply standard
batching techniques [2] to perform N verifications for n-bit inputs at a cost of O(n) total pairing operations.
The batch verification algorithm takes as input N tuples of the form (xi, yi = fsk (xi), πi) and outputs 1 if
and only if all individual proofs verify, with an error rate of 2−k for security parameter k.

The batching algorithm would first verify the respective group memberships of all yi and all values in
πi = (πi,0, . . . , πi,n). It then chooses random r0, . . . , rN ∈ {0, 1}k and verifies that:

e(
N∏
i=1

πri
i,1, g) = e(g

PN
i=1(1−xi)ri · U

PN
i=1 xiri

1 , Ũ)

and then for t = 2 to n, it holds that

e(
N∏
i=1

πri
i,t, g) = e(

N∏
i=1

π
(1−xi)ri

i,t−1 , g) · e(
N∏
i=1

πxiri
i,t−1, Ut)

To see the above, recall that e(1, g) = 1. Finally, we check that

e(
N∏
i=1

πri
i,0, g · h) = e(

N∏
i=1

πri
i,n, U0) ·

N∏
i=1

yri
i .

Output 1 if and only if all checks verify.

5 Proof of DDHE VRF

Theorem 5.1 The VRF construction in Section 4 is secure with respect to Definition 2.1 under the `-DDHE
assumption.

Proof. The provability property is verifiable in a straightforward manner from the construction. The unique-
ness property also follows easily from the group structure; that is, for any input, there is only one group
element in G that is the valid output and moreover, that it is not possible (even for an unbounded adversary)
to devise a valid proof for another element.

Showing pseudorandomness will require more work. To show pseudorandomness, we will employ a proof
technique from the Waters IBE system [30] that allows us to partition the inputs into two sets: those
the simulator can properly answer and those we hope the adversary chooses as a challenge. The main
difficulty in adapting this technique is that Waters was able to manipulate the randomness in the IBE keys
during simulation, whereas we are now dealing with a deterministic function evaluation. Nevertheless, by
strengthening the complexity assumption and making subtle changes throughout the proof, we are able to
complete the argument.

Suppose there is a p.p.t. distinguisher D which makes Q Prove queries in the pseudorandomness game
and succeeds with probability 1

2 + ε. Then we show how to use D to create an adversary B which breaks the
`-DDHE assumption with probability 1

2 + 3ε
64Q(n+1) , where ` = 4Q(n+ 1) and n is the bit length of the VRF

input.
On input (G, p, g, h, ga, . . . , ga`−1

, ga
`+1
, . . . , ga

2`

, Y), our `-DDHE solver B proceeds as:

Setup The simulator first sets an integer m = 4Q and chooses an integer, k, uniformly at random between
0 and n. Recall that Q is the number of queries made by the distinguisher and n is the bit length of the
VRF input. It then chooses random integers r1, . . . , rn, r′ between 0 and m− 1. Additionally, the simulator

6

chooses random values s1, . . . , sn, s′ ∈ Zp. These values are all kept internal to the simulator. Intuitively, the
r values will be used to embed the challenge, while the s values will be used as blinding factors to present
the proper distribution to the distinguisher.

For x ∈ {0, 1}n, let X ⊆ {1, . . . , n} be the set of the all i for which xi = 1. To ease our analysis, we
define the functions:

C(x) = m(1 + k) + r′ +
∑
i∈X

ri , Ĉ(x, i) = m+
i∑

j=1

xjrj

J(x) = s′
∏
i∈X

si , Ĵ(x, i) =
i∏

j=1

s
xj

j

For inputs x ∈ {0, 1}n, we define the binary function

K(x) =

{
0 if r′ +

∑n
j=1 xjrj ≡ 0 mod m;

1 otherwise.

The simulator sets U0 = (ga
m(k)+r′

)s
′
, Ũ = ga

m

and Ui = (ga
ri)si for i = 1 to n. It outputs the public

key as (G, p, g, h, Ũ , U0, . . . , Un), where implicitly the secret key contains the values u0 = am(k)+r′s′, ũ = am,
and {ui = arisi}i∈[1,n]. We observe that all parameter terms are simultable since all powers of a in the
exponent are less than ` = m(n+ 1) for any possible choice of ri, k values. Moreover, the terms s′, si values
distribute the parameters uniformly at random.

Prove The distinguisher, D, will ask for VRF evaluations and proofs. On query input x, the simulator
first checks if C(x) = ` and aborts if this is true. Otherwise, it outputs the value

F (x) = e((ga
C(x)

)J(x), h).

It also computes π0 = (ga
C(x)

)J(x) and πi = (ga
Ĉ(x,i)

)Ĵ(x,i) for i = 1 to n, and then outputs the proof
π = (π1, . . . , πn, π0).

Given the above settings, it is easy to verify that for any value of x ∈ {0, 1}n:

1. The maximum value of C(x) is m(1 + n) + (1 + n)(m− 1) < 2m(1 + n) = 2`.
2. For any i ∈ [1, n], the maximum value of Ĉ(x, i) is m+ (m− 1)n < m(n+ 1) = `.

Thus, if C(x) 6= `, then the simulator can always correctly answer all parts of the query.

Response Eventually D will provide a challenge input x∗. If C(x∗) = `, B will return the value Y . When
D responds with a guess b′, B will also output b′ as its `-DDHE guess. If C(x∗) 6= `, B outputs a random
bit as its `-DDHE guess.

This ends our description of `-DDHE adversary B.

A Series of Games Analysis. We now argue that any successful adversary D against our scheme will
have success in the game presented by B. To do this, we first define a sequence of games, where the first
game models the real security game and the final game is exactly the view of the adversary when interacting
with B. We then show via a series of claims that if D is successful against Game j, then it will also be
successful against Game j + 1.

Game 1: This game is defined to be the same as the VRF security game in Definition 2.1.

7

Game 2: The same as Game 1, with the exception that we keep a record of each query made by D, which
we’ll denote as −→x = (x(1), . . . , x(Q), x∗), where x∗ is the challenge input. At the end of the game,
we set m = 4Q and choose random integers −→r = (r1, . . . , rn, r′) between 0 and m − 1 and a random
integer k between 0 and n. We define the regular abort indicator function:

τ(−→x ,−→r , k) =

{
1 if r′ +

∑n
j=1 x

∗
jrj 6= m(n− k)

∨Q
i=1 K(x(i)) = 0;

0 otherwise.

This function τ(−→x ,−→r , k) evaluates to 0 if the queries −→x will not cause a regular abort for the given
choice of simulation values −→r , k. Consider the probability over all simulation values for the given set
of queries −→x as ζ(−→x) = Pr−→r ,k[τ(−→x ,−→r , k) = 0].

As in [30], the simulator estimates ζ(−→x) as ζ ′ by evaluating τ(−→x ,−→r , k) with fresh random −→r , k values
a total of O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) times. This does not require running the distinguisher again.

D’s success in the game is then determined as follows:

1. Regular Abort. If τ(−→x ,−→r , k) = 1, then flip a coin b ∈ {0, 1} and say that D wins if b = 0 and
loses otherwise.

2. Balancing (Artificial) Abort.4 Let ζmin = 1
8Q(n+1) as derived from Claim 5.2. If ζ ′ ≥ ζmin, B will

abort with probability ζ′−ζmin

ζ′ (not abort with probability ζmin

ζ′). If it aborts, flip a coin b ∈ {0, 1}
and say that D wins if b = 0 and loses otherwise.

3. Otherwise, D wins if it correctly guessed b′ as in the real security game.

Game 3: The same as Game 2, with the exception that B tests if any abort conditions are satisfied, with
each new query, and if so, follows the abort procedure immediately (i.e., flips a coin b ∈ {0, 1} and says
that D wins if b = 0.)

Game 3 is exactly the view of D when interacting with B. We will shortly prove that if D succeeds in
Game 1 with probability 1

2 + ε, then it succeeds in Game 3 with probability ≥ 1
2 + 3ε

64Q(n+1) .

Establishing Three Claims about the Probability of Aborting. Before doing so, we establish one
claim which was used above and two claims which will be needed shortly. Our first claim helps us establish a
minimum probability that a given set of queries do not cause a regular abort. We use this minimum during
our balancing abort in Game 2, to “even out” the probability of an abort over all possible queries. In the
next two claims, we employ Chernoff Bounds to establish upper and lower bounds for any abort (regular or
balancing) for any set of queries. The latter two claims will be used in the analysis of D’s probability of
success in Game 2.

Claim 5.2 Let ζmin = 1
8Q(n+1) . For any query vector −→x , ζ(−→x) ≥ ζmin.

Proof of Claim 5.2 is similar to a related argument in [30] and appears in Appendix A.

Claim 5.3 For any set of queries −→x , the probability that there is an abort (i.e., regular or balancing) is
≥ 1− ζmin − 3

8ζminε.

Proof. Let ζx = ζ(−→x), as defined in Section 5, be the probability that a set of queries −→x do not cause a
regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) samples are taken to approximate this value as

ζ ′x. By Chernoff Bounds, we have that for all −→x ,

Pr[Tζ ′x < Tζx(1− ε

8
)] < e−[128ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min)(ζmin)(ε/8)

2/2],

4In Waters [30], this is called the artificial abort. Recently, Bellare and Ristenpart provided an analysis of the Waters’ IBE
without the artificial abort [3]. We could use their techniques here for an alternative, tighter analysis, but we would need to
expand the input size of our `-DDHE assumption by a factor of 1/ε, where the distinguisher’s advantage is 1/2 + ε.

8

which reduces to
Pr[ζ ′x < ζx(1− ε

8
)] < ζmin

ε

8
.

Recall that for a measured ζ ′x an artificial abort will not happen with probability ζmin/ζ
′
x. The probability

of aborting is

Pr[abort] = 1− Pr[abort] = 1− Pr[RA] Pr[AA] = 1− ζx Pr[AA]

≥ 1− ζx(ζmin
ε

8
+

ζmin

ζx(1− ε/8)
)

≥ 1− (ζmin
ε

8
+

ζmin

1− ε/8
)

≥ 1− (
ζminε

8
+ ζmin(1 +

2ε
8

))

≥ 1− ζmin − ζmin
3ε
8

�

Claim 5.4 For any set of queries −→x , the probability that there is no abort (i.e., regular or balancing) is
≥ ζmin − 1

4ζminε.

Proof. Let ζx = ζ(−→x), as defined in Section 5, be the probability that a set of queries −→x do not cause a
regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) samples are taken to approximate this value as

ζ ′x. By Chernoff Bounds, we have that for all −→x ,

Pr[Tζ ′x > Tζx(1 +
ε

8
)] < e−[256ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min)](ζmin)(ε/8)

2/4],

which reduces to
Pr[ζ ′x > ζx(1 +

ε

8
)] < ζmin

ε

8
.

The probability of not aborting is equal to the probability of not regular aborting times the probability of not
artificial aborting. Recall that for a measured ζ ′x an artificial abort (AA) will not happen with probability
ζmin/ζ

′
x. Therefore, for any x, the Pr[AA] ≥ (1− ζminε

8) ζmin

ζx(1+ε/8) . It follows that

Pr[abort] ≥ ζx(1− ζminε

8
)

ζmin

ζx(1 + ε/8)
≥ ζmin(1− ε

8
)2 ≥ ζmin(1− 1

4
ε).

�

Analyzing D’s Probability of Success in the Games. Define D’s probability of success in Game x as
AdvD[Game x]. We reason about the probability of D’s success in the series of games as follows.

Lemma 5.5 If AdvD[Game 1] = 1
2 + ε, then AdvD[Game 2] ≥ 1

2 + 3·ε
64Q(n+1) .

9

Proof. We begin by observing that AdvD[Game 2] is

= AdvD[Game 2|abort] · Pr[abort] + AdvD[Game 2|abort] · Pr[abort] (1)

=
1
2

Pr[abort] + AdvD[Game 2|abort] · Pr[abort] (2)

=
1
2

Pr[abort] + Pr[b = b′|abort] · Pr[abort] (3)

=
1
2

Pr[abort] + Pr[b = b′] · Pr[abort|b = b′] (4)

=
1
2

Pr[abort] + (
1
2

+ ε) · Pr[abort|b = b′] (5)

≥ 1
2

(1− ζmin − s1) + (
1
2

+ ε)(ζmin − s2) (6)

≥ 1
2

+ ε · ζmin − (s1 + s2) (7)

=
1
2

+
3 · ε · ζmin

8
(8)

=
1
2

+
3 · ε

64Q(n+ 1)
(9)

Equation 2 follows from the fact that, in the case of abort, D’s success is determined by a coin flip. It
would be very convenient if we could claim that AdvD[Game 2 | abort] = AdvD[Game 1], but unfortunately,
this is false. The event that D wins Game 2 and the event of an abort are not independent; however, we
have inserted the balancing abort condition in the attempt to lessen the dependence between these events.
Equation 3 simply states that, when there is no abort, D wins if and only if it guesses correctly. Equation 4
follows from Bayes’ Theorem. In Equation 5, we observe that Pr[b = b′] is exactly D’s success in Game 1.

Now, the purpose of our balancing abort is to even the probability of aborting, for all queries of D, to
be roughly ζmin. This will also get rid of the conditional dependence on b = b′. There will be a small error,
which must be taken into account. Suppose that Pr[abort] ≥ 1− ζmin − s1 and Pr[abort] ≥ ζmin − s2, which
must hold for some error values s1, s2, then we derive Equation 6. Algebraic manipulation and recalling that
ε ≤ 1

2 , brings us to Equation 7.
We set ζmin = 1

8Q(n+1) from Claim 5.2. We know, for all queries, that Pr[abort] ≥ 1 − ζmin − s1 where
s1 = 3

8ζminε from Claim 5.3 and that Pr[abort] ≥ ζmin− s2 where s2 = 1
4ζminε from Claim 5.4. Plugging these

values into Equations 7 and 8 establishes the lemma. �

Lemma 5.6 AdvD[Game 3] = AdvD[Game 2].

Proof. We make the explicit observation that these games are equivalent by observing that their only
difference is the time at which the regular aborts occur. The artificial abort stage is identical. All public
parameters, evaluations and proofs have the same distribution up to the point of a possible abortion. In
Game 2, the simulator receives all the queries −→x , then checks if τ(−→x ,−→r , k) = 1 and aborts, taking a random
guess, if so. In Game 3, the simulator checks with each new query x if K(x) = 0, which implies that the
ending τ evaluation will be 1, and aborts, taking a random guess, if so. Therefore, the output distributions
will be the same. �

�

Tightness of the Reduction. Using the (asymptotically) tighter analysis techniques of Hofheinz and
Kiltz [20], the 1/n factor loss in our reduction, that occurs due to the Balancing Abort in Game 2, could be
reduced to 1/

√
n. Since the 1/Q factor loss is the dominating term in our concrete analysis, this improved

analysis may provide only modest gains in practice.

10

6 Conclusion and Open Directions

Verifiable random functions are an interesting and useful cryptographic primitive, but to date, all known
constructions for exponentially-large message spaces required interactive complexity assumptions or their
concrete security degraded by an exponential factor. In this work, we presented an efficient construction
which can handle arbitrarily-large inputs (by first applying a collision-resistant hash function) based on
the `-Decisional Diffie-Hellman Exponent assumption. Our security proof used techniques similar to the
Waters IBE [30], where we partitioned the input space into those for which we can provide a proof and those
which we cannot. We then showed that with non-negligible probability, the adversary will only query us on
inputs for which we can provide proofs, except for the challenge query, for which the proof is unknown. The
main technical difference when applying Waters’ proof techniques is we must move from an additive to a
multiplicative structure, work without randomness in the output to manipulate during the reduction, and
operate under a different complexity assumption. Fortunately, we were still able to properly simulate access
to an exponentially-large input space using a complexity assumption with only a polynomial-size input.

We believe this work is an important step towards better understanding how to construct verifiable
random functions. It leaves open many interesting questions. First, it would be interesting to improve on
the efficiency of our construction, especially by realizing a seed, proof size and verification time that are
sublinear in the bit-length of the input. Second, one would like to know if it is possible to realize a VRF
under a complexity assumption with a fixed input size, such as Decisional Diffie-Hellman. If this is not
possible, perhaps one can show that a q-based assumption (with at least a polynomial number of terms) is
inherently necessary. Finally, it would be interesting to see if this new construction allows for any additional
applications of VRFs or if it can be used to reduce the overall complexity assumptions required by any
constructions using VRFs.

Acknowledgments

We thank Qiong Huang for helpful comments and Michel Abdalla for pointing out an error in an earlier
draft.

References

[1] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from identity-based key
encapsulation. In Advances in Cryptology – EUROCRYPT ’09, volume 5479, pages 554–571, 2009.

[2] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentiation and
digital signatures. In Advances in Cryptology – EUROCRYPT ’98, volume 1403 of LNCS, pages 236–250,
1998.

[3] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof and
improved concrete security for Waters’ IBE scheme. In EUROCRYPT ’09, volume 5479, pages 407–424,
2009.

[4] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In STOC, pages 103–112, 1988.

[5] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-knowledge.
SIAM J. Comput., 20(6):1084–1118, 1991.

[6] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Advances in Cryptology –
EUROCRYPT ’04, volume 3027 of Lecture Notes in Computer Science, pages 382–400. Springer, 2004.

[7] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size
ciphertext. In Advances in Cryptology – EUROCRYPT ’05, volume 3494, pages 440–456, 2005.

11

[8] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil Pairing. In CRYPTO
’01, volume 2139 of LNCS, pages 213–229, 2001.

[9] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In Advances in Cryptology – CRYPTO ’05, volume 3621, pages 258–275,
2005.

[10] Zvika Brakerski, Shafi Goldwasser, Guy N. Rothblum, and Vinod Vaikuntanathan. Weak verifiable
random functions. In TCC, pages 558–576, 2009.

[11] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-Cash. In EUROCRYPT,
volume 3494 of LNCS, pages 302–321, 2005.

[12] Melissa Chase and Anna Lysyanskaya. Simulatable VRFs with applications to multi-theorem NIZK. In
Advances in Cryptology – CRYPTO ’07, volume 4622, pages 303–322, 2007.

[13] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Public Key
Cryptography, volume 2567, pages 1–17, 2003.

[14] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifiable Random Function with Short Proofs an Keys.
In Public Key Cryptography, volume 3386, pages 416–431, 2005.

[15] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious
pseudorandom functions. In TCC ’05, volume 3378 of LNCS, pages 303–324, 2005.

[16] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of
the ACM, 33 (4):792–807, 1986.

[17] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In STOC ’89,
pages 25–32, 1989.

[18] Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive zero-knowledge proofs
are equivalent (extended abstract). In CRYPTO, pages 228–245, 1992.

[19] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In TCC ’05, volume 4948 of LNCS, pages 155–175,
2008.

[20] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. In Advances in
Cryptology – CRYPTO ’08, volume 5157 of LNCS, pages 21–38, 2008.

[21] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applications to
adaptive OT and secure computation of set intersection. In TCC ’09, volume 5444 of LNCS, pages
577–594, 2009.

[22] Stanislaw Jarecki and Vitaly Shmatikov. Handcuffing big brother: an abuse-resilient transaction escrow
scheme. In EUROCRYPT ’04, volume 3027 of LNCS, pages 590–608, 2004.

[23] Moses Liskov. Updatable zero-knowledge databases. In ASIACRYPT ’05, volume 3788 of LNCS, pages
174–198, 2005.

[24] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH separation.
In Advances in Cryptology – CRYPTO ’02, volume 2442, pages 597–612, 2002.

[25] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In Symposium on
Foundations of Computer Science (FOCS), pages 120–130. IEEE Computer Society, 1999.

12

[26] Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In CRYPTO ’01, volume 2139 of
LNCS, pages 542–565, 2001.

[27] Silvio Micali and Ronald L. Rivest. Micropayments revisited. In CT-RSA ’02, volume 2271 of LNCS,
pages 149–163, 2002.

[28] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions.
Journal of the ACM, 51, Number 2:231–262, 2004.

[29] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO ’84, volume 196 of
LNCS, pages 47–53, 1984.

[30] Brent Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptology –
EUROCRYPT ’05, volume 3494 of Lecture Notes in Computer Science, pages 320–329. Springer, 2005.

A Proof of Claim 5.2

Proof. In other words, the probability of the simulation not triggering a general abort is at least ζmin. This
analysis follows that of [30], which we reproduce here for completeness. Without loss of generality, we can
assume the adversary always makes the maximum number of queries Q (since the probability of not aborting
increases with fewer queries). Fix an arbitrary −→x = (x(1), . . . , x(Q), x∗) ∈ {0, 1}n. Then, with the probability

13

over the choice of −→r , k, we have that Pr[abort on −→x] is

= Pr[
Q∧
i=1

K(x(i)) = 1 ∧ r′ +
n∑
j=1

x∗jrj = m(n− k)] (10)

= (1− Pr[
Q∨
i=1

K(x(i)) = 0]) Pr[r′ +
n∑
j=1

x∗jrj = m(n− k)|
Q∧
i=1

K(x(i)) = 1] (11)

≥ (1−
Q∑
i=1

Pr[K(x(i)) = 0]) Pr[r′ +
n∑
j=1

x∗jrj = m(n− k)|
Q∧
i=1

K(x(i)) = 1] (12)

= (1− Q

m
) · Pr[r′ +

n∑
j=1

x∗jrj = m(n− k) |
Q∧
i=1

K(x(i)) = 1] (13)

=
1

n+ 1
· (1− Q

m
) · Pr[K(x∗) = 0 |

Q∧
i=1

K(x(i)) = 1] (14)

=
1

n+ 1
· (1− Q

m
) ·

Pr[K(x∗) = 0] · Pr[
∧Q
i=1K(x(i)) = 1] | K(x∗) = 0]

Pr[
∧Q
i=1K(x(i)) = 1]]

(15)

≥ 1
(n+ 1)m

· (1− Q

m
) · Pr[

Q∧
i=1

K(x(i)) = 1] | K(x∗) = 0] (16)

=
1

(n+ 1)m
· (1− Q

m
) · (1− Pr[

Q∨
i=1

K(x(i)) = 0] | K(x∗) = 0]) (17)

≥ 1
(n+ 1)m

· (1− Q

m
) · (1−

Q∑
i=1

Pr[K(x(i)) = 0] | K(x∗) = 0]) (18)

=
1

(n+ 1)m
· (1− Q

m
)2 (19)

≥ 1
(n+ 1)m

· (1− 2Q
m

) (20)

=
1

8Q(n+ 1)
(21)

Equations 13 and 16 derive from Pr[K(x) = 0] = 1
m for any query x. Equation 14 gets a factor of 1

n+1 from
the simulator taking a guess of k. Equation 15 follows from Bayes’ Theorem. Equation 19 follows from the
pairwise independence of the probabilities that K(x) = 0,K(x′) = 0 for any pair of queries x 6= x′, since
they will differ in at least one random rj value. Equation 21 follows from our setting of m = 4Q. �

14

