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Abstract. The most costly operations encountered in pairing compu-
tations are those that take place in the full extension field F,.. At high
levels of security, the complexity of operations in F,» dominates the
complexity of the operations that occur in the lower degree subfields.
Consequently, full extension field operations have the greatest effect on
the runtime of Miller’'s algorithm. Many recent optimizations in the
literature have focussed on improving the overall operation count by
presenting new explicit formulas that reduce the number of subfield
operations encountered throughout an iteration of Miller’s algorithm.
Unfortunately, almost all of these improvements tend to suffer for larger
embedding degrees where the expensive extension field operations far
outweigh the operations in the smaller subfields. In this paper, we
propose a new way of carrying out Miller’s algorithm that involves
new explicit formulas which reduce the number of full extension field
operations that occur in an iteration of the Miller loop, resulting in
significant speed ups in most practical situations of between 5 and 30
percent.
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1 Introduction

At the beginning of this century, pairing-based cryptography became extremely
popular after the first practical identity-based encryption scheme was
constructed using the powerful bilinearity property of pairings [13]. Accompanied
by many other exciting breakthroughs that resulted from pairings, the discovery
of ID-based encryption heightened the demand for practical pairings which
can be computed efficiently. Since then, much research has been invested
towards achieving faster pairings and consequently the speed of computing
Miller’s algorithm [34] for calculating pairings has significantly increased. Initial
improvements in pairing computations were spearheaded by evidence that the
Tate pairing was much more efficient than the Weil pairing, since the final
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exponentiation in the Tate pairing facilitates several clever simplifications in the
Miller iterations [4, 6, 7,35]. The continual evolution of security requirements and
standards has lead to a large emphasis being placed on obtaining secure curve
constructions for a range of embedding degrees. As a result, the construction
of pairing-friendly curves has become an active field of research in itself [5,14,
36, 20, 8,24, 10, 21, 30], so that cryptographers can now choose from an array of
flexible curve options that offer high levels of efficiency in pairing computations
[22]. More recently, Hess, Smart and Vercauteren [27] generalized prior work by
Duursma and Lee [19] and Barreto et al. [3] to develop the ate pairing which
benefits from a truncated loop length and is usually much faster than the Tate
pairing. The ate pairing has since enjoyed its own improvements [33, 32], to the
point where ate pairing variants can now be computed with optimal loop lengths
[37,26].

In very recent times, researchers have achieved further speedups by deriving
fast explicit formulas for specific stages of a Miller iteration [15,18,28, 1,16,
17], so that each iteration requires less subfield operations, resulting in a faster
pairing. Unfortunately, such improvements are less effective when applied to the
Tate pairing because the operations that are saved occur in the base field IF,, and
as the embedding degree k gets large, the complexity of the operations occurring
in the full extension field F,» dominates the complexity of those operations
occurring in [Fp, so that the relative speedup resulting from savings in the base
field becomes much less. In the ate pairing with a twist of degree d, faster explicit
formulas save operations in the subfield F /4, the complexity of which grows
at the same rate as the complexity of operations in Fp, so that an increased
embedding degree will not drastically effect the relative speedup. Nevertheless,
optimized implementations of the ate pairing make use of the highest available
twist for a given k, so that the complexity of operations in IFx/a is much less than
those in F,x. For example, the ate pairing computed on a BN curve [8] where
k = 12 uses a sextic twist (d = 6), so that any computations saved through
faster explicit formulas are those in the much smaller field Fp.. An optimized
construction of the extension field [31, 9] results in the complexity of operations
in Fj,12 being no less than 15 times greater than the analogous operations in Fz,
so that any speedups that result from faster explicit formulas are still greatly
overshadowed by the expensive operations in Fj12. At any level, full extension
field operations greatly outweigh subfield operations for both Tate-and ate-like
pairings.

Eisentrager, Lauter and Montgomery [29] managed to avoid full extension
field arithmetic in pairing computations by combining two linear Miller functions
into a single function of degree 2, which they call a parabola, and achieving
a speedup by replacing two multiplications by the two linear functions with
a single multiplication by the parabola. However, the algorithm in [29] has
limited application in state-of-the-art pairing implementations because it only
applies to stages of the algorithm that require point addition, and optimized
implementations will choose loop parameters with low Hamming weight that
minimize the occurrence of these additions. Blake, Murty and Xu [12] extended



the observations in [29] to form combinations of Miller lines that apply to
every iteration of the Miller loop, proposing a version of Miller’s algorithm
that is somewhat analogous to the 2™-ary windowing methods for general
exponentiation (cf. [2, §9]), using a window of size n = 2. Again, the techniques
proposed in [12] are not optimized for modern implementations of Miller’s
algorithm because the main benefit of the combined linear functions in their
case was to avoid field divisions, a problem that became obsolete after the
introduction of denominator elimination in [4]. In this paper, we extend the
notion of combining Miller lines into higher degree polynomials and present
a more general approach, which we call Miller 2"-tuple-and-add. Specifically,
we show how to combine explicit formulas from n consecutive Miller double-
and-add iterations into more complicated explicit formulas for one Miller 2"-
tuple-and-add iteration. The price we pay for spending more subfield operations
to evaluate these more complicated formulas is greatly rewarded by the large
savings that result from avoiding costly arithmetic in the full extension field.
For both Tate and ate-like pairings, we show that the Miller 2"-tuple-and-add
algorithm achieves significant speedups over the standard Miller double-and-
add routine for the majority of pairing-friendly embedding degrees. Our method
offers (among others) the following important advantages over the prior work in
[12]:

— Our method works for general n > 1. All prior work (except for n = 2 in
[12]) has used n = 1.

— Our method handles any addition steps encountered in Miller’s 2"-tuple-
and-add algorithm in exactly the same way, regardless of the 2"-ary
representation of the loop parameter. The method in [12] for n = 2 uses
formulas that differ depending on the quarternary representation of the loop
parameter. An important consequence of this is that higher values of n do
not result in more complex additions, as they do for n = 2 in [12].

— The techniques and analyses in [12] focus on reducing the number of field
divisions (inversions) that occur in the affine representation of the Miller
lines. Field inversions are extremely costly in pairing implementations and
have been phased out thanks to denominator elimination and the application
of non-affine (projective) coordinate systems to pairing computations that
eliminate field inversions altogether. The explicit formulas herein are derived
using projective coordinates, and these formulas are reduced to give much
faster operation counts.

The rest of this paper is organized as follows. Section 2 provides a brief
background on pairings and Miller’s algorithm. In Section 3 we describe the
general Miller 2"-tuple-and-add algorithm, before discussing a general strategy
to obtain explicit formulas for 2"-tuple-and-add in Section 4. In Section 5,
we derive explicit formulas for the cases of Miller quadruple-and-add (n = 2)
and Miller octuple-and-add (n = 3), and obtain operation counts for a typical
iteration in each scenario. In Section 6, we compare the operation counts for the
quadruple-and-add and octuple-and-add algorithm with the standard double-
and-add algorithm. We draw conclusions in the same section.



2 Background

Let E be an elliptic curve over IF,,. Assume E is given by the short Weierstrass
equation y?> = 2% + az + b and let O be the neutral element on E. For the
points R, S € F, let lr s and vg, g respectively be the sloped and vertical lines
in the standard chord-and-tangent addition of R and .S, the divisors of which are
div(lg,s) = (R)+(S)+(—(R+S))—3(0) and div(vg,s) = (—(R+S))+(R+S)—
2(0). When R = S, we have g r and vg, g as the sloped and vertical lines in the
point doubling of R. Herein we let gr g represent the quotient gr ¢ = Ir,s/vR,s,
with associated divisor div(gr,s) = (R) + (S) = (R+ S) — (0). For v € Z, let
fu,r be a function with divisor

fo.r =v(R) = ([W]R) — (v = 1)(O).

Let k£ be the embedding degree of E with respect to some large prime r and let
E[r] denote the group of r-torsion points on E. We use 7, to denote the p-power
Frobenius endormorphism on F and we define two groups G; and Gy using the
two eigenspaces of 7, as G; = E[r] Nker(m, — [1]) and G2 = E[r] Nker(m, — [p]).

For two points P € Gy and @ € G, the Tate pairing e, : Gy X Go — Gg3
is computed as e, (P, Q) = fr,p(Q)(pk_l)/T'. Let T'=1t — 1, where t is the trace
of the Frobenius on E. The ate pairing ar : Go x G; — Gg3 is computed as
ar(Q,P) = fT,Q(P)(pk_l)/r. In the coming sections, we treat both pairings
simultaneously by letting the required pairing be computed as fp, r(S )(pk_l)/ (e
where it is understood that in the Tate pairing we have m = r, R € G; and
S € G, whilst in the ate pairing we have m =T, R € Go and S € Gy.

When counting field operations, we use M and S to denote the respective
costs of a multiplication and a squaring in the field F,x, and we use m and s to
represent the costs of a multiplication and a squaring in the subfield e, where
e = 1 for Tate-like pairings and e = k/d for ate-like pairings with twists of degree
d. In some instances it is necessary to count operations in more than two fields,
in which case we avoid ambiguities by letting m; and s; denote the costs of a
multiplication and a squaring in the field F,:. Lastly, we report the cost of a
multiplication by a curve constant (or a small power of a curve constant) as d.

Since the introduction of the original ate pairing [27], several variants with
even shorter loop lengths have emerged [33], including the R-ate pairing [32]
which often achieves the optimal loop length [37,26]. All of these variants also
take R € Gz and S € G; and compute f,, r(S), the only difference being the
construction (and size) of the loop parameter m. We refer to all such pairings
collectively as ate-like pairings (a : G2 X G; — Gg3), and hereafter we make no
specifications regarding the loop length, since it plays no role in the results of
this paper. Identically, we put the twisted ate pairing [27] under the umbrella
of Tate-like pairings (e : G; x Go — Gg3), since the twisted ate pairing takes its
respective inputs from the same groups as the Tate pairing.

Using fitjr = fi,r * fj.rR " 91i|r,[j)r, the usual version of Miller’s algorithm
computes the required function in |log,(m)| iterations by initializing f1 r(S) =



Algorithm 1 Miller double-and-add Algorithm
Input: R, S, m = (my—1...m1,mo)2.
Output: f,, r(S5).

1:. T—R, f—1.
2: fori=1—2to0do

3: Compute g = gr,7(S)

4: T [2]T.

5: f—1r-g

6: if m; # 0 then

7: Compute g = gr,r(S5)
8: T«—T-+R.

9: f<Tr-g

10: end if

11: end for

12: return f.

1 and progressively building the functions f, r(S) (for v < m) to approach
fm,r(S) in a double-and-add-like fashion, as summarized in Algorithm 1.

At the beginning of an iteration of Algorithm 1, let the intermediate multiple
of the point R be T' = [v]R, so that the current Miller function f relating to the
point T" has divisor

div(fo,r) = v(R) = ([|R) — (v = 1)(O).

Miller’s double-and-add algorithm forms the function fs, g relating to the point
2T = [20]R as foo,r = f2 g - 927, Where div(gpr) = 2(T) — ([2]T) — (O), so
that fo, r has divisor

div(fou,r) = div(fig-gor) = 2-div(for) +div(gyr)
=2 (v(R) = ([v]R) = (v =1)(0)) + (2(T) — ([2IT) - (0))
= 2v(R) — ([2v]R) — (2v — 1)(O).

We obtain the Miller function fs, r by squaring the Miller function f, r and
multiplying this result by the “line” function(s) involved in the point doubling
of T'. In a standard implementation of Miller’s algorithm, the functions f, r and
gr,r are contained in the full extension field, so that the function update (step
5 of Algorithm 1) comes at a cost of 1M + 1S. Assuming (for now) that no
intermediate addition operations are required (i.e. m; = 0 for n consecutive i’s
in Algorithm 1), n consecutive iterations of Miller’s double-and-add algorithm
above transform the function f, g into the function fan, r. The cost of the n
function updates that occur in n such iterations is then nM + nS.

3 2™-ary pairings: Miller 2™-tuple-and-add

In this section we generalize the above (double-and-add) method by combining
n consecutive doubling steps into one 2™-tupling step and we show that this



reduces the number of expensive function updates that occur in IF,.. For any
n, we naturally refer to this process as the Miller 2"-tuple-and-add algorithm.
Consider n consecutive squarings on the function f, r, which equates to raising
fu,r to the power 2". The divisor of the resulting function is given as

div((for)?) = 2"-div(fur) = 2"U(R)—2”([U}R)—2”(v—1)((9)(~1)

To obtain the desired Miller function fon, g from f, g, we must now find
a function f* such that div((f, r)?") + div(f*) = div(foro.r) = 2"0(R) —
([2™v]R) — (2"v — 1)(O). We construct f* as

n
n—i

[r= 1_[(9[21'*1]7“,[2%1]T)2 ; (2)

i=1

the divisor of which is

div(f*) = Z A diV(g[Qi—l]T’[Qi—l]T)

= e - (@) - 0)
= (1)~ ([2)7) - (2"~ 1)(O). 3)

Substituting T = [v]R into (3) and combining this with (1) reveals that
div((fy.r)?") +div(f*) = div(fans. r), so that f* is indeed the required function.
We note that the construction of f* is intuitive. Namely, f* is simply the product
of the n different ¢’s that are formed throughout each of the n equivalent double-
and-add iterations, each of which accumulates a different exponent depending
on how many squarings it encounters in the iterations that follow. In this light,
Miller 2"-tuple-and-add is much the same as Miller double-and-add; the major
difference is that in Miller 2"-tuple-and-add we do not multiply the Miller
function by its update g immediately after it is squared. Rather, we form a
product f* of n powers of such ¢g’s and we delay the multiplication of f* by f so
that it occurs only once in what is the equivalent of n double-and-add iterations.

For the addition step in the Miller 2"-tuple-and-add algorithm, we now have
to consider adding some multiple [w]R of R (w < 2") to the intermediate point
and updating the Miller function accordingly. Suppose the intermediate point
is T = [v]R and the related Miller function prior to the addition has divisor
div(fu,r) = v(R) — ([v]R) — (v —1)(O) as before. We require a function f* such
that div( . ) +div(f+) = div(Furay ) = (v-0) (B)—([o-+w] R)—(v+w=1)(O).
The straightforward way to construct such a function is

w—1
=11 or+ur.r (4)
=0



the divisor of which is

diV(f+) = z_: div(gTJr[i]R,R)
1=0
= i [(R)+ (T + [i]R) — (T + [i + 1]R) — (O)]
=0
= w(R) + (T) — (T + [w]R) — w(O).

Again, substituting 7' = [v] R gives div(fT) = w(R) +([v]R) — ([v+w]R) —w(O),
so that div(fy,r) + div(f") = div(ftw),r), and we see that fT is clearly the
desired function. However, if we compute fT in the above fashion, we have to
compute the product of w different addition lines, and since w can take any value
between 1 and 2" — 1, computing the addition step with the explicit formulas
that result from the product in (4) can become quite costly. Instead, consider an
alternative method of computing the addition line as follows. Let ;{t be such
that div(f},) = div(f*) and take

f:l_t = fw,R " 9v|R,[w|R> (5)

so that div(f},) = div(fuw,r)+div(gj) r,[w)r) = W(R)+([v]R)—([v+w]R)—w(O).
The advantage of the computation of f;{t over the computation of f* is that

;{t is comprised of only two functions, regardless of the size of w. Moreover,
the function f, g is the same function throughout the entire Miller 2”-tupling
loop and does not change depending on where the addition/s occurs. Thus, the
fw,r’s can be precomputed (for all necessary values of w) prior to entering the
Miller 2"-tupling loop so that we must only construct one new line function
(9v)r,[w)r) at each addition stage. Importantly, this addition line is computed
by applying the standard addition formulas to the coordinates of the point [v]R,
which changes in each iteration, and the point [w]R whose coordinates can be
cached initially. From here on, the construction of f* refers to the construction
of f;[t described in (5). We summarize in Algorithm 2, where we note that the
first value in the base 2" representation of m will not be m;_; = 1 in general,
so that we begin with an addition before entering the loop when m;_; # 1.

In regards to full extension field arithmetic only, one standard iteration of
Algorithm 2 (which usually has m; = 0) requires 1M + nS. When n = 1,
we recover the usual Miller double-and-add algorithm which requires |log,(m)]
iterations, each incurring 1M + 1S. For n = 2, the algorithm requires half as
many iterations (|log,(m)]) that each incur a cost of 1M + 28, offering a 1M
saving over two equivalent standard double-and-add iterations. For general n, we
save (n — 1)M for each of the |logy. (m)] iterations of the Miller 2"-tuple-and-
add algorithm, giving a relative saving of "771M over each equivalent standard
double-and-add iteration. Therefore the larger we allow n to become, the more
full extension field arithmetic we can avoid in the pairing computation.

The price we pay for increasing n is an increase in the complexity of the
formulas required to compute the function f*. As n grows, the size of f* (in



Algorithm 2 Miller 2"-tuple-and-add Algorithm

Input: R, S, m = (my_1...m1,mg)2n, and the necessary precomputed values of w[R)]
where w < 2".
Output: f, r(S5).

:T—R, f—1.

: Compute function f* as the product described in (5) with w = m;_.
s f=ffT

: T — T+ [mi—1]R.

:fori=1—-2to0do

Compute function f* in the 2"-tupling of T

T «— [2"]T.

f— 1

if m; # 0 then

10: Compute function f* as the product described in (5) with w = m;.
11: T «— T+ [m4]R.

12: fe—f-fr.

13: end if

14: end for

15: return f.
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its explicit form) grows rapidly so that many more operations are required to
compute it. However, these operations are performed in substantially smaller
subfields of the full extension field, where the computations are much cheaper.
We can achieve significant speedups in the pairing computation if the price we
pay for computing the more complex product of line functions f* in the smaller
subfields of FFx is less than the savings we obtain in IFx itself.

In the following section we shed light on the details concerning the
combination of steps 6 and 7 and the combination of steps 10 and 11 that are
summarized in Algorithm 2.

4 A Strategy for Obtaining Explicit Formulas

This section provides the details for deriving explicit formulas for Miller 2"™-tuple-
and-add implementations. We pay close attention to the steps in Algorithm 2
that require deeper explanations.

Line 6 of Algorithm 2: Algorithm 3 (below) uses the standard doubling formulas
to construct the affine line product f* for Miller 2"-tupling in accordance with

(2).

We note that Algorithm 3 computes the product g under the assumption of
an even embedding degree, so that the denominator v; of the i-th product update
gi = l;/v; can be eliminated and the g;’s simply become the [;’s described at the
beginning of Section 2. In the following sections we use different projections on
the affine form of f* depending on the curve model.



Algorithm 3 Constructing explicit formulas for f*

Input: R = (z1,y1) and S = (x5, ys).
Output: f*.

L (z,y) «— (z1,91), [© < L.
2: for i =1 ton do

3: A (322 +a)/(2y).

4: x — A -2z,

5: Yy — Mz —12')—y.

6: g — Nz —zs) +ys —y.
7. e g

8: (z,y) — (&', ¢).

9: end for

10: return f*.

Line 7 of Algorithm 2: Depending on the formulas derived for f*, there are two
possibilities that need to be considered for computing the point multiplication
[2"]T. The first option would be to output the explicit formulas for =’ and y’
in Algorithm 3. These compounded formulas would obviously be much more
complicated than the standard point doubling formulas (i.e. computing [2]T),
however the more complicated explicit formulas for computing [2"]T = (2/,y")
may end up sharing many common subexpressions with the explicit formula for
f* so that the overall count would be less. The second option simply involves
repeating n consecutive doublings on the point T'. The heuristic argument would
suggest that optimized formulas for computing [2"]T directly should require
no more operations than those required in the repetitive doublings, suggesting
that the first option should always take preference. However, our experiments
indicated that attempts to optimize 2"-tupling formulas always tend to reduce
to the same formulas that arise from n repeated doublings. For the sake of
simplicity, we therefore opt for the latter suggestion and perform n repetitive
doublings to compute [2"]T". Furthermore, it also tends to be the case that the
higher degree subexpressions obtained in the explicit formulas for computing
[2"]T directly do not appear in the simplified expressions for f*. However,
many operations used in the very first doubling of T also appear readily in the
components of f* and we make use of these common subexpressions. Namely,
the doubling formulas used to compute [2]T" are chosen so that the simultaneous
computation of f* and [2]T comes at minimal cost. Therefore, it is often the
case that the formulas used to compute [2]T may not be the same formulas as
those used to compute the n — 1 doublings that follow.

Lines 10 and 11 of Algorithm 2: In the addition stage of Miller 2"-tuple-and-add,
we are required to add some multiple w[R] of R (w < 2™) to the intermediate
point 7. Here we simply cache the value [w]R before the iterations start and
perform a standard point addition. The Miller function update f* required in
line 7 of Algorithm 2 requires the computation of the product f+ = f, r(S) -
97,jw)r(S). By definition, g7 [, r(S) is the line function corresponding to the



addition of T to [w]R, evaluated at the point S. Therefore, the combination
of lines 11 and 12 of Algorithm 2 can simply be viewed as a standard point
addition between T' and [w]R, as well as the extra multiplication of gz [.)r(5)
by the cached value fy, r(S5).

5 Miller Quadrupling and Octupling

In this section we focus on applying the generalized algorithm in Section 3 to
the cases n = 2 and n = 3. We present reduced explicit formulas that arise for
the Miller quadruple-and-add and Miller octuple-and-add algorithms on curves
of the form E : y2 = 22 +b (j(E) = 0) and E : y? = 23 +ax (j(E) = 1728), since
these are the most efficient curve shapes used in practice [22]. We focus solely on
the 2™-tupling stage of the algorithm (i.e. steps 6 and 7 in Algorithm 2), since
optimized loop parameters will result in very few additions. We therefore delay
any discussion of the additions until the following section.

5.1 Miller Quadruple-and-add

We begin by setting n = 2 in (3) to obtain the Miller update f* corresponding
to the quadrupling of T as

2—1

[r= (9[2i*1]T,[2i71]T)2 = (9T,T>2 : (9[2]T,[2]T)a

Heml®

~ =

which has divisor 4(T") — ([4]T") — 3(O).

Quadruple-and-add on y2? = 3 + b. We obtain f* as the affine output of
Algorithm 3 with n = 2. For curves of this form, the fastest explicit formulas for
the n = 1 case were derived using homogeneous projective coordinates [16,17].
Our experiments' indicated that these coordinates also give the fastest results
for n > 1, so we substitute 1 = X;/7Z; and y; = Y1/Z; into f* to obtain the
projectified version, F*, as
F*=a-(Lig-2s+Loo 2%+ Lot -ys+ Li1-wsys + Loo),

where o = —Z}(X1(X} — 8bZ3) — 42\ (X} + bZ}) - w5)?/(64Z]YP(27TXF —
36X7Y?Z, + 8Y1Z})) can be eliminated to give F* = F*/a, where the L;;
coefficients are

Lo = —6X2Z,(5Y) + 54bY2 Z7 — 2702 Z1),

Lox =8X1Y1Z1(5Yy' + 27 Z1),

Liy = 8V  Z3 (Y + 18bY2 27 — 272 ZY),

Loo = 2X, (Y — 7501 Z3 + 276 Y2 Z1 — 8163 Z9).

Ly = —4Z(5YY — T5bZ3Y + 135Y20% 71 — 8163 29).

! We searched through a range of different coordinate systems (cf. [11]) to find the
coordinate system which gave the most simple projectified line coefficients.



We let (Xpn : Ypn : Zpn) = [2"](X7 : Y1 : Z1) and compute the first doubling
with small extra computation as

Xpr =4X1Y1 (Y2 —9073), Ypr =2V} + 36bY2Z7 — 54627}, Zp = 16Y° 7

The calculation of the L; ; coefficients and the intermediate point (Xp1 : Yp1 :
Zp1) = [2](X1,Y1,Z71) requires 11m, + 11s, + 3d. To calculate (Xpz : Yp2 :
Zp2) = [4](X1,Y1,7Z1), we double the point (Xp1 : Yp1 : Zp1) using the
doubling formulas in [17] which cost 3m, + 5s. + 1d. The multiplication of each
of the four L; j # Lo,o by @y} costs emy (cf. [17]). As discussed in Section 3, the
extension field arithmetic required in line 8 of Algorithm 2 costs 1M + 2S. Thus,
the total cost for the quadrupling stage is 14m, + 16s. + 4em; + 4d + 1M + 2S
(see Appendix A.1 for the sequence of operations, and see Appendix B for a
Magma script that computes the Miller quadruple-and-add algorithm using the
formulas in A.1).

Quadruple-and-add on y? = 23 + ax. For curves of this shape, the fastest
formulas for the standard double-and-add case were derived in weight-(1,2)
coordinates in [17]. Again, our experiments agree with these coordinates for
such curves for n > 1, so we subsitute r; = X;/Z; and y; = Y1/Z? into f* (the
output of Algorithm 3) to obtain F™* as

F*=a-(Lig-2s+ Lag 2%+ Lo1-ys+ Li1-2sys + Loo),

where o = —ZP(—4X1Z1(XT + aZ?)xs + (X7 — aZ7)?)? can be eliminated to
give F* = F* /o, where the L; ; coefficients are

Liog=—2X1Z, (56X +4aXP 7% + 380> X1 Z} + 206 X275 — 3a* Z3),

Loo = —Z3(15X} +68aXV7Z? +10a* X1 2} — 283 X3 2V — a*Z¥),

Loy = 41X, 7, (5X? +13a X1 Z} + 15> X721 — a3 29),

Li1 = N ZHX}E - aZ}) (X} +6aXPZE + a*ZY),

Loo = X3(XP —20aX$ 73 — 26a®X{ 7} — 20a* X329 + a*Z%).

Again, we compute the first doubling with small extra computation as
Xp1 = (X7 —aZ})?, Ypr = 2Y1(X? — aZ}) (X + 6XFaZ? + a7}, Zpr = 4Y2.

The calculation of the L; ; coefficients and the intermediate point (Xp: :
Ypr : Zp1) = [2](X1,Y1,Z1) requires 10m + 14s + 2d. To calculate (Xp2 :
Ypz : Zp2) = [4](X1,Y1, Z1), we double the point (Xp: : Yp1 : Zp1) using the
doubling formulas in [17] which cost 1m + 6s + 1d. Thus, the total cost for the
quadrupling stage is 11m, + 20s, + 4em; + 3d + 1M + 2S (see Appendix A.2).



5.2 Miller Octuple-and-add

We begin by setting n = 3 in (3) to obtain the Miller update f* corresponding
the octupling of T as

3

ff= H(g[2f—1]T,[27"—1]T)2

i=1

3—i

= (9r:7)" - (92rmpar)” - (g apr)-
which has divisor 8(T") — ([8]T) — 7(0O).

Octuple-and-add on y? = 3 4 b. For the octupling line product, we use
homogeneous projective coordinates to give F'* as
F* :a-(L470~m§+L370~x%+L270-x%+L1,0 - I
+ L3y - 2%ys + Loy - 28ys + L11 - 2sys + Lo),

where « is again contained in a proper subfield of IF,» and can be eliminated to
give F* = F* Ja. The L, j coefficients are

Lio = (-9X77})-S10, L3o= (—12Z7Y?) - S30, Lao= (—54X1Y7Z1) - Sap
Lio = (=36X7Y?) - S10, Loo = ((Y?+3bZ})Y?)  So0, Ls1=(8Y1Z}) S5
Loy = (216X1Y127) - So1, Lig = (T2X3Y1Z) - S1a, Loa = (8Y?Z1) - Sox

with
11
Sij = ciju YD) FOZD",
k=0

where ¢; ;5 is the coefficient of (Y2)1=*(bZ?)k belonging to L, ; (see Appendix
A.3). As an example, we have

Loo = (Y2(Y? +3b77)) - (Y{*° — 33750Y° Z7 — 262449b° Y, Z
— 2583657b%Y{ 6 Z% 4 476780586 Y, Z¥ — 4096834207 Y2 710
— 27274077005Y{1° Z ]2 + 73870299067 Y Z1* — 6690842196°Y5 Z]6
—23914845b' Y Z7°0 + 14348907b" ' Z7* 4 2067305496°Y1' Z1®).

We describe a general method to compute each of the terms of the form
(Y2)H=F(1Z2)* that are required to compute the L; ; coefficients, where 0 <
k < 11. In general, it is best to compute each one of these products rather than
attempting to factorize, particular when each of these terms is present in every
L; ;. We compute every required even power of Y7 by first repetitively squaring
Y1 until we have all necessary terms of the form th that are less than the
largest power of Y7 occuring in the summations of the L; ;. That is, we compute

let for t = 1,2,3,4 since Y{*? is the largest power of Y7 occuring in the L, ;



summations. Using {Y2, Y1, Y8 Y}!®}, we can compute all other (Y?)* < (Y)'6,
z # 2! using one squaring each for each z. For example, we can compute Y!? as
V2 =Y8 Vi = (Y2 + Y12 — Y16 — V) /2, although in practice we compute
2Y}!? to avoid the division by 2. To compute the remaining (Y)! > Y;'6, we use
a field multiplication?. We do the same for each of the (bZ%)* terms.

We do not count multiplications by the c; ; 1, although we make no attempt
to disguise the extra cost that is incurred as their sizes grow. We do however,
point out that it is often the case that the ¢; ;s for a fixed k (but different
i,j’s) share large common factors so that we need not multiply (Y?)'!'=*(bZ%)*
by each of the ¢; ji’s, but rather we combine previous products to obtain most
of these multiplications at a much smaller (mostly negligible) cost.

The total operation count for the point octupling and the computation of
the octupling line product is 40m, + 31s, + 8em; +2d + 1M+ 3S (see Appendix
A3).

Octuple-and-add on y? = z2 4 ax. Following the trend of the fastest
formulas for the n = 1 and n = 2 cases for curves of this shape, we again
projectify f* using weight-(1,2) coordinates to give
F*=q«- (L470~1‘%+L370'$%+L270'$%+L1,0 - I
+ L3 - x?éys + Ly - w%ys + L1 -zsys + Lop),
where we ignore the subfield cofactor « to give B* = F* Ja. The L; ; coefficients
are given as
_ 274 _ 3,3 _ 472

Lyo = (—4X1Z7) - S10, Lso = (-16X727) - S50, Lao=(—8X127) S2p0

Lo = (16X7Z1) - S10, Loo = (4X7) So0, Ls1 = (4V1Z})-S31

Loy = (AX\Y1Z}) - S, Liy = (4X7Y1Z7) - S, Loy = (4X7Y121) - So1,

with
16
Sig =Y cijr (XD'F0Z)",
k=0

2 We point out that if higher degree terms also required computation it may be
advantageous to compute Y2 so that each of the terms (Yf)t > Y% can be
computed using field squarings instead of multiplications. This advantage would
depend on the platform (the s:m ratio) and the number of (Y?)" > Y{'® terms
required.



where ¢; j  is the coefficient of (X7)16%(b22)* belonging to L; ; (see Appendix
A.4). As an example, we have

Lo = —8X1%Z17 - (189X7? + 8820 X077 + 6174b> X8 Z} — 26274 X 76 79
—10527300* X2 Z% — 449598b° X #2 710 — 12802861° X7° Z}2
— 18388500" X 1821 — 23063794b° X 16716 — 15432900° X 4 718
+ 539634010 X 12 220 1 6469226 X 10722 4 1386918b*2 X5 724
+ 7584603 X5 726 1 172620 X 728 + 92201 X2 730 — 35016 232).

The total operation count for the point octupling and the computation of the
octupling line product is 31m, + 57s. + 8em; + 5d + 1M + 3S (see Appendix
A4).

6 Comparisons

We draw comparisons between 6 standard loops of Miller double-and-add, 3
standard loops of Miller quadruple-and-add and 2 standard loops of Miller
octuple-and-add, since each of these equates to one 64-tuple-and-add loop, and
this is the most primitive level at which a fair comparison can be made. We
note that the estimated percentage speedups in Table 1 are for the computation
of the Miller loop only and do not take into account the significant fixed cost
of final exponentiation. We neglect additions since low hamming-weight loop
parameters used in pairing implementations will result in a similar amount of
additions regardless of n, and we saw in sections 3 and 4 that additions come
at approximately the same cost for different n. The counts for n = 1 are due
to the fastest formulas given for curves with j(E) = 0 and j(E) = 1728 in [17].
We multiply these counts and those obtained for n = 2 and n = 3 in Section 5
accordingly.

j(E)| Doubling: n =1 Quadrupling: n = 2 Octupling: n =3
(6 loops) (3 loops) (2 loops)
0 [12m. + 42s. + 12em |42m, + 48s. + 12em1| 80m, + 64s. + 16em;
+6M + 6S +3M + 6S +2M + 6S
1728({12m, + 48s. + 12em; |33m, + 60s. + 12em; |64m. + 114s. + 16em;
+6M + 6S +3M + 6S +2M + 6S

Table 1. Operation counts for the equivalent number of iterations of 2"-tuple and add
forn=1,2,3.

Table 1 shows that the number of subfield operations increases when n gets
larger, whilst the number of full extension field multiplications decreases. To
determine whether these trade-offs become favorable for n = 2 or n = 3, we



adopt the standard procedure of estimating the equivalent number of base field
operations for each operation count [27,17]. We assume that the higher degree
fields are constructed as a tower of extensions, so that for pairing-friendly fields
of extension degree z = 2- 3/, we can assume that m, = 3-5/m; [31]. We split
the comparison between pairings on G; x G2 (the Tate pairing, the twisted ate
pairing) and pairings on G x G; (the ate pairing, R-ate pairing, etc). For each
pairing-friendly embedding degree reported, we assume that the highest degree
twist is utilized in both settings; the curves with j(E) = 0 utilize degree 6 twists
whilst the curves with j(E) = 1728 utilize degree 4 twists. To compare across
operations, we follow the EFD [11] and present two counts in each scenario: the
top count assumes that s, = m,, whilst the bottom count assumes that s, =
0.8m,. When quadrupling (n = 2) or octupling (n = 3) gives a faster operation
count, we provide an approximate percentage speedup for the computation of
the Miller loop, ignoring any additions that occur.

Pairings on G1 x G2 Best Pairings on G2 x G, Best
(Tate, twisted ate) (%) (ate, R-ate) (%)
E|jE)| n=1] n=2 | n=3 n=1| n=2| n=3
(6 loops)|(3 loops)|(2 loops) (6 loops)|(3 loops)|(2 loops)
4 | 1728 180 186 266 |n=1| 180 186 266 |n=1
159.6 163.2 232.4 - 159.6 163.2 232.4 -
6 0 246 237 280 |n=2| 246 237 280 |n=
219.6 209.4 249.2 5% 219.6 209.4 249.2 5%
8 | 1728 408 360 426 |n=2| 528 546 782 |n=
366 315.6 370.8 | 14% | 466.8 477.6 681.2 -
12 0 618 519 536 |n=2| 726 699 824 |n=
555.6 455.4 469.2 | 18% | 646.8 616.2 731.6 5%
16 | 1728 | 1080 870 890 |n=2| 1560 1614 2314 |n=1
973.2 760.8 770 22% | 1376.4 | 1408.8 | 2011.6 -
18 0 990 801 792 |n=3| 1206 1161 1368 |n =
891.6 701.4 689.2 | 22% 1074 1023 1214 5%
24 0 1722 1353 1288 |n=3| 2154 2073 2440 |n=2
1551.6 | 1181.4 | 1113.2 | 28% | 1916.4 | 1824.6 | 2162.8 | 5%
32 | 1728 | 3072 2376 2250 |n=3| 4632 4794 6878 |n=1
2770.8 | 2072.4 | 1935.6 | 30% | 4081.2 | 4178.4 | 5970.8 -
36 0 2826 2187 2040 |n=3| 3582 3447 4056 |n =2
2547.6 | 19074 | 1757.6 | 31% 3186 3033 3594 5%
48 0 5010 3831 3512 |n=3| 6414 6171 7256 |n=2
4515.6 | 3335.4 | 3013.2 | 33% | 5701.2 | 5425.8 | 6424.4 | 5%

Table 2. Comparisons for Miller double-and-add, Miller quadruple-and-add and Miller
octuple-and-add at various embedding degrees.

Unsurprisingly, Table 2 illustrates that the relative speed up for pairings on
G1 X G5 grows as the embedding degree grows. This is due to the increasing gap



between the complexity of operations in Gy (which is defined over F;) and Go
(which is defined over Fx). In this case we see that 6 < k < 16 favor Miller
quadruple-and-add, whilst Miller octuple-and-add takes over for & > 16, where
it is clear that it is worthwhile spending many more operations in the base field
in order to avoid costly arithmetic in Fgx. For pairings on Gz x G1, we have
a consistent speed up across all embedding degrees that utilize sextic twists.
This is due to the complexity of the subfield operations in Fs. growing at the
same rate as the complexity of operations in Fgx. Table 2 indicates that Miller
double-and-add is still preferred for ate-like pairings using quartic twists, where
we could conclude that the gap between operations in Fgx/a and those in Fg
isn’t large enough to favor higher Miller tupling.

The large improvements in Table 2 certainly present a case for the
investigation of higher degree Miller tupling (n > 4). At these levels however, the
formulas become quite complex and we have not reported any discoveries from
these degrees due to space considerations. Namely, the size of the 2™-tupling line
in (2) grows exponentially as n increases (i.e. the degree of the affine 2"-tupling
line formula is twice that of the 2" !-tupling line). The fact that quadrupling
was still preferred over octupling in most cases seems to suggest that larger n
might not result in significant savings, at least for embedding degrees of this
size.

We conclude by acknowledging that (in optimal implementations) the
speedups in Table 2 may not be as large as we have claimed. In generating
the comparisons, we reported the multiplication of the intermediate Miller value
J by the Miller update g as a full extension field multiplication in F,x, with
complexity M = my, = 3" - 57 for k = 2° - 37. Although the value f is a general
full extension field element, g tends to be sparse, especially when sextic twists
are employed. For even degree twists, g takes the form g = g1a+ g23+ go, where
9 € Fyr, 90, 91,92 € Fpr/a and a and 3 are algebraic elements that do not affect
multiplication costs (cf. [17]). For sextic twists, a general element of IF,,» would be
written as a polynomial over Fp. with six (rather than three) different coefficients
belonging to F,x/e. In this case, multiplying two general elements of F,» would
clearly require more multiplications than performing a multiplication between a
general element (like f) and a sparse element (like g). Since the techniques in
this paper gain advantage by avoiding multiplications between f and g, reporting
a lesser complexity for this multiplication would decrease the relative speedup.
Nevertheless, Miller quadruple-and-add and Miller octuple-and-add still strongly
outperform the standard Miller double-and-add routine if we take m;, < 3% - 57,
particularly for pairings on G; x Go with large embedding degrees.
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A Explicit Formulas

In each of the following four scenarios, we provide the sequence of operations required to compute the
first point doubling and the 2"-tupling line function, followed by the additional formulae required
to compute the subsequent point doublings.

A.1 Quadrupling formulas for y2 = 22 + b

A=v?, B=2} c=4% D=B% E=(1+2)%?-Aa-B, F=£8% ¢=x} H=(x;+vD?-A-aG,
I=(X14+E)2-F-G, J=(A+E)?_-C—-F, K=(Y;1+B)? -A-D, L=272D, M=9F, N=A4-C,
R=A L S=bB, T=5L U=8-C, X 1 =2H (A-095), Y1 =20+ M — 2L, Z =4J,

Ly =—4Z1 - (5N +5R — 8T — 75U), Ly o = —3G - Z1 - (10C + 3M — 2L), Lo j = 2I - (5C + L),
Li1=2K-Yp1, Lo =2X1 - (N + R — 3T — 75U).

2 2 2 .
F* =1Ly zg+Lao =g+Lo1 vs+Li1 esys+Loo A2 =Yp1, Ba =271, Ca =3bBa,

2
Dy =2Xp1 -Yp1, Ba = (Yp1 +Zp1)° — Ay — By, Fp =3Cy, Xpp = Dy - (Ay — Fp),

2 2
Yp2 = (Ag + F2)? — 1205, Z 5 = 443 - By

The above sequence of operations costs 14m, + 16s. + 4emj.

A.2 Quadrupling formulas for y2? = 23 + azx

2 2 2 2 2
A=X{, B=Y{, C=2{, D=aC, X1 =(A-D)?, E=2(4+D)? - X1,

F=((A—D+Y1)2—57XD1)1 Yp1 =E-F, Z,) =4B, G=42 H=D2 1=0G2 J=H?

K=(X1+21)2-A-0C, L=K? M= +K?-L-B, N=(G+H)?2-I-J), R=aL, S=R-G,
T=R-H, Li1=2C Y1, Lo,1 = M- (54 (G +3H) + D - (13G — H)),
Log=—C-(5] 4178 + 5N = 7T — J), L1, = —K - (5] + S + 19N + 5T — 3J),

Loo=A-(I—-5S—13N —5T+J). F* =Ly -wg+Lao =% +Lo1-vs+Li1 =sys+Loo Az =X01,

2 2
By =YP1, Ca =2},

D D3 = aCy, Xpo = (A3 — D9)®, By =2(43 + Dg)® — X

p2s Zp2 = 4Ba,

2
Fp = ((A2 = Dy + Y1) — By — X0, Yo = By - .

The above sequence of operations costs 11m, + 20s. + 4emj.



A.3 Octupling formulas for y? = x3 + b

Yio=YZ, Zi1s=27, Z1,5=bZ1 5, Zy 2= zf)s A=x2 B= bZZLSQ C=(X1+v)? -A-v,,
D= (v +21)% ~ Yig—Z1,s0 E=9Z212, X1 =C-(Y1,2-F), Yp1 = (Y12 + 2)2 — 1088,
Zp1 =4Y1,2 - D, Y14 = Y12,2» Yi,8 = y12,4» Yi,16 = Y12,g: Y16 = (Y1,2 + Y1,4)2 — Y14 - Y18,
Yi10 = (Y18 +1,2)% = Y116 - Y1,4. Y102 = (V1,8 + Y1,0)° = Y116 — Y18,
Y114 = (Y18 + Y1,6)2 — Y116 — 2Y1,12: Y1,18 = Y1,16 - Y1,2: Y1,20 = Y1,16 - Y1,4>
Y120 =Y1,16 - Y1,6, Z1,4 =B, Z18 = Z%,4v Z1,16 = ng, Z16=(Z1,2+ 21,4)2 —Z1,4— 21,8,
Zy110 = (Z1,8 + Z1,2)2 —Z1,16 — 21,4, Z1,12 = (Z1,8 + 21,4)2 — Z1,16 — Z1,8;
Z1,14 = (Z1,8 + Z1,6)2 —Z1,16 — 221,125 21,18 = Z1,16 - 21,2 41,20 = 21,16 - Z1,4> Z1,22 = Z1,16 - Z1,6:
OKZ = Y1,22, C}/Z =Y1,20 - Z1,2> C%/Z =Y1,18 - Z1,4» C;/z =Y1,16 - Z1,6> CZZ =Y1,14 - 21,8,
C;{Z =Y1,12 - 41,10 Cé’Z =Y1,10 - Z41,12> C;,Z =Y1,8 Z1,14» C{Z =Y1.6 21,16
3?7 =v1,4-Z118, Ol =Y12Z120, C117 =Z1,22, F=A-Z15, G=(Y12+21,0)° — Y14 - Zy 520
H=C-D, 1=C2J=Y15 - (Yi2+8212), K=D- 214, L=C-Z1,, M=A-D, N=Y; 5 D,
Ly = —18F - (—9565938C 107 + 9565938003 Z — 101859525C3 2 + 14880348C% Z + 57100383C¢ Z
— 52306146CF Z + 143323830 Z — 457812005 Z — 51316205 Z + 1573207 Z + 708 ),
L3 = —12G - (—14348907C1,2 + 239148450077 — 64304361009 Z + 350928207C3 Z — 6oao7127CY Z
— 85752270% Z — 7841853CY Z + 120112470 Z — 38470950) £ — 132514205 Z 4 5623807 Z + 3508 2),
Lo = —27H - (—5420698207,7 + 157660830C8 Z — 120282813C3 Z 4 50368797CF Z — 2574755108 2
+10693215CF Z — 38268450} Z + 777789CY Z + 3568205 Z + 410207 Z + 70 Z + avs206901,9),
Ly, = —181 - (—4782969C1,% + 28697814C % — 12031731009 Z + 130203045C% Z — asar92200Y 2
+11503287CF Z — 619407CY Z + 1432485C) Z — 8831970 £ 4+ 3281405 £ — 131807 Z + ¢f %),
Lo,o = 2J - (143480070117 — 47820690C 107 + 4134610083 Z — 66908421903 Z 4 36935149503 Z
— 13637038508 Z — 20484171CF Z + 2383902005 Z — 2583657C3 Z — 52480803 Z — 6750CY Z 4 cf %),
Ly 1 = 8K - (—28697814C7,7 + 9565938008 Z — 61115715Cy Z + 637720205 Z + 10033461C¢ £ — 1428085807 2
+33074730) Z — 91562403 Z — 9055803 Z + 24840y Z + cf %),
Lgq = 216L - (3188646C 17 — 7085880Cy Z 4 454677303 2 — 37791360Y Z + 50847750y Z — 3601260CY Z
+1192077¢) Z — 363744CY Z — 5661003 Z + 10600y Z + ¥ 7)),
Liq = 72M - (—9565938C 17 + 1062882009 2 — 1116026103 2 + 20549052C% Z — 24360093Cy 2
+ 1167420607 Z — 22149450 Z + a3as0sCy Z — 112266C3 Z + 814807 Z + 70 %),
Lo1 = 8N - (—14348007C 17 + 28697814077 — 7750038604 Z + 208856313C3 2 — 152208639C% 2
+ 8733347107 2 — 1913552107 2 + 543105C, 2 — 2320479C3 Z + 50830203 Z — 413807 Z + 2108 %),
=a-(Lgp- wé +Lso- w% +L2o- w% +Lio-zg+ L3 m%’ys + L2 - m%ys +Li1-zsys + Lo,o)»

2

2 2
Ay =YpP1, By =271, Cp =3bBy, Dy =2X 1 -Yp1, By = (Y1 +251)° — Ay — By, Fp = 3Ca,

2 2
= Dg - (Ay — Fa), Y, o = (Ag + Fp)° — 12C5, Z

b 4A5 - Eo.

D2~

2

2 2
A3 =Yy, By =Z},, O3 =38bBg, D3 =2Xp5 Yo, By = (Ypa + Zp2)” — A3 — By, F3 = 3C3,

2 2
= D3 - (Ag — F3), Y3 = (A3 + F3)? — 1203, Z 3 = 4A3 - By.

The above sequence of operations costs 40m. + 32s. + 8emj.



A.4 Octupling formulas for y? = z3 + ax

2 2 2 2 2
X1,2=X1, B=Y{, Z1,s =21, Z12=aZ1, Xp1 = (X1,2—-212)", E=2(X12+Z1,2)" - Xp1,
2 2
F=(X12-Z12+Y)? =B-Xp1, Y1 =E-F, Z,1 =4B, Z, 5 =Z{ .. Z,
X14=X3,, X18=X2,. X =x24, X =x2 X16=(X X102 - X X
1,4 = X712, X1,8 = X7 4, X1,16 = X1 8> X1,32 = X716 X1,6 = (X1,2+ X1,4)" — X314 — X1.8,
2 2
X110 = (X1,24+ X1,8)7 — X1,4 — X116, X1,12 = (X1,4 + X1,8)" — X1,8 — X1,16-
2 2
X114 = (X1,8 +X1,6)° — X1,16 — 2X1,12, X1,18 = (X1,16 + X1,2)° — X1,32 — X1 4,
2 2
X1,20 = (X1,16 + X1,4)° — X132 — X1,8, X122 = (X116 + X1,6)" — X1,32 —2X7 12,

2 2
X1,24 = (X1,16 + X1,8)7 — X1,32 — X1,16> X1,26 = (X1,16 + X1,10)" — X1,32 — 2X1,20,

X1,28 = (X1,16 + X1,12)2 — X1,32 —2X1 24, X130 = (X1,16 t X1,14)2 — X1,32 —4X1 28, Z1,4 = a®z
1,s

Z1,8 = “4Z1,s4’ Z1,16 = Zf,s, Z1,32 = wa, Z1,6 = (Z1,2 + 21,4)2 —Z1,4 - Z1,8,

Z1,10 = (Z1,2 + Z1,8)2 —Z1,4— 2116, 21,12 = (Z1,4 + 21,8)2 —Z1,8 — Z1,16>

Z114 = (Z18 + Z1,6)° — Z1,16 — 221,12, Z1,18 = (Z1,16 + Z1,2)° — Z1,32 — Z1.4,

Zy1,20 = (Z1,16 + Z1,4)2 — Z1,32 — 21,8, Z1,22 = (Z1,16 + 21,6)2 — Z1,32 —2Z71,12;

Z1,24 = (Z1,16 + Z1,8)2 — Z1,32 — Z1,16, Z1,26 = (Z1,16 + 21,10)2 — Z1,32 — 2Z1 20

Zy,28 = (21,16 + Z1,12)2 — Z1,32 —2Z1,24, Z1,30 = (Z1,16 + 21,14)2 — Z1,32 — 471,28 Cé{Z = X1,32;
clxz = X1,30 * Z1,2» cg(z = X1,28 - Z1,4> cg{z = X1,26 - Z1,6» sz = X1,24 - 21,8

C?Z = X1,22 - 21,10 Cé(z = X1,20 - Z1,12> C?)Z = X1,18 - 21,14 C§‘Z = X1,16 - Z1,16>
chz = X1,14 - 21,18 Cff)z = X1,12 * Z1,20> Cﬁz = X1,10 - Z1,22> Cf(zz = X1,8 " Z1,24»
Cfgz = X1,6 " 21,26 Cﬁz = X1,4" 21,28 Cf(sZ = X1,2" 21,30 Ci)gsz = Z1,32:

G= (X124 21)82)2 —X14- %) 4. H=(X1 + 21)2 — X192y, II=H? J=H.II,
K=(X14+71,)% - X158 - Zy g20 L=(H+ X14)% - 11— X15, M= (V1 + 21752)2 -B-2z

N=M+21,)%-B-2 R=H-N, S=1I-Y, T=(X12+Y)? X1 4-B, U="T-H,

1,52

Ly =—2G-(630F 7 + 5460 % — 1764605 Z — 8605805 Z — 944238C X Z — 02527808 Z
— 441232208 % — 20027300 % — 3183420 Z + 15959580 Z + 27108460157 + 441618C7\ 7
Xz XZ | yoanaXZ XZ | o XZ
+ 3250740757 + 21510075% + 203007%% — 46057 + o5%),
Ly =—27- (1050 Z 4+ 75607 — 1590005 % — 8411205 Z — 108205805 Z — 61064405 Z
— 26109940 Z — 20036880 Z — 1359426605 Z — 67486805 Z + 1645660757 + 2231680752
Xz Xz Xz Xz Xz
+ 2320080757 — 4920757 + 22260757 + s6C{%Z — 707%%),
Lo = —4K - (1890 Z + 882077 + 6174057 — 2627403 % — 105273005 Z — 44959805 Z
— 12802860 Z — 1838850C: 2 — 2306379405 Z — 1543200C% 2 + 539634C75% + 6469220747
+ 13869180757 + 7584607%Z + 17262C75% + 9220757 — 350%%),
Ly, =4L - (90FZ — 366605 Z + 258005 Z + 26322605 Z + 32824805 2
+ 135988208 Z +1017948CX Z + 1199865005 Z + 166190405 Z + 1958226C757 + 1789560757
Xz Xz Xz xz Xz
— 8152220757 — 395600757 — 48420747 — 2520757 + 70{),
Lo, =2X1,6 - (O Z — 42087 — 83405°% — 870205 Z — 3880805 Z + soss6C Z
+ 65464208 Z + 4500080X Z 4 334650205 Z + 450008C Z + 654642C7%7 + s0sseci\Z
Xz Xz Xz XZ X2
— 388980757 — 87020757 — 83407%% — 42057 + c{%%),
Ly q =2M - (8CgZ + 730 % — 2118057 — 12087CF % — 11031605 Z — 143283025 7
— 60383005 Z — 15017102 Z 4 1273368C Z + 3010150 Z 4 286566C152 + 27579CTG 2
Xz Xz XZ _ oXZ
+ 483480757 + 13500757 — 1460757 — o%%),
Loy = R- (21665 % 4+ 17100 % — 4953005 % — 225207C5% 2 — 23362020 Z — 1800741CX %
— 831357008 Z — 3992373CX Z — 63668400 Z + 14343000 Z 4 27767220757 + 42791705 %

Xz Xz Xz Xz
+107508C1%7 + 10017C{5” + 212207y~ — 7C{5° ).

2 2
4 =727 ;2> X1,2= X7,

25



L1 =S-(504CFZ 430550 % — 3814605 % — 22650305 Z — 335835605 £ — 98248505 Z

— 342801008 Z — 473422007 — 4639490405 Z — 292593905 % — 560070057 + 5108450757

+ 8498280757 + 158970757 + 357007%% — 70{5%),
Loq =U-(168CF % + 417¢XZ 1 2610605 Z + 1944905 Z — 808860C5 Z — 981963CE 2
— 31506860 Z — 167325105 % — 1620352804 2 — 163660504 Z — 8897460757 + 58347077

Xz Xz Xz Xz
+ 2262520757 + 2919C75”7 + 630C{4~ — C{s~).

*

4 3 2 3 2
F" =a-(Lgo w5+ L3o-zg+L2o-=5+Lio xg+L31- -zgys+Lai-z5ys+ L1 *sys+ Lol

2 2 2 2 2
Ay = X{, By =Y{, O3 = 27, Dy =aCy, X3 = (A3 — D)%, Bz =2(Az + D2)? — X0, Zp0 = 4By,

D2 D2

2
Fg = ((A2 = Dy +Y1)” — By — X 2 = Bg - Fa.

p2 ¥p
_ 2 _ 2 _ 2 _ _ 2 _ 2 _
Az = X7, Bg =Y{, C3 =27, Dg =aC3, X3 = (A3 — D3)", Bz =2(A3+ D3)” — X3, Z3
2
F3 = ((A3 — D3 +Y1)” — Bg — X3, Y3 = B3 - F3.

The above sequence of operations costs 32m, + 57s. + 8emj.

B Explicit Formulas

The following MAGMA code is a simple implementation of the Miller quadruple-and-and and Miller
octuple-and-add algorithms. We specify curves of the form y? = z* + b and condense the code due
to space considerations. The main function Miller2nTuple takes as inputs the two points R and S
on E, the value r which is the order of R, the two curve constants a and b, the integer n (for 2"-
tupling) and the full extension field K, so that R, S € E(K). Miller2nTuple either calls the function
Quadruple or the function Octuple for n = 2 and n = 3 respectively (the call to Octuple is currently
commented out).

3%b*C; E:=(X1+Y1)"2-A-B; F:=(Y1+Z1)"2-B-C; G:=3+D; X3:=Ex(B-G);
10#xQ+LO1#yQ+L00; return X3,Y3,Z3,F; end function;

function Db1l(X1,Y1,Z1, xQ, yQ,b) A
Y3:=(B+G) "2-12*D"2; Z3:=4*B*F; L10

function Add(X1, Y1, Z1, X2, Y2, Z2, xQ, yQ) c1:=X2-xQ; t1:=Z1#X2; t1:=X1-t1; £2:=Z1%Y2; £2:=Y1-t2; F:=clt2-t1¥Y2+t1*yQ;
£3:=t172; X3:=t3+X1; t3:=t1%t3; t4:=t2°2; t4:=td*Z1; t4:=t3+td; td:=t4-X3; td:=t4-X3; X3:=X3-t4d; t2:=t2+X3; Y3:=t3Y1; ¥3:=t2-Y3;
X3:=t1#t4; 23:=Z1%t3; return X3, Y3, Z3, F; end function;

function Quadruple(Tx, Ty, Tz, Sx, Sy, Sx2, SxSy, b)

Ty"2; B:=Tz"2; C:=A"2; D:=B~2; E:=(Ty+Tz) 2-A-B; F:=E"2; G:=Tx"2; H:=(Tx+Ty) 2-A-G; I
:=(Ty+B) "2-A-D;

L:=27+b"2#D; M:=0%b*F; N:=AxC; R:=AxL; S:=b*B; T:=SL; U:=S#C; X3:=2#Hx(A-9%S); Y3:=24C+M-2%L; Z3:=4%J;

L10:=-4%Tz* (5*N+5¥R-3+T-75+U) ;

L20:=-3%G*Tz* (10%C+3+M-2%L) ; LOL:=2%I*(5+C+L); L11:=24K*Y3; LOO:=24Tx* (N+R-3*T-75%U); F:= L10*Sx+L20*Sx2+L01*Sy+L11*SxSy+L00;
A 3725

B2:=2372; C2:=3%b*B2; D2:= 2%X3%Y3; E2:=(Y3+23)"2-A2-B2; F2:=3#C2; X3:= D2#(A2-F2); Y3:=(A2+F2)"2-12%C2"2; Z3:=4*A2+E2;
return X3,Y3,23,F;

end function;

=(Tx+E) "2-F-G; J:=(A+E)"2-C-F;

function Octuple(X1, Y1, Z1, Sx, Sy, Sx2, SxSy, Sx3, Sx4, Sx2Sy, Sx3Sy, b)

Y12:=Y1"2; Z1s:=72172; Z12:=b%Z1s; A:=X1"2; 3%Z12; C:=(X1+Y1)"2-A-Y12; DD:=(Y1+21)"2-Y12-Z1s; E:=3%B; X3:=C*(Y12-E);
:=4%Y12+DD; Xt,Yt,Zt:=Dbl(X1,Y1,Z1,Sx,Sy,b); Z14s:=Z1s"2; Y14:=Y12°2; Y18:=Y14"2; Y116:=Y18"2;

¥110:=(Y18+Y12)"2-Y116-Y14; Y112:=(Y18+Y14)"2-Y116-Y18; Y114:= (Y18+Y16)"2-Y116-2xY112; Y118:=Y116%Y12

~2%Z14s; Z18:=71472; Z116:=218"2; 216:=(Z12+Z14) 2-Z14-Z18; Z110:=(218+212)"2-Z116-Z14;

(Z18+216) "2-Z116-2+2112; Z118:=Z116%Z12; Z120:=Z116%Z14; Z122:

: 112+Z110; YZ6:=Y110%Z112; YZ7:=Y18%Z114; YZ8:=Y16%Z116;

12%7120; YZ11:=2122; FF:=A*Zls; G:=(Y12+Z1s)"2-Y14-Z14s; H:=C+DD; II:=C"2; J:=Y12#(Y12+3%Z12); K:=DD*Z1s;

L:=C#Z1s; M:=A%DD; N:=Y12+DD;

F40 := -18%FFx(-9565938%YZ10+95659380%YZ9-101859525+YZ8+14880348+YZ7+57100383+YZ6-52396146%YZ5+14332383+YZ4-4578120+YZ3-513162%YZ2

+15732%YZ1+7%YZ0) ;

F30:=-12%G (-14348907*YZ11+239148450%YZ10-643043610%YZ9+350928207*YZ8-60407127*YZ7-8575227+YZ6-7841853+YZ5 +12011247*YZ4

-3847095%YZ3-13265142+Y22+56238*YZ1+35%YZ0) ;

F20:=-27*H* (-54206982+YZ10+157660830%YZ9-120282813+YZ8+50368797+YZ7

-25747551%YZ6+10693215+YZ5 -3826845%YZ4+TTT789*YZ3+35682%YZ2+41024YZ1+T*YZO+4T82969*YZ11) ;

F10 := -18+II*(-4782969*YZ11+ 28697814%YZ10 -129317310%YZ9+130203045%YZ8-48479229+YZ7+11593287+YZ6-619407*YZ5+1432485%YZ4

-883197+YZ3+32814%YZ2-1318%YZ1+YZ0) ;

FOO :=2%J* (YZ0-6750%YZ1-524898%YZ2-2583657*YZ3 +23839029%YZ4-20484171+YZ5-136370385%YZ6+369351495%YZ7-669084219+YZ8+413461098+YZ9

-47829690%YZ10+14348907+YZ11) ;

F31 := 8xK*(2484%YZ1-915624*YZ3-90558%YZ2-28697814+YZ10+YZ0+95659380%YZ9- 61115715%YZ8+6377292+YZ7 +19033461+YZ6 ~ 14289858+YZ5

+3307473%YZ4) ;

F21 := 216%L#(YZ0+1960%YZ1-56610%YZ2-363744*YZ3+1192077+YZ4-3601260%YZ5 +5084775+YZ6 -3779136%YZ7 +4546773+YZ8 -7085880%YZ9

+3188646%YZ10) ;

F11 := 72%M*(8148%YZ1-112266%YZ2+434808%YZ3-2214945%YZ4 +11674206%YZ5-24360993+YZ6




+20549052+Y27-11160261+YZ8+10628820%YZ9-9565938+YZ10+74YZ0) ; FO1 :=8+N* (~14348907+YZ11+28697814*YZ10-77590386%YZ9+208856313+YZ8
-152208639+YZ7+87333471+YZ6-19135521+YZ5+543105+YZ4-23294794YZ3 +508302%YZ2-4138%YZ1+21%YZ0) ;
F:=FO1#Sy+F11#SxSy+F21+Sx2Sy+F31#Sx3Sy+FO0+F10+Sx+F20+Sx2+F30+Sx3+F40%Sx4; Y32:=Y3"2; Z3s:=232;

232:=b*Z3s; A:=X3"2; B:=3+32;

(X3+Y3) “2-A-Y3 :=(Y3+23)~2-Y32-Z3s; E:=3+B; X3:=C+(Y32-E); Y3:=(Y32+E)~2-12+B"2; 23:=4%Y32+DD; ¥32:=Y3"2; Z3s:=23"2;
:=X3°2; B:=3+Z32; C:=(X3+Y3)"2-A-¥32; DD:=(Y3+23)"2-Y32-23s; E:=3+B; X3:=Cx(Y32-E); Y3:=(Y32+E) 2-12+B"2;

return X3,Y3,Z3,F;
end function;

function Miller2nTuple(R, S, r, a, b, n, K)
Rx:=R[1]; Ry:=R[2]; Rz:=R[3];
Sx:=8[1]; Sy:=S[2]; Sx2:=Sx"2; Sx3:=Sx"3; Sx4:=Sx"4; SxSy:=Sx#Sy; Sx2Sy:=Sx2#Sy; Sx3Sy:=Sx3+Sy;
Rmultiplesmatrix:=[[Rx, Ry, Rz]l;
for i:=2 to (2°n-1) by 1 do
iR:=i*R;
Rmultiplesmatrix:=Append(Rmultiplesmatrix, [iR[1], iR[2], iR[3]11);
end for;
fRaddvec:=[K!1]; addproduct:=fRaddvec[1];
ptx, pty, ptz, F := Dbl(Rx,Ry,Rz,Sx,Sy,b);
addproduct*:= F;
fRaddvec ppend (fRaddvec, addproduct);
for i: to (2°n-1) by 1 do
ptx, pty, ptz, faddvalue := Add(ptx, pty, ptz, Rx, Ry, Rz, Sx, Sy);
addproduct*:=faddvalue;
fRaddvec:=Append (fRaddvec, addproduct);
end for;
Tx:=Rx; Ty:=Ry; Tz:=Rz;
£1 := 1; B := IntegerToSequence(r,2°n);
if B[#B] ne 1 then
Tx, Ty, Tz, F:= Add(Tx, Ty, Tz, Rmultiplesmatrix[B[#B]][1], Rmultiplesmatrix[B[#B]][2], Rmultiplesmatrix[B[#B]][3], Sx, Sy)
F:=F+fRaddvec[B[#B]];
£1:=f1%F;

B-1 to 1 by -1 do
Tx, Ty, Tz, F:=Quadruple(Tx, Ty, Tz, Sx, Sy, Sx2, SxSy, b);
//Tx, Ty, Tz, F:=Octuple(Tx, Ty, Tz, Sx, Sy, Sx2, SxSy, Sx3, Sx4, Sx2Sy, Sx3Sy, b);
£1:=£17(2°n) *¥F;
if B[il ne O then
Tx, Ty, Tz, F:= Add(Tx, Ty, Tz, Rmultiplesmatrix[B[i]][1], Rmultiplesmatrix[B[il][2],
Rmultiplesmatrix([B[i]1][3], Sx, Sy);

F:=F*fRaddvec[B[il];
f1:=f1F;
end if;
end for;
return £1;

end function;



