
Fully Secure Functional Encryption: Attribute-Based

Encryption and (Hierarchical) Inner Product

Encryption

Allison Lewko ∗

University of Texas at Austin
alewko@cs.utexas.edu

Tatsuaki Okamoto
NTT

okamoto.tatsuaki@lab.ntt.co.jp

Amit Sahai †

UCLA
sahai@cs.ucla.edu

Katsuyuki Takashima
Mitsubishi Electric

Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Brent Waters ‡

University of Texas at Austin
bwaters@cs.utexas.edu

Abstract

In this paper, we present two fully secure functional encryption schemes. Our first result
is a fully secure attribute-based encryption (ABE) scheme. Previous constructions of ABE
were only proven to be selectively secure. We achieve full security by adapting the dual
system encryption methodology recently introduced by Waters and previously leveraged to
obtain fully secure IBE and HIBE systems. The primary challenge in applying dual system
encryption to ABE is the richer structure of keys and ciphertexts. In an IBE or HIBE system,
keys and ciphertexts are both associated with the same type of simple object: identities. In
an ABE system, keys and ciphertexts are associated with more complex objects: attributes
and access formulas. We use a novel information-theoretic argument to adapt the dual
system encryption methodology to the more complicated structure of ABE systems. We
construct our system in composite order bilinear groups, where the order is a product of
three primes. We prove the security of our system from three static assumptions. Our ABE
scheme supports arbitrary monotone access formulas.

Our second result is a fully secure (attribute-hiding) predicate encryption (PE) scheme
for inner-product predicates. As for ABE, previous constructions of such schemes were
only proven to be selectively secure. Security is proven under a non-interactive assumption
whose size does not depend on the number of queries. The scheme is comparably efficient
to existing selectively secure schemes. We also present a fully secure hierarchical PE scheme
under the same assumption. The key technique used to obtain these results is an elaborate
combination of the dual system encryption methodology (adapted to the structure of inner
product PE systems) and a new approach on bilinear pairings using the notion of dual
pairing vector spaces (DPVS) proposed by Okamoto and Takashima.

∗Supported by a National Defense Science and Engineering Graduate Fellowship.
†Research supported in part from NSF grants 0830803, 0627781, 0716389, 0456717, and 0205594, an equipment

grant from Intel, and an Okawa Foundation Research Grant
‡Supported by NSF CNS-0716199, CNS-0915361, and CNS-0952692, Air Force Office of Scientific Research

(AFO SR) under the MURI award for “Collaborative policies and assured information sharing” (Project PRE-
SIDIO), Department of Homeland Security Grant 2006-CS-001-000001-02 (subaward 641), and the Alfred P.
Sloan Foundation

1

1 Introduction

In a traditional public key encryption system, data is encrypted to be read by a particular
individual who has already established a public key. Functional encryption is a new way of
viewing encryption which opens up a much larger world of possibilities for sharing encrypted
data. In a functional encryption system, there is a functionality f(x, y) which determines what
a user with secret key y can learn from a ciphertext encrypted under x (we can think of both
x and y as binary strings, for example). This allows an encryptor to specify a policy describing
what users can learn from the ciphertext, without needing to know the identities of these users
or requiring them to have already set up public keys. The enhanced functionality and flexibility
provided by such systems is very appealing for many practical applications.

Several previous works have pursued directions falling into this general framework, e.g. [36,
26, 18, 5, 34, 25, 41, 29, 13]. However, the same expressive power of these systems that makes
them appealing also makes proving their security especially challenging. For this reason, all of
the prior systems were only proven selectively secure, meaning that security was proven in a
weaker model where part of the challenge ciphertext description must be revealed before the
attacker receives the public parameters.

In this paper, we present fully secure systems for two cases of functional encryption, namely
attribute-based encryption (ABE) and predicate encryption (PE) for inner products. Sahai and
Waters [36] proposed Attribute-Based Encryption as a new concept of encryption algorithms
that allow the encryptor to set a policy describing who should be able to read the data. In an
attribute-based encryption system, private keys distributed by an authority are associated with
sets of attributes and ciphertexts are associated with formulas over attributes. A user should
be able to decrypt a ciphertext if and only if their private key attributes satisfy the formula.
Predicate encryption for inner products was first presented by Katz, Sahai, and Waters [29]. In
a predicate encryption scheme, secret keys are associated with predicates, and ciphertexts are
associated with attributes. A user should be able to decrypt a ciphertext if and only if their
private key predicate evaluates to 1 when applied to the ciphertext attribute.

Our Two Results The ABE and PE schemes described in this paper have essential com-
monalities: both are functional encryption schemes that employ the dual system methodology
of Waters [42] to prove full security. This is a powerful tool for achieving full security of systems
with advanced functionalities, but realizing the dual system methodology in each new context
presents unique challenges. In particular, the technical challenges for ABE and PE are distinct,
and the two results now combined into this paper were obtained by separate research groups
working independently. The ABE result was obtained by Lewko, Sahai, and Waters, while the
PE result was obtained by Okamoto and Takashima.

1.1 Attribute-Based Encryption

We are particularly interested in attribute-based encryption as a special case of functional
encryption because it provides a functionality that can be very useful in practice. For example,
a police force could use an ABE system to encrypt documents under policies like “Internal
Affairs OR (Undercover AND Central)” and give out secret keys to undercover officers in the
central division corresponding to the attributes “Undercover” and “Central”. Given the many
potential uses of ABE systems, constructing efficient systems with strong security guarantees
is an important problem.

2

Previous Constructions and Selective Security. All previous constructions of ABE sys-
tems [36, 26, 19, 5, 34, 25, 41] have only been proven to be selectively secure. This is a limited
model of security where the attacker is required to announce the target he intends to attack
before seeing the public parameters of the system. This is an unnatural and undesirable restric-
tion on the attacker, but it unfortunately appears to be necessary for the proof techniques used
in prior works.

To see why this is the case, it is instructive to look into the way that previous security proofs
have worked. In these security proofs, the simulator uses the attacker’s announced target to
embed the challenge in the public parameters in such a way that the simulator can produce
any keys the attacker can request but can also leverage the attacker’s output to break the
underlying challenge. This is a partitioning strategy reminiscent of the strategies first used to
prove security for IBE systems. The formation of the public parameters partitions the keys into
two classes: those that the simulator can make, and those that are useful to the simulator in
solving its challenge.

While this partitioning strategy was successfully employed by Boneh and Boyen [7], and
Waters [40] to prove full security for an IBE system, any partitioning approach seems doomed
to failure when one tries to achieve full security for ABE systems. Without selectivity, the
simulator cannot anticipate which keys the attacker may ask for, so the attacker must make
some type of a guess about what the partition should be. One natural direction is to partition
the identity space in some random way and hope that the attacker’s queries respect the partition
(which was the main idea behind the works in the IBE setting). For ABE systems, however,
private keys and ciphertexts have much more structure; different keys can be related (they
may share attributes), and this severely restricts allowable partitions. Thus, the power and
expressiveness of ABE systems work directly against us when attempting to create partitioning
proofs.

Our Approach. We are able to obtain full security by adapting the dual system encryption
technique of [42, 30] to the ABE case. Waters [42] introduced dual system encryption to
overcome the limitations of partitioning. In a dual encryption system, keys and ciphertexts
can take on one of two forms: normal and semi-functional. A normal key can decrypt both
normal and semi-functional ciphertexts, while a semi-functional key can only decrypt normal
ciphertexts. The semi-functional keys and ciphertexts are not used in the real system, only in
the proof of security. The proof employs a hybrid argument over a sequence of security games.
The first is the real security game, with normal keys and ciphertext. In the second game,
the ciphertext is semi-functional and the keys remain normal. In subsequent games, the keys
requested by the attacker are changed to be semi-functional one by one. By the final game,
none of the keys given out are actually useful for decrypting a semi-functional ciphertext, and
proving security becomes relatively easy.

There is one important subtlety inherent in the dual system technique. In the step where the
kth key becomes semi-functional, the simulator must be prepared to make any semi-functional
challenge ciphertext and any key as the kth key. At first, this appears to be a paradox, since
it seems the simulator can just make a key that should decrypt the challenge ciphertext and
decide for itself whether the key is semi-functional by attempting to decrypt the semi-functional
challenge ciphertext. Waters addresses this issue by introducing tags: if a key and ciphertext
in his IBE system have the same tag, decryption will fail regardless of semi-functionality. The
simulator is constructed in such a way that if it attempts to check if key k is semi-functional by
decrypting a semi-functional ciphertext, it will be thwarted because they will have equal tags.
(This relationship between the tags will be hidden to an attacker who cannot request a key able
to decrypt the challenge ciphertext.)

3

Lewko and Waters [30] provide a new realization of dual system encryption where tags are
replaced by nominally semi-functional keys. Nominally semi-functional keys are structured like
semi-functional keys except that they do also successfully decrypt semi-functional ciphertexts
(the semi-functional contribution cancels out). When the kth key turns semi-functional in the
hybrid, the simulator is constructed so that it can only make a nominally semi-functional key
k. It is then argued that this looks like a regular semi-functional key to the attacker.

Though they achieve fully secure HIBE with constant size ciphertext, it is not clear how
to extend the techniques of [42, 30] to obtain fully secure ABE systems. Both rely on the
fact that the identities attached to keys and ciphertexts are the same. Waters relies on this
to align tags, while Lewko and Waters use this symmetry in designing their system so that a
nominally semi-functional key is identically distributed to a regular semi-functional key in the
view of an attacker who cannot decrypt. This symmetry does not hold in an ABE system,
where keys and ciphertexts are each associated with different objects: attributes and formulas.
The additional flexibility and expressiveness of ABE systems leads to a much more complicated
structure of relationships between keys and ciphertexts, which makes the potential paradox of
the dual system encryption technique more challenging to address for ABE.

We overcome this by giving a new realization of nominally semi-functional keys in the ABE
setting. We do this by designing the semi-functional components of our keys and ciphertexts to
mirror the functionality of the ABE scheme. Intuitively, we want to argue that an attacker who
cannot decrypt the message also cannot determine if the final contribution of the semi-functional
components will be non-zero. We make this argument information-theoretically by showing that
our nominally semi-functional keys are distributed identically to regular semi-functional keys
from the attacker’s perspective. This information-theoretic argument is more intricate than the
HIBE analog executed in [30], due to the more complicated structure of ABE systems.

The ideas above allow us to construct an ABE system that is fully secure. We build our
construction in two phases. First, we construct an ABE system with the restriction that each
attribute can only be used once in an access formula. We call this a one-use ABE system. Then,
we provide a generic transformation from a one-use system to a system which is fully secure when
attributes are used multiple times (up to a constant number of uses fixed at setup). While this
transformation does incur some cost in key size, it does not increase the size of the ciphertext;
we stress that ours is the first feasibility result for fully secure ABE. Our construction supports
arbitrary monotone access formulas. We realize our ABE construction using bilinear groups of
composite order and prove security under three assumptions used by Lewko and Waters [30].

1.2 Predicate Encryption for Inner Products

ABE systems have desirable functionality, but have one limitation in that the structure of the
ciphertext is revealed to users who cannot reveal. For example, in a CP-ABE system, a user
who cannot decrypt can still learn the formula associated with the ciphertext. For applications
where the access policy must also be kept secret, this is unacceptable. In our second result we
address a class of systems, called predicate encryption systems, that overcome this limitation.
Our second result gives predicate encryption of inner products between the ciphertext and key
vectors.

Predicate encryption (PE) for inner products was presented by Katz, Sahai and Waters [29]
as a generalized (fine-grained) notion of encryption that covers identity-based encryption (IBE)
[6, 7, 9, 20, 22, 28], hidden-vector encryption (HVE) [13] and attribute-based encryption (ABE)
[5, 26, 34, 35, 36]. Informally, secret keys in a PE scheme correspond to predicates in some class
F , and a sender associates a ciphertext with an attribute in set Σ; a ciphertext associated with
attribute I ∈ Σ can be decrypted using a secret key skf corresponding to predicate f ∈ F if

4

and only if f(I) = 1.
The special case of inner product predicates is obtained by having each attribute correspond

to a vector −→x and each predicate f−→v correspond to a vector −→v , where f−→v (−→x) = 1 iff −→x ·−→v = 0.
(Here, −→x ·−→v denotes the standard inner-product). We note that these represent a wide class of
predicates including equality tests (for IBE and HVE), disjunctions or conjunctions of equality
tests, and, more generally, arbitrary CNF or DNF formulas (for ABE). However, we note that
inner product predicates are less expressive than the LSSS access structures of ABE. To use
inner product predicates for ABE, formulas must be written in CNF or DNF form, which can
cause a superpolynomial blowup in size for arbitrary formulas.

Katz, Sahai, and Waters also introduced attribute-hiding, a security notion for PE that
is stronger than the basic security requirement, payload-hiding. Roughly speaking, attribute-
hiding requires that a ciphertext conceal the associated attribute as well as the plaintext, while
payload-hiding only requires that a ciphertext conceal the plaintext. If attributes are identities,
i.e., PE is IBE, attribute-hiding PE implies anonymous IBE. This notion of attribute-hiding
addresses the limitation of ABE systems. Katz, Sahai, and Waters provided a scheme which is
attribute-hiding PE for inner-product predicates, but it is only proven to be selectively secure
and no delegation functionality is provided.

Our Results

• This paper proposes the first adaptively secure PE scheme for inner-product predicates
in the standard model. The scheme is proven to be adaptively attribute-hiding (against
CPA) under an assumption that is non-interactive. The number of terms of the assumption
depends on a system parameter n, which is the vector length. (However, the number of
terms does not depend on the number of adversarial private key queries.) We prove that
the assumption is true in the generic model of bilinear pairing groups.

The efficiency of the proposed PE scheme is comparable to that of the existing selectively-
secure PE schemes [29, 33].

• This paper also establishes a (hierarchical) delegation functionality on the proposed adap-
tively secure PE scheme. That is, we propose an adaptively secure (attribute-hiding) hier-
archical PE (HPE) scheme for inner-product predicates (with polynomially many levels)
in the standard model under the n-eDDH assumption.

The proposed HPE scheme implies the first anonymous hierarchical IBE (HIBE) with
polynomially many levels in the standard model as a special case (when the associated
inner-product predicate is specialized as the equality test for HIBE).

• It is straightforward to convert the (CPA-secure) basic (H)PE scheme to a CCA-secure
(H)PE scheme by employing an existing general conversion such as that by Canetti,
Halevi and Katz [17] or that by Boneh and Katz [12] (using an additional level with
two-dimensions for the basic (H)PE scheme, and a strongly unforgeable one-time signa-
ture scheme or message authentication code and encapsulation). That is, we can present
a fully secure (adaptively attribute-hiding against CCA) (H)PE scheme for inner-product
predicates in the standard model under the n-eDDH assumption as well as a strongly un-
forgeable one-time signature scheme or message authentication code and encapsulation.

• To achieve the result, this paper elaborately combines a new methodology, the dual system
encryption, proposed by Waters [42] and a new approach based on a notion of higher
dimensional vector spaces, dual pairing vector spaces (DPVS), proposed by Okamoto and
Takashima [32, 33]. The notion of DPVS is constructed on bilinear pairing groups, and

5

they presented a selectively secure (H)PE scheme on DPVS [33]. We will explain this
approach and our key technique in Section 3.1.

Note that the n-eDDH assumption in this paper is defined over the basic primitive, bilinear
pairing groups (not over the higher level concept, DPVS), although the proposed PE and
HPE schemes are constructed over DPVS, and the assumptions in [33] are defined over
DPVS.

• Since HPE is a generalized (fine-grained) version of anonymous HIBE (AHIBE) (or in-
cludes AHIBE as a special case), HPE covers (a generalized version of) applications de-
scribed in [14], fully private communication and search on encrypted data. For example, we
can use a two-level HPE scheme where the first level corresponds to the predicate/attribute
of (single-layer) PE and the second level corresponds to those of “attribute search by a
predicate” (generalized “key-word search”).

1.3 Related Work

Identity Based Encryption (IBE) was proposed by Shamir [37]. In an identity based encryption
system, an authority distributes keys to users with associated identities, and messages are en-
crypted directly to identities. The first IBE schemes were constructed by Boneh and Franklin [9]
and Cocks [20]. These schemes were proven secure in the random oracle model. Then selec-
tively secure schemes in the standard model were constructed [16, 6]. Boneh and Boyen [7] and
Waters [40] constructed fully secure IBE schemes in the standard model. Gentry [22] gave an
IBE system and security proof that moved beyond the confines of the partitioning strategy, but
at the cost of a large and complicated complexity assumption.

Hierarchical Identity Based Encryption (HIBE) [24, 28] expands the functionality of identity
based encryption to include a hierarchical structure on identities, where identities can delegate
secret keys to their subordinate identities. Boneh and Boyen [6] constructed a selectively secure
HIBE scheme. Boneh, Boyen, and Goh [8] constructed a selectively secure HIBE scheme with
constant size ciphertexts. Gentry and Halevi [23] extended Gentry’s techniques to get a fully
secure HIBE system, but under “q-type” assumptions. Waters [42] leveraged the dual system
encryption methodology to obtain fully secure IBE and HIBE systems from simple assumptions.
Lewko and Waters [30] extended the dual encryption technique to obtain a fully secure HIBE
system with constant size ciphertexts.

Attribute-based encryption was introduced by Sahai and Waters [36]. Goyal, Pandey, Sahai,
and Waters [26] formulated two complimentary forms of ABE: Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) and Key-Policy Attribute-Based Encryption (KP-ABE). In a CP-
ABE system, keys are associated with sets of attributes and ciphertexts are associated with
access policies. In a KP-ABE system, the situation is reversed: keys are associated with access
policies and ciphertexts are associated with sets of attributes. Selectively secure CP-ABE and
KP-ABE systems were constructed in [36, 26, 19, 5, 34, 25, 41].

Goyal, Jain, Pandey, and Sahai [25] provide a general way to transform a KP-ABE system
into a CP-ABE system. Chase [18] considered the problem of ABE with multiple authorities.

Other works have discussed similar problems without addressing collusion resistance [1, 2,
3, 15, 31, 39]. In these systems, the data encryptor specifies an access policy such that a set of
users can decrypt the data only if the union of their credentials satisfies the access policy.

Predicate encryption was introduced by Katz, Sahai, and Waters [29], who also provided
a scheme which is attribute-hiding PE for inner-product predicates; only the selective security
(not adaptive security) is proven and no delegation functionality is provided.

Shi and Waters [38] presented a delegation mechanism for a class of PE, but the admissible

6

predicates of the system, which is a class of equality tests for HVE, are more limited than
inner-product predicates in [29]. Moreover, they proved only selective security.

Okamoto and Takashima [33] proposed a (hierarchical) delegation mechanism for a PE
scheme, i.e., a hierarchical PE (HPE) scheme, for inner-product predicates, but only selective
security is proven.

Dual pairing vector spaces were introduced by Okamoto and Takashima [32, 33], who pre-
sented a selectively secure (H)PE scheme based on DPVS.

1.4 Organization

In Section 2, we present our result for ABE. In more detail, Subsection 2.1 provides the neces-
sary background on access structures, linear secret-sharing schemes, CP-ABE, composite order
bilinear groups, and states our complexity assumptions. Subsection 2.2, we describe our trans-
formation from a one-use CP-ABE system to a system that is secure when attributes are used
multiple times in a formula. In Subsection 2.3, we present our CP-ABE system and prove its
security. In Subsection 2.4, we discuss extensions of our ABE result.

In Section 3, we present our result for PE for inner products. Subsection 3.1 describes
the main ideas of the approach and establishes the necessary notations. In Subsection 3.2,
we formally define DPVS. In Subsection 3.3, we state the complexity assumption. In Subsec-
tion 3.4, we formally define predicate encryption and inner product predicate encryption. In
Subsection 3.5, we present our inner product predicate encryption scheme and its security. In
Subsection 3.6, we present our HPE scheme.

2 Fully Secure Attribute-Based Encryption

2.1 Background

We first define access structures and linear secret-sharing schemes (LSSS). We then formally
define CP-ABE and give the full security definition. We also give the necessary background on
composite order bilinear groups and state our complexity assumptions.

2.1.1 Access Structures

Definition 1 (Access Structure [4]) Let {P1, . . . , Pn} be a set of parties. A collection A ⊆
2{P1,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈ A. An access structure
(respectively, monotone access structure) is a collection (respectively, monotone collection) A
of non-empty subsets of {P1, . . . , Pn}, i.e., A ⊆ 2{P1,...,Pn}\{}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In our setting, attributes will play the role of parties and we will only deal with monotone
access structures. We note that it is possible to (inefficiently) realize general access structures
with our techniques by having the negation of an attribute be a separate attribute (so the total
number of attributes will be doubled).

Linear Secret-Sharing Schemes Our construction will employ linear secret-sharing schemes
(LSSS). We use the definition adapted from [4].

Definition 2 (Linear Secret-Sharing Schemes (LSSS)) A secret sharing scheme Π over a set
of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.

7

2. There exists a matrix A called the share-generating matrix for Π. The matrix A has `
rows and n columns. For all i = 1, . . . , `, the ith row of A is labeled by a party ρ(i) (ρ is
a function from {1, . . . , `} to P). When we consider the column vector v = (s, r2, . . . , rn),
where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Av
is the vector of ` shares of the secret s according to Π. The share (Av)i belongs to party
ρ(i).

We note the linear reconstruction property: we suppose that Π is an LSSS for access struc-
ture A. We let S denote an authorized set, and define I ⊆ {1, . . . , `} as I = {i|ρ(i) ∈ S}.
Then the vector (1, 0, . . . , 0) is in the span of rows of A indexed by I, and there exist con-
stants {ωi ∈ Zp}i∈I such that, for any valid shares {λ}i of a secret s according to Π, we have:∑

i∈I ωiλi = s. These constants {ωi} can be found in time polynomial in the size of the share-
generating matrix A [4]. We note that for unauthorized sets, no such constants {ωi} exist.

For our composite order group construction, we will employ LSSS matrices over ZN , where
N = p1p2p3 is a product of three distinct primes. As in the definition above over Zp, we say
a set of attributes S is authorized if the rows of the access matrix A labeled by attributes in
S have the vector (1, 0, . . . , 0) in their span modulo N . However, in our security proof for our
composite order system, we will further assume that for an unauthorized set, the corresponding
rows of A do not include the vector (1, 0, . . . , 0) in their span modulo p2. We may assume this
because if an adversary can produce an access matrix A over ZN and an unauthorized set over
ZN that is authorized over Zp2 , then this can be used to produce a non-trivial factor of the
group order N , which can be used to break our security assumptions.

Boolean Formulas Access policies might also be described in terms of monotonic boolean
formulas. LSSS access structures are more general and can be derived from such representations.
More precisely, one can use standard techniques to convert any monotonic boolean formula into
a corresponding LSSS matrix. We can represent the boolean formula as an access tree, where
the interior nodes are AND and OR gates, and the leaf nodes correspond to attributes. The
number of rows in the corresponding LSSS matrix will be same as the number of leaf nodes in
the access tree.

2.1.2 CP-ABE

A ciphertext-policy attribute-based encryption system consists of four algorithms: Setup, En-
crypt, KeyGen, and Decrypt.

Setup(λ,U) → (PK,MSK) The setup algorithm takes in the security parameter λ and the
attribute universe description U . It outputs the public parameters PK and a master secret key
MSK.

Encrypt(PK,M,A) → CT The encryption algorithm takes in the public parameters PK,
the message M , and an access structure A over the universe of attributes. It will output a
ciphertext CT such that only users whose private keys satisfy the access structure A should be
able to extract M . We assume that A is implicitly included in CT .

KeyGen(MSK,PK, S)→ SK The key generation algorithm takes in the master secret key
MSK, the public parameters PK, and a set of attributes S. It outputs a private key SK.

8

Decrypt(PK,CT, SK)→ M The decryption algorithm takes in the public parameters PK,
a ciphertext CT , and a private key SK. If the set of attributes of the private key satisfies the
access structure of the ciphertext, it outputs the message M .

2.1.3 Security Model for CP-ABE

We now give the full security definition for CP-ABE systems. This is described by a security
game between a challenger and an attacker. The game proceeds as follows:

Setup The challenger runs the Setup algorithm and gives the public parameters PK to the
attacker.

Phase 1 The attacker queries the challenger for private keys corresponding to sets of attributes
S1, . . . , Sq1 .

Challenge The attacker declares two equal length messages M0 and M1 and an access struc-
ture A∗. This access structure cannot be satisfied by any of the queried attribute sets S1, . . . , Sq1 .
The challenger flips a random coin β ∈ {0, 1}, and encrypts Mb under A∗, producing CT ∗. It
gives CT ∗ to the attacker.

Phase 2 The attacker queries the challenger for private keys corresponding to sets of attributes
Sq1+1, . . . , Sq, with the added restriction that none of these satisfy A∗.

Guess The attacker outputs a guess β′ for β.
The advantage of an attacker is this game is defined to be Pr[β = β′]− 1

2 . We note that the
model can easily be extended to handle chosen-ciphertext attacks by allowing for decryption
queries in Phase 1 and Phase 2.

Definition 3 A ciphertext-policy attribute-based encryption system is fully secure if all polyno-
mial time attackers have at most a negligible advantage in this security game.

Selective security is defined by adding an initialization phase where the attacker must declare
A∗ before seeing PK. Unlike previous works [5, 26, 41], we do not impose this restriction on
the attacker.

2.1.4 Composite Order Bilinear Groups

We will construct our systems in composite order bilinear groups. Composite order bilinear
groups were first introduced in [10]. We define a group generator G, an algorithm which takes a
security parameter λ as input and outputs a description of a bilinear group G. For our purposes,
we will have G output (p1, p2, p3, G,GT , e) where p1, p2, p3 are distinct primes, G and GT are
cyclic groups of order N = p1p2p3, and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We assume that the group operations in G and GT as well as the bilinear map e are com-
putable in polynomial time with respect to λ and that the group descriptions of G and GT
include generators of the respective cyclic groups. We let Gp1 , Gp2 , and Gp3 denote the sub-
groups of order p1, p2 and p3 in G respectively. We note that when hi ∈ Gpi and hj ∈ Gpj for

9

i 6= j, e(hi, hj) is the identity element in GT . To see this, suppose h1 ∈ Gp1 and h2 ∈ Gp2 . Let
g denote a generator of G. Then, gp1p2 generates Gp3 , gp1p3 generates Gp2 , and gp2p3 generates
Gp1 . Hence, for some α1, α2, h1 = (gp2p3)α1 and h2 = (gp1p3)α2 . Then:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1.

This orthogonality property of Gp1 , Gp2 , Gp3 will be used to implement semi-functionality in
our constructions.

We now state the complexity assumptions that we will rely on to prove security of our
systems. These same assumptions were used by Lewko and Waters to obtain full security of
their IBE and HIBE constructions in composite order groups [30]. With permission, we have
reproduced the proof of the fact that these assumptions hold in the generic group model from [30]
in Appendix A.2 for self-containment. We note that all three assumptions are static (constant
size) and the first assumption is just the subgroup decision problem in the case where the group
order is a product of three primes.

In the assumptions below, we let Gp1p2 , e.g., denote the subgroup of order p1p2 in G.

Assumption 1 (Subgroup decision problem for 3 primes) Given a group generator G,
we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g
R←− Gp1 , X3

R←− Gp3 ,
D = (G, g,X3),

T1
R←− Gp1p2 , T2

R←− Gp1 .
We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We note that T1 can be written (uniquely) as the product of an element of Gp1 and an

element of Gp2 . We refer to these elements as the “Gp1 part of T1” and the “Gp2 part of T1”
respectively. We will use this terminology in our proofs.

Definition 4 We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.

Assumption 2 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− G, T2

R←− Gp1p3 .
We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We use Gp1p3 to denote the subgroup of order p1p3 in G. We note that T1 can be (uniquely)

written as the product of an element of Gp1 , an element of Gp2 , and an element of Gp3 . We refer
to these as the “Gp1 part of T1”, the “Gp2 part of T1”, and the “Gp3 part of T1”, respectively.
T2 can similarly be written as the product of an element of Gp1 and an element of Gp3 .

10

Definition 5 We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.

Assumption 3 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G, α, s R←− ZN ,

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3 ,

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 6 We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.

2.2 Transformation from One-Use CP-ABE

Here we show how to obtain a fully secure CP-ABE system where attributes are used multiple
times from a fully secure CP-ABE system where attributes are used only once. We do this with
a simple encoding technique.

Suppose we have a CP-ABE system with a universe of n attributes with LSSS access struc-
tures that is secure when the function ρ is injective for each access structure associated to a
ciphertext (i.e. attributes are only used once in the row labeling the of the share-generating
matrix). Suppose we would like to have a system with n attributes where attributes can be used
≤ k times in the row labeling of a share-generating matrix. We can realize this by essentially
taking k copies of each attribute in the system: instead of a single attribute B, we will have
new “attributes” B : 1, . . . , B : k. Each time we want to label a row of an access matrix A with
B, we label it with B : i for a new value of i. We let ρ denote the original row labeling of A and
ρ′ denote this new row labeling. Each time we want to associate a subset S of attributes to a
key, we instead use S′ := {B : 1, . . . , B : k|B ∈ S}. We can then employ the one use system on
the new universe of kn attributes and retain its full security. We note that the set S′ satisfies
the access structure (A, ρ′) if and only if the set S satisfies the access structure (A, ρ).

For our construction, the sizes of the public parameters and the secret keys grow linearly in
the number of involved attributes, so these will expand by a factor of k under this transforma-
tion. Note that the size of the access matrix does not change, so ciphertexts in our construction
will remain the same size.

2.3 Our Fully Secure CP-ABE System

We construct our fully secure CP-ABE system in composite order groups of order N = p1p2p3
with LSSS access structures. We note the strong resemblance between our system and the
selectively secure CP-ABE system of Waters [41]. The KP-ABE system we give in Section A.1
also bears a strong resemblance to the selectively secure schemes in [26]. We thus provide
additional examples of the phenomenon noted by [42, 30]: dual system encryption is a powerful
and versatile tool for transforming selectively secure schemes into fully secure ones.

The normal operation of our system essentially occurs in the subgroup Gp1 . Keys are
additionally randomized in Gp3 , and the subgroup Gp2 is our semi-functional space, which is

11

not used in the real system. Keys and ciphertexts will be semi-functional when they involve
elements in the Gp2 subgroup. When normal keys are paired with semi-functional ciphertexts or
semi-functional keys are paired with normal ciphertexts, the elements in Gp2 will not contribute
to the pairings because they are orthogonal to elements in the Gp1 and Gp3 subgroups. When
we pair a semi-functional key with a semi-functional ciphertext, we get an extra term arising
from pairing the corresponding elements of Gp2 which will cause decryption to fail, unless
this extra term happens to be zero. When this cancelation occurs and decryption still works,
we say the key is nominally semi-functional. In other words, nominally semi-functional keys
involve elements in Gp2 , but these cancel when paired with the Gp2 elements involved in the
semi-functional ciphertext.

Our proof of security will rely on the restriction that each attribute can only be used
once in the row labeling of an access matrix. This is because we will argue that a nominally
semi-functional key is identically distributed to a regular semi-functional key in the attacker’s
view, since the attacker cannot ask for keys that can decrypt the challenge ciphertext. This
information-theoretic argument fails when attributes can be used multiple times. Nonethe-
less, we can achieve full security for a system which uses attributes multiple times through the
transformation given in the last section.

We believe that our fully secure system in composite order groups can be transformed to a
fully secure system in prime order groups. This was accomplished for the previous applications
of dual system encryption in [42, 30].

2.3.1 Construction

Setup(λ,U) → PK,MSK The setup algorithm chooses a bilinear group G of order N =
p1p2p3 (3 distinct primes). We let Gpi denote the subgroup of order pi in G. It then chooses
random exponents α, a ∈ ZN , and a random group element g ∈ Gp1 . For each attribute i ∈ U ,
it chooses a random value si ∈ ZN . The public parameters PK are N, g, ga, e(g, g)α, Ti = gsi∀i.
The master secret key MSK is α and a generator X3 of Gp3 .

KeyGen(MSK,S, PK)→ SK The key generation algorithm chooses a random t ∈ ZN , and
random elements R0, R

′
0, Ri ∈ Gp3 . The secret key is:

S, K = gαgatR0, L = gtR′0, Ki = T tiRi ∀i ∈ S.

Encrypt((A, ρ), PK,M) → CT A is an ` × n matrix and ρ is map from each row Ax of
A to an attribute ρ(x). The encryption algorithm chooses a random vector v ∈ ZnN , denoted
v = (s, v2, . . . , vn). For each row Ax of A, it chooses a random rx ∈ ZN . The ciphertext is (we
also include (A, ρ) in the ciphertext, though we do not write it below):

C = Me(g, g)αs, C ′ = gs,

Cx = gaAx·vT−rxρ(x) , Dx = grx ∀x.

Decrypt(CT, PK, SK) → M The decryption algorithm computes constants ωx ∈ ZN such
that

∑
ρ(x)∈S ωxAx = (1, 0, . . . , 0). It then computes:

e(C ′,K)/
∏

ρ(x)∈S

(
e(Cx, L)e(Dx,Kρ(x))

)ωx = e(g, g)αs.

Then M can be recovered as C/e(g, g)αs.

12

2.3.2 Security

Before we give our proof of security, we need to define two additional structures: semi-functional
ciphertexts and keys. These will not be used in the real system, but will be needed in our proof.

Semi-functional Ciphertext A semi-functional ciphertext is formed as follows. We let g2
denote a generator of Gp2 and c a random exponent modulo N . We also choose random values
zi ∈ ZN associated to attributes, random values γx ∈ ZN associated to matrix rows x, and a
random vector u ∈ ZnN . Then:

C ′ = gsgc2, Cx = gaAx·vT−rxρ(x)g
Ax·u+γxzρ(x)
2 , Dx = grxg−γx2 ∀x.

Semi-functional Key A semi-functional key will take on one of two forms. A semi-functional
key of type 1 is formed as follows. Exponents t, d, b ∈ ZN and elements R0, R

′
0, Ri ∈ Gp3 are

chosen randomly. The key is set as:

K = gαgatR0g
d
2 , L = gtR′0g

b
2, Ki = T tiRig

bzi
2 ∀i ∈ S.

A semi-functional key of type 2 is formed without the terms gb2 and gbzi2 (one could also
interpret this as setting b = 0):

K = gαgatR0g
d
2 , L = gtR′0, Ki = T tiRi ∀i ∈ S.

We note that when we use a semi-functional key to decrypt a semi-functional ciphertext, we
are left with an additional term:

e(g2, g2)
cd−bu1 ,

where u1 denotes the first coordinate of u (i.e. (1, 0, . . . , 0) ·u). We also note that these values zi
are common to semi-functional ciphertexts and semi-functional keys of type 1. These zi terms
always cancel when semi-functional keys are paired with semi-functional ciphertexts, so they
do not hinder decryption. Instead, they are used as blinding factors to hide the value being
shared in the Gp2 subgroup of a semi-functional ciphertext (the value u1) from an attacker
who cannot decrypt. This is where our one-use restriction is crucial: an attacker with a single
semi-functional key of type 1 which cannot decrypt the challenge ciphertext should only be able
to gain very limited information-theoretic knowledge of the zi values. If attributes are used
multiple times, too many zi values may be exposed to the attacker. In each of the games we
define below, at most one key is semi-functional of type 1 and all other semi-functional keys
are type 2. This is to avoid information-theoretically leaking the zi values by using them in
multiple keys at once.

We call a semi-functional key of type 1 nominally semi-functional if cd − bu1 = 0. Notice
that when such a key is used to decrypt a corresponding semi-functional ciphertext, decryption
will succeed.

We will prove the security of our system from Assumptions 1, 2, and 3 using a hybrid
argument over a sequence of games. The first game, GameReal, is the real security game (the
ciphertext and all the keys are normal). In the next game, Game0, all of the keys will be normal,
but the challenge ciphertext will be semi-functional. We let q denote the number of key queries
made by the attacker. For k from 1 to q, we define:

13

Gamek,1 In this game, the challenge ciphertext is semi-functional, the first k − 1 keys are
semi-functional of type 2, the kth key is semi-functional of type 1, and the remaining keys are
normal.

Gamek,2 In this game, the challenge ciphertext is semi-functional, the first k keys are semi-
functional of type 2, and the remaining keys are normal.

We note that in Gameq,2, all of the keys are semi-functional of type 2. In the final game,
GameFinal, all keys are semi-functional of type 2 and the ciphertext is a semi-functional en-
cryption of a random message, independent of the two messages provided by the attacker. In
GameFinal, the attacker’s advantage is 0. We will prove these games are indistinguishable in
the following four lemmas. For notational purposes in the lemmas below, we think of Game0,2
as another way of denoting Game 0.

Lemma 7 Suppose there exists a polynomial time algorithm A such that GameRealAdvA −
Game0AdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε in
breaking Assumption 1.

Proof. B is given g,X3, T . It will simulate GameReal or Game0 with A. B chooses random
exponents a, α ∈ ZN and a random exponent si ∈ ZN for each attribute i in the system. It
then sends A the public parameters:

PK = {N, g, ga, e(g, g)α, Ti = gsi ∀i}.

It can generate normal keys in response to A’s key requests by using the key generation algo-
rithm, since it knows the MSK = {α,X3}.
A sends B two messages M0,M1 and an access matrix (A∗, ρ). To make the challenge

ciphertext, B will implicitly set gs to be the Gp1 part of T (we mean that T is the product of
gs ∈ Gp1 and possibly an element of Gp2). It chooses a random β ∈ {0, 1} and sets:

C = Mβe(g
α, T), C ′ = T.

To form Cx for each row x of A∗, B first chooses random values v′2, . . . , v
′
n ∈ ZN and creates the

vector v′ = (1, v′2, . . . , v
′
n). It also chooses a random r′x ∈ ZN . It sets:

Cx = T (aAx·v′)T−r
′
xsρ(x) , Dx = T r

′
x .

We note that this implicitly sets v = (s, sv′2, . . . , sv
′
n) and rx = r′xs. Modulo p1, this v is

a random vector with first coordinate s and rx is a random value. So if T ∈ Gp1 , this is a
properly distributed normal ciphertext.

If T ∈ Gp1p2 , we let gc2 denote the Gp2 part of T (i.e. T = gsgc2). We then have a semi-
functional ciphertext with u = cav′, γx = −cr′x, and zρ(x) = sρ(x). Though we are reusing
values from the Gp1 parts here, this does not result in unwanted correlations. The values of
a, v′2, . . . , v

′
n, r
′
x, sρ(x) modulo p2 are uncorrelated from their values modulo p1 by the Chinese

Remainder Theorem, so this is a properly distributed semi-functional ciphertext. Hence, B can
use the output of A to break Assumption 1 with advantage ε. �

Lemma 8 Suppose there exists a polynomial time algorithm A such that Gamek−1,2AdvA −
Gamek,1AdvA = ε. Then we can construct a polynomial time algorithm B with advantage
negligibly close to ε in breaking Assumption 2.

14

Proof. B is given g,X1X2, X3, Y2Y3, T . It will simulate Gamek−1,2 or Gamek,1 with A. It
chooses random exponents a, α ∈ ZN and a random exponent si ∈ ZN for each attribute i in
the system. It then sends A the public parameters:

PK = {N, g, ga, e(g, g)α, Ti = gsi ∀i}.

To make the first k − 1 keys semi-functional of type 2, B responds to each key request by
choosing a random t ∈ ZN , random elements R′0, Ri of Gp3 , and setting:

K = gαgat(Y2Y3)
t, L = gtR′0, Ki = T tiRi ∀i ∈ S.

We note that K is properly distributed because the values of t modulo p2 and p3 are uncorrelated
to its value modulo p1. To make normal keys for requests > k, B can simply run the key
generation algorithm since it knows the MSK.

To make key k, B will implicity set gt equal to the Gp1 part of T . B chooses random elements
R0, R

′
0, Ri in Gp3 and sets:

K = gαT aR0, L = TR′0, Ki = T siRi ∀i ∈ S.

We note that if T ∈ Gp1p3 , this is a properly distributed normal key. If T ∈ G, this is a semi-
functional key of type 1. In this case, we have implicitly set zi = si. If we let gb2 denote the Gp2
part of T , we have that d = ba modulo p2 (i.e. the Gp2 part of K is gb2a, the Gp2 part of L is

gb2, and the Gp2 part of Ki is gbzi2 . Note that the value of zi modulo p2 is uncorrelated from the
value of si modulo p1.
A sends B two messages M0,M1 and an access matrix (A∗, ρ). To make the semi-functional

challenge ciphertext, B implicitly sets gs = X1 and gc2 = X2. It chooses random values
u2, . . . , un ∈ ZN and defines the vector u′ as u′ = (a, u2, . . . , un). It also chooses a random
exponent r′x ∈ ZN . The ciphertext is formed as:

C = Mβe(g
α, X1X2), C

′ = X1X2, Cx = (X1X2)
A∗x·u′(X1X2)

−r′xsρ(x) , Dx = (X1X2)
r′x .

We note that this sets v = sa−1u′ and u = cu′, so s is being shared in the Gp1 subgroup and ca
is being shared in the Gp2 subgroup. This also implicitly sets rx = r′xs, γx = −cr′x. The values
zρ(x) = sρ(x) match those in the kth key if it is semi-functional of type 1, as required.

The kth key and ciphertext are almost properly distributed, except for the fact that the first
coordinate of u (which equals ac) is correlated with the value of a modulo p2 that also appears
in key k if it is semi-functional. In fact, if the kth key could decrypt the challenge ciphertext
we would have cd − bu1 = cba − bca = 0 modulo p2, so our key is either normal or nominally
semi-functional. We must argue that this is hidden to the attacker A, who cannot request any
keys that can decrypt the challenge ciphertext.

To argue that the value being shared in Gp2 in the challenge ciphertext is information-
theoretically hidden, we appeal to our restriction that attributes are only used once in labeling
the rows of the matrix. Since the kth key cannot decrypt the challenge ciphertext, the rowspace
R formed by the rows of the matrix whose attributes are in the key does not include the vector
(1, 0, . . . , 0). (We may assume this holds modulo p2 - if not, a non-trivial factor of N can be
found, which breaks our complexity assumptions.) This means there is some vector w which is
orthogonal to R and not orthogonal to (1, 0, . . . , 0) (modulo p2). We fix a basis including w,
and we can then write u = fw+u′′ modulo p2, where f ∈ Zp2 and u′′ is in the span of the basis
elements not equal to w (and u′′ is distributed uniformly randomly in this space). We note that
u′′ reveals no information about f , and that u1 = u · (1, 0, . . . , 0) cannot be determined from u′′

alone - some information about f is needed, since w is not orthogonal to (1, 0, . . . , 0). However,

15

the shares corresponding to rows whose attributes are in the key only reveal information about
u′′, since w is orthogonal to R.

The only places fw appears are in equations of the form:

A∗x · u+ γxzρ(x),

where the ρ(x)’s are each unique attributes not appearing the kth key. As long as each γx is not
congruent to 0 modulo p2, each of these equations introduces a new unknown zρ(x) that appears
nowhere else, and so no information about f can be learned by the attacker. More precisely, for
each potential value of u1, there are an equal number of solutions to these equations, so each
value is equally likely. Hence, the value being shared in the Gp2 subgroup in the semi-functional
ciphertext is information-theoretically hidden, as long as each γx is non-zero modulo p2. The
probability that any of the γx values are congruent to 0 modulo p2 is negligible. Thus, the
ciphertext and key k are properly distributed in the attacker’s view with probability negligibly
close to 1.

Thus, if T ∈ Gp1p3 , then B has properly simulated Gamek−1,2, and if T ∈ G and all the γx
values are non-zero modulo p2, then B has properly simulated Gamek,1. B can therefore use the
output of A to gain advantage negligibly close to ε in breaking Assumption 2. �

Lemma 9 Suppose there exists a polynomial time algorithm A such that Gamek,1AdvA −
Gamek,2AdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε
in breaking Assumption 2.

Proof. This proof is very similar to the proof of the previous lemma, but the information-
theoretic argument is no longer required. B is given g,X1X2, X3, Y2Y3, T . It will simulate
Gamek,1 or Gamek,2 with A. It chooses random exponents a, α ∈ ZN and a random exponent
si ∈ ZN for each attribute i in the system. It then sends A the public parameters:

PK = {N, g, ga, e(g, g)α, Ti = gsi ∀i}.

The k− 1 semi-functional keys of type 2, the normal keys > k, and the challenge ciphertext
are constructed exactly as in the previous lemma. This means the ciphertext is sharing the
value ac in the Gp2 subgroup. This time, this will not be correlated with key k in any way, so
this value is random modulo p2 (note that a modulo p1 and a modulo p2 are uncorrelated).

To make key k, we proceed as we did before, but we additionally choose a random exponent
h ∈ ZN and set:

K = gαT aR0(Y2Y3)
h, L = TR′0, Ki = T siRi ∀i ∈ S.

The only change we have made here is adding the (Y2Y3)
h term. This randomizes the Gp2

part of K, so the key is no longer nominally semi-functional. If we tried to decrypt the semi-
functional ciphertext with it, decryption would fail (we no longer have the cancelation cd−bu1 ≡
0(mod p2)).

If T ∈ Gp1p3 , this is a properly distributed semi-functional key of type 2. If T ∈ G, this is
a properly distributed semi-functional key of type 1. Hence, B can use the output of A to gain
advantage ε in breaking Assumption 2. �

Lemma 10 Suppose there exists a polynomial time algorithm A such that Gameq,2AdvA −
GameFinalAdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε
in breaking Assumption 3.

16

size of PK size of SK size of CT

one-use |U |+ 3 |S|+ 2 2`+ 2

k-use k|U |+ 3 k|S|+ 3 2`+ 2

Table 1: Comparison of one-use and k-use CP-ABE systems

Proof. Again, this proof is similar to the proofs of the previous lemmas. B is given g, gαX2,
X3, g

sY2, Z2, T . It will simulate Gameq,2 or GameFinal with A. It chooses a random exponent
a ∈ ZN and a random exponent si ∈ ZN for each attribute i in the system. It takes α from the
assumption term gαX2. It then sends A the public parameters:

PK = {N, g, ga, e(g, g)α = e(g, gαX2), Ti = gsi ∀i}.

To make the semi-functional keys of type 2, B responds to each key request by choosing a
random t ∈ ZN , random elements R0, R

′
0, Ri of Gp3 , and setting:

K = gαgatZt2R0, L = gtR′0, Ki = T tiRi ∀i ∈ S,

as in the previous lemmas.
A sends B two messages M0,M1 and an access matrix (A∗, ρ). To make the semi-functional

challenge ciphertext, B will take s from the assumption term gsY2. It chooses random values
u2, . . . , un ∈ ZN and defines the vector u′ as u′ = (a, u2, . . . , un). It also chooses a random
exponent r′x ∈ ZN . The ciphertext is formed as:

C = MβT, C
′ = gsY2, Cx = (gsY2)

A∗x·u′(gsY2)
−r′xsρ(x) , Dx = (gsY2)

r′x .

We note that this sets v = sa−1u′ and u = cu′, so s is being shared in the Gp1 subgroup and ca
is being shared in the Gp2 subgroup. This also implicitly sets rx = r′xs, γx = −cr′x.

If T = e(g, g)αs, this is a properly distributed semi-functional encryption of Mb. Otherwise,
it is a properly distributed semi-functional encryption of a random message in GT . Thus, B can
use the output A to gain advantage ε in breaking Assumption 3. �

We have now proven the following theorem:

Theorem 11 If Assumptions 1, 2, and 3 hold, then our CP-ABE system is secure.

Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous lemmas that the
real security game is indistinguishable from GameFinal, in which the value of β is information-
theoretically hidden from the attacker. Hence the attacker cannot attain a non-negligible ad-
vantage in breaking the CP-ABE system. �

2.3.3 Expanding to Multi-Use

To build a fully secure CP-ABE system where each attribute can be used up to k times in the
row labeling of an access matrix, we apply the encoding technique of Section 2.2. We compare
the resulting k-use system to the one-use system in Table 1. Note that the encoding does
not increase the size of the ciphertext. We let |U | denote the number of attributes before the
encoding is applied, |S| denote the number of attributes associated with a key, and ` denote the
number of rows in an access matrix associated with a ciphertext. All sizes refer to the number
of group elements.

17

2.4 Discussion

We have obtained the first fully secure CP-ABE system in the standard model. Our techniques
also yield a fully secure KP-ABE system. Our KP-ABE system and the proof of its security
can be found in Section A.1. Essentially, a KP-ABE system is like a CP-ABE system with the
roles of keys and ciphertexts reversed: in a KP-ABE system, keys are associated with access
structures and ciphertexts are associated with subsets of attributes. Our techniques readily
adapt to KP-ABE, and the proof of security is very similar to the CP-ABE case.

It is also possible to adapt our techniques to obtain a large universe construction. In our
current construction, the size of the public parameters is linear in the number of attributes in
the universe. In a large universe construction, we could use all elements of Z∗p1 as attributes,
with the size of the public parameters linear in n, a parameter which denotes the maximum size
of a set of attributes used in the system. This reduces the size of the public parameters and
allows us to use arbitrary strings as attributes by applying a collision-resistant hash function
H : {0, 1}∗ → Z∗p1 . Note that these attributes no longer need to have been considered during
setup. To obtain a large universe construction, we could replace the group elements Ti associated
with attributes i with a function T : Zp1 → Gp1 based on a degree n polynomial. Goyal, Pandey,
Sahai, and Waters [26] do this for their KP-ABE construction.

Though we build our ABE systems in composite order bilinear groups, we believe that sim-
ilar systems can be constructed in prime order groups. Composite order groups are a natural
setting for applications of dual system encryption, since orthogonality of subgroups under pair-
ings allows us to associate our semi-functional space with a particular subgroup. This is very
convenient and leads to relatively simple fully secure schemes which closely resemble previously
known selectively secure schemes. Though composite order groups have these advantages, they
are not necessary for the dual system encryption technique.

Waters [42] first instantiated his fully secure IBE and HIBE systems in composite order
groups and then transferred them into prime order groups, obtaining full security under the
well-established d − BDH and decisional Linear assumptions. Lewko and Waters [30] built
upon these ideas to obtain an analog of their IBE system in asymmetric prime order groups.
The introduction of asymmetry simplified their construction, at the expense of relying on non-
standard (static) assumptions. Freeman [21] also discusses a general class of transformations
from composite order groups to prime order groups, but this does not encompass our construc-
tion. In the future, these transformation techniques might be extended to obtain versions of
our ABE schemes in prime order groups.

3 Fully Secure Predicate Encryption

3.1 Our Approach and Key Technique

3.1.1 Dual Pairing Vector Spaces (DPVS)

We now briefly explain our approach, DPVS, constructed on symmetric pairing groups (q,G,GT ,
g, e), where q is a prime, G and GT are cyclic groups of order q, g is a generator of G, e : G×G→
GT is a non-degenerate bilinear pairing operation, and gT := e(g, g) 6= 1. Here we denote the
group operation of G and GT by multiplication. Note that this construction also works on
asymmetric pairing groups (in this paper, we use symmetric pairing groups for simplicity of
description). As for the definitions of some notations, see the last part of this subsection.

Vector space V: V :=

N︷ ︸︸ ︷
G× · · · ×G, whose element is expressed by N -dimensional vector,

x := (gx1 , . . . , gxN) (xi ∈ Fq for i = 1, . . . , N).

18

Canonical base A: A := (a1, . . . ,aN) of V, where a1 := (g, 1, . . . , 1), a2 := (1, g, 1, . . . , 1), . . . ,
aN := (1, . . . , 1, g).

Pairing operation: e(x,y) :=
∏N
i=1 e(g

xi , gyi) = e(g, g)
∑N
i=1 xiyi = g

−→x ·−→y
T ∈ GT , where x :=

(gx1 , . . . , gxN) = x1a1 + · · · + xNaN ∈ V, y := (gy1 , . . . , gyN) = y1a1 + · · · + yNaN ∈ V,
−→x := (x1, . . . , xN) and −→y := (y1, . . . , yN). Here, x and y can be expressed by coefficient
vector over basis A such that (x1, . . . , xN)A = (−→x)A := x and (y1, . . . , yN)A = (−→y)A := y.

Base change: Canonical basis A is changed to basis B := (b1, . . . , bN) of V using a uni-

formly chosen (regular) linear transformation, X := (χi,j)
U← GL(N,Fq), such that

bi =
∑N

j=1 χi,jaj , (i = 1, . . . , N). A is also changed to basis B∗ := (b∗1, . . . , b
∗
N) of V, such

that (ϑi,j) := (XT)−1, b∗i =
∑N

j=1 ϑi,jaj , (i = 1, . . . , N). We see that e(bi, b
∗
j) = g

δi,j
T ,

(δi,j = 1 if i = j, and δi,j = 0 if i 6= j) i.e., B and B∗ are dual orthonormal bases of V.

Here, x := x1b1 + · · · + xNbN ∈ V and y := y1b
∗
1 + · · · + yNb

∗
N ∈ V can be ex-

pressed by coefficient vectors over B and B∗ such that (x1, . . . , xN)B = (−→x)B := x and

(y1, . . . , yN)B∗ = (−→y)B∗ := y, and e(x,y) = e(g, g)
∑N
i=1 xiyi = g

−→x ·−→y
T ∈ GT .

Intractable problem: One of the most natural decisional problems in this approach is the
decisional subspace problem [32]. It is to distinguish v := vN2+1bN2+1 + · · · + vN1bN1

(= (0, . . . , 0, vN2+1, . . . , vN1)B), from u := v1b1 + · · · + vN1bN1 (= (v1, . . . , vN1)B), where

(v1, . . . , vN1)
U← FN1

q and N2 + 1 < N1.

Trapdoor: Although the decisional subspace problem is assumed to be intractable, it can be
efficiently solved by using trapdoor t∗ ∈ span〈b∗1, . . . , b∗N2

〉. Given v := vN2+1bN2+1 + · · ·+
vN1bN1 or u := v1b1+ · · ·+vN1bN1 , we can distinguish v from u using t∗ since e(v, t∗) = 1
and e(u, t∗) 6= 1 with high probability.

Advantage of this approach: Higher dimensional vector treatment of bilinear pairing groups
have been already employed in literature especially in the areas of IBE, ABE and BE (e.g.,
[8, 5, 11, 14, 26, 27, 36]). For example, in a typical vector treatment, two vector forms of
P := (gx1 , . . . , gxN) and Q := (gy1 , . . . , gyN) are set and pairing for P and Q is operated as
e(P,Q) :=

∏N
i=1 e(g

xi , gyi). Such treatment can be rephrased in this approach such that
P = x1a1 + · · ·+ xNaN (= (x1, . . . , xN)A), and Q = y1a1 + · · ·+ yNaN (= (y1, . . . , yN)A)
over canonical basis A.

The major drawback of this approach is the easily decomposable property over A (i.e., the
decisional subspace problem is easily solved). That is, it is easy to decompose xiai =
(1, . . . , 1, gxi , 1, . . . , 1) from P := x1a1 + · · ·xNaN = (gx1 , . . . , gxN).

In contrast, our approach employs basis B, which is linearly transformed from A using a
secret random matrix X ∈ FN×Nq . A remarkable property over B is that it seems hard to
decompose xibi from P ′ := x1b1 + · · ·xNbN (and the decisional subspace problem seems
intractable). In addition, the secret matrix X (and the dual orthonormal basis B∗ of V)
can be used as a source of the trapdoors to the decomposability (and distinguishability for
the decisional subspace problem through the pairing operation over B and B∗ as mentioned
above). The hard decomposability (and indistinguishability) and its trapdoors are ones
of the key tricks in this paper. In addition, a part of basis B can be hidden to users
(and adversaries), and the hidden part of B plays a key role in our security proofs (e.g.,
(bn+1, . . . , b2n) are hidden to users in the proposed PE scheme). Note that composite
order pairing groups are often employed with similar tricks such as hard decomposability

19

(and indistinguishability) of a composite order group to the prime order subgroups and
its trapdoors through factoring (e.g., [29, 38]).

3.1.2 Dual System Encryption Methodology

At the top level of strategy of the security proof, we follow the dual system encryption method-
ology proposed by Waters [42]. Security is proven using a sequence of games. Game 0 is the
real security game. In Game 1, the target ciphertext is changed to semi-functional. When ν
secret key queries are issued by an adversary, there are ν game changes from Game 1 (Game
2-0) through Game 2-ν. In Game 2-k, the first k keys are semi-functional while the remaining
keys are normal. The final game with advantage 0 is changed from Game 2-ν. As usual, we
prove that the advantage gaps between neighboring games are negligible.

The most difficult part in the security proof, especially for inner-product predicate encryp-
tion, is how to resolve a paradoxical problem to prove the negligible gap between Game 2-k and
Game 2-(k−1), where the simulator (for the security proof) itself may distinguish the simulated
k-th key (semi-functional key) in Game 2-k and the k-th key (normal key) in Game 2-(k − 1)
by using a simulated (semi-functional) ciphertext, since the simulator can make ciphertexts
and keys for any legal attributes and predicates (especially, in the adaptive security game, the
simulator should generate a target ciphertext associated with any attribute adaptively selected
by the adversary).

For (H)IBE, this problem was resolved by introducing tricks such that the simulated k-th
key and ciphertext have a special correlation regarding the equality of their identity values
[30, 42].

This problem is much harder for inner-product predicate encryption. Given a predicate
vector −→v for secret key sk−→v , there are exponentially many (orthogonal) attribute vectors −→x for
ciphertext c−→x such that sk−→v can decrypt c−→x , i.e., −→v · −→x = 0. Therefore, in order to resolve
the above-mentioned paradoxical problem, we should give some trick on the simulated k-th key
sk−→v with −→v and all ciphertexts with −→x satisfying −→v · −→x = 0, while a trick on the simulated
k-th key skI with identity I and ciphertext with the same I is enough for (H)IBE.

We use special form of semi-functional keys and ciphertexts for simulating the k-th key and
target ciphertext such that the simulated k-th key (a special form of semi-functional key) sk−→v in
Game 2-k can decrypt all simulated ciphertexts (a special form of semi-functional ciphertexts)
c−→x with −→x satisfying −→v · −→x = 0. Essentially, we adapt the notion of nominally semi-functional
keys and ciphertexts that was introduced by Lewko and Waters [30] to the setting of inner
product encryption.

In addition, the distribution of a pair comprising the simulated k-th key sk−→v and simulated
ciphertext c−→x (i.e., a special semi-functional key and ciphertext) is equivalent to that of an
independent and random semi-functional key and ciphertext except with negligible probability,
when −→v · −→x 6= 0.

That is, the special forms of semi-functional keys and ciphertexts are correlated (for the
case of −→v · −→x = 0), but the adversary cannot notice the correlation since the adversary’s
queries should satisfy the condition −→v · −→x 6= 0. In other words, nominal semi-functionality is
information-theoretically hidden from the adversary. A more detailed explanation of how this
is implemented on DPVS will be given in the proof outline in Section 3.5.2.

3.1.3 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly selected from

A according to its distribution. When A is a set, y
U← A denotes that y is uniformly selected

from A. y := z denotes that y is set, defined or substituted by z. When a is a fixed value,

20

A(x) → a (e.g., A(x) → 1) denotes the event that machine (algorithm) A outputs a on input
x. A function f : N→ R is negligible in λ, if for every constant c > 0, there exists an integer n
such that f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq. A vector symbol denotes a vector representation
over Fq, e.g., −→x denotes (x1, . . . , xn) ∈ Fnq . For two vectors −→x = (x1, . . . , xn) and −→v =

(v1, . . . , vn), −→x · −→v denotes the inner-product
∑n

i=1 xivi. X
T denotes the transpose of matrix

X. I` and 0` denote the ` × ` identity matrix and the ` × ` zero matrix, respectively. A bold
face letter denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈−→x 1, . . . ,

−→x n〉) denotes the subspace generated by b1, . . . , bn
(resp. −→x 1, . . . ,

−→x n). For bases B := (b1, . . . , bN) and B∗ := (b∗1, . . . , b
∗
N), (x1, . . . , xN)B :=∑N

i=1 xibi and (y1, . . . , yN)B∗ :=
∑N

i=1 yib
∗
i .

3.2 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing
Groups

Definition 12 “Symmetric bilinear pairing groups” (q,G,GT , g, e) are a tuple of a prime q,
cyclic (multiplicative) groups G and GT of order q, g 6= 1 ∈ G, and a polynomial-time computable
nondegenerate bilinear pairing e : G×G→ GT i.e., e(gs, gt) = e(g, g)st and e(g, g) 6= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing
groups (q,G,GT , g, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector spaces [32, 33]
constructed by using symmetric bilinear pairing groups given in Definition 12.

Definition 13 “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of
symmetric pairing groups (q,G,GT , g, e) are a tuple of prime q, N -dimensional vector space

V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN) of V,

where ai := (

i−1︷ ︸︸ ︷
1, . . . , 1, g,

N−i︷ ︸︸ ︷
1, . . . , 1), and pairing e : V× V→ GT .

The pairing is defined by e(x,y) :=
∏N
i=1 e(gi, hi) ∈ GT where x := (g1, . . . , gN) ∈ V

and y := (h1, . . . , hN) ∈ V. This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if

e(x,y) = 1 for all y ∈ V, then x = 0. For all i and j, e(ai,aj) = g
δi,j
T where δi,j = 1 if i = j,

and 0 otherwise, and gT := e(g, g) 6= 1 ∈ GT .
DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak) = 0 if k 6= j,

which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
1, . . . , 1, gj ,

N−i︷ ︸︸ ︷
1, . . . , 1) where x := (g1, . . . , gN). We

call φi,j “distortion maps”.
DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and outputs a descrip-

tion of paramV := (q,V,GT ,A, e) with security parameter λ and N -dimensional V. It can be
constructed by using Gbpg.

For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A∗, e), see Appendix B.1. The above
symmetric version is obtained by identifying V = V∗ and A = A∗ in the asymmetric version.
(For the other realization using higher genus Jacobians, see [32].)

We describe random dual orthonormal bases generator Gob below, which is used as a sub-

21

routine in the proposed (H)PE scheme.

Gob(1λ, N) : paramV := (q,V,GT ,A, e)
R← Gdpvs(1λ, N),

X := (χi,j)
U← GL(N,Fq), (ϑi,j) := (XT)−1,

bi :=
∑N

j=1 χi,jaj , B := (b1, . . . , bN), b∗i :=
∑N

j=1 ϑi,jaj , B∗ := (b∗1, . . . , b
∗
N),

return (paramV,B,B∗).

3.3 Assumption

Definition 14 (n-eDDH: n-Extended Decisional Diffie-Hellman Assumption) The n-
eDDH problem is to guess β ∈ {0, 1}, given (paramG, g, g

κ, {gω+γihi , gγi , ghi}1≤i≤n, {gγihj}1≤i 6=j≤n,
Yβ)

R← Gn-eDDH
β (1λ), where

Gn-eDDH
β (1λ) : paramG := (q,G,GT , g, e)

R← Gbpg(1λ),

κ
U← F×q , ω, hi, γi

U← Fq for i = 1, . . . , n,

Y0 := gκω, Y1
U← G,

return (paramG, g, g
κ, {gω+γihi , gγi , ghi}1≤i≤n, {gγihj}1≤i 6=j≤n, Yβ),

for β
U← {0, 1}. For a probabilistic machine C, we define the advantage of C for the n-eDDH

problem as:

Advn-eDDH
C (λ) :=

∣∣∣Pr [C(1λ, %)→ 1
∣∣∣ % R← Gn-eDDH

0 (1λ)
]

−Pr
[
C(1λ, %)→ 1

∣∣∣ % R← Gn-eDDH
1 (1λ)

]∣∣∣ .
The n-eDDH assumption is: For any polynomial-time adversary C, the advantage Advn-eDDH

C (λ)
is negligible.

The following lemma shows that the n-eDDH assumption is true in the generic bilinear
pairing group model [8].

Lemma 15 For any adversary C that makes a total of at most ν queries to the oracles com-
puting the group operation in G and the bilinear pairing e : G × G → GT , the advantage
Advn-eDDH

C (λ) is O((ν + n2)2/2λ) in the generic bilinear pairing group model.

The proof of Lemma 15 is given in Appendix B.2.

3.4 Definition of Predicate Encryption

This section defines predicate encryption (PE) for the class of inner-product predicates and its
security.

An attribute of inner-product predicates is expressed as a vector −→x ∈ Fnq \ {
−→
0 } and a

predicate f−→v is associated with a vector −→v , where f−→v (−→x) = 1 iff −→v ·−→x = 0. Let Σ := Fnq \{
−→
0 },

i.e., the set of the attributes, and F := {f−→v |−→v ∈ Fnq \ {
−→
0 }} i.e., the set of the predicates.

Definition 16 A predicate encryption (PE) scheme for the class of inner-product predicates
F and attributes Σ consists of probabilistic polynomial-time algorithms Setup,KeyGen,Enc and
Dec. They are given as follows:

22

• Setup takes as input security parameter 1λ outputs (master) public key pk and (master)
secret key sk.

• KeyGen takes as input the master public key pk, secret key sk, and predicate vector −→v . It
outputs a corresponding secret key sk−→v .

• Enc takes as input the master public key pk, plaintext m in some associated plaintext space,
msg, and attribute vector −→x . It returns ciphertext c.

• Dec takes as input the master public key pk, secret key sk−→v and ciphertext c. It outputs
either plaintext m or the distinguished symbol ⊥.

A PE scheme should have the following correctness property: for all f−→v ∈ F and −→x ∈ Σ,

for correctly generated pk, sk−→v and c
R← Enc(pk,m,−→x), it holds that m = Dec(pk, sk−→v , c) if

f−→v (−→x) = 1. Otherwise, it holds with negligible probability.

Definition 17 An inner-product predicate encryption scheme is adaptively attribute-hiding (AH)
against chosen plaintext attacks if for all probabilistic polynomial-time adversaries A, the advan-
tage of A in the following experiment is negligible in the security parameter.

1. Setup is run to generate keys pk and sk, and pk is given to A.

2. A may adaptively make a polynomial number of key queries for predicate vectors, −→v . In

response, A is given the corresponding key sk−→v
R← KeyGen(sk,−→v).

3. A outputs challenge attribute vector (−→x (0),−→x (1)) and challenge plaintexts (m(0),m(1)),
subject to the restriction that −→v · −→x (0) 6= 0 and −→v · −→x (1) 6= 0 for all the key queried
predicate vectors, −→v .

4. A random bit b is chosen. A is given c(b)
R← Enc(pk,m(b),−→x (b)).

5. The adversary may continue to issue key queries for additional predicate vectors, −→v ,
subject to the restriction that −→v ·−→x (0) 6= 0 and −→v ·−→x (1) 6= 0. A is given the corresponding

key sk−→v
R← KeyGen(sk,−→v).

6. A outputs a bit b′, and succeeds if b′ = b.

We define the advantage of A as the quantity AdvPE,AHA (λ) := Pr [b′ = b]− 1/2.

Remark: In Definition 17, adversary A is not allowed to ask a key query for −→v such that
−→v · −→x (b) = 0 for some b ∈ {0, 1}, while in the security definition in [29], such a key query is
allowed provided that m(0) = m(1) and −→v · −→x (b) = 0 for all b ∈ {0, 1}.

23

3.5 The Proposed PE Scheme

3.5.1 Construction

Setup(1λ, n) : (paramV,B,B∗)
R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), sk := B∗, pk := (1λ, paramV, B̂),

return sk, pk.

KeyGen(sk,−→v := (v1, . . . , vn)) : σ, η
U← Fq,

k∗ := σ(
∑n

i=1 vib
∗
i) + b∗2n+1 + ηb∗2n+2,

return sk−→v := k∗.

Enc(pk,m ∈ GT ,
−→x := (x1, . . . , xn)) : δ1, δ2, ζ

U← Fq,
c1 := δ1(

∑n
i=1 xibi) + ζb2n+1 + δ2b2n+3, c2 := gζTm,

return (c1, c2).

Dec(pk,k∗, (c1, c2)) : m′ := c2/e(c1,k
∗),

return m′.

[Correctness] k∗ and c1 can be expressed by k∗ = (σ−→v , 0, . . . , 0, 1, η, 0)B∗ , and c1 = (δ1
−→x , 0,

. . . , 0, ζ, 0, δ2)B. Hence, e(c1,k
∗) = g

(δ1
−→x ,0,...,0,ζ,0,δ2)·(σ−→v ,0,...,0,1,η,0)

T = g
δ1σ(
−→x ·−→v)+ζ

T , i.e., e(c1,k
∗)

= gζT if −→x · −→v = 0.

3.5.2 Security

Theorem 18 The proposed PE scheme is adaptively attribute-hiding against chosen plaintext
attacks under the n-eDDH assumption. For any adversary A, there exist probabilistic machines
Ck (k = 0, . . . , ν), whose running times are essentially the same as that of A, such that for any
security parameter λ,

AdvPE,AHA (λ) ≤
ν∑
k=0

Advn-eDDH
Ck (λ) +

ν

q
,

where ν is the maximum number of adversary A’s key queries.

We will show Lemmas 20, 22, and 23 for the proof of Theorem 18.

Definition 19 Problem 1 is to guess β ∈ {0, 1}, given (paramV, B̂, B̂∗, {eβ,i}i=1,..,n)
R← GP1β (1λ, n),

where

GP1β (1λ, n) : (paramV,B,B∗)
R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), B̂∗ := (b∗1, . . . , b
∗
n, b
∗
2n+1, b

∗
2n+2),

δ1, δ2,i
U← Fq, ρ

U← F×q , (ui,j)
U← GL(n,Fq) for i, j = 1, . . . , n,

for i = 1, . . . , n,

e0,i := δ1bi + δ2,ib2n+3,

e1,i := δ1bi + ρ
∑n

j=1 ui,jbn+j + δ2,ib2n+3,

return (paramV, B̂, B̂∗, {eβ,i}i=1,...,n),

for β
U← {0, 1}. For a probabilistic machine B, we define the advantage of B for Problem 1 as:

AdvP1B (λ) :=
∣∣∣Pr [B(1λ, %)→1

∣∣∣ % R←GP10 (1λ, n)
]
−Pr

[
B(1λ, %)→1

∣∣∣ % R←GP11 (1λ, n)
]∣∣∣ .

24

Lemma 20 For any adversary B, there is a probabilistic machine C, whose running time is
essentially the same as that of B, such that for any security parameter λ, Advn-eDDH

C (λ) =
AdvP1B (λ).

The proof of Lemma 20 is given in Appendix B.3.2.

Definition 21 Problem 2 is to guess β ∈ {0, 1}, given (paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n)
R←

GP2β (1λ, n), where

GP2β (1λ, n) : (paramV,B,B∗)
R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), B̂∗ := (b∗1, . . . , b
∗
2n+2),

ω, γi, δ
U← Fq, ρ, τ

U← F×q ,

(ui,j)
U← GL(n,Fq), (zi,j) := ((ui,j)

−1)T for i, j = 1, . . . , n,

for i = 1, . . . , n,

h∗0,i := ωb∗i + γib
∗
2n+2,

h∗1,i := ωb∗i + τ
∑n

j=1 zi,jb
∗
n+j + γib

∗
2n+2,

ei := δbi + ρ
∑n

j=1 ui,jbn+j ,

return (paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n),

for β
U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 2, AdvP2B (λ), is

similarly defined as in Definition 19.

Lemma 22 For any adversary B, there is a probabilistic machine C, whose running time is
essentially the same as that of B, such that for any security parameter λ, Advn-eDDH

C (λ) =
AdvP2B (λ).

The proof of Lemma 22 is given in Appendix B.3.3.

Lemma 23 Let C := {(−→x ,−→v)|−→x · −→v 6= 0} ⊂ V × V ∗ where V is n-dimensional vector space
Fnq , and V ∗ its dual. For all (−→x ,−→v) ∈ C, for all (−→r ,−→w) ∈ C,

Pr
Z

U← GL(n,Fq),
ρ, τ

U← F×q

[−→x (ρU) = −→r ∧ −→v (τZ) = −→w] =
1

s
,

where U := (Z−1)T and s :=] C (= (qn − 1)(qn − qn−1)).

The proof of Lemma 23 is given in Appendix B.4.

Proof Outline of Theorem 18: To prove the security, we employ Game 0 (original adaptive-
security game) through Game 3. Roughly speaking, the (normal) target ciphertext is changed to
a semi-functional ciphertext in Game 1 (or Game 2-0), the k-th secret key replied to the adver-
sary is changed to a semi-functional key in Game 2-k (k = 1, . . . , ν), and the (semi-functional)
target ciphertext is changed to perfectly randomized key in Game 3, whose advantage is 0.

A normal secret key k∗ norm−→v (with predicate vector −→v) is a correct form of the secret key of

the proposed PE scheme, i.e., k∗ norm−→v := σ(
∑n

i=1 vib
∗
i) + b∗2n+1 + ηb∗2n+2 = (σ−→v ,−→0 n, 1, η, 0)B∗ ,

25

where
−→
0 n := (

n︷ ︸︸ ︷
0, · · · , 0). Similarly, a normal ciphertext (with attribute −→x) is (cnorm−→x , c2)

with cnorm−→x := δ1(
∑n

i=1 xibi) + ζb2n+1 + δ2b2n+3 = (δ1
−→x ,−→0 n, ζ, 0, δ2)B. (Hereafter we will

ignore c2 since c2 is always correctly generated.) A semi-functional secret key is k∗ semi−→v :=

(σ−→v ,−→r , 1, η, 0)B∗ and a semi-functional ciphertext is csemi−→x := (δ1
−→x ,−→s , ζ, 0, δ2)B, where−→r ,−→s U←

Fnq . If −→x · −→v = 0, then e(cnorm−→x ,k∗ norm−→v) = e(cnorm−→x ,k∗ semi−→v) = e(csemi−→x ,k∗ norm−→v) = gζT , which leads

to correct decryption. In contrast, e(csemi−→x ,k∗ semi−→v) = g
−→s ·−→r +ζ
T , which is uniformly and indepen-

dently distributed over Fq since −→r ,−→s U← Fnq , (i.e., leads to random decryption).
To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of

Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0 (or 1)

(against an adversary A) by using an instance with β
U← {0, 1} of Problem 1. We then show that

the distribution of the secret keys and target ciphertext replied by the simulator is equivalent
to those of Game 0 when β = 0 and Game 1 when β = 1. That is, the advantage of Problem
1 is equivalent to the advantage gap between Games 0 and 1 (Lemma 24). The advantage of
Problem 1 is proven to be equivalent to that of the n-eDDH assumption (Lemma 20).

The advantage gap between Games 2-(k − 1) and 2-k is similarly shown to be bounded by
the advantage of Problem 2 (i.e., of the n-eDDH assumption) +1/q (Lemmas 22 and 25).

Problem 2 is based on our key trick (explained in Section 3.1.2). Here, we introduce special
form of semi-functional keys and ciphertexts such that k∗ spec.semi

−→v := (σ−→v , (τ−→v Z), 1, η, 0)B∗ ,

and cspec.semi
−→x := (δ−→x , (ρ−→x U), ζ, 0, δ2)B, where Z is a random regular (n × n)-matrix, U :=

(Z−1)T, and τ, ρ
U← Fq.

k∗ spec.semi
−→v can decrypt cspec.semi

−→x for all vectors −→x with −→v · −→x = 0, since (τ−→v Z) · (ρ−→x U) =

τρ(−→v · −→x), i.e., e(cspec.semi
−→x ,k∗ spec.semi

−→v) = g(δ1σ+τρ)(
−→v ·−→x)+ζ . In addition, (τ−→v Z) and (ρ−→x U) are

uniformly and pairwise-independently distributed (i.e., equivalently distributed to (−→r ,−→s)
U←

(Fnq)2\{(−→r ,−→s) | −→r ·−→s = 0}), when −→v ·−→x 6= 0 (Lemma 23). Therefore, the joint distribution of

k∗ spec.semi
−→v and cspec.semi

−→x is equivalent to that of an independent pair of k∗ semi−→v and csemi−→x (except
with probability 1/q), when −→v · −→x 6= 0.

Finally we show that Game 2-ν can be conceptually changed to Game 3 by using the fact
that n elements of B, (bn+1, . . . , b2n), are secret to the adversary (Lemma 26).

Proof of Theorem 18: To prove Theorem 18, we consider the following (ν + 3) games.

Game 0 Original game.

Game 1 Same as Game 0 except that the target ciphertext (c1, c2) for challenge plaintexts
(m(0),m(1)) and challenge attributes (−→x (0),−→x (1)) is

c1 := δ1(
∑n

i=1 x
(b)
i bi) +

∑n
i=1wibn+i + ζb2n+1 + δ2b2n+3, c2 := gζTm

(b),

where δ1, δ2, ζ
U← Fq, b

U← {0, 1}, (x(b)1 , . . . , x
(b)
n) := −→x (b), and (w1, . . . , wn)

U← Fnq \ {
−→
0 }.

Game 2-k (k = 1, . . . , ν) Game 2-0 is Game 1. Game 2-k is the same as Game 2-(k−1) except
the reply to the k-th key query for −→v := (v1, . . . , vn) is:

k∗ := σ(
∑n

i=1 vib
∗
i) +

∑n
i=1 rib

∗
n+i + b∗2n+1 + ηb∗2n+2,

where σ, η
U← Fq and −→r := (r1, . . . , rn)

U← Fnq .

26

Game 3 Same as Game 2-ν except that the target ciphertext (c1, c2) for challenge plaintexts
(m(0),m(1)) and challenge attributes (−→x (0),−→x (1)) is

c1 :=
∑n

i=1 x
′
ibi +

∑n
i=1wibn+i + ζ ′b2n+1 + δ2b2n+3, c2 := gζTm

(b),

where x′1, . . . , x
′
n, δ2, ζ, ζ

′ U← Fq, b
U← {0, 1}, and (w1, . . . , wn)

U← Fnq \ {
−→
0 }. In particular,

we note that (x′1, . . . , x
′
n) and ζ ′ are chosen uniformly and independently from −→x (0),−→x (1)

and ζ.

Let Adv
(0)
A (λ) be AdvPE,AHA (λ) in Game 0, and Adv

(1)
A (λ),Adv

(2-k)
A (λ),Adv

(3)
A (λ) be the advan-

tage of A in Game 1, 2-k, 3, respectively. It is clear that Adv
(3)
A (λ) = 0 by Lemma 27.

We will use three lemmas (Lemmas 24, 25, 26) that evaluate the gaps between pairs

of Adv
(0)
A (λ),Adv

(1)
A (λ),Adv

(2-k)
A (λ) (k = 1, . . . , ν),Adv

(3)
A (λ). From these lemmas, we obtain

AdvPE,AHA (λ) = Adv
(0)
A (λ) ≤

∣∣∣Adv(0)A (λ)− Adv
(1)
A (λ)

∣∣∣ +
∑ν

k=1

∣∣∣Adv(2-(k−1))A (λ)− Adv
(2-k)
A (λ)

∣∣∣ +∣∣∣Adv(2-ν)A (λ)− Adv
(3)
A (λ)

∣∣∣+Adv
(3)
A (λ) ≤ AdvP1B0(λ)+

∑ν
k=1 Adv

P2
Bk(λ)+ ν

q . From Lemmas 20 and 22,

there exist probabilistic machines Ck (k = 0, . . . , ν), whose running times are essentially the same
as those of Bk, respectively, such that Advn-eDDH

C0 (λ) = AdvP2B0(λ) and Advn-eDDH
Ck (λ) = AdvP2Bk(λ)

(k = 1, . . . , ν). Hence, AdvPE,AHA (λ) ≤ AdvP1B0(λ)+
∑ν

k=1 Adv
P2
Bk(λ)+ ν

q ≤
∑ν

k=0 Adv
n-eDDH
Ck (λ)+ ν

q .
This completes the proof of Theorem 18. �

Lemma 24 For any adversary A, there exists a probabilistic machine B0, whose running time

is essentially the same as that of A, such that for any security parameter λ, |Adv(0)A (λ) −
Adv

(1)
A (λ)| = AdvP1B0(λ).

Proof. In order to prove Lemma 24, we construct a probabilistic machine B0 against Problem
1 by using any adversary A in a security game (Game 0 or 1) as a black box as follows:

1. B0 is given Problem 1 instance (paramV, B̂, B̂∗, {eβ,i}i=1,...,n).

2. B0 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B0 returns pk := (1λ, paramV, B̂) to A.

4. When a key query is issued, B0 answers a correct secret key computed by using B̂∗, i.e.,
normal key.

5. When B0 gets challenge plaintexts (m(0),m(1)) and challenge attributes (−→x (0),−→x (1)) (from

A), B0 calculates and returns (c1, c2) such that c1 :=
∑n

i=1 x
(b)
i eβ,i + ζbn+1 and c2 :=

gζTm
(b) where eβ,i are from the Problem 1 instance, ζ

U← Fq and b
U← {0, 1}.

6. After the challenge encryption query, KeyGen oracle simulation for a key query is executed
in the same manner as step 4.

7. A outputs bit b′. If b = b′, B0 outputs β′ := 1. Otherwise, B0 outputs β′ := 0.

Claim 1 If β = 0, the distribution of (c1, c2) generated in step 5 is the same as that in Game
0. If β = 1, the distribution of (c1, c2) generated in step 5 is the same as that in Game 1.

27

Proof. If β = 0, c1 = δ1
∑n

i=1 xibi + ζb2n+1 + (
∑n

i=1 xiδ2,i) b2n+3 and c2 := gζTm
(b). This is the

target ciphertext in Game 0. If β = 1,

c1 = δ1
∑n

i=1 xibi + ρ
∑n

i=1 (−→x · −→u i) bn+i + ζb2n+1 +
(−→x · −→δ 2

)
b2n+3,

where −→u i := (u1,i, . . . , un,i),
−→
δ 2 := (δ2,1, . . . , δ2,n), and c2 = gζTm

(b). Because (ρ−→x ·−→u 1, . . . , ρ
−→x ·

−→u n) ∈ Fnq \ {
−→
0 } and −→x ·

−→
δ 2 ∈ Fq are independently uniform, this is the target ciphertext in

Game 1. �

From Claim 1, when β = 0, the advantage of A in the above game is equal to that in Game 0,

i.e., Adv
(0)
A (λ), and is also equal to Pr0 := Pr

[
B0(1λ, %)→1

∣∣∣ % R← GP10 (1λ, n)
]
. Similarly, when

β = 1, we see that the advantage of A in the above game is equal to Adv
(1)
A (λ), and is also

equal to Pr1 := Pr
[
B0(1λ, %)→1

∣∣∣ % R←GP11 (1λ, n)
]
. Therefore, |Adv(0)A (λ)− Adv

(1)
A (λ)| = |Pr0−

Pr1| = AdvP1B0(λ). This completes the proof of Lemma 24. �

Lemma 25 For any adversary A, there exists a probabilistic machine Bk, whose running time

is essentially the same as that of A, such that for any security parameter λ, |Adv(2-(k−1))A (λ)−
Adv

(2-k)
A (λ)| ≤ AdvP2Bk(λ) + 1

q .

Proof. In order to prove Lemma 25, we construct a probabilistic machine Bk against Problem
2 by using any adversary A in a security game (Game 2-(k−1) or 2-k) as a black box as follows:

1. Bk is given Problem 2 instance (paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n).

2. Bk plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, Bk returns pk := (1λ, paramV, B̂) to A.

4. When the s-th key query is issued for a predicate −→v := (v1, . . . , vn), Bk answers as follows:

(a) When 1 ≤ s ≤ k − 1, Bk calculates and answers (by using B̂∗)

k∗ := σ(
∑n

i=1 vib
∗
i) +

∑n
i=1 rib

∗
n+i + b∗2n+1 + ηb∗2n+2,

where σ, r1, . . . , rn, η
U← Fq (i.e., semi-functional key).

(b) When s = k, Bk calculates and answers k∗ as follows:

k∗ :=
∑n

i=1 vih
∗
β,i + b∗2n+1.

(c) When s ≥ k+ 1, Bk answers a correct secret key computed by using B̂∗, i.e., normal
key.

5. When Bk gets challenge plaintexts (m(0),m(1)) and challenge attributes (−→x (0),−→x (1)) (from
A), Bk calculates and returns (c1, c2) such that

c1 :=
∑n

i=1 x
(b)
i ei + ζb2n+1 + δ2b2n+3, c2 := gζTm

(b),

where ei are from the Problem 2 instance, ζ, δ2
U← Fq and b

U← {0, 1}.

28

6. After the challenge encryption query, KeyGen oracle simulation for a key query is executed
as in step 4.

7. A outputs bit b′. If b = b′, Bk outputs β′ := 1. Otherwise, Bk outputs β′ := 0.

Claim 2 The pair of secret key
−→
k ∗ generated in case (b) of step 4 or 6 and ciphertext c1

generated in step 5 has the same distribution as that in Game 2-(k− 1) (resp. Game 2-k) when
β = 0 (resp. β = 1) except with probability 1

q .

Proof. We consider the joint distribution of c1 and k∗.
Ciphertext c1 generated in step 5 is

c1 := δ(
∑n

i=1 xibi) + ρ(
∑n

i=1(
−→x · −→u i)bi) + ζb2n+1 + δ2b2n+3,

where −→u i := (u1,i, . . . , un,i). Then, δ, ζ, δ2 ∈ Fq and (ρ(−→x · −→u 1), . . . , ρ(−→x · −→u n)) ∈ Fnq \ {
−→
0 } are

independently uniform.
When β = 0, secret key k∗ generated in case (b) of step 4 or 6 is

k∗ = ω
∑n

i=1 vib
∗
i + b∗2n+1 + (−→v · −→γ)b∗2n+2,

where −→γ := (γ1, . . . , γn). Then, ω,−→v · −→γ and the above coefficients in c1, i.e., δ, ζ, δ2, ρ(−→x ·
−→u 1), . . . , ρ(−→x · −→u n), are independently uniform. Therefore, generated c1 and k∗ has the same
joint distribution as in Game 2-(k − 1) (i.e., semi-functional ciphertext and normal key).

When β = 1, secret key k∗ generated in case (b) of step 4 or 6 is

k∗ = ω
∑n

i=1 vib
∗
i + τ

∑n
i=1(
−→v · −→z i)b∗n+i + b∗2n+1 + (−→v · −→γ)b∗2n+2,

where −→γ := (γ1, . . . , γn),−→z i := (z1,i, . . . , zn,i). Then, ω and −→v · −→γ ∈ Fq are distributed
uniformly and independently from the other coefficients in c1 and k∗. Since Z = (U−1)T

where Z := (zi,j) and U := (ui,j), we should verify the independence of coefficient vectors
−→r := (ρ−→x · −→u 1, . . . , ρ

−→x · −→u n) ∈ Fnq \ {
−→
0 } in c1 and −→w := (τ−→v · −→z 1, . . . , τ

−→v · −→z n) ∈ Fnq \ {
−→
0 }

in k∗. Since −→x · −→v 6= 0 from the condition given in steps 3 and 5 in Definition 17, coefficients
vectors −→r and −→w are (pairwise-)independently and uniformly distributed under the condition

that −→r · −→w 6= 0 from Lemma 23. Since −→r ,−→w U← Fnq in Game 2-k, the event that −→r · −→w = 0

occurs in the game with probability 1
q . Therefore, generated c1 and k∗ has the same joint

distribution as in Game 2-k (i.e., semi-functional ciphertext and semi-functional key), except
with probability 1

q . �

From Claim 2, when β = 0, the advantage of A in the above game is equal to that in Game

2-(k − 1), i.e., Adv
(2-(k−1))
A (λ), and is also equal to Pr0 := Pr

[
Bk(1λ, %)→1

∣∣∣ % R← GP20 (1λ, n)
]
.

When β = 1, except in the event that occurs with probability 1
q , the above game is the same

as Game 2-k. Hence, when β = 1, since the advantage of A in the above game is equal to

Pr1 := Pr
[
Bk(1λ, %)→1

∣∣∣ % R←GP21 (1λ, n)
]
, Adv

(2-k)
A (λ) ≤ Pr1+ 1

q from Shoup’s difference lemma.

Therefore, |Adv(2-(k−1))A (λ)−Adv
(2-k)
A (λ)| ≤ |Pr0 − Pr1|+ 1

q = AdvP2Bk(λ) + 1
q . This completes the

proof of Lemma 25. �

Lemma 26 For any adversary A, Adv
(2-ν)
A (λ) = Adv

(3)
A (λ).

29

Proof. To prove Lemma 26, we will show distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c1, c2) in Game
2-ν and that in Game 3 are equivalent. For that purpose, we define new bases D of V and D∗
of V∗ as follows:

We generate random F := (ξi,s)
U← Fn×nq , θi

U← Fq, and set

dn+i := bn+i −
∑n

s=1 ξi,sbs − θib2n+1, d∗i := b∗i +
∑n

s=1 ξs,ib
∗
n+s for i = 1, . . . , n,

d∗2n+1 := b∗2n+1 +
∑n

s=1 θsb
∗
n+s.

Let
−→
b 1 := (b1, . . . , bn)T,

−→
b 2 := (bn+1, . . . , b2n)T,

−→
b ∗1 := (b∗1, . . . , b

∗
n)T,

−→
b ∗2 := (b∗n+1, . . . , b

∗
2n)T,

−→
d 2 := (dn+1, . . . ,d2n)T,

−→
d ∗1 := (d∗1, . . . ,d

∗
n)T,

−→
θ := (θ1, . . . , θn)T.

That is,
−→
b 1−→
d 2

b2n+1

 :=

 In 0n 0

−F In −
−→
θ

0 0 1

−→
b 1−→
b 2

b2n+1

 ,

−→
d ∗1−→
b ∗2

d∗2n+1

 :=

 In FT 0
0n In 0

0 (
−→
θ)T 1

−→
b ∗1−→
b ∗2

b∗2n+1

 .

We set

D := (b1, . . . , bn,dn+1, . . . ,d2n, b2n+1, b2n+2, b2n+3),

D∗ := (d∗1, . . . ,d
∗
n, b
∗
n+1, . . . , b

∗
2n,d

∗
2n+1, b

∗
2n+2, b

∗
2n+3).

We then easily verify that D and D∗ are dual orthonormal, and are distributed the same as the
original bases, B and B∗.

Keys and challenge ciphertext ({k(j)∗}j=1,...,ν , c1, c2) in Game 2-ν are expressed over bases
B and B∗ as

k(j)∗ = σ(
∑n

i=1 v
(j)
i b∗i) +

∑n
i=1 r

(j)
i b∗n+i + b∗2n+1 + η(j)b∗2n+2,

c1 = δ1(
∑n

i=1 xibi) +
∑n

i=1wibn+i + ζb2n+1 + δ2b2n+3, c2 := gζTm
(b).

Then,

k(j)∗ = σ(j)(
∑n

i=1 v
(j)
i b∗i) +

∑n
s=1 r

(j)
s b∗n+s + b∗2n+1 + η(j)b∗2n+2

= σ(j)(
∑n

i=1 v
(j)
i (d∗i −

∑n
s=1 ξs,ib

∗
n+s)) +

∑n
s=1 r

(j)
s b∗n+s + (d∗2n+1 −

∑n
s=1 θsb

∗
n+s) + η(j)b∗2n+2

= σ(j)(
∑n

i=1 v
(j)
i d∗i) +

∑n
s=1(r

(j)
s − σ(j)

∑n
i=1 v

(j)
i ξs,i − θs)b∗n+s + d∗2n+1 + η(j)b∗2n+2

= σ(j)(
∑n

i=1 v
(j)
i d∗i) +

∑n
s=1 γ

(j)
s b∗n+s + d∗2n+1 + η(j)b∗2n+2,

where

γ
(j)
s := r

(j)
s − σ(j)

∑n
i=1 v

(j)
i ξs,i − θs,

which are uniformly, independently distributed since r
(j)
s

U← Fq.

c1 = δ1(
∑n

i=1 xibi) +
∑n

t=1wtbn+t + ζb2n+1 + δ2b2n+3

= δ1(
∑n

i=1 xibi) +
∑n

t=1wt(dn+t +
∑n

s=1 ξt,sbs + θtb2n+1) + ζb2n+1 + δ2b2n+3

=
∑n

i=1 (δ1xi +
∑n

t=1wtξt,i) bi +
∑n

t=1wtdn+t+ (ζ +
∑n

t=1wtθt) b2n+1 + δ2b2n+3

=
∑n

i=1 x
′
ibi +

∑n
t=1wtdn+t + ζ ′b2n+1 + δ2b2n+3,

30

where

x′i := δ1xi +
∑n

t=1wtξt,i, ζ ′ := ζ +
∑n

t=1wtθt,

which are uniformly, independently distributed since (w1, . . . , wn)
U← Fnq \ {

−→
0 }, (ξt,i)

U← Fn×nq ,

θi
U← Fq.
In the light of the adversary’s view, both (B,B∗) and (D,D∗) are consistent with public

key pk := (1λ, paramV, B̂). Therefore, {k(j)∗}j=1,...,ν and c1 above can be expressed as keys and
ciphertext in two ways, in Game 2-ν over bases (B,B∗) and in Game 3 over bases (D,D∗). Thus,
Game 2-ν can be conceptually changed to Game 3. �

Lemma 27 For any adversary A, Adv
(3)
A (λ) = 0.

Proof. The value of b is independent from the adversary’s view in Game 3. Hence, Adv
(3)
A (λ) =

0. �

3.6 The Proposed HPE Scheme

The definition of HPE and key idea for the proposed HPE (and the correctness of the HPE)
are given in Appendices B.5 and B.6.

3.6.1 Construction

Setup(1λ,−→µ := (n, d;µ1, . . . , µd)) : (paramV,B,B∗)
R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), sk := B∗, pk := (1λ, paramV, B̂),

return sk, pk.

KeyGen(pk, sk, (−→v 1, . . . ,
−→v `) := ((v1, . . . , vµ1), . . . , (vµ`−1+1, . . . , vµ`)) :

σdec,t, ηdec, σran,j,t, ηran,j (j = 1, .., `+ 1), σdel,j,t, ηdel,j (j = 1, .., n), ψ
U← Fq

for t = 1, . . . , `,

k∗`,dec :=
∑`

t=1 σdec,t(
∑µt

i=µt−1+1 vib
∗
i) + b∗2n+1 + ηdecb

∗
2n+2,

k∗`,ran,j :=
∑`

t=1 σran,j,t(
∑µt

i=µt−1+1 vib
∗
i) + ηran,jb

∗
2n+2 for j = 1, . . . , `+ 1,

k∗`,del,j :=
∑`

t=1 σdel,j,t(
∑µt

i=µt−1+1 vib
∗
i) + ψb∗j + ηdel,jb

∗
2n+2

for j = µ` + 1, . . . , n,

return
−→
k ∗` := (k∗`,dec,k

∗
`,ran,1, . . . ,k

∗
`,ran,`+1,k

∗
`,del,µ`+1, . . . ,k

∗
`,del,n).

31

Enc(pk,m ∈ GT , (
−→x 1, . . . ,

−→x `) := ((x1, . . . , xµ1), . . . , (xµ`−1+1, . . . , xµ`)) :

(−→x `+1, . . . ,
−→x d)

U← Fµ`+1−µ`
q × · · · × Fn−µd−1

q , δ1, . . . , δ`, δ2n+3, ζ
U← Fq,

c1 :=
∑`

t=1 δt(
∑µt

i=µt−1+1 xibi) + ζb2n+1 + δ2n+3b2n+3, c2 := gζTm,

return (c1, c2).

Dec(pk,k∗`,dec, c1, c2) : m′ := c2/e(c1,k
∗
`,dec),

return m′.

Delegate`(pk,
−→
k ∗` ,
−→v `+1 := (vµ`+1, . . . , vµ`+1

)) :

αdec,t, σdec, αran,j,t, σran,j (j = 1, .., `+ 2), αdel,j,t, σdel,j (j = 1, .., n), ψ′
U← Fq

for t = 1, . . . , `+ 1,

k∗`+1,dec := k∗`,dec +
∑`+1

t=1 αdec,tk
∗
`,ran,t + σdec(

∑µ`+1

i=µ`+1 vik
∗
`,del,i),

k∗`+1,ran,j :=
∑`+1

t=1 αran,j,tk
∗
`,ran,t + σran,j(

∑µ`+1

i=µ`+1 vik
∗
`,del,i) for j = 1, .., `+ 2,

k∗`+1,del,j :=
∑`+1

t=1 αdel,j,tk
∗
`,ran,t + σdel,j(

∑µ`+1

i=µ`+1 vik
∗
`,del,i) + ψ′k∗`,del,j

for j = µ`+1 + 1, . . . , n,

return
−→
k ∗`+1 := (k∗`+1,dec,k

∗
`+1,ran,1, ..,k

∗
`+1,ran,`+2,k

∗
`+1,del,µ`+1+1

, ..,k∗`+1,del,n).

Remark: A PE scheme with general delegation is given in Appendix B.8.

3.6.2 Security

Theorem 28 The proposed HPE scheme is adaptively attribute-hiding against chosen plaintext
attacks under the n-eDDH assumption. For any adversary A, there exist probabilistic machines,
C0 and C(k,j) (k = 1, . . . , ν; j = 1, . . . , n + 1) whose running times are essentially the same as
that of A, such that for any security parameter λ,

AdvHPE,AHA (λ) < Advn-eDDH
C0 (λ) +

ν∑
k=1

n+1∑
j=1

Advn-eDDH
C(k,j) (λ) +

(n+ 4)ν

q
,

where ν is the maximum number of adversary A’s key queries.

The proof is given in Appendix B.7.

References

[1] S. Al-Riyami, J. Malone-Lee, and N. Smart. Escrow-free encryption supporting crypto-
graphic workflow. In Int. J. Inf. Sec., volume 5, pages 217–229, 2006.

[2] W. Bagga, R. Molva, and S. Crosta. Policy-based encryption schemes from bilinear pairings.
In ASIACCS, page 368, 2006.

[3] M. Barbosa and P. Farshim. Secure cryptographic workflow in the standarad model. In
INDOCRYPT, pages 379–393, 2006.

[4] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Israel
Institute of Technology, Technion, Haifa, Israel, 1996.

[5] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based en-
cryption. In Proceedings of the IEEE Symposium on Security and Privacy, 2007.

32

[6] D. Boneh and X. Boyen. Efficient selective-id secure identity based encryption without
random oracles. In EUROCRYPT, pages 223 – 238, 2004.

[7] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In
CRYPTO, pages 443–459, 2004.

[8] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with constant
size ciphertext. In EUROCRYPT, pages 440–456, 2005.

[9] D. Boneh and M. Franklin. Identity based encryption from the weil pairing. In CRYPTO,
pages 213–229, 2001.

[10] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC,
pages 325–342, 2005.

[11] D. Boneh and M. Hamburg. Generalized identity based and broadcast encryption scheme.
In ASIACRYPT, pages 455–470, 2008.

[12] D. Boneh and J. Katz. Improved efficiency for cca-secure cryptosystems built using identity
based encryption. In RSA-CT, 2005.

[13] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In
TCC, pages 535–554, 2007.

[14] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without
random oracles). In CRYPTO, pages 290–307, 2006.

[15] R. Bradshaw, J. Holt, and K. Seamons. Concealing complex policies with hidden creden-
tials. In CCS, pages 146–157, 2004.

[16] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In
EUROCRYPT, pages 255–271, 2003.

[17] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryp-
tion. In EUROCRYPT, 2004.

[18] M. Chase. Multi-authority attribute based encryption. In TCC, pages 515–534, 2007.

[19] L. Cheung and C. Newport. Provably secure ciphertext policy abe. In CCS, pages 456–465,
2007.

[20] C. Cocks. An identity based encryption scheme based on quadratic residues. In Proceedings
of the 8th IMA International Conference on Cryptography and Coding, pages 26–28, 2001.

[21] David Mandell Freeman. Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In EUROCRYPT, 2010.

[22] C. Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT,
pages 445–464, 2006.

[23] C. Gentry and S. Halevi. Hierarchical identity based encryption with polynomially many
levels. In TCC, pages 437–456, 2009.

[24] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In ASIACRYPT, pages
548–566, 2002.

33

[25] V. Goyal, A. Jain, O. Pandey, and A. Sahai. Bounded ciphertext policy attribute-based
encryption. In ICALP, 2008.

[26] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute Based Encryption for Fine-
Grained Access Conrol of Encrypted Data. In CCS, 2006.

[27] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In
EUROCRYPT, pages 415–432, 2008.

[28] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In EUROCRYPT,
pages 466–481, 2002.

[29] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In EUROCRYPT, pages 146–162, 2008.

[30] A. Lewko and B. Waters. New techniques for dual system encryption and fully secure hibe
with short ciphertexts. In TCC, 2010.

[31] G. Miklau and D. Suciu. Controlling access to published data using cryptography. In
VLDB, pages 898–909, 2003.

[32] T. Okamoto and K. Takashima. Homomorphic encryption and signatures from vector
decomposition. In Pairing, pages 57–74, 2008.

[33] T. Okamoto and K. Takashima. Hierarchical predicate encryption for inner-products. In
ASIACRYPT, 2009.

[34] Rafail Ostrovksy, Amit Sahai, and Brent Waters. Attribute Based Encryption with Non-
Monotonic Access Structures. In CCS, 2007.

[35] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based systems. In
CCS, pages 99–112, 2006.

[36] A. Sahai and B. Waters. Fuzzy Identity Based Encryption. In EUROCRYPT, pages 457–
473, 2005.

[37] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53,
1984.

[38] E. Shi and B. Waters. Delegating capabilities in predicate encryption systems. In Automata,
Languages and Programming, pages 560–578, 2008.

[39] N. Smart. Access control using pairing based cryptography. In CT-RSA, pages 111–121,
2003.

[40] B. Waters. Efficient identity-based ecnryption without random oracles. In EUROCRYPT,
pages 114–127, 2005.

[41] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization. Cryptology ePrint Archive, Report 2008/290, 2008.

[42] B. Waters. Dual system encryption: realizing fully secure ibe and hibe under simple
assumptions. In CRYPTO, pages 619–636, 2009.

34

A Appendices for Attribute-Based Encryption

A.1 KP-ABE

The same techniques we applied above to obtain a fully secure CP-ABE system also yield a fully
secure KP-ABE system. Our system is very closely related to the selectively secure KP-ABE
systems in [26].

A.1.1 Definition

A KP-ABE system is very similar to a CP-ABE system, except that keys are now associated
with access structures and ciphertexts are associated with sets of attributes. A KP-ABE system
consists of four algorithms:

Setup(λ,U) → PK,MSK The setup algorithm takes in the security parameter λ and the
attribute universe description U . It outputs the public parameters PK and a master secret key
MSK.

Encrypt(M,PK,S) → CT The encryption algorithm takes in a message M , the public pa-
rameters, and a set of attributes S. It outputs a ciphertext CT .

KeyGen(A,MSK,PK)→ SK The key generation algorithm takes in an access structure A,
the master secret key MSK, and the public parameters PK. It outputs a secret key SK.

Decrypt(CT, SK,PK)→M The decryption algorithm takes in a ciphertext encrypted under
a set of attributes S, a secret key for an access structure A, and the public parameters. It will
output the message M if S satisfies A.

The security definition for KP-ABE is essentially the same as for CP-ABE: first the chal-
lenger gives the attacker the public parameters. Then the attacker can make private key queries
(phase 1). In the challenge phase, the attacker provides two messages M0,M1 and a set of at-
tributes S∗ that does not satisfy any of the private key queries made in phase 1. The challenger
flips a random coin β ∈ {0, 1} and gives the attacker an encryption of Mβ under S∗. In phase
2, the attacker can again make private key queries, subject to the restriction that none can be
satisfied by S∗. Finally, the attacker outputs a guess β′ for β. The advantage of the attacker
is Pr[β = β′]− 1

2 . Selective security is defined by having the attacker declare S∗ before seeing
the public parameters.

A.1.2 Construction

We now construct our one-use KP-ABE system in composite order groups of order N = p1p2p3.
It is closely related to the selectively secure KP-ABE systems in [26], and our proof of security
will be similar to the proof for our CP-ABE scheme. We again rely on Assumptions 1, 2, and
3 and restrict to case where each attribute can be used at most once in labeling the rows of an
LSSS matrix. The matrices are now associated with keys and sets of attributes are associated
with ciphertexts. The same general transformation can be used to yield a secure scheme where
attributes can be used more than once.

Our KP-ABE system consists of four algorithms:

35

Setup(λ)→ PK,MSK The setup algorithm chooses a bilinear group G of order N = p1p2p3
(3 distinct primes). We let Gpi denote the subgroup of order pi in G. It chooses a random
α ∈ ZN and g ∈ Gp1 . For each attribute i, it chooses a random si ∈ ZN . The public parameters
are N, g, e(g, g)α, Ti = gsi∀i. The master secret key is α and a generator X3 of Gp3 .

Encrypt(M,S, PK) → CT The encryption algorithm chooses a random s ∈ ZN . It sets the
ciphertext to be:

C = Me(g, g)αs, C0 = gs, Ci = T si ∀i ∈ S.

(This implicitly includes S.)

KeyGen((A, ρ),MSK,PK) → SK A is a matrix and ρ is map from each row x of A to an
attribute ρ(x). The key generation algorithm chooses a random vector u such that 1 · u = α.
(Here, 1 denotes the vector with the first entry equal to 1 and the rest equal to 0). For each
row Ax of A, it chooses a random rx ∈ ZN , random elements Wx, Vx ∈ Gp3 , and sets the secret
key to be:

K1
x = gAx·uT rxρ(x)Wx,

K2
x = grxVx.

Decrypt(CT, PK, SK)→M We let S denote the set of attributes associated to CT and let
A, ρ denote the matrix and row labeling associated with SK. If S satisfies A, the decryption
algorithm computes constants ωx such that

∑
ρ(x)∈S αxAx = 1. It then computes:

∏
ρ(x)∈S

e(C0,K
1
x)ωx

e(Cρ(x),K2
x)ωx

=
∏

ρ(x)∈S

e(g, g)sωxAx·ue(g, Tρ(x))
srxωx

e(g, Tρ(x))srxωx

= e(g, g)s
∑
ρ(x)∈S ωxAx·u = e(g, g)sα.

The message can then be recovered as C/e(g, g)sα.

A.1.3 Security

To prove that our system is fully secure, we must first define semi-functional keys and cipher-
texts.

Semi-functional Ciphertext A semi-functional ciphertext is formed as follows. We let g2
denote a generator of Gp2 and c a random exponent. We also choose random values zi. Then:

C0 = gsgc2, Ci = T si g
czi
2 ∀i ∈ S.

Semi-functional Key A semi-functional key will take on one of two forms. A semi-functional
key of type 1 is formed as follows. A random vector u2 is chosen (so u2 · 1 is random), and we
set δx = Ax · u2. Additionally, random exponents γx are chosen. The key is then defined as:

K1
x = gAx·uT rxρ(x)Wxg

δx+γxzρ(x)
2 ,

K2
x = grxVxg

γx
2 .

36

A semi-functional key of type 2 is formed similarly, except without the terms g
γxzρ(x)
2 and

gγx2 (one could also interpret this as setting γx = 0):

K1
x = gAx·uT rxρ(x)Wxg

δx
2 ,

K2
x = grxVx.

We note that when we use a semi-functional key to decrypt a semi-functional ciphertext, we
are left with an additional term:

e(g2, g2)
∑
ρ(x)∈S cωxδx = e(g2, g2)

cu2·1.

We also note that these values zi are common to semi-functional ciphertexts and semi-functional
keys of type 1. We call a semi-functional key a nominally semi-functional key if u2 · 1 = 0.
Notice that if a nominally semi-functional key is used to decrypt a semi-functional ciphertext,
decryption will still work.

We will prove adaptive security of our system from our assumptions using a sequence of
games. The first game, GameReal, is the real security game (the challenge ciphertext and all
are normal). In Game0, all keys are normal, but the challenge ciphertext is semi-functional. In
Gamek,1, the first k − 1 keys are semi-functional of type 2, key k is semi-functional of type 1,
and keys > k are normal. In Gamek,2, the first k keys are semi-functional of type 2 and keys
> k are normal. Notice that in Gameq,2 (where q is the number of key queries), all keys are
semi-functional of type 2. In GameFinal, the keys are all semi-functional of type 2, and the
challenge ciphertext is a semi-functional encryption of a random message. We will prove this
games are indistinguishable in the following lemmas.

Lemma 29 Suppose there exists a polynomial time algorithm A such that GameRealAdvA −
Game0AdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε in
breaking Assumption 1.

Proof. B is given {g,X3, T}. It will simulate either GameReal or Game0 with A. The public
parameters are formed by choosing exponents α, si randomly. B gives these to A. B can respond
to key requests by running the usual key generation algorithm to make normal keys because it
knows the MSK.

To form the challenge ciphertext for a set of attributes S, B implicitly sets s so that gs is
the part of T in the Gp1 subgroup (i.e. T is the product of gs and possibly an element of Gp2 :

C = Mβe(g, g)sα = Me(g, T)α, C0 = T, Ci = T si ∀i ∈ S.

We note that this sets zi = si. However, the values of si modulo p1 are uncorrelated from
the values of zi modulo p2 by the Chinese Remainder Theorem. If T = gs, this is a properly
distributed normal ciphertext. If T = gsX2 (for X2 ∈ Gp2), this is a properly distributed
semi-functional ciphertext. Thus, B can use the output of A to gain advantage ε in breaking
Assumption 1. �

Lemma 30 Suppose there exists a polynomial time algorithm A such that Gamek−1,2AdvA −
Gamek,1AdvA = ε. Then we can construct a polynomial time algorithm B with advantage
negligibly close to ε in breaking Assumption 2.

37

Proof. B receives {g,X3, g
sX2, Y2Y3, T}. It will simulate either Gamek−1,2 or Gamek,1 with A.

It begins by sending A the public parameters N, g,X3, e(g, g)α, gsi , where it chooses α and the
values si randomly.

To form the challenge ciphertext for a set of attributes S, B sets:

C = Mβe(g, g
sX2)

α, C0 = gsX2, Ci = (gsX2)
si ∀i ∈ S.

This implicitly sets si = zi modulo N , but again these values are actually uncorrelated because
si is used as a modulo p1 value and zi is used as a modulo p2 value.

To form normal keys for queries > k, B can use its knowledge of the MSK and employ the
regular key generation algorithm. To create semi-functional keys of type 2 for queries < k, B
chooses a random vector u such that u ·1 = α, a random vector u′2, random values rx ∈ Zp, and
random group elements Wx, Vx ∈ Gp3 . The semi-functional key can then be defined as:

K1
x = gAx·uT rxρ(x)Wx(Y2Y3)

Ax·u′2 ,

K2
x = grxVx.

We note that for Y2 = gc2, the u2 in our description of semi-functional keys above now corre-
sponds to u2 = cu′2.

For the kth key, B will make a key that is either normal or nominally semi-functional of type
1, depending on the value of T in the challenge. We will later argue that if it is a nominally
semi-functional key, it will still have the distribution of a regular semi-functional key of type 1
in the view of an attacker, since it is not a key capable of decrypting the challenge ciphertext.

To form the kth key for (A, ρ), B chooses a random vector u2 such that u2 · 1 = 0 and a
random vector u′ such that u′ · 1 = α. It implicitly sets u = ru2 + u′, where gr is the Gp1 part
of T . Values γx, Vx,Wx are chosen randomly.
B computes:

K1
x = gAx·u

′
(T)Ax·u2T γxzρ(x)Wx, K

2
x = T γxVx.

We note that this sets rx = rγx, but this is acceptable because rx is used as a modulo p1 value
and γx is used as a modulo p2 value. Depending on the value of T , this is either a normal key
or a nominally semi-functional key of type 1.

Now we must argue that if the attacker has not asked for a kth key that can decrypt the
challenger ciphertext, then the kth key will seem properly distributed in the attacker’s view (the
fact that 0 is being shared in the Gp2 subgroup should be information-theorectically hidden).
We recall our restriction that attributes are used only once in the labeling ρ of the matrix rows
in each key. We consider an attribute i that does not belong to S, the set of attributes for the
challenge ciphertext. We note that value zi does not appear anywhere except possibly in the
kth key, since any other semi-functional keys given out are of type 2.

We are assuming that the kth key cannot decrypt the challenge ciphertext. This means that
the vector 1 is not in the rowspace R of the corresponding matrix A when we restrict to rows
x such that x ∈ S. We may assume this holds modulo p2 (see earlier remarks). Thus, there is
a vector w such that w is orthogonal to R, and not orthogonal to (1, 0, . . . , 0) (modulo p2). We
fix a basis including w, and we write u2 as u2 = fw + u′′2 modulo p2 for f ∈ Zp2 and u′′2 in the
span of the other basis elements (note that u′′2 is uniformly distributed in this space). We note
that u′′2 reveals no information about f . We note that (1, 0, . . . , 0) · u2 cannot be determined
from u′′2 alone, some information about f is needed. The shares for rows with x ∈ S only reveal
information about u′′2.

38

The only places fw appears are in equations of the form:

Ax · u2 + γxzρ(x),

where the ρ(x)’s are each unique attributes not appearing in the challenge ciphertext. As long
as each γx is not congruent to 0 modulo p2, each of these equations introduces a new unknown
zρ(x) that appears nowhere else, so no information about f can be learned by the attacker.
More precisely, for each potential value of u2,1, there are an equal number of solutions to these
equations, so each value is equally likely. Hence, the value being shared in the Gp2 subgroup is
information-theoretically hidden, as long as none of the γx are 0 modulo p2. The probability
that any of the γx values are 0 modulo p2 is negligible. Thus, the ciphertext and key k are
properly distributed in the attacker’s view with probability negligible close to 1.

Therefore, depending on the value of T , B has properly simulated either Gamek−1,2 or
Gamek,1 with probability negligibly close to 1. Hence it can use the output of A to gain
advantage negligibly close to ε in breaking Assumption 2. �

Lemma 31 Suppose there exists a polynomial time algorithm A such that Gamek,1AdvA −
Gamek,2AdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε in
breaking Assumption 2.

Proof. B receives {g,X3, g
sX2, Y2Y3, T}. It will simulate either Gamek,1 or Gamek,2 with A.

It begins by sending A the public parameters N, g,X3, e(g, g)α, gsi , where it chooses α and the
values si randomly. It will implicitly set zi = si.

To form the challenge ciphertext for a set of attributes S, B sets:

C = Mβe(g
sX2, g)α, C0 = gsX2, Ci = (gsX2)

si ∀i ∈ S.

To form normal keys for queries > k, B can use its knowledge of the MSK and employ the
regular key generation algorithm. To create semi-functional keys of type 2 for queries < k, B
can choose a random vector u such that u · 1 = α, a random vector u′2, random values rx, and
random group elements Wx, Vx ∈ Gp3 . The semi-functional key can then be defined as:

K1
x = gAx·uT rxρ(x)Wx(Y2Y3)

Ax·u′2 ,

K2
x = grxVx.

We note that for Y2 = gc2, the u2 in our description of semi-functional keys above now corre-
sponds to u2 = cu′2.

For the kth key, B will either make a semi-functional key of type 1 or one of type 2, depending
on the value of T in the assumption. B first chooses a random vector u such that u · 1 = α and
a random vector u2. Part of the K1

x value can then be computed as:

gAx·u(Y2Y3)
Ax·u2 .

Next, B chooses random values γx and implicitly sets rx = rγx, where gr is the Gp1 part of
T . Also, Wx is chosen randomly in Gp3 . B can then compute the rest of K1

x as:

T γ(x)sρ(x)Wx.

Putting it together, we have:

K1
x = gAx·u(Y2Y3)

Ax·u′2T γxsρ(x)Wx.

39

Similarly, we choose Vx randomly in Gp3 and set

K2
x = T γxVx.

If T ∈ G, this is a properly distributed semi-functional key of type 1. If T ∈ Gp1p3 , this is a
properly distributed semi-functional key of type 2. Hence B can use the output of A to gain
advantage ε in breaking Assumption 2. �

Lemma 32 Suppose there exists a polynomial time algorithm A such that Gameq,2AdvA −
GameFinalAdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε
in breaking Assumption 3.

Proof. B receives g, gαX2, X3, g
sY2, Z2, T . It will simulate Gameq,2 or GameFinal with A. B

begins by setting the public parameters N, g,X3, e(g, g)α = e(g, gαX2). It chooses values si = zi
randomly.

To form the challenge ciphertext for a set of attributes S, B computes:

C = MβT, C0 = gsX2, Ci = (gsX2)
si ∀i ∈ S.

If T = e(g, g)αs, this will be a semi-functional encryption of Mβ. If T is random, this will be a
semi-functional encryption of a random message and this will give no information about β to
the attacker.

To form a semi-functional key of type 2 for (A, ρ) (where A has ` columns), B chooses
u1, . . . , u`−1 randomly and implicity sets u` = α −

∑`−1
i=1 ui (so that 1 · u = α). B chooses a

random vector u2 of length `. It chooses Wx randomly in Gp3 , rx randomly in ZN , and Vx
randomly in Gp3 . It sets:

K1
x = g

∑`−1
i=1 Ax,iui−Ax,`ui(gαX2)

Ax,`gsρ(x)rxZAx·u22 Wx,

K2
x = grxVx.

Notice that for X2 = gc2, Z2 = gd2 , in the Gp2 subgroup this will be gδx2 for δx = Ax · u′2 where
u′2 = du2 except with a c added in the last coordinate. This yields a properly distributed semi-
functional key of type 2. B can use the output of A to gain advantage ε in breaking Assumption
3. �

We have now proven the following theorem:

Theorem 33 If Assumptions 1, 2, and 3 hold, then our KP-ABE system is secure.

Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous lemmas that the
real security game is indistinguishable from GameFinal, in which the value of β is information-
theoretically hidden from the attacker. Hence the attacker cannot attain a non-negligible ad-
vantage in breaking the KP-ABE system. �

A.1.4 Expanding to Multi-Use

To build a fully secure KP-ABE system where each attribute can be used up to k times in the
row labeling of an access matrix, we apply the encoding technique of Section 2.2. We compare
the resulting k-use system to the one-system in Table 2. We let |U | denote the number of
attributes before the encoding is applied, |S| denote the number of attributes associated with
a ciphertext, and ` denote the number of rows in an access matrix associated with a key. All
sizes refer to the number of group elements.

40

size of PK size of SK size of CT

one-use |U |+ 2 2` |S|+ 2

k-use k|U |+ 2 2` k|S|+ 2

Table 2: Comparison of one-use and k-use KP-ABE systems

A.2 Generic Security of Our Complexity Assumptions

We now prove our three complexity assumptions hold in the generic group model, as long as it is
hard to find a nontrivial factor of the group order, n. We adopt the notation of [29] to express
our assumptions. We fix generators gp1 , gp2 , gp3 of the subgroups Gp1 , Gp2 , Gp3 respectively.
Every element of G can then be expressed as ga1p1 g

a2
p2 g

a3
p3 for some values of a1, a2, a3. We denote

an element of G by (a1, a2, a3). The element e(gp1 , gp1)a1e(gp2 , gp2)a2e(gp3 , gp3)a3 in GT will be
denoted by [a1, a2, a3]. We use capital letters to denote random variables, and we reuse random
variables to denote relationships between elements. For example, X = (X1, Y1, Z1) is a random
element of G, and Y = (X1, Y2, Z2) is another random element that shares the same component
in the Gp1 subgroup.

Given random variables X, {Ai} expressed in this form, we say that X is dependent on {Ai}
if there exists values λi ∈ Zn such that X =

∑
i λiAi as formal random variables. Otherwise,

we say that X is independent of {Ai}. We note the following two theorems from [29]:

Theorem 34 (Theorem A.1 of [29]) Let n =
∏m
i=1 pi be a product of distinct primes, each

greater than 2λ. Let {Ai} be random variables over G, and let {Bi}, T0, T1 be random variables
over GT , where all random variables have degree at most t. Consider the following experiment
in the generic group model:

An algorithm is given n, {Ai}, and {Bi}. A random bit b is chosen, and the adversary is
given Tb. The algorithm outputs a bits b′, and succeeds if b′ = b. The algorithm’s advantage is
the absolute value of the difference between its success probability and 1

2 .
Say each of T0 and T1 is independent of {Bi} ∪ {e(Ai, Aj)}. Then given any algorithm A

issuing at most q instructions and having advantage δ in the above experiment, A can be used to
find a nontrivial factor of n (in time polynomial in λ and the running time of A) with probability
at least δ −O(q2t/2λ).

Theorem 35 (Theorem A.2 of [29]) Let n =
∏m
i=1 pi be a product of distinct primes, each

greater than 2λ. Let {Ai}, T0, T1 be random variables over G, and let {Bi} be random variables
over GT , where all random variables have degree at most t. Consider the same experiment as
in the theorem above.

Let S := {i|e(T0, Ai) 6= e(T1, Ai)} (where inequality refers to inequality as formal polyno-
mials). Say each of T0 and T1 is independent of {Ai}, and furthermore that for all k ∈ S
it holds that e(T0, Ak) is independent of {Bi} ∪ {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=k, and e(T1, Ak) is
independent of {Bi}∪{e(Ai, Aj)}∪{e(T1, Ai)}i 6=k. Then given any algorithm A issuing at most
q instructions and having advantage δ, the algorithm can be used to find a nontrivial factor of
n (in time polynomial in λ and the running time of A) with probability at least δ −O(q2t/2λ).

We apply these theorems to prove the security of our assumptions in the generic group
model.

Assumption 1 We apply Theorem 35. We can express this assumption as:

A1 = (1, 0, 0), A2 = (0, 0, 1),

41

T0 = (X1, X2, 0), T1 = (X1, 0, 0).

We note that S = ∅ in this case. It is clear that T0 and T1 are both independent of {A1, A2}
because X1 does not appear in A1 or A2. Thus, Assumption 1 is generically secure, assuming
it is hard to find a nontrivial factor of n.

Assumption 2 We apply Theorem 35. We can express this assumption as:

A1 = (1, 0, 0), A2 = (X1, 1, 0), A3 = (Y1, 0, 0), A4 = (0, X2, 1),

T0 = (Z1, Z2, Z3), T1 = (Z1, 0, Z3).

We note that S = {2, 4} in this case. It is clear that T0 and T1 are both independent of
{Ai} since Z1 does not appear in the Ai’s, for example. We see that e(T0, A2) is independent
of {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=2 because it is impossible to obtain X1Z1 in the first coordinate
of a combination of elements of {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=2. This also allows us to conclude
that e(T1, A2) is independent of {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=2. We similarly note that e(T0, A4)
is independent of {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=4 and e(T1, A4) is independent of {e(Ai, Aj)} ∪
{e(T1, Ai)}i 6=4 because we cannot obtain Z3 in the third coordinate. Thus, Assumption 2 is
generically secure, assuming it is hard to find a nontrivial factor of n.

Assumption 3 We apply Theorem 34. We can express this assumption as:

A1 = (1, 0, 0), A2 = (B, 1, 0), A3 = (0, 0, 1), A4 = (S,X2, 0), A5 = (0, Y2, 0),

T0 = [BS, 0, 0], T2 = [Z1, Z2, Z3].

T1 is independent of {e(Ai, Aj)} because Z1, Z2, Z3 do not appear in {Ai}. T0 is independent
of {e(Ai, Aj)} because the only way to obtain BS in the first coordinate is to take e(A2, A4),
but then we are left with an X2 in the second coordinate that cannot be canceled. Thus,
Assumption 3 is generically secure, assuming it is hard to find a nontrivial factor of n.

B Appendices for Predicate Encryption

B.1 Dual Pairing Vector Spaces by Direct Product of Asymmetric Pairing
Groups

Definition 36 “Asymmetric bilinear pairing groups” (q,G1,G2,GT , g1, g2, e) are a tuple of a
prime q, cyclic (multiplicative) groups G1,G2 and GT of order q, g1 6= 1 ∈ G1, g2 6= 1 ∈ G2, and
a polynomial-time computable nondegenerate bilinear pairing e : G1×G2 → GT i.e., e(gs1, g

t
2) =

e(g1, g2)
st and e(g1, g2) 6= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing
groups (q,G1,G2,GT , g1, g2, e) with security parameter λ.

Definition 37 “Dual pairing vector spaces (DPVS)” (q,V,V∗,GT ,A,A∗, e) by direct product of
asymmetric pairing groups (q,G1,G2,GT , g1, g2, e) are a tuple of a prime q, two N -dimensional

vector spaces V :=

N︷ ︸︸ ︷
G1 × · · · ×G1 and V∗ :=

N︷ ︸︸ ︷
G2 × · · · ×G2 over Fq, a cyclic group GT of order

q, and their canonical bases i.e.,A := (a1, . . . ,aN) of V and A∗ := (a∗1, . . . ,a
∗
N) of V∗, where

ai := (

i−1︷ ︸︸ ︷
1, . . . , 1, g1,

N−i︷ ︸︸ ︷
1, . . . , 1) and a∗i := (

i−1︷ ︸︸ ︷
1, . . . , 1, g2,

N−i︷ ︸︸ ︷
1, . . . , 1), and pairing e : V× V∗ → GT .

42

The pairing is defined by e(x,y) :=
∏N
i=1 e(di, hi) ∈ GT where x := (d1, . . . , dN) ∈ V

and y := (h1, . . . , hN) ∈ V∗. This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if

e(x,y) = 1 for all y ∈ V, then x = 0. For all i and j, e(ai,a
∗
j) = g

δi,j
T where δi,j = 1 if i = j,

and 0 otherwise, and gT := e(g1, g2) 6= 1 ∈ GT .
DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak) = 0 if k 6=

j, which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
1, . . . , 1, dj ,

N−i︷ ︸︸ ︷
1, . . . , 1) where x := (d1, . . . , dN).

Moreover, linear transformation φ∗i,j on V∗ s.t.φ∗i,j(a
∗
j) = a∗i and φ∗i,j(a

∗
k) = 0 if k 6= j can be

easily achieved by φ∗i,j(y) := (

i−1︷ ︸︸ ︷
1, . . . , 1, hj ,

N−i︷ ︸︸ ︷
1, . . . , 1) where y := (h1, . . . , hN). We call φi,j and

φ∗i,j “distortion maps”.

B.2 Proof of Lemma 15

As in Appendix A.2, using a generator g, every element of G can be expressed as ga for some
value of a. We denote an element of G shortly by a, and we use capital letters to denote (formal)
random variables.

LetQ :=
{
g, gκ, gω+γihi , gγi , ghi (1 ≤ i ≤ n), gγihj (1 ≤ i 6= j ≤ n) ∈ G

}
, i.e., the elements

in the n-eDDH instance except for Yβ ∈ G, and P := {Pi} := { 1,K,Ω + ΓiHi,Γi, Hi (1 ≤ i ≤ n),
ΓiHj (1 ≤ i 6= j ≤ n) }, the set of polynomials of formal random variables obtained from Q. It
is clear that P and the target KΩ are linearly independent over Fq (as formal polynomials).
Therefore, Lemma 15 follows from Theorem A.2 in [8] and Lemma 38 below.

Lemma 38 If ∑
i

ai ·KΩPi =
∑
j,k

bj,k · PjPk (1)

holds among elements Pi ∈ P and ai, bj,k ∈ Fq, then all ai = 0, i.e., {KΩPi} are independent
of {PjPk}.

Proof. The set {KΩP | P ∈ P} is given as

{KΩ, K2Ω, KΩ(Ω + ΓiHi), KΩΓi, KΩHi (1 ≤ i ≤ n), KΩΓiHj (1 ≤ i 6= j ≤ n)}.

By the following facts, we conclude that no terms in the above set appear in the linear relation
(1), i.e., all ai = 0.

• As for KΩ(Ω + ΓiHi), there exists only one way, (Ω + ΓiHi)
2, to obtain Ω2 from a

product of two elements in P. However, obviously, since (Ω + ΓiHi)
2 does not contain K,

KΩ(Ω + ΓiHi) cannot be included in relation (1).

• Since neither K2,KΓi,KHi, nor KΓiHj is included in P, element K2Ω,KΩΓi,KΩ, or
KΩΓiHj cannot be obtained from a product of two elements in P. Therefore, any of these
cannot be included in linear relation (1).

• To obtain KΩ, we must use the product of K and Ω + ΓiHi. Then, we need to obtain
KΓiHi from a product of two elements in P. However, since each term containing Γi
except for Ω + ΓiHi contains some Hj (j 6= i), element KΓiHi cannot be obtained from
the desired product. Therefore, KΩ cannot be included in linear relation (1).

�

43

B.3 Proofs of Lemmas 20 and 22

B.3.1 Preliminary Lemma for Lemmas 42 and 45

We will use the following lemma in the proofs of Lemmas 42 and 45.

Lemma 39 Let (q,V,GT ,A, e) be dual pairing vector spaces by direct product of symmetric
pairing groups. Using {φi,j}, we can efficiently sample a random linear transformation

W :=
∑N,N

i=1,j=1 ri,jφi,j

of V with random coefficients {ri,j}i,j∈{1,...,N}
U← FN×Nq . At that time, the matrix (r∗i,j) :=

({ri,j}−1)T defines the adjoint action on V for pairing e, i.e., e(W (x), (W−1)T(y)) = e(x,y)
for any x,y ∈ V, via

(W−1)T :=
∑N,N

i=1,j=1 r
∗
i,jφi,j .

B.3.2 Proof of Lemma 20

To prove Lemma 20, we first define a simplified version of Problem 1.

Definition 40 Simple Problem 1 is to guess β ∈ {0, 1}, given (paramV, B̂, B̂∗, {eβ,i}i=1,...,n)
R←

GSP1β (1λ, n), where

GSP1β (1λ, n) : (paramV,B,B∗)
R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), B̂∗ := (b∗1, . . . , b
∗
n, b
∗
2n+1, b

∗
2n+2),

δ1, δ2,i
U← Fq, ρ

U← F×q for i = 1, . . . , n,

for i = 1, . . . , n,

e0,i := δ1bi + δ2,ib2n+3,

e1,i := δ1bi + ρbn+i + δ2,ib2n+3,

return (paramV, B̂, B̂∗, {eβ,i}i=1,...,n),

for β
U← {0, 1}. For a probabilistic machine D, we define the advantage of adversary D for

Simple Problem 1 as:

AdvSP1D (λ) :=
∣∣∣Pr [D(1λ, %)→1

∣∣∣ % R←GSP10 (1λ, n)
]
−Pr

[
D(1λ, %)→1

∣∣∣ % R←GSP11 (1λ, n)
]∣∣∣ .

Simple Problem 1 is reduced to Problem 1 (Lemma 41), and the n-eDDH problem is reduced
to Simple Problem 1 (Lemma 42). Therefore, we obtain Lemma 20 by combining Lemmas 41
and 42.

Lemma 41 The output distribution of Simple Problem 1, (paramV, B̂, B̂∗, {eβ,i}i=1,...,n), is ex-
actly the same as that of Problem 1. In particular, for any adversary B, there is a probabilistic
machine D, whose running time is the same as that of B, such that for any security parameter
λ, AdvSP1D (λ) = AdvP1B (λ).

Proof. Given a Simple Problem 1 instance, (paramV, B̂, B̂∗, {eβ,i}i=1,...,n), we generate U :=

(ui,j)
U← GL(n,Fq), and calculate Z := (zi,j) := (UT)−1.

44

We then calculate {dn+1, . . . ,d2n} from {bn+1, . . . , b2n} as

dn+j :=
∑n

i=1 zi,jbn+i for j = 1, . . . , n.

Then,

bn+i =
∑n

j=1 ui,jdn+j for i = 1, . . . , n

since UZT = In, and, for i = 1, . . . , n,

e0,i = δ1bi + δ2,ib2n+3,

e1,i = δ1bi + ρbn+i + δ2,ib2n+3 = δ1bi + ρ
∑n

j=1 ui,jdn+j + δ2,ib2n+3.

Let basis D := (b1, . . . , bn,dn+1, . . . ,d2n, b2n+1, b2n+2, b2n+3). Both bases B and D are con-
sistent with (paramV, B̂, B̂∗). Hence, we can consider the distribution of (paramV, B̂, B̂∗, {eβ,i}i=1,...,n)

as
{
%
∣∣∣ % R← GP1β (1λ, n)

}
by using basis D.

The other direction can be shown exactly in the same manner. �

Lemma 42 For any adversary D, there is a probabilistic machine C, whose running time is
essentially the same as that of D, such that for any security parameter λ, Advn-eDDH

C (λ) =
AdvSP1D (λ).

Proof. Given an n-eDDH instance

paramG, g, g
κ, {gω+γihi , gγi , ghi}1≤i≤n, {gγihj}1≤i 6=j≤n, Yβ,

C sets (2n+ 3)× (2n+ 3) matrices

Π := (πi,j) :=

κ · In In

−κ · In 0n

1
1

−→
h 1

,

Π∗ := (π∗i,j) :=

0n In −
−→
h T

−κ−1 · In In −
−→
h T

1
1

1

,

where
−→
h := (h1, . . . , hn). Then, Π · (Π∗)T = I2n+3.

C can compute ui :=
∑2n+3

j=1 πi,jaj (i = 1, . . . , 2n + 3) and u∗i :=
∑2n+3

j=1 π∗i,jaj (i =
1, . . . , n, 2n+ 1, 2n+ 2) from the above n-eDDH instance.
C then sets

vβ,i := (

i−1︷ ︸︸ ︷
1, . . . , 1, Yβ,

n−i︷ ︸︸ ︷
1, . . . , 1,

gh1γi , . . . , ghi−1γi , gω+hiγi , ghi+1γi , . . . , ghnγi , 1, 1, gγi).

45

C generates random linear transformation W given in Lemma 39, then sets

bi := W (ui) for i = 1, . . . , n, 2n+ 1, 2n+ 3,

b∗i := (W−1)T(u∗i) for i = 1, . . . , n, 2n+ 1, 2n+ 2,

B̂ := (b1, . . . , bn, b2n+1, b2n+3), B̂∗ := (b∗1, . . . , b
∗
n, b
∗
2n+1, b

∗
2n+2),

eβ,i := W (vβ,i) for i = 1, . . . , n.

C then gives (paramV, B̂, B̂∗, {eβ,i}i=1,...,n) to D, and outputs β′ ∈ {0, 1} if D outputs β′.
If we set δ1 := ω, δ2,i := γi, then

vβ,i = (

i−1︷ ︸︸ ︷
1, . . . , 1, Yβ,

n−i︷ ︸︸ ︷
1, . . . , 1,

gh1δ2,i , . . . , ghi−1δ2,i , gδ1+hiδ2,i , ghi+1δ2,i , . . . , ghnδ2,i , 1, 1, gδ2,i).

If β = 0, i.e., Yβ = gκω (= gδ1κ), then

eβ,i = δ1bi + δ2,ib2n+3,

and the distribution of (paramV, B̂, B̂∗, {eβ,i}i=1,...,n) is exactly the same as
{
%
∣∣∣ % R← GSP10 (1λ, n)

}
.

If β = 1, i.e., Yβ (= gψ) is uniformly distributed in G, then

eβ,i = δ1bi + ρbn+i + δ2,ib2n+3,

where ρ := δ1 − κ−1ψ, and ρ is also uniformly distributed. Therefore, the distribution of

(paramV, B̂, B̂∗, {eβ,i}i=1,...,n) is exactly the same as
{
%
∣∣∣ % R← GSP11 (1λ, n)

}
. �

B.3.3 Proof of Lemma 22

To prove Lemma 22, we first define a simplified version of Problem 2.

Definition 43 Simple Problem 2 is to guess β ∈ {0, 1}, given (paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n)
R←

GSP2β (1λ, n), where

GSP2β (1λ, n) : (paramV,B,B∗)
R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), B̂∗ := (b∗1, . . . , b
∗
2n+2),

ω, γi, δ
U← Fq, ρ, τ

U← F×q for i = 1, . . . , n,

for i = 1, . . . , n,

h∗0,i := ωb∗i + γib
∗
2n+2,

h∗1,i := ωb∗i + τb∗n+i + γib
∗
2n+2,

ei := δbi + ρbn+i,

return (paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n),

for β
U← {0, 1}. For a probabilistic machine D, we define the advantage of adversary D for

Simple Problem 2 as:

AdvSP2D (λ) :=
∣∣∣Pr [D(1λ, %)→1

∣∣∣ % R←GSP20 (1λ, n)
]
−Pr

[
D(1λ, %)→1

∣∣∣ % R←GSP21 (1λ, n)
]∣∣∣ .

46

Simple Problem 2 is reduced to Problem 2 (Lemma 44), and the n-eDDH problem is reduced
to Simple Problem 2 (Lemma 45). Therefore, we obtain Lemma 22 by combining Lemmas 44
and 45.

Lemma 44 For any adversary B, there is a probabilistic machine D, whose running time is
essentially the same as that of B, such that for any security parameter λ, AdvSP2D (λ) = AdvP2B (λ).

Proof. Given a Simple Problem 2 instance, (paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n), D generates U :=

(ui,j)
U← GL(n,Fq), and calculates Z := (zi,j) := (UT)−1.

D then calculates {dn+1, . . . ,d2n} and {d∗n+1, . . . ,d
∗
2n} from {bn+1, . . . , b2n} and {b∗n+1, . . . ,

b∗2n}, respectively, as

dn+j :=
∑n

i=1 zi,jbn+i, d∗n+j :=
∑n

i=1 ui,jb
∗
n+i for j = 1, . . . , n.

Then,

bn+i =
∑n

j=1 ui,jdn+j , b∗n+i =
∑n

j=1 zi,jd
∗
n+j for i = 1, . . . , n,

since UZT = In, and, for i = 1, . . . , n,

h∗0,i = ωb∗i + γib
∗
2n+2,

h∗1,i = ωb∗i + τb∗n+i + γib
∗
2n+2 = ωb∗i + τ

∑n
j=1 zi,jd

∗
n+j + γib

∗
2n+2,

ei = δbi + ρbn+i = δbi + ρ
∑n

j=1 ui,jdn+j .

Let

D̂∗ := (b∗1, . . . , b
∗
n,d

∗
n+1, . . . ,d

∗
2n, b

∗
2n+1, b

∗
2n+2).

D then gives (paramV, B̂, D̂∗, {h∗β,i, ei}i=1,...,n) to B, and outputs β′ ∈ {0, 1} if B outputs β′.

By the construction, the distribution of (paramV, B̂, D̂∗, {h∗β,i, ei}i=1,...,n), is exactly the same

as
{
%
∣∣∣ % R← GP2β (1λ, n)

}
. �

Lemma 45 For any adversary D, there is a probabilistic machine C, whose running time is
essentially the same as that of D, such that for any security parameter λ, Advn-eDDH

C (λ) =
AdvSP2D (λ).

Proof. Given an n-eDDH instance

paramG, g, g
κ, {gω+γihi , gγi , ghi}1≤i≤n, {gγihj}1≤i 6=j≤n, Yβ,

47

C sets (2n+ 3)× (2n+ 3) matrices

Π∗ := (π∗i,j) :=

κ · In In

−κ · In 0n

1
−→
h 1

1

,

Π := (πi,j) :=

0n In −
−→
h T

−κ−1 · In In −
−→
h T

1
1

1

,

where
−→
h := (h1, . . . , hn). Then, Π · (Π∗)T = I2n+3.

C can compute ui :=
∑2n+3

j=1 πi,jaj (i = 1, . . . , n, 2n + 1, 2n + 3) and u∗i :=
∑2n+3

j=1 π∗i,jaj
(i = 1, . . . , 2n+ 2) from the above n-eDDH instance.

C then generates ξ, ϕ
U← Fq, and

vi := (

i−1︷ ︸︸ ︷
1, . . . , 1, gξ,

n−1︷ ︸︸ ︷
1, . . . , 1, gϕ,

n−i+1︷ ︸︸ ︷
1, . . . , 1, g−ϕhi , 1),

w∗β,i := (

i−1︷ ︸︸ ︷
1, . . . , 1, Yβ,

n−i︷ ︸︸ ︷
1, . . . , 1, gγih1 , . . . , gγihi−1 , gω+γihi , gγihi+1 , . . . , gγihn , 1, gγi , 1).

C generates random linear transformation W given in Lemma 39, then sets

bi := W (ui) for i = 1, . . . , n, 2n+ 1, 2n+ 3,

b∗i := (W−1)T(u∗i) for i = 1, . . . , 2n+ 2,

B̂ := (b1, . . . , bn, b2n+1, b2n+3), B̂∗ := (b∗1, . . . , b
∗
2n+2),

ei := W (vi), h∗β,i := (W−1)T(w∗β,i) for i = 1, . . . , n.

C then gives (paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n) to D, and outputs β′ ∈ {0, 1} if D outputs β′.
If we set

ρ := −κξ, δ1 := ϕ− ρ,

then

vi = (

i−1︷ ︸︸ ︷
1, . . . , 1, g−ρκ

−1
,

n−1︷ ︸︸ ︷
1, . . . , 1, gδ1+ρ,

n−i+1︷ ︸︸ ︷
1, . . . , 1, g−(δ1+ρ)hi , 1),

and we see that

ei = δ1bi + ρbn+i.

If β = 0, i.e., Yβ = gκω, then

h∗β,i = ωb∗i + γib
∗
2n+2,

48

and the distribution of (paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n) is exactly the same as
{
%
∣∣∣ % R← GSP20 (1λ, n)

}
.

If β = 1, i.e., Yβ (= gψ) is uniformly distributed in G, then

h∗β,i = ωb∗i + τb∗n+i + γib
∗
2n+2,

where τ := ω − κ−1ψ, and τ is also uniformly distributed. Therefore, the distribution of

(paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n) is exactly the same as
{
%
∣∣∣ % R← GSP21 (1λ, n)

}
. �

B.4 Proof of Lemma 23

Since the inner-product of −→x (ρU) and −→v (τZ) is equal to ρτ(−→x · −→v), points on C are mapped
onto C by the action of ρU × τZ.

For (−→x ,−→v) ∈ C, −→x 6∈ −→v ⊥ (hyperplane determined by −→v). Let (−→y 1, . . . ,
−→y n−1) be a basis

of −→v ⊥. Since −→x 6∈ −→v ⊥, the tuple (−→x ,−→y 1, . . . ,
−→y n−1) is a basis of V . Therefore, trans-

formed vectors (−→x (ρU) , −→y 1 (ρU) , . . . ,−→y n−1 (ρU)) is a uniformly chosen basis of V when

Z
U← GL(n,Fq), U := (Z−1)T, and ρ

U← F×q .
The point −→r := −→v (τZ) can be identified to the hyperplane spanned by (−→y 1 (ρU) , . . . ,

−→y n−1 (ρU)) up to a constant multiple because of the duality. Note that −→w := −→x (ρU) is an
independent vector outside that hyperplane. Therefore, the pair of −→w and −→r is uniformly
distributed in V × V ∗ such that −→w · −→r 6= 0, i.e., uniformly distributed in C.

B.5 Definition of Hierarchical Predicate Encryption

This section defines hierarchical predicate encryption (HPE) for the class of hierarchical inner-
product predicates and its security. 1

In a delegation system, it is required that a user who has a capability can delegate to
another user a more restrictive capability. In addition to this requirement, our hierarchical
inner-product encryption introduces a format of hierarchy −→µ to define common delegation
structure in a system.

We call a tuple of positive integers −→µ := (n, d;µ1, . . . , µd) s.t.µ0 = 0 < µ1 < µ2 <
· · · < µd = n a format of hierarchy of depth d attribute spaces. Let Σ` (` = 1, . . . , d)

be the sets of attributes, where each Σ` := Fµ`−µ`−1
q \ {−→0 }. Let the hierarchical attributes

Σ := ∪d`=1(Σ1 × . . .×Σ`), where the union is a disjoint union. Then, for −→v i ∈ Fµi−µi−1
q \ {−→0 },

the hierarchical predicate f(−→v 1,...,
−→v `) on hierarchical attributes (−→x 1, . . . ,

−→x h) ∈ Σ is defined as
follows: f(−→v 1,...,

−→v `)(
−→x 1, . . . ,

−→x h) = 1 iff ` ≤ h and −→x i · −→v i = 0 for all i s.t. 1 ≤ i ≤ `.
Let the space of hierarchical predicates F := {f(−→v 1,...,

−→v `) |
−→v i ∈ Fµi−µi−1

q \ {−→0 }}. We call
h (resp. `) the level of (−→x 1, . . . ,

−→x h) (resp. (−→v 1, . . . ,
−→v `)).

Definition 46 Let −→µ := (n, d;µ1, . . . , µd) s.t.µ0 = 0 < µ1 < µ2 < · · · < µd = n be a format
of hierarchy of depth d attribute spaces. A hierarchical predicate encryption (HPE) scheme
for the class of hierarchical inner-product predicates F over the set of hierarchical attributes Σ
consists of probabilistic polynomial-time algorithms Setup,KeyGen,Enc,Dec, and Delegate` for
` = 1, . . . , d− 1. They are given as follows:

• Setup takes as input security parameter 1λ and format of hierarchy −→µ , and outputs (mas-
ter) public key pk and (master) secret key sk.

1More general delegation structures (partial order structures) than tree hierarchical structures can be easily
realized in our HPE scheme. See Appendix B.8.

49

• KeyGen takes as input the master public key pk, secret key sk, and predicate vectors
(−→v 1, . . . ,

−→v `). It outputs a corresponding secret key sk(−→v 1,...,
−→v `).

• Enc takes as input the master public key pk, attribute vectors (−→x 1, . . . ,
−→x h), where 1 ≤

h ≤ d, and plaintext m in some associated plaintext space, msg. It returns ciphertext c.

• Dec takes as input the master public key pk, secret key sk(−→v 1,...,
−→v `), where 1 ≤ ` ≤ d, and

ciphertext c. It outputs either plaintext m or the distinguished symbol ⊥.

• Delegate` takes as input the master public key pk, `-th level secret key sk(−→v 1,...,
−→v `), and

(`+ 1)-th level predicate vector −→v `+1. It returns (`+ 1)-th level secret key sk(−→v 1,...,
−→v `+1)

.

A HPE scheme should have the following correctness property: for all correctly generated pk

and sk(−→v 1,...,
−→v `), generate c

R← Enc(pk,m, (−→x 1, . . . ,
−→x h)) and m′ := Dec(pk, sk(−→v 1,...,

−→v `), c). If
f(−→v 1,...,

−→v `)(
−→x 1, . . . ,

−→x h) = 1, then m′ = m. Otherwise, m′ 6= m except for negligible probability.
For f and f ′ in F , we denote f ′ ≤ f if the predicate vector for f is a prefix of that for f ′.

For the following definition for key queries, see [38].

Remark: We will explain the hierarchical structure by using a small (toy) example that has
three levels and each level consists of 2-dimensional space, i.e., 6-dimensional space is employed
in total. That is, −→µ := (n, d;µ1, . . . , µd) = (6, 3; 2, 4, 6) in this example.

A user who possesses a secret key sk1 in the top level, associated with the top level predicate
vector −→v 1 := (v1, v2), can delegate any value (say −→v 2 := (v3, v4)) of the second level key sk2
such that the predicate vector for sk2 is (−→v 1,

−→v 2). Similarly, a user who possesses a secret key
in the second level, sk2 with (−→v 1,

−→v 2), can delegate any value (say −→v 3 := (v5, v6)) of the third
level key sk3 with (−→v 1,

−→v 2,
−→v 3).

Secret key sk1 with −→v 1, can decrypt a ciphertext associated with attribute vector (−→x 1, (∗, ∗),
(∗, ∗)) := ((x1, x2), (∗, ∗), (∗, ∗)) if −→x 1 · −→v 1 = 0, where ∗ denotes an arbitrary value. Secret key
sk2 with (−→v 1,

−→v 2) can decrypt a ciphertext with attribute vector (−→x 1,
−→x 2, (∗, ∗)) if −→x 1 ·−→v 1 = 0

and −→x 2 ·−→v 2 = 0. However sk2 cannot decrypt a ciphertext with higher level (top level) attribute
vector −→x 1 := (x1, x2) (or (−→x 1, (∗, ∗), (∗, ∗))). Therefore, the capability of a delegated key sk2 is
more limited than the parent key sk1.

Hence, when (−→v 1,
−→v 2) := ((v1, v2), (v3, v4)) is a predicate vector for a secret key, (−→v 1,

−→v 2) is
considered to be (−→v 1,

−→v 2, (0, 0)), and when−→x 1 := (x1, x2) is an attribute vector for a ciphertext,
−→x 1 is considered to be (−→x 1, (∗, ∗), (∗, ∗))), where (∗, ∗) · (0, 0) = 0 and (∗, ∗) · −→v 2 6= 0 unless
−→v 2 = (0, 0).

Definition 47 A hierarchical inner-product predicate encryption scheme for hierarchical predi-
cates F over hierarchical attributes Σ is adaptively attribute-hiding (AH) against chosen plaintext
attacks if for all probabilistic polynomial-time adversaries A, the advantage of A in the following
experiment is negligible in the security parameter.

1. Setup is run to generate keys pk and sk, and pk is given to A.

2. A may adaptively makes a polynomial number of queries of the following type:

• [Create key] A asks the challenger to create a secret key for a predicate f ∈ F . The
challenger creates a key for f without giving it to A.

• [Create delegated key] A specifies a key for predicate f that has already been created,
and asks the challenger to perform a delegation operation to create a child key for
f ′ ≤ f . The challenger computes the child key without giving it to the adversary.

50

• [Reveal key] A asks the challenger to reveal an already-created key for predicate f .

Note that when key creation requests are made, A does not automatically see the created
key. A sees a key only when it makes a reveal key query.

3. A outputs challenge attribute vectors X (0) := (−→x (0)
1 , . . . ,−→x (0)

h(0)
),X (1) := (−→x (1)

1 , . . . ,−→x (1)

h(1)
)

and challenge plaintexts m(0),m(1), subject to the restriction that f(X (0)) = f(X (1)) = 0
for all the reveal key queried predicate f .

4. A random bit b is chosen. A is given c(b)
R← Enc(pk,m(b),X (b)).

5. The adversary may continue to request keys for additional predicate vectors subject to the
restriction that f(X (0)) = f(X (1)) = 0.

6. A outputs a bit b′, and succeeds if b′ = b.

We define the advantage of A as the quantity AdvHPE,AHA (λ) := Pr [b′ = b]− 1/2.

B.6 Key Idea in Constructing the Proposed HPE

We will explain a key idea of the proposed HPE scheme.
We will explain the key idea of the proposed HPE scheme by using a small (toy) example.

Let the dimension of (predicate/attribute) vectors be 6, in which there are three levels and
each level has 2-dimensions, V and V∗ be 15-dimensional spaces, the public parameter be
B̂ := (b1, . . . , b6, b13, b15) as well as the parameters of DPVS, and the master secret key be
B∗ := (b∗1, . . . , b

∗
15).

Ciphertext (c1, c2) for attribute −→x := (−→x 1,
−→x 2,
−→x 3) := ((x1, x2), (x3, x4), (x5, x6)) ∈ F 6

q and
plaintext m is constructed as c1 := δ1(x1b1+x2b2)+· · ·+δ3(x5b5+x6b6)+ζb13+δ4b15 and c2 :=

gζTm, where δ1, . . . , δ4, ζ
U← Fq. If the attribute is a higher level such as −→x 1 := (x1, x2), generate

a modified attribute −→x + := ((x1, x2), (x
+
3 , x

+
4), (x+5 , x

+
6)), where (x+3 , x

+
4 , x

+
5 , x

+
6)

U← F 4
q . Then,

ciphertext c1 for attribute −→x 1 is computed as ciphertext c1 for the modified attribute −→x +.

Top level secret key
−→
k ∗1 := (k∗1,dec,k

∗
1,ran,1,k

∗
1,ran,2,k

∗
1,del,3, . . . ,k

∗
1,del,6), for predicate −→v :=

(v1, v2) ∈ F 2
q consists of three parts, k∗1,dec, (k∗1,ran,1,k

∗
1,ran,2) and (k∗1,del,3, . . . ,k

∗
1,del,6), where the

first one is used for decryption of ciphertexts, the second one for re-randomization (of delegated
key) and the last one for delegation. Each part is: k∗1,dec := σ1,dec(v1b

∗
1 + v2b

∗
2) + b∗13 + η1,decb

∗
14,

k∗1,ran,j := σ1,ran,j(v1b
∗
1 + v2b

∗
2) + η1,ran,jb

∗
14 (j = 1, 2), and k∗1,del,j := σ1,del,j(v1b

∗
1 + v2b

∗
2) +ψbj +

η1,del,jb
∗
14 (j = 3, . . . , 6), where the coefficients are uniformly selected from Fq. The first one,

k∗1,dec, can decrypt ciphertext (c1, c2) by c2/e(c1,k
∗
1,dec), since e(c1,k

∗
1,dec) = gζT if an attribute

of c1 is ((x1, x2), (∗, ∗), (∗, ∗)) with (x1, x2) · (v1, v2) = 0.
To delegate a secret key for the 2nd level vector (v3, v4), σdec(v3k

∗
1,del,3 + v4k

∗
1,del,4) is added

to k∗1,dec (j = 0), and σdel,j(v3k
∗
1,del,3 + v4k

∗
1,del,4) is added to k∗1,del,j (j = 5, 6). To re-randomize

the coefficients of (v1b
∗
1 + v2b

∗
2), and b∗14 in the delegated key, a random linear combination

of k∗1,ran,1 and k∗1,ran,2 is also added. So, the delegated key (the second level key) is
−→
k ∗2 :=

(k∗2,dec,k
∗
2,ran,1, . . . ,k

∗
2,ran,3,k

∗
2,del,5,k

∗
2,del,6), (where k∗2,dec is for decryption, (k∗2,ran,1, . . . ,k

∗
2,ran,3)

for re-randomization, and (k∗2,del,5,k
∗
2,del,6) for delegation) is computed as k∗2,dec := k∗1,dec +

(αdec,1k
∗
1,ran,1+αdec,2k

∗
1,ran,2)+σdec(v3k

∗
1,del,3+v4k

∗
1,del,4), k

∗
2,ran,j := (αran,j,1k

∗
1,ran,1+αran,j,2k

∗
1,ran,2)

+σran,j(v3k
∗
1,del,3+v4k

∗
1,del,4) (j = 1, 2, 3), and k∗2,del,j := ψ+k∗1,del,j+(αdel,j,1k

∗
1,ran,1+αdel,j,2k

∗
1,ran,2)

+σdel,j(v3k
∗
1,del,3 + v4k

∗
1,del,4) (j = 5, 6), where the coefficients are uniformly selected from Fq.

Then, the distribution of the delegated key (by Delegate) is equivalent to that obtained by

51

the key generation query (KeyGen) except negligible probability (i.e., the simulation of ‘create
delegated key query’ can be equivalent to that of ‘create key query’.)

[Correctness of the Proposed HPE Scheme] Assume that ciphertext (c1, c2) is generated
by Enc(pk,m, (−→x 1, . . . ,

−→x h)) and secret key k∗`,dec is generated by KeyGen(pk, sk, (−→v 1, . . . ,
−→v `)).

Note that e(c1,k
∗
`,dec) = g

∑
1≤i≤` σiδi

−→x i·−→v i+ζ
T . If ` ≤ h and −→x i · −→v i = 0 for all i s.t. 1 ≤ i ≤ `,

then e(c1,k
∗
`,dec) = gζT . Otherwise, e(c1,k

∗
`,dec) is uniformly distributed. Hence, correctness

holds for secret keys generated by KeyGen, and it also holds for keys generated by Delegate by
Claim 3.

B.7 Proof of Theorem 28

Proof Outline: To prove the security, we employ Game 0 (original adaptive-security game)
through Game 4. Roughly speaking, a delegated key query (i.e., a reveal query of an already-
created delegated key) is replied by using KeyGen (in place of Delegate) in Game 1, the (normal)
target ciphertext is changed to a semi-functional ciphertext in Game 2, the j-th key (normal
key) in the k-th reveal key query’s reply (including ` + n − µ` + 2 ≤ n + 1 keys, where ` is
the level of the k-th queried key) is changed to a semi-functional key in Game 3-(k, j) (k =
1, . . . , ν; j = 1, . . . , n + 1), and the (semi-functional) target ciphertext is changed to perfectly
randomized key in Game 4, whose advantage is 0.

Since the distribution regarding each revealed key query in Game 1 is equivalent to that in
Game 0 except with probability at most 3/q, the gap between Games 0 and 1 is bounded by
3ν/q.

To prove that the gap between Games 1 and 2 is bounded by the advantage of Problem 1
(to guess β ∈ {0, 1}), we show that the key query replies and target ciphertext in Game 1 or 2
are generated by using the Problem 1 instance such that the distribution is equivalent to those
of Game 1 when β = 0 and is equivalent to Game 2 when β = 1. The advantage of Problem 1
is shown to be equivalent to the advantage of our assumption, the n-eDDH assumption.

The gap between Games 3-(k, j − 1) and 3-(k, j) is similarly shown to be bounded by the
advantage of Problem 2 (i.e., of the n-eDDH assumption).

Finally we show that Game 3-(ν, n + 1) can be conceptually changed to Game 4 by using
the fact that n elements of B, (bn+1, . . . , b2n), are secret to the adversary.

Proof of Theorem 28: To prove Theorem 28, we consider the following games.

Game 0: Original game (Definition 47).

Game 1: Game 1 is the same as Game 0 except the following procedures.

1. When a create key query is issued by A, the challenger of the game only records the
specified predicates, and when a create delegated key query is issued, the challenger
only records the specified keys and predicates. In this step, just the query is recorded,
but no corresponding key is created.

2. When a reveal key query is issued for a hierarchical (level-`) predicate (−→v 1, . . . ,
−→v `)

which has been already recorded, the challenger creates the queried key by using
KeyGen.

Game 2: Game 2 is the same as Game 1 except that the target ciphertext is (csemi
1 , c2):

csemi
1 := cnorm1 + (w1bn+1 + · · ·+ wnb2n),

52

where (cnorm1 , c2) is a correctly generated target ciphertext for adversary A’s encryption

query, and (w1, . . . , wn)
U← Fnq \ {

−→
0 }.

Game 3-(k, j) (k = 1, . . . , ν; j = 1, . . . , n+ 1): Game 3-(1, 0) is Game 2. The number of keys,
(k∗`,dec, k

∗
`,ran,1, . . . ,k

∗
`,ran,`+1,k

∗
`,del,µ`+1, . . . ,k

∗
`,del,n), which is a reply to the k-th reveal key

query in the game, is less than or equal to n + 1, i.e., ` + n − µ` + 2 ≤ n + 1. Game
3-(k, n+ 1) is Game 3-(k + 1, 0).

Game 3-(k, j) is the same as Game 3-(k, j − 1) except that the j-th key in the k-th reveal
key query’s reply is k∗semi

(k,j) :

k∗semi
(k,j) := k∗norm(k,j) + (r1b

∗
n+1 + · · ·+ rnb

∗
2n),

where k∗norm(k,j) is a correctly generated value of the j-th key in a reply to the k-th reveal

key query (i.e., k∗norm(k,j) is the j-th key in a reply to the k-th reveal key query in Game

3-(k, j − 1)), and (r1, . . . , rn)
U← Fnq .

Game 4 Game 4 is the same as Game 3-(ν, n+1) except that the target ciphertext is (crand1 , c2):

crand1 := csemi
1 + (x′1b1 + · · ·+ x′nbn) + ζ ′b2n+1,

where x′1, . . . , x
′
n, ζ
′ U← Fq.

Let Adv
(0)
A (λ), Adv

(1)
A (λ), Adv

(2)
A (λ), Adv

(3-(k,j))
A (λ) and Adv

(4)
A (λ) be AdvHPE,AHA (λ) in Game

0, Game 1, Game 2, Game 3-(k, j) and Game 4 (k = 1, . . . , ν; j = 1, . . . , n+ 1). It is clear that

Adv
(4)
A (λ) = 0.
We will use lemmas (Lemmas 48, 49, 50, 51) that evaluate the gaps between pairs of the

neighboring advantages. From these lemmas as well as Lemmas 20 and 22, we obtain

AdvHPE,AH
A (λ) ≤ |Adv(0)A (λ)− Adv

(1)
A (λ)|+ |Adv(1)A (λ)− Adv

(2)
A (λ)|

+
ν∑
k=1

n+1∑
j=1

|Adv(3-(k,j−1))A (λ)− Adv
(3-(k,j))
A (λ)|+ |Adv(3-(ν,n+1))

A (λ)− Adv
(4)
A (λ)|

<
3ν

q
+ AdvP1B0(λ) +

ν∑
k=1

n+1∑
j=1

(AdvP2B(k,j)(λ) +
1

q
)

≤ Advn-eDDH
C0 (λ) +

ν∑
k=1

n+1∑
j=1

Advn-eDDH
C(k,j) (λ) +

(n+ 4)ν

q
.

This completes the proof of Theorem 28. �

Lemma 48 For any adversary A, |Adv(0)A (λ)− Adv
(1)
A (λ)| < 3ν/q.

Proof. The distribution of
−→
k ∗`+1 generated by KeyGen for a level-(`+1) predicate is equivalent to

that by the combination of KeyGen for the level-` predicate and Delegate` except with probability
3/q, from Claim 3. Therefore, the revealed key distribution in Game 0 is equivalent to that in
Game 1 except with probability at most (1− (1− 3/q)ν) ≤ 3ν/q, since the number of delegate
queries is upper-bounded by ν. Hence (by using Shoup’s difference lemma), the difference of

Adv
(0)
A (λ) and Adv

(1)
A (λ) is upper-bounded by 3ν/q. �

53

Claim 3 If
−→
k ∗` is generated by KeyGen(pk, sk, (−→v 1, . . . ,

−→v `)), the distribution of
−→
k ∗`+1 generated

by Delegate(pk,
−→
k ∗` ,
−→v `+1) is equivalent to that of

−→
k ∗`+1 generated by KeyGen(pk, sk, (−→v 1, ..,

−→v `,−→v `+1)) except with probability at most 3/q.

Proof. The distribution of level-` key k∗`,ran,j (j = 1, . . . , ` + 1) is represented by that of the

`+ 1 coefficients, (σran,j,1, . . . , σran,j,`, ηran,j), of
∑µt

i=µt−1+1 vib
∗
`,i (t = 1, . . . , `) and b∗n+1 (and the

coefficient, ψ, of b∗j in addition for k∗`,del,j when j = µ` + 1, . . . , n).
Similarly, the distribution of level-(` + 1) key k∗`+1,ran,j (j = 1, . . . , ` + 2) is represented by

that of the `+ 2 coefficients, (σran,j,1, . . . , σran,j,`+1, ηran,j).
When level-` key k∗`,ran,j (j = 1, . . . , ` + 1) is generated by KeyGen(pk, sk, (−→v 1, . . . ,

−→v `)),
coefficients (σran,j,1, . . . , σran,j,`, ηran,j)j=1,...,`+1 are uniformly distributed.

If coefficient matrix (σran,j,1, . . . , σran,j,`, ηran,j)j=1,...,`+1 ((`+1)×(`+1) matrix) of (k∗`,ran,j)j=1,..,`+1

is regular and ψ 6= 0, then the coefficients, (σran,j,1, . . . , σran,j,`+1, ηran,j), of Delegate(pk,
−→
k ∗` ,
−→v `+1)

are uniformly distributed, i.e., Delegate(pk,
−→
k ∗` ,
−→v `+1) is equivalently distributed as KeyGen(pk,

sk, (−→v 1, . . . ,
−→v `+1)).

Here, (σran,j,1, . . . , σran,j,`, ηran,j)j=1,...,`+1 ((` + 1) × (` + 1) matrix) of (k∗`,ran,j)j=1,...,`+1 is
regular and ψ 6= 0 except with probability at most 2/q + 1/q = 3/q, from the following claim
(since obviously q > 2). �

Claim 4 Let q > 2 and ∆ := {M | detM 6= 0} ⊂ F s×sq . Then,

|∆|
qs2

<
2

q
.

Proof. Since |∆| = qs
2 − |GL(s,Fq)|, we will show inequality (2), i.e., a lower bound of

|GL(s,Fq)|.

|GL(s,Fq)| > qs
2 − qs

2

q − 1
. (2)

From the following well-known formula,

|GL(s,Fq)| = (qs − 1)(qs − q) · · · (qs − qs−1)
= qs(s−1)/2(qs − 1)(qs−1 − 1) · · · (q − 1)

= qs
2
(1− q−1)(1− q−2) · · · (1− q−s),

we obtain

|GL(s,Fq)| = qs
2
(1− q−1)(1− q−2) · · · (1− q−s)

= qs
2

1 +

s∑
k=1

(−1)k
∑

1≤i1<···<ik≤s
q−(i1+···+ik)

= qs

2 − qs2
∑

1≤i≤s
q−i + qs

2
s∑

k=2

(−1)k
∑

1≤i1<···<ik≤s
q−(i1+···+ik)

= qs
2 − qs2 · 1

qs
qs − 1

q − 1
+ qs

2
s∑

k=2

(−1)k
∑

1≤i1<···<ik≤s
q−(i1+···+ik)

> qs
2 − qs

2

q − 1
+ qs

2
s∑

k=2

(−1)k
∑

1≤i1<···<ik≤s
q−(i1+···+ik)

54

Let u := bs/2c when s is odd, and u := s/2− 1 when s is even. Then, the above expression is

> qs
2 − qs

2

q − 1
+ qs

2
u∑
t=1

 ∑
1≤i1<···<i2t≤s

q−(i1+···+i2t) −
∑

1≤i1<···<i2t+1≤s
q−(i1+···+i2t+1)

= qs

2 − qs
2

q − 1
+ qs

2
u∑
t=1

∑
1≤i1<···<i2t≤s

q−(i1+···+i2t)

1−
∑

i2t<i2t+1≤s
q−i2t+1

> qs

2 − qs
2

q − 1
+ qs

2
u∑
t=1

∑
i1<···<i2t

q−(i1+···+i2t)

1−
∑

1≤i≤s
q−i

= qs

2 − qs
2

q − 1
+ qs

2
u∑
t=1

∑
i1<···<i2t

q−(i1+···+i2t)
(

1− qs − 1

qs(q − 1)

)

> qs
2 − qs

2

q − 1
.

This shows (2). Hence,

|∆| = qs
2 − |GL(s,Fq)| <

qs
2

q − 1
.

Therefore,

|∆|
qs2

<
1

q − 1
<

2

q
since q > 2.

This completes the proof of Claim 4. �

Lemma 49 For any adversary A, there exists a probabilistic machine B1, whose running time

is essentially the same as that of A, such that for any security parameter λ, |Adv(1)A (λ) −
Adv

(2)
A (λ)| = AdvP1B0(λ).

Since the proof of this lemma is essentially the same as that for Lemma 24, we omit the
proof.

Lemma 50 For any adversary A, there exists a probabilistic machine B, whose running time

is essentially the same as that of A, such that for any security parameter λ, |Adv(3-(k,j−1))A (λ)−
Adv

(3-(k,j))
A (λ)| ≤ AdvP2B(k,j)(λ) + 1

q .

Since the proof of this lemma is essentially the same as that for Lemma 25, we omit the
proof.

Lemma 51 For any adversary A, Adv
(3-(ν,n+1))
A (λ) = Adv

(4)
A (λ).

Since the proof of this lemma is essentially the same as that for Lemma 26, we omit the
proof.

55

B.8 General Delegation

A generalized delegation (not limited to a hierarchical delegation) system can be constructed
in a manner similar to the hierarchical delegation.

Setup(1λ,−→µ := (n, d;µ1, . . . , µd)) : (paramV,B,B∗)
R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), sk := B∗, pk := (1λ, paramV, B̂).

return sk, pk.

KeyGen(pk, sk, (−→v 1, . . . ,
−→v `) := ((v1,1, . . . , v1,n), . . . , (v`,1, . . . , v`,n)) :

σdec,t, ηdec, σran,j,t, ηran,j (j = 1, . . . , `+ 1), σdel,j,t, ηdel,j (j = 1, . . . , n), ψ
U← Fq

for t = 1, . . . , `,

k∗`,dec :=
∑`

t=1 σdec,t(
∑n

i=1 vt,ib
∗
i) + b∗2n+1 + ηdecb

∗
2n+2,

k∗`,ran,j :=
∑`

t=1 σran,j,t(
∑n

i=1 vt,ib
∗
i) + ηran,jb

∗
2n+2

for j = 1, . . . , `+ 1,

k∗`,del,j :=
∑`

t=1 σdel,j,t(
∑n

i=1 vt,ib
∗
i) + ψb∗j + ηdel,jb

∗
2n+2

for j = 1, . . . , n,

return
−→
k ∗` := (k∗`,dec,k

∗
`,ran,1, . . . ,k

∗
`,ran,`+1,k

∗
`,del,1, . . . ,k

∗
`,del,n).

Enc(pk,m ∈ GT , (
−→x 1, . . . ,

−→x `) := ((x1,1, . . . , x1,n), . . . , (x`,1, . . . , x`,n)) :

δ1, . . . , δ`, δ2n+3, ζ
U← Fq,

c1 :=
∑`

t=1 δt(
∑n

i=1 xt,ibi) + ζb2n+1 + δ2n+3b2n+3, c2 := gζTm,

return (c1, c2).

Dec(pk,k∗`,dec, c1, c2) : m′ := c2/e(c1,k
∗
`,dec),

return m′.

Delegate`(pk,
−→
k ∗` ,
−→v `+1 := (v`+1,1, . . . , v`+1,n) 6∈ span〈−→v 1, . . . ,

−→v `〉) :

αdec,t, σdec, αran,j,t, σran,j (j = 1, . . . , `+ 2), αdel,j,t, σdel,j (j = 1, . . . , n), ψ′
U← Fq

for t = 1, . . . , `+ 1,

k∗`+1,dec := k∗`,dec +
∑`+1

t=1 αdec,tk
∗
`,ran,t + σdec(

∑n
i=1 v`+1,ik

∗
`,del,i),

k∗`+1,ran,j :=
∑`+1

t=1 αran,j,tk
∗
`,ran,t + σran,j(

∑n
i=1 v`+1,ik

∗
`,del,i) for j = 1, . . . , `+ 2,

k∗`+1,del,j :=
∑`+1

t=1 αdel,j,tk
∗
`,ran,t + σdel,j(

∑n
i=1 v`+1,ik

∗
`,del,i) + ψ′k∗`,del,j for j = 1, . . . , n,

return
−→
k ∗`+1 := (k∗`+1,dec,k

∗
`+1,ran,1, . . . ,k

∗
`+1,ran,`+2,k

∗
`+1,del,1, . . . ,k

∗
`+1,del,n).

Let (c1, c2) be a ciphertext for attribute (−→x 1, . . . ,
−→x k) (and plaintext m ∈ GT) and

−→
k ∗` be

a key for predicate (−→v 1, . . . ,
−→v `). Then,

−→
k ∗` decrypts (c1, c2) if −→v i · −→x j = 0 for all 1 ≤ i ≤ `

and 1 ≤ j ≤ k. Namely the capability of delegated key
−→
k ∗`+1 is more limited than that of its

parent key
−→
k ∗` .

56

