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Abstract. This article investigates the relevance of the theoretical frame-
work on profiled side-channel attacks presented by F.-X. Standaert et al.
at Eurocrypt 2009. The analyses consist in a case-study based on side-
channel measurements acquired experimentally from a hardwired crypto-
graphic accelerator. Therefore, with respect to previous formal analyses
carried out on software measurements or on simulated data, the inves-
tigations we describe are more complex, due to the underlying chip’s
architecture and to the large amount of algorithmic noise. In this dif-
ficult context, we show however that with an engineer’s mindset, two
techniques can greatly improve both the off-line profiling and the on-line
attack. First, we explore the appropriateness of different choices for the
sensitive variables. We show that a skilled attacker aware of the regis-
ter transfers occurring during the cryptographic operations can select
the most adequate distinguisher, thus increasing its success rate. Sec-
ond, we introduce a method based on the thresholding of leakage data
to accelerate the profiling or the matching stages. Indeed, leveraging on
an engineer’s common sense, it is possible to visually foresee the shape
of some eigenvectors thereby anticipating their estimation towards their
asymptotic value by authoritatively zeroing weak components containing
mainly non-informational noise. This method empowers an attacker, in
that it saves traces when converging towards correct values of the secret.
Concretely, we demonstrate a 5 times speed-up in the on-line phase of
the attack.

1 Introduction

Side-channel attacks are cryptanalytic techniques that exploit unintentional in-
formation leakage from cryptographic devices during their operation. In the case
of symmetrical encryption or decryption, side-channel attacks aim at recovering
the secret key. As a consequence, there is a strong interest in efficient implemen-
tation of countermeasures against such attacks. In the meantime, researchers
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have tackled the difficult task to formalize the study of attacks and countermea-
sures. A seminal theoretical study dealing with physical attacks is presented to
the cryptographic community by S. Micali and L. Reyzin in [11]. In order to be
practically usable, this paradigm requires a specialization, grounded on practical
side-channel leakage simulations or measurements. This milestone is achieved by
F.-X. Standaert et al. in [21], where the information theory is solicited to process
the side-channel data. More precisely, in [21,20], F.-X. Standaert et al. discuss
two metrics to measure two independent aspects: the first is the robustness eval-
uation of a target circuit and the second is the estimation of the power of an
attack. For this purpose, two kinds of adversaries should be taken into consid-
eration:

1. The adversary with an access to a certain amount of a priori information,
such as the circuit leakage model and the cryptographic algorithm being
executed.

2. The adversary with an access to a clone of the attacked device. In this case,
she would be free to manipulate it, in order to indirectly understand the
behavior of the target device containing the secret information.

In this paper, we consider the second case. It unfolds in two stages. In a first
stage of profiling, some estimations are carried out to extract information. In a
second stage, a classification is carried out to perform the on-line attack.

The rest of the paper is organized as follows. Section 2 introduces the theo-
retical notions employed in the forthcoming concrete analyses. The first attack
improvement we investigate is related to the adequate choice of the sensitive
variable. This study is detailed for both evaluation and attack metrics in Sec. 3.
The second improvement concerns an analysis of the dates with maximal leakage.
In Sec. 4, we indeed observe that a thresholding that anticipates the irrelevance
of some side-channel samples is beneficial to both the evaluation and the attack
metrics. A discussion about the impact of these two findings on the interpreta-
tion of the a priori evaluation metric and of the a posteriori attack metrics is
given in Sec. 5. Finally, conclusions and perspectives are in Sec. 6. The circuit
whose side-channel signals are studied is presented in Appendix A.

2 Theoretical Framework for the Practice-Oriented

Side-Channel Study

2.1 Prerequisites

Based on some axioms, the theoretical analysis of the physical attacks detailed
in [11] formalize the leakage by specifying “where, how, and when” the target
circuit leaks information. Those axioms give a reliable description of the physical
phenomena observable in practice. In this context, two technical definitions must
be taken into consideration: the leakage function and the adversary.



Leakage Function The leakage function L(C, M, R) is a function of three pa-
rameters. C is the current internal configuration of the circuit / algorithm, which
incorporates all the resources whose side-channels are measurable in principle;
M is a set of measures and R is a random string which represents the noise.

This function is an important element in the rest of this article. Indeed,
from this notion we will create distinguishers that will enable us to evaluate the
circuit by quantifying its side-channel information, or to be used by an adversary
to recover the key.

Adversary In [11], the adversary is chosen so as to be the strongest possible and
therefore can be different at each attack. In [20], the adversary uses a divide-and-
conquer strategy to retrieve separately parts of the secret key. In other words,
it defines a function f : K 7→ SK which maps each key k onto a class sk = f(k)
such that |SK | ≪ |K|. The aim of a side-channel adversary is to guess a key
class sk with non negligible probability.

For example, in the case where the considered encryption algorithm is DES
(Data Encryption Standard), k will be the 56-bit key for encryption, and Sk

is the 6-bit subkey generated by the key schedule from the master key k and
consumed at the substitution box (sbox) input.

According to the given definitions, the evaluation of the physical security of
a device is based on the quality of the circuit and the strength of the adversary.

These two aspects urge to study the information quantity given by a leakage
function. This will be taken advantage of to conduct a successful attack.

2.2 How to Quantify the Information Amount?

The concept of entropy was introduced by C. Shannon in [17]. It is a reliable
measurement of uncertainty associated with a random variable. In our case, we
use Shannon entropy to characterize the information leaked from a cryptographic
device in order to extract its secret key. We denote by:

– SK the target key class discrete variable of a side-channel attack, and sK a
realisation of this variable;

– X the discrete variable containing the inputs of the target cryptographic
device, and x the realisation of this variable;

– L a random variable denoting the side-channel observation generated with
inputs of the target device, and l a realisation of this random variable;

– Pr[sK | L] the conditional probability of a key class sK given a leakage l.

One reason to quantify the information is to measure the quality of the circuit
for a given leakage function. For this purpose, we use the conditional entropy,
defined in Sec. 2.2. The other goal is to measure how brightly this information
(leakage) is used to successfully recover the key. In the sequel, we consider the
success rate, defined in Sec. 2.2, to assess the strength of the adversary.

These two metrics enable us subsequently to ensure the circuit security
(knowing its leakage) against a more or less strong adversary.



The Conditional Entropy According to the definition of the conditional Shan-
non entropy, the conditional uncertainty of SK given L, denoted H(SK | L), is
defined by the following equations:

H(SK | L)
.
=
∑

sK

∑

l

− Pr(sK , l) · log2 Pr(sK | l)

= −
∑

sK

Pr(sK)
∑

l

Pr(l | sK) · log2 Pr(sK | l) . (1)

We the define conditional entropy matrix as:

HsK ,sKc

.
= −

∑

l

Pr(l | sK) · log2 Pr(sKc | l) , (2)

where sK and sKc are respectively the correct subkey and the subkey candidate.

From (1) and (2), we derive:

H(SK | L) =
∑

sK

Pr(sK) HsK ,sK
. (3)

The value of diagonal elements from this matrix needs to be observed very
carefully. Indeed, theorem 1 in [21] states that if they are minimum amongst all
key classes sK , then these key classes can be recovered by a Bayesian adversary.

The Success Rate The adversary mentioned in 2.1 is an algorithm that aims
at guessing a key class sK with high probability. Indeed with some queries, the
adversary would estimate the success rate from the number of times for which
the attack is successful. The success rate quantifies the strength of an adversary
and thereafter evaluates the robustness of a cryptographic device in front of its
attack.

2.3 Profiled Side-Channel Attacks in Practice

There exist many operational contexts in which an attack can be setup. Some
attacks consist solely of an on-line phase. The earliest attacks of this kind exploit
explicitly the linear dependency between the secret data and the leakage, as in
the Differential Power Attack (DPA, [9]) and the Correlation Power Analysis
(CPA, [3]). Recently, the Mutual Information Analysis (MIA, [6]) has extended
those attacks to non-linear dependencies. Profiled attacks are attacks mounted
by a rather strong adversary that can benefit from a long period of training
(i.e. profiling) on a clone device, before launching the attack itself on the target
device. Template attacks [4,2,7] and stochastic attacks [16,15] belong to this
class, because they exploit all the information extracted during the training
step. In this paper we concentrate on template attacks, as described in [2],for
computing the success rates.



Template Attacks During the training phase the attacker gathers a large
number of traces, corresponding to random values of plaintexts and keys. As
the clone system is in full control of the attacker, this number is limited only
by time and available storage. The observed traces are then classified according
to functions L that capture one modality of the circuit’s leakage. A trace t
is considered as the realisation of a multivariate Gaussian random variable in
R

N . For each set Sk, k ∈ [0, N ′[ the attacker computes the average µk and the
covariance matrix Σk. These are estimated by:

µk =
1

|Sk|

∑

t∈Sk

t and Σk =
1

|Sk| − 1

∑

t∈Sk

(t − µk)(t − µk)T . (4)

The ordered pair (µk, Σk) is called the template associated with value k of the

subkey.
The difficult part of this attack is the size of the Σk matrices, namely (N×N),

with N ≈ 104. In our experiments, N = 20, 000. To overcome this a few special
indices can be chosen in [0, N [, called interest points, which contain most of the
useful information. Various techniques are used to select these points: points with
large differences between the average traces [4], points with maximal variance [7],
and, more generally, principal component analysis (aka PCA [8].)

Template Attacks in PCA The PCA consists in computing the eigenvectors
EVi, i ∈ [0, N ′[ of empirical covariance matrix of all traces together, computed
by:

S =
1

N ′ − 1

N ′
−1
∑

k=0

TT T where µ̄ =
1

N ′

N ′
−1
∑

k=0

µk and T =











µT
1 − µ̄T

µT

2 − µ̄T

...
µT

N − µ̄T











.

Let EV be the matrix containing the most significant eigenvectors. In practice,
only a few eigenvectors is sufficient to represent all data samples. In the case of
our unprotected circuit, the leakage is well captured by one direction only, irre-
spective of the choice of the leakage function L. The mean traces and covariance
matrices defined in (4) are then expressed in this basis by:

νk = (EV )Tµk and Λk = (EV )TΣk(EV ) .

In addition to the (EV ) matrix, they constitute the templates of the PCA.
The attack phase consists then in acquiring the trace τ of an encipherement

performed by the target system using the secret key κ, projecting it into this
latter basis and matching it against the patterns using Bayes’ rule. The attack
is successful iff:

κ = argmaxk

(

1
√

(2π)N ′ |Λk|
exp

(

−
1

2
· (EV (τ − µk))TΛ−1

k (EV (τ − µk))

)

)

.



Applications of Templates in PCA to SecMat The investigations are
done on an unprotected DES cryptoprocessor with an iterative architecture. We
estimate the conditional entropy and the success rate for various leakage models:
in fact, models are constructed from distinguishers for trace classification during
the profiling attack. Altogether, this comparison will allow us characterize better
the leakage.

We are facing the problem of choosing the relevant sensitive variable.
Actually, it has already been pointed out, for instance in Section 2 of [20], that

there are variables more sensitive than others from the attacker point of view.
Thus, the security of a cryptographic device should not be treated generally, but
must depend on each sensitive variable.

We must choose a variable that is sensitive (i.e. linked to the key) and pre-
dictable (i.e. the size N ′ of the subkey is manageable by an exhaustive search).
This leads to several questions:

– where to attack? For instance at the input or at the output of an sbox?
– plain values or distance between two consecutive values? In the latter case,

do we need the schematic of the algorithm implementation in the circuit?
– considering a transition as sensitive variable, is it worth considering the

Hamming distance instead of the plain distance3?

To find the best compromise security / attacker, our experiments will attempt
to respond to these issues. We study the following leakage models. Model A is
the input of the first sbox, a 6-bit model. Model B is the output of the first
sbox, a 4-bit model. Model C is the value of the first round corresponding to
the fanout of the first sbox, a 4-bit model. Model D is the transition of model
C. Model E is the Hamming weight of the model D.

We illustrate our study on the first round; the last round yields similar results.
The mathematical definition of the models A to E is given in Tab. 1, using the
notation of NIST FIPS 46 for the internal functions of DES and S as a shortcut
for S1||S2|| · · · ||S8. For a better readability, we also provide with a dataflow
illustration in Fig. 1.

We use the term “model” to designate the choice of the variable that depends
on the plaintext or the ciphertext, and whose values determine the number of
templates. This vocabulary can be misleading since it has also been used in the
past to represent other quantities. In the original paper about the DPA [10],
the model is actually called a “selection function”. In [14], the term “leakage
model” qualifies the way a sensitive variable is concretely leaked; for instance,
according to their terminology, the choice for the Hamming weight is a model
of “reduction” of the sensitive variable. In this respect, they would say that E
approximately models the leakage of D. We do not use this vocabulary, since
we think that an attacker cannot tell the difference between an internal leakage
and an externally observable one. This detail is rather a sophistication of the
attack, best captured by the concepts behind the stochastic attacks [16]. The

3 Given two bitstrings x0 and x1 we call their plain distance the word x0 ⊕ x1, as
opposed to their Hamming distance defind as the integer |x0 ⊕ x1|.



Model Mathematical Abbre- Nature Dist-

index description -viation -ance

A (R0 ⊕ K1)[1 : 6] R0+K1 Combi. (shallow) No

B S(R0 ⊕ K1)[1 : 4] S(R0+K1)Combi. (deep) No

C R1{9, 17, 23, 31} =
P−1(R1)[1 : 4] = (S(R0 ⊕
K1)) ⊕ P−1(L0))[1 : 4]

R1 Sequential No

D (R0 ⊕ R1){9, 17, 23, 31} R0+P1 Sequential Yes

E |(R0 ⊕ R1){9, 17, 23, 31}| |R0+R1| Sequential Yes

Table 1. The five leakage models confronted in this paper.

notion of “sensitive variable” is neither adequate, because it holds only if there
is a straightforward link in the leakage and a value present in the algorithm
specification (like our model A, B or C), Now, it seems difficult to qualify of
sensitive variable a Hamming distance between two internal values taken by a
sensitive variable, because it is unrelated to the algorithm itself. So, to sum up,
we recall that we employ the term model to define the mapping between a trace
and its template.

We note that these models can be viewed as two families of distinguishers.
The models A and B are concerned with moments during the encryption, while
models B, C and D focus on registers. Each studied case corresponds to one
number of templates. Model A uses 64 = 26 templates because it predicts the
activity of the sbox input, whereas model B applies to 16 = 24 templates that are
the sbox output values. Models C and D are also made up of 16 templates, and
finally, model E focuses on 5 templates that are classifications of the different
values of a 4 bit Hamming distance.

The acquisition campaign consists in a collection of 80, 000 traces. Half of
these traces are used for profiling and the other half for the on-line attack. Tem-
plates as shown above are in practice a set of means and covariances for classes
constructed from models. In addition PCA allows to construct eigenvectors that
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Fig. 1. Datapath of DES involved in the attack of the first round.



will be useful to reduce our data samples for online attack. In practice we use
only the first eigenvector in order to project circuit consumption data. Indeed it
is the most important vector since it relates to the greatest variance. We can also
use the second or third eigenvectors if they are relevant, namely if they corre-
spond to a large variance. Thus, we can increase the attacker’s strength. On the
other hand, using a bad eigenvector only contributes to damage our attack. In
figure 2 we can see the difference between a good (the second one) and a bad (the
thirteenth one) eigenvector. With an unprotected circuit, it appears clearly that
the leakage is well localized in time. Therefore a good eigenvector (corresponding
to a high eigenvalue) is also almost null everywhere but at the leaking dates. We
will take advantage of this property in the second improvement presented later
on in Sec. 4.

According to the eigenvectors represented in Fig. 3, we can see precisely when
our circuit leaks information in the modality A, B, D, E or F. The highest the
eigenvector at a sample, the largest the leakage there.

3 Improvement of the Attacks thanks to an Adequate

Leakage Model

3.1 Success Rate

Success rates are depicted in Fig. 4 as a function of two parameters: the first
one is the off-line profiling trace count and the second is the on-line attack trace
count. For all curves, we notice that the success rate is an increasing function in
terms of either trace count.

Model A seems better than B. Intuitively, we would have expected a similar
attack performance, as the traversal of the sbox is a quasi-bijective function. This
is not exactly true on DES, since the sbox of DES has a fanin of 6 and a smaller
fanout of 4. However, they are designed in such a way that if two input bits are
fixed, the sbox becomes bijective (in answer for a balancing requirement).

Therefore, the reason for B to be slightly worse than A is related to the
implementation. Indeed, in the round combinational logic, B addresses a deeper
leakage than A. Thus B is more subject to intra-clocking cycle timing shifts
in the transitions and to the spurious glitching activity that characterizes the
CMOS combinational parts.

Following this discussion, we could also expect the model C to be better than
A, since C models the activity of a register. However, this is false in practice.
One explanation is that the eigenvector of A has more peaks than that of C, and
thus collects more information scattered in the trace.

Figure 5(a) illustrates that the model D and E are by far the best to conduct
an attack. Indeed, few traces are required for the attack success probability to
reach one. Only about 200 traces, allow to have a 90% probability of success.
With 250 traces, the probability rises to 100%. The conclusion is that the knowl-
edge of the register transfers in a circuit can significantly enhance the attack.
In an unprotected CMOS circuit, these models are unrivaled. These intuitions
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were already evoked in the literature (for instance in [3] or in [20]), but never
demonstrated. Through our experiment, we indeed formally concur on this point:
distances between consecutive states are leaking more than values in CMOS cir-
cuits.
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of pre-characterization traces and (b) between models D and E for the same
number of profiling traces per class.

Eventually, we intend to compare models D (template-like [4]) and E (stochastic-
like [16]). To be fair, we compute the success rate for a common number of traces
used in each template; namely, 16/5 more traces are required to profile D. The
result, given in Fig. 5(b) shows without doubt that D achieves better than E.
The reason is that E is an approximate model. Figure 6 indeed shows that the de-
generacy of identical Hamming weight classes is not perfect in practice; however,
for a given number of measurements dedicated to profiling, E is favored.
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3.2 Conditional Entropy

As shown in Figure 7(a), the conditional entropy is roughly decreasing with the
number of traces used in the profiling phase. We do not comment on the very be-
ginning of the curves, since for small numbers of traces in the profiling phase, the
entropy estimation yields false results. However, we notice that the conditional
entropy tends towards a bounded value. As expected, this asymptotically value
is less than or equal to 6 bits. Indeed, the keys we attack have 6 bits of entropy.
The smaller the conditional entropy for a chosen model, the more vulnerable the
circuit against one attack using this model.
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Fig. 7. Conditional entropy comparison. (a) over 2000 traces; (b) zoom after the
estimation has converged.

In this comparison, we have tried to ensure having the same number of traces
during the profiling phase. But this was not possible for model A that needs more
measurements as it has more classes (64) than the others (16 or 5).

Therefore, we had the number of traces live in [0,600] for model A and in
[0,2000] for the other models. By comparing the different models, it appears
clearly that the models D and E are more favorable to side-channel leakage. Fig-
ure 7(b) confirms that asymptotically, the conditional entropy for models D and
E is smaller than other models, and that D is better than E. Therefore, the choice
of the sensitive variable is an important element to be taken into account in a
security evaluation. Basically, we observe that the conditional entropy classifies
the models in the same order as the success rate.

Now, we warn that in theory, the success rate and the conditional entropy
are definitely not the same concept. However, in this study, it appears that there
is necessarily a similarity between them. This is certainly due to the choice of
models, and also to the adequation in terms of relationship adversary/security.
Indeed, on the contrary, we must be aware of some pitfalls of interpretation, like
for instance the risk that a circuit may seem very well protected against a bad
adversary.



But to sum up, this study of different models shows that the entropy is
actually a good way to evaluate a circuit.

3.3 Hidden Models

We say that a leakage model L1 is more adequate than L2 if the success rate of
an attack using L1 is greater than with L2. In the SecMat circuit we studied, the
distance between the consecutive values of a sensitive variables held in registers
corresponds to the leakage function E. Discovering this better model is always
possible, provided however that the attacker has a thorough knowledge of the cir-
cuit’s architecture. More specifically, the value of a sensitive variable is accessible
from anyone in possession of the algorithm specifications; on the contrary, the
knowledge of the variables sequence requires that of the chip’s register transfer
level (RTL) architecture, such as for instance its VHDL or Verilog description.
Even in the absence of these pieces of information, an attacker can still attempt
to retrieve the expression of the sensitive variables (or its sequence) as a function
of the algorithm inputs or outputs, depending the attack is in known plaintext
or known ciphertext context. Indeed, the attack acts as an oracle: if it fails to
recover the key, it means that the leakage function is irrelevant. However, in
hardware circuits, these functions are of high algebraic degree, especially when
the next pipeline stage is a register that is one round inside the algorithm. This
makes its prediction chancy, unless having some hints about a possible class of
leakage functions. Refer to articles about SCARE [12,13] for a more complete
overview of this problem.

We notice that the best leakage model (the most physical one) can be un-
known willingly or as a backdoor. The algorithm pipeline can be indeed very
complicated. Techniques to complexify the pipeline include:

– shuffling methods [?] can be used to randomize a pipeline. For instance,
the article [?] shows that the code of an algorithm can be rearranged in a
different order; even without taking advantage of any randomization, the
high degree of commutativity ensures a high combinatorics in the algorithm
scheduling, especially in software.

– masking of the sbox input / output with a constant, knowing that the sboxes
are the same for all the bytes of the datapath.

For the sake of completeness, we mention that the question of choosing the
adequate model has been raised for instance in this article [?]. There, the au-
thors contemplate to compare two generic countermeasure principles: hiding and
masking. However, in their evaluation, they opted not to retain one common
model for both countermeasure. Instead, a purported suitable model for each
countermeasure is elected:

– a state-like model (similar to our model C) for the hiding countermeasure
and

– a distance-like model (similar to our model D) for the masking countermea-
sure.



As there is no state-of-the-art method to tell that the adopted model is indeed the
best, the evaluation result remains biased. It holds provided an attacker indeed
use these very models. However, if she does not restrict to this assumption, our
investigations show that the analysis done in [?] cannot be extrapolated to other
models.

4 Improvement of the Attacks thanks to Leakage Profiles

Noise Removal by Thresholding

As already emphasized in Fig. 2, an adversary able to understand the shape of
the eigenvectors is more likely to master the speed of the success rate of her
attack. In a similar way, a security evaluator may require an ideal eigenvector
to have a very clear idea of the expertized device security.

In the case of a noisy vector, we must seek the best moments of leakage
and eliminate the noise. In this context we suggest to improve the success rate
or degree of evaluation by creating a threshold th ∈ [0, 1] on the eigenvectors.
Generally speaking, in the case where we have infinite traces, the eigenvector will
tend towards a denoised curve that reflects perfectly the temporal information
for the leakage. In concrete evaluation and attack scenarios, we experience time
or space constraints, and therefore we seek a better way to refine the eigenvectors.

4.1 Success Rate

Figure 8(a) shows the significant gain which may be attributed to an adversary
who perfectly knows how to exploit eigenvectors. This experiment was done with
noisy traces different from those used in previous sections. The model chosen is
the model A, which shows a significant increase in the rate of success (about
×5). There, the optimal threshold thopt is either 3/4 or 4/5 of the maximum
value of the eigenvector. Actually, we see that for an eigenvector whose noise is
eliminated, the success rate becomes higher. Threshold choice is a compromise:
when it is too high (th ≈ 1), some noise remains, whereas when it is too low
(th ≈ 0), it eliminates informative parts provided by the profiling phase.

Figure 8(b) shows on the example of model C how the success rate improves
depending on the chosen threshold. For models of the same family (based on
the value instead of on a distance), such as A and C, it can be noted that an
adversary may be mistaken about the success rate, believing that such model is
better than the other. In our case, if we do not take a threshold it is believed
that the model A is better than C. However, with a thresholding, the conclusions
are inverse, as depicted in Fig. 9.

4.2 Conditional Entropy

In the same way as the success rate, an evaluator may be mistaken about the
security of a device. Any model may seem safer than another especially when
models are related. The figure 10 shows that the non-use of thresholding leads
us to err on the model C which appears equivalent or worse than A.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

S
uc

ce
s 

ra
te

online attack trace

without threshold
threshold 3/4
threshold 4/5

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

su
cc

es
s 

ra
te

online attack trace

th=0
th=0.1
th=0.2
th=0.3
th=0.4
th=0.5
th=0.6
th=0.7
th=0.8
th=0.9

(b)

Fig. 8. Success rate comparison (a) without and with threshold for model A and
(b) with different thresholds for model C.
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Fig. 9. Success rate improvements with threshold.
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Fig. 10. Conditional entropy improvements with threshold.



5 Discussion

The goal of this section is to discuss the impact of the two improvement tech-
niques to the side-channel framework of [21]. Basically, we warn that those two
techniques can make an evaluation unfair if they convey an advantage dissym-
metry to the attacker at the expense of the evaluator. To illustrate our argu-
mentation, we resort to the same diagram as presented in [18]. The evaluator
(noted E) computes the x position whereas the attacker (noted A) computes
the y position. This type of diagram can be seen as real world a posteriori (i.e.
post mortem using forensic terminology) results as a function of forecast a priori

predictions.
For instance, it seems reasonable that some links between evaluation and

attack metric can be put forward if they are computed on the same circuit
with the same signal processing toolbox. Let us take the example of a chip we
intend to stress, in order to exacerbate its leakage. Typically increasing the die’s
temperature T (or its supply voltage) will increase its consumption and thus the
amount of side-channel. In these experiments, we expect the condition entropy
and the attack success rate to evolve in parallel. And even more, this tendency
should be independent on the chosen leakage model. These conclusions hold
provided the temperature of the device during the evaluation is the same as
during the attack. This is depicted in Fig. 11(a). Now, if the evaluator performs
the evaluation at nominal temperature but that the attacker is able to attack
at higher temperatures, he will be undoubtedly advantaged. This characterizes
typically an asymmetric relationship between the attacker and the evaluator;
we can also say that the attacker “cheats”4 since she makes use of an extra
degree of freedom unavailable to the attacker. This addition power changes the
balance between the evaluation and the attack sides, as shown in Fig. 11(b).
In concrete cases, for instance when the circuit to attack is a tamper-proof
smartcard, the temperature, the voltage and all the operating conditions are
monitored. Therefore, a priori, neither the evaluator nor the attacker can be
advantaged.

The two contributions of this paper show however how to create a dissymme-
try even when the evaluator and the attacker work in similar conditions (even
better: on exactly the same traces [22]). The section 3 illustrates a situation
of dissymmetry in a priori knowledge. It is sketched in Fig. 12(a). When the
attacker knows that L2 is more adequate than L1, her attack will require in
average less traces to be successful than that of the evaluator that is stuck at
L1. The section 4 details the effect of a dissymmetry in expertise about the ob-
jects manipulated. Imagine a laboratory, such as an ITSEF, applying an attack
“from the textbooks”, as presented in Sec. 2. Then this ITSEF faces the risk of
overestimating the security of its target of evaluation if it is not aware of the
thresholding “trick”.

In summary, we warn that the evaluator can be fooled into being too confident
in a circuit’s security, not having anticipated a weakness in the leakage model or

4 We mean that the attacker uses a strategy outside of the security model.



in the attack processing stages. Thus routine in the evaluation can be harmful in
the projected trust in the circuit. This fact is illustrated in Fig. 13; if an evaluator
has evaluated many cryptographic components that were found to lay within the
same region, e.g. corresponding to a common assurance evaluation level (“EAL”
notion of the Common Criteria [5]), he will be tempted to limit its analysis to
the measurement of an information theoretic metric. However, if an attacker
comes up with either more knowledge about the device that the evaluator does
or better signal processing techniques, the previsions of the ITSEF can turn out
be too optimistic, since conservative (believing erroneously that “anyone attacks
like I do”).
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Fig. 11. Evaluation vs attack metrics diagram in a (a) symmetrical and (b)
asymmetrical situation.

Our two attack improvement techniques do not invalidate the framework
of [21], but simply warn that the notions it introduces shall be manipulated
with care and not overseen. Otherwise, incorrect predictions can be done, thus
ruining the confidence we can have in it.

6 Conclusions and Perspectives

In this article, we have put in practice the “unified framework for the anal-
ysis of side-channel key recovery attacks” [21], on the example of the “DPA
contest” [22] real-world measurements. In our work, we place the evaluator, in
charge of quantifying the amount of information leakage, and the attacker, in
charge of exploiting the leakage to retrieve the secret, both on an equal footing
regarding the experimental skill: both use the same acquisition campaign. We
take advantage of these results to test another asymmetry in the evaluator /
attacker couple, namely an asymmetry in initial knowledge. We concretely illus-
trate that any knowledge about the target’s architecture or about the leakage
structure in time can greater favor whichever actor takes advantage of it. From
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the perspective of the attacker, we provide two improvements over straightfor-
ward attacks. First of all, we show that the care with which the sensitive variable
is chosen influences qualitatively the attack outcome. In the studied hardware
accelerator, the choice of the adequate sensitive variable is connected to its RTL
architecture. Second, we illustrate that if the attacker knows that the leakage is
localized in a few samples amongst the large number of sample making up the
traces, she can intuit early (before the attack has converged to a unique key can-
didate) that some samples will mostly bring noise instead of useful information.
Thanks to an innovative thresholding technique, we show that by ruling those
samples out, the attacker can indeed speed-up the attack. Finally, we conclude
about the usefulness of the framework [21] in terms of security predictions when
both the evaluator and the attacker can play with the same degrees of freedom.
However, we warn that an attacker, especially in cryptography, can always come
up with “out-of-the-box” strategies that might empower her with an advantage
unanticipated by the evaluator.

Further directions of research will consist notably in assessing the question
of the existence of an optimal leakage model. Or is the best evaluation / attack
obtained from an analysis involving concomitantly many leakage models? But in
this case, what technique is the most suitable to combine coherently various leak-
age models? Techniques to exploit the side-channel information from multiple
channels have already been presented. For instance, various EM are combined
in [1]. Also, in [19], the simultaneous knowledge of power and EM leakage is
taken advantage of to reduce the number of interactions with the cryptographic
device under attack. However, in those two examples, the same leakage model is
assumed. We endeavor in the future to get rid off this constraint. Additionally,
we envision to port our techniques of leakage eigenvectors thresholding to attacks
using an on-line profiling, such as the MIA [6], and to quantify the advantage it
brings.
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A The SecMat V1 Evaluated Circuit

All the experimentations presented in this paper are carried out on measurements
obtained from an ASIC implementation of DES, embedded in the “SecMat V1”
chip, used notably for the DPA contest. The DES module is a straightforward
transposition in VHDL of the NIST standard [?]. It is iterative, in that it com-
putes one round of encryption per clock cycle.

The first round is indicated in the traces by t = 0, and therefore, the cipher-
text is ready at t = 15. In the Fig. 2, the variance is present mostly at clock
rising edges. In addition, the eigenvectors for models C, D and E, that target
registers, are located on the plaintext loading, first and second rounds of the
encryption. The models A and B, that target combinatorial nets, yield variance
in the 8 first rounds. We have no idea if this is due to a physical phenomenon
(capacitive memorization of some values over many clock cycles) or inherent to
the algorithm itself.
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