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Abstract

We initiate a provable-security treatment of cryptographic agility. A primitive (for example
PRFs, authenticated encryption schemes or digital signatures) is agile when multiple, individually
secure schemes can securely share the same key. We provide a surprising connection between two
seemingly unrelated but challenging questions. The first, new to this paper, is whether wPRFs
(weak-PRFs) are agile. The second, already posed several times in the literature, is whether every
secure (IND-R) encryption scheme is secure when encrypting cycles. We resolve the second question
in the negative and thereby the first as well. We go on to provide a comprehensive treatment of
agility, with definitions for various different primitives. We explain the practical motivations for
agility. We provide foundational results that show to what extent it is achievable and practical
constructions to achieve it to the best extent possible. On the theoretical side our work uncovers
new notions and relations and settles stated open questions, and on the practical side it serves to
guide developers.
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1 Introduction

This paper initiates a provable-security treatment of cryptographic agility. Agility considers a set of
schemes, all meeting some base notion of security, and requires that security is maintained when mul-
tiple schemes use the same key. Agility may be considered for any cryptographic primitive: PRFs, au-
thenticated symmetric encryption, collision-resistant hashing, IND-CCA public-key encryption, what-
ever. To illustrate let us jump right to the example where we have the most interesting results. Then
we will back up and discuss motivation and other results.

Are wPRFs agile? Let F be a family of functions and consider a game that picks a random key K
and challenge bit b and gives the adversary an oracle Fn that takes no inputs. Each time it is called,
Fn picks random x, y, returning (x, FK(x)) if b = 1 and (x, y) otherwise. Naor and Reingold [25] call
F a weak-PRF (wPRF) if the adversary can’t guess b.

Why this notion? Being a wPRF is, in practice, a much weaker assumption on a blockcipher than
the usual PRF or PRP one. Yet powerful results by Naor and Reingold [25], Maurer and Sjödin [21]
and Maurer and Tessaro [22] show that symmetric cryptography can be efficiently and securely based
on wPRFs.

Letting F 1, F 2 be wPRFs having keys of the same length, consider a game that picks a single
random key K and challenge bit b and gives the adversary an oracle Fn that, on input i ∈ {1, 2},
picks random x, y, returning (x, F i

K(x)) if b = 1 and (x, y) otherwise. It’s just like the previous game,
but with two function families, and both are being evaluated with the same key. We say that the pair
{F 1, F 2} is agile if an adversary can’t guess b in the above game. Now consider the following statement
or conjecture:

wPRF-A : Every pair {F 1, F 2} of wPRFs is agile.

Is the statement true? Our first guess was yes, because the randomness of the inputs means the
two functions are unlikely to ever be evaluated on the same point, and then it is hard to see what
harm there is in their using the same key. But attempts to prove this failed. It is unclear how to
reduce the agility of {F 1, F 2} to their individual, assumed wPRF securities because reduction-based
proof methods break down totally when the key is the same for both functions. Does that mean
the statement is false? To demonstrate that, we need a counter-example, meaning specific families
F 1, F 2 that (under some assumption) are wPRFs but we have an attack showing {F 1, F 2} is not agile.
However, an example is not immediate, again due to the fact that the attacker has no control on the
inputs to the functions, these being chosen at random by the game.

We clarify that the question is not whether there exists a pair {F 1, F 2} that is agile. We are
not asking for a construction of F 1, F 2 that can securely share a key. Indeed, such a construction is
trivial: just let F be a wPRF and let F 1 = F 2 = F . The question is whether all pairs {F 0, F 1} of
wPRFs are agile.

We have still to motivate why we should care whether security is maintained when two schemes
use the same key, a practice that cryptographers would typically frown upon. But we will soon explain
important practical reasons for this concern. Furthermore, our focus on wPRFs is not arbitrary. We
will see that wPRFs are “agility catalysts” in the sense that if they are agile then we can make a host
of other primitives agile as well. So the above question —is wPRF-A true or not— is central.

We find it intriguing that so basic and simply stated a question is hard to answer. We will obtain
the answer by turning to something that seems different but eventually isn’t.

Are IND-R encryption schemes CYC-secure? IND-R (INDistinguishability from Random) [27]
is a strong notion of CPA-privacy for symmetric encryption schemes that is met by common blockcipher
modes of operation (CBC, CTR). It implies IND-CPA. CYC asks for privacy when encrypting “cycles”
of the form E(K1,K2), E(K2,K1). Cyclic security was introduced by Camenisch and Lysyanskaya [13]
and is of interest as a simple and basic instance of the security of encrypting key-dependent messages
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concurrently considered by Black, Rogaway and Shrimpton [10]. Now consider the following statement
or conjecture:

IND-is-CYC : Every IND-R symmetric encryption scheme is CYC-secure.

Broadly speaking, this asks whether “normal” security implies security when encrypting cycles. In
their work presenting a particular, public-key encryption scheme shown to securely encrypt cycles if
the DDH assumption holds, Boneh, Halevi, Hamburg and Ostrovsky [11] explicitly ask, and leave
open, the above question. (Up to details of the definitions.) Black, Rogaway and Shrimpton [10] pose
it too. Haitner and Holenstein’s black-box separations for key-dependent message security [16] only
consider stronger forms of security, and do not apply to this question.

The connection. We have just stated two open problems that on the face of it are quite different.
The first is about wPRFs and the second about symmetric encryption, which are different primitives.
In the first case, the issue is sharing a key between two schemes. In the second, no key sharing is
involved and we refer to standard notions. Yet, we show the two problems are related. Specifically,
we show in Theorem 4.2 that

wPRF-A ⇒ IND-is-CYC.

That is, if every pair {F 1, F 2} of wPRFs is agile (can securely share a key) then every IND-R symmetric
encryption scheme is CYC-secure (can securely encrypt cycles).

Settling both questions. So far the above is an instance of what Karp called the “If pigs could
whistle then horses could fly” approach that aims to understand open questions in cryptography and
complexity theory by relating them to each other. As above, this approach can turn up interesting
relations between seemingly unrelated problems. But it doesn’t settle them. However, in this case, we
can go further. We provide in Theorem 4.6 a direct and explicit counter-example to show that IND-
is-CYC is false, resolving the above-mentioned open problem. Our wPRF-A ⇒ IND-is-CYC
connection then implies that wPRF-A is also false, settling the question of whether wPRFs are
agile. The counter-example is a symmetric encryption scheme shown to be IND-R under the SXDH
assumption of [2] but shown by attack to not be CYC-secure.

This result refuting IND-is-CYC is strengthened by the fact that IND-R is a very strong version
of (CPA) privacy and our formalization of CYC is a very weak one. (The formal definitions are in the
body of the paper.) Thus, even strong “normal” security fails to imply weak security for encrypting
cycles. Interest in this question is witnessed by the work of Backes, Pfitzmann and Scedrov [4] who
have previously shown that IND-CPA does not imply a formalization CYC-BPS of cyclic security.
However, their counter-example encryption scheme is stateful while ours is stateless, and also IND-R
⇒ IND-CPA and CYC-BPS ⇒ CYC, making their result weaker than ours.

Extensions and implications. Above we discussed IND-is-CYC in the symmetric setting. Our
result showing it is false, however, extends to the public-key setting, showing that IND-CPA (semantic
security) does not imply security of encrypting cycles, answering the open question of Boneh, Halevi,
Hamburg and Ostrovsky [11]. Our result confirms that to achieve circular-security, one needs novel,
dedicated schemes and analyses, vindicating work in this line [11, 12, 1].

Context. Let us now back up to provide some context for agility and describe our other contributions
in this area. Cryptographic code usually has a suite of allowed schemes of any particular type. (For
example, authenticated encryption.) But new standards or proposed standards appear at a rapid rate.
Cryptographic code written today needs to be able to easily incorporate schemes that will appear in
the future. This has been recognized and enunciated in developer forums, where the term “agility”
has been used to refer to the ability to easily add schemes to an existing suite by structuring code
to allow schemes to be substituted in a blackbox manner. The IETF is currently considering adding
agility to the widely deployed RADIUS protocol [26]. Resources for software professionals, like a recent
Microsoft Developer Network Magazine article [29], encourage agility.
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Keys for use with the existing schemes will, however, already have been distributed. Changing
them or getting new ones distributed and certified is difficult and error-prone. Agility, thus, would ask
that it be possible to maintain the existing key, using this single key with multiple schemes, both new
and old. (The presence of new schemes will not preclude use of the old ones. Data encrypted under
old schemes and then stored still has to be decrypted, and legacy systems must be supported.)

Agility is of course possible only among schemes that have keys of the same type or length.
(An algorithm with a 128-bit key and another with a 256-bit key shouldn’t share a key.) But key-
compatibility is common given that many schemes will use the same underlying blockciphers or hash
functions. Popular proposed or standardized symmetric authenticated encryption (AE) schemes like
CCM [30], OCB [27], CWC [20], GCM [23], and EAX [9], for example, all use a 128-bit AES key.

Cryptographers have always recommended key separation, usually interpreted as asking that
schemes for different purposes not use the same key. Thus, MAC and symmetric encryption should
use different keys, as should public-key encryption and digital signatures. Assuming this type of sepa-
ration is in place, the issue is whether different schemes for the same goal, for example authenticated
encryption or PRF, may securely use the same key. This is what agility captures.

We clarify that agility is about individually secure schemes sharing a key. It is not about what
happens when a scheme is broken and replaced by another that is (hopefully) secure. When that
happens, you should not retain the old key since the attacks on the old scheme may already have
compromised it.

In their work on chosen-protocol attacks, Kelsey, Schneier and Wagner [19] point both to the
danger of using the same key across different schemes and the pressures that are likely to make this
happen, the latter including the cost of certification of new keys, the spread of cryptographic APIs, and
the limits posed on key-storage by smartcards. They are concerned mostly with different primitives
(they call them protocols, for example, encryption and digital signature) sharing a key. Agility can be
viewed as a class of chosen-protocol attacks in which the schemes, or protocols, are all for the same
goal.

The present paper can serve as a developer guide for agility, pointing out what is possible and
what is not. We provide formal definitions that enable a rigorous treatment of agility. With regard to
results, on the positive side, we provide practical constructions, showing how to use PRFs and wPRFs
as catalysts to confer agility on higher-level primitives like authenticated encryption. On the negative
side we show that agility for the full set of schemes meeting some notion is usually unlikely. Let us
now expand on all this.

Definitions. Agility is novel, definitionally, in that, unlike standard definitions of security, which
apply to individual schemes, agility is a property of a set Γ of schemes that individually already meet
some base notion of security. Thus, Γ might be the set of all PRFs or some subset thereof. It is as
though one moves up one level in “types.”

We appropriately extend the game defining base security so that the key is chosen just once yet
an adversary can, via a scheme argument, pass in different schemes that will all use this key. The
set Γ is said to be a-agile (a ∈ N) with respect to the base security notion if, for all compatible, size
a subsets Π of Γ, the adversary advantage is negligible when its scheme arguments are drawn from
Π. (Compatible means the schemes in the set have keys of the same type and length.) In the body
of the paper we exemplify with detailed definitions for the case of PRFs, wPRFs and authenticated
encryption. In this framework, what we called wPRF agility above is the 2-agility of the set Γ of all
wPRFs.

Foundations. The most basic theoretical question is whether a primitive (for example, PRF, AE) is
agile, by which we mean that the set of all schemes that are individually secure is a-agile for a ≥ 2.
We answer this for a variety of primitives. Figure 1 summarizes our findings. As it shows, collision-
resistant hash functions, when formalized as keyed families, are agile. (Practical functions like MD5,
SHA1, SHA256 being unkeyed are trivially agile.) IND-CPA-secure public-key encryption schemes
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Primitive Agile?

PRFs, wPRFs, MACs, IND-CPA symmetric encryption, sym-
metric authenticated encryption, IND-CCA public-key encryp-
tion, digital signatures

No

Collision-resistant hash functions, IND-CPA public-key encryp-
tion

Yes

Figure 1: Agility status of some basic primitives.

are also agile. So two RSA-based public-key encryption schemes can share the same keys as long as
only IND-CPA-security is desired. PRFs, MACs, IND-CPA secure symmetric encryption schemes,
AE schemes, IND-CCA-secure public-key encryption schemes and digital signatures are not agile. We
present counter-examples in the body of the paper for some of these, and others are similar.

The above results are relatively straightforward. The most interesting question was whether wPRFs
are agile. As discussed at length above, we have answered the question in the negative by first making
a connection to cyclic encryption and then answering an open question there.

The following shows why our focus on PRFs and wPRFs is not arbitrary and also shows how,
despite the above, to get strong agility in practice.

PRF-derived agility. Our DtE (Derive-then-Encrypt) transform associates to a given PRF ff and
a given AE scheme es a new AE scheme esff in which ff under the base key is used to derive a subkey
that is then used for es. This turns out to have strong agility properties. Specifically, let Γ be the set
of all AE schemes esff as es ranges over all AE schemes. Then, for any a, the set Γ is a-agile with
respect to AE. The short rendition of this is that AE has now, effectively, become agile. The lack
of agility in the primitive itself has been circumvented by using it not directly but within the scope
of our construction which can in fact maintain a single key and yet be able to swap in and securely
use any AE scheme. This is of direct interest in practice where, as we have seen, there are numerous
existing and emerging options for AE such as CCM, OCB, CWC, GCM and EAX. Even this (small)
set of schemes is probably not agile. But it becomes so when used via our construction.

The above requires that the ff scheme be fixed. But it too is a primitive for which agility may be
desirable. If we want to be able to use arbitrary PRFs, the above-noted lack of agility of the primitive
means we are out of luck. But in practice these are blockciphers for which there may be only a small
set of relevant choices. (For example, all AES finalists.) This set may in fact be agile.

wPRF-derived agility. DtE uses a PRF to make AE agile. Could we use a wPRF instead? This
is attractive for two reasons. The first is that a wPRF is a weaker assumption on a blockcipher than
a PRF. The second is that, as a result, a set of blockciphers is more likely to be agile with respect
to wPRF than to PRF. (We cannot of course hope for agility with respect to all wPRFs since that
class is not agile. As above, however, we’d like to get it for as large a subset of the class as possible.)
However, the obvious way to extend the construction, namely upon encryption to pick a random
R, use FK(R) as the AE key where K is the base key and F our wPRF, and return R with the
ciphertext, fails to achieve AE, even in the absence of agility. What we instead observe is that some
of the existing transforms of wPRFs to PRFs from [25, 21, 22] have a form that make them agility
preserving, meaning that if the wPRF is drawn from an agile set then the result is an agile set of
PRFs. This yields a construct that is more robust and in practice more agile than DtE but also more
expensive.

Related work. Agility is part of the broader issue of the security of key reuse [19]. Haber and
Pinkas [15] analyze the security of several specific constructions of public-key encryption and digital
signatures when a single public/secret key pair is used both for encryption and signing or for two
encryption schemes or digital signature schemes simultaneously. They do not consider the general
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problem of key reuse and focus on public-key primitives.
Key-dependent message security and its special case, circular security, were defined in concurrent

works [10, 13] and recent work gives several constructions of various primitives meeting different flavors
of security [17, 18, 11, 3, 12, 1]. At the end of Section 4 we discuss exactly how our counterexample
for circular security fits into prior work.

2 Preliminaries

Notation and conventions. If x is a string then |x| denotes its length, and if S is a set then |S|
denotes its size. The empty string is denoted ε. If a = (a1, . . . , an) then (a1, . . . , an) ← a means we
parse a as shown. Unless otherwise indicated, an algorithm may be randomized. “PT” stands for
“polynomial time.” By y ← A(x1, x2, . . . ; r) we denote the operation of running A on inputs x1, x2, . . .

and coins r ∈ {0, 1}∗. We denote by y
$← A(x1, x2, . . .) the operation of picking r at random and

letting y ← A(x1, x2, . . . ; r). (The coins are chosen from a space that may depend on the inputs.) We
denote by [A(x1, x2, . . .)] the set of all possible outputs of A on inputs x1, x2, . . .. We denote by k ∈ N
the security parameter and by 1k its unary encoding.

Games. Our definitions and proofs use the language of code-based games [8]. Recall that a game —
look at Figure 2 for examples— has an Initialize procedure, procedures to respond to adversary oracle
queries, and a Finalize procedure. If Initialize is missing it is understood to be the trivial procedure
that merely returns 1k. A game G is executed with an adversary A as follows. First, Initialize(if
present) executes, and its outputs are the inputs to A. Then A executes, its oracle queries being
answered by the corresponding procedures of G. When A terminates, its output becomes the input
to the Finalize procedure. The output of the latter, denoted GA, is called the output of the game,
and we let “GA” denote the event that this game output takes value true. The running time of an
adversary is the worst case time of the execution of the adversary with the game defining its security,
so that the execution time of the called game procedures is included.

Function families. The (common) syntax we use for PRFs and wPRFs is more general than may
be usual because we will (later) need to consider schemes defined via families of groups. An FF-scheme
(“FF” stands for “Function Family”) ff = (ff.Pg,ff.Kg,ff.f,ff.DomR,ff.RngR) consists of a parameter
generator, a key generator, an evaluator, a domain recognizer and a range recognizer, all PT algorithms,
the last three deterministic. We require that ff.f(pars,K, ·): ff.Dom(pars) → ff.Rng(pars) for every
k ∈ N, pars ∈ [Pg(1k)] and K ∈ [Kg(pars)], where ff.Dom(pars) = {x : ff.DomR(pars, x) = 1} and
ff.Rng(pars) = {y : ff.RngR(pars, y) = 1}. We require that one can sample from ff.Dom(pars) and
ff.Rng(pars) in PT on input pars. We also require that |ff.Dom(pars)| ≥ 2k for all pars ∈ [ff.Pg(1k)] and
all k ∈ N. (PRFs on tiny domains are trivially constructed and don’t even imply one-way functions.
This convention rules them out.)

Encryption syntax. Our syntax for encryption is general enough to cover both symmetric and
asymmetric encryption, which will save us from repeating similar security definitions for both cases.
A ENC-scheme (“ENC” stands for encryption) es = (es.Pg, es.Kg, es.Enc, es.Dec, es.MsgR, es.CtxtR) con-
sists of 6 PT algorithms: a parameter generator, a key generator, encryption and decryption algorithms,
a plaintext recognizer and a ciphertext recognizer. The decryption algorithm is deterministic. On in-
put pars ∈ [es.Pg(1k)], the key generator outputs a triple (ek , dk , pk), where ek is an encryption key,
dk is a decryption key and pk is a public key. We say that the encryption scheme is symmetric if
it is always the case that pk = ⊥. (In which case we may assume wlog ek = dk .) We say it is
asymmetric if it is always the case that ek = pk . We require that there is a polynomial r(·), called
the number of coins used by es.Enc, such that es.Enc draws its coins from {0, 1}r(k) whenever its first
input is pars ∈ [es.Pg(1k)]. We require that es.Enc(pars, ek , · ;R): es.Msg(pars) → es.Ctxts(pars)
and es.Dec(pars, dk , es.Enc(pars, ek ,M ;R)) = M for all R ∈ {0, 1}r(k), all M ∈ es.Msg(pars), all
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proc KeySetup(ff)

pars $← ff.Pg(1k) ; K
$← ff.Kg(pars)

b
$← {0, 1}

Return pars

proc Fn(ff, x)
If b = 1 then y ← ff.f(pars,K, x)
Else y

$← ff.Rng(pars)
Return y

proc Finalize(b′)
Return (b′ = b)

proc KeySetup(ff)

pars $← ff.Pg(1k) ; K
$← ff.Kg(pars)

b
$← {0, 1}

Return pars

proc Fn(ff)

x
$← ff.Dom(pars)

If b = 1 then y ← ff.f(pars,K, x)
Else y

$← ff.Rng(pars)
Return (x, y)

proc Finalize(b′)
Return (b′ = b)

Figure 2: Game FF.PR.Gmk, on the left, and game FF.wPR.Gmk, on the right, for k ∈ N.

(ek , dk , pk) ∈ [es.Kg(pars)], all pars ∈ [es.Pg(1k)] and all k ∈ N, where es.Msg(pars) = {M :
es.MsgR(pars,M) = 1} and es.Ctxts(pars) = {C : es.CtxtR(pars,C ) = 1}. We require that one
can sample from es.Msg(pars) and es.Ctxts(pars) in PT on input pars.

3 Agility definitions

The notions of security we usually define apply to schemes, saying what it means for the scheme to
be secure. (For example, a function family is a PRF if ...). Agility is different. It is not a property
of an individual scheme but of a set of schemes relative to some (standard) security notion for these
schemes. Thus, we might have a set of PRFs and talk of their agility with respect to the PRF notion.

The template for an agility definition is as follows. We start with a syntax. (For example, FF for
function families or ENC for encryption schemes.) We then provide a sequence of games to capture
agility with respect to a (usually standard) underlying notion of security for individual schemes. (For
example, games FF.PR.Gmk, k ∈ N, on the left side of Figure 2. The underlying notion here, called
PR for pseudorandomness, is the standard PRF notion.) The unusual feature of the games is to
have a scheme argument, meaning the adversary may provide procedures a scheme (of the syntax
being considered) whose algorithms the game then uses. Agility of a set Π of schemes is measured by
allowing the adversary to use different members of Π (the choice at its discretion) in the role of scheme
argument, with the underlying key remaining the same. (For this to be possible, Π must be consistent in
the sense that all its schemes have keys of the same syntactic form.) Some advantage will be associated
to an adversary and Π, and thence we will get a definition of agility for Π. Restricting attention to a
set Π consisting of a single scheme (corresponding to an adversary whose scheme argument is always
this one scheme) recovers the base underlying security notion (for example, PRF) for this scheme,
thereby saving us from defining it separately and also confirming that agility is a natural extension of
the base notion.

We could carry through the above in a fully general way. For concreteness and simplicity, however,
we exemplify with agility definitions for three primitives important to this paper, namely PRFs, wPRFs
and authenticated encryption. To expose the underlying unity, however, we use a uniform notation,
where Sec-security of Syntax-schemes, for example, refers to security of schemes of the shown syntax
with regard to the shown base notion of security. We hope the reader will forgive the standard notion
of a PRF ending up, for this reason, being called PR-security of an FF-scheme. The definitional
templates here can be easily lifted and adapted to define agility of other primitives.

PRF Agility. Say a set Π of FF-schemes is compatible if all ff ∈ Π have the same parameter generator
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and also all ff ∈ Π have the same key generator. Consider the games FF.PR.Gmk (k ∈ N) on the left
side of Figure 2. Call an adversary A Π-restricted if the scheme arguments in its queries are all drawn
from Π, it makes only one KeySetup query, this being its first oracle query, it never repeats an
oracle query, and any Fn(ff, x) query it makes satisfies x ∈ ff.Dom(pars). (All this must hold with
probability 1 regardless of how queries are answered. Π being compatible means the parameter and
key generation algorithms invoked by KeySetup will be the same regardless of the FF-scheme that it
is provided as input.) Let AdvPR

Π,A(k) = 2 Pr[FF.PR.GmA
k ]− 1 for any compatible set Π of FF-schemes

and Π-restricted adversary A. (“PR” stands for “pseudorandom”.)
We say that a finite, compatible set Π of FF-schemes is agile with respect to PR if the function

AdvPR
Π,A(·) is negligible for all PT, Π-restricted adversaries A. We say that a (not necessarily compatible

or finite) set Γ of FF-schemes is a-agile with respect to PR (a ∈ N) if every size a, compatible subset
Π ⊆ Γ of Γ is agile with respect to PR. We say that Γ is agile with respect to PR if it is a-agile with
respect to PR for every a ∈ N.

We recover the usual notion of an FF-scheme ff being a PRF —which we call PR-security here for
uniformity— as agility of the singleton set {ff} with respect to PR. To spell it out, FF-scheme ff is
PR-secure if the function AdvPR

{ff},A(·) is negligible for all PT {ff}-restricted adversaries A. Then ff is
PR-secure iff it is a PRF, and the set FF.PR.Sch of all PR-secure FF-schemes is the set of all PRFs.

wPRF agility. The above is easily adapted to wPRFs. The games FF.wPR.Gmk (k ∈ N) are now
those on the right side of Figure 2. Call an adversary A Π-restricted if the scheme arguments in its
queries are all drawn from Π, it makes only one KeySetup query, this being its first oracle query,
and it never repeats an oracle query. Let AdvwPR

Π,A (k) = 2 Pr[FF.wPR.GmA
k ]− 1 for any compatible set

Π of FF-schemes and Π-restricted adversary A. (“wPR” stands for “weakly pseudorandom”.) We say
that a finite compatible set Π of FF-schemes is agile with respect to wPR if the function AdvwPR

Π,A (·) is
negligible for all PT, Π-restricted adversaries A. We say that a (not necessarily compatible or finite)
set Γ of FF-schemes is a-agile with respect to wPR (a ∈ N) if every size a, compatible subset Π ⊆ Γ of Γ
is agile with respect to wPR. We say that Γ is agile with respect to wPR if it is a-agile with respect to
wPR for every a ∈ N. As before we recover the usual notion of an FF-scheme ff being a wPRF, which
we call wPR-security here, as agility of the singleton set {ff} with respect to wPR, and let FF.wPR.Sch
be the set of all wPR-secure FF schemes.

Agility for authenticated encryption. Early definitions of AE [7] gave separate privacy
and integrity requirements. Our agility games ENC.AuE.Gmk (k ∈ N) given in Figure 3, where
es = (es.Pg, es.Kg, es.Enc, es.Dec, es.MsgR, es.CtxtR) is a ENC-scheme, are instead based on a unified
definition in the style of Rogaway and Shrimpton [28]. The privacy requirement is indistinguishability
from random [27] (IND-R). This strengthening of the usual notion of [6] tends to be naturally achieved
by block cipher modes of operation [6]. The games of course have the scheme argument that is central
to agility. The definitions proceed in direct analogy to the above. To detail them, first say a set Π
of ENC-schemes is compatible if all es ∈ Π have the same parameter generator and also all es ∈ Π
have the same key generator. Call an adversary A Π-restricted if the scheme arguments in its queries
are all drawn from Π, it makes only one KeySetup query, this being its first oracle query, and any
RoR(es,M) query it makes satisfies M ∈ es.Msg(pars). Let AdvAuE

Π,A(k) = 2 Pr[ENC.AuE.GmA
k ] − 1

for any finite, compatible set Π of ENC-schemes and Π-restricted adversary A. (“AuE” stands for
“authenticated encryption”.) We say that a compatible set Π of ENC-schemes is agile with respect
to AuE if the function AdvAuE

Π,A(·) is negligible for all PT, Π-restricted adversaries A. We say that a
(not necessarily compatible or finite) set Γ of ENC-schemes is a-agile with respect to AuE (a ∈ N) if
every size a, compatible subset Π ⊆ Γ of Γ is agile with respect to AuE. We say that Γ is agile with
respect to AuE if it is a-agile with respect to AuE for every a ∈ N. We recover the usual notion of an
ENC-scheme es being an authenticated encryption scheme, which we call AuE-security here, as agility
of the singleton set {es} with respect to AuE and let ENC.AuE.Sch be the set of all AuE-secure ENC
schemes.
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proc KeySetup(es)

pars $← es.Pg(1k) ; (ek , dk , pk) $← es.Kg(pars)
S ← ∅ ; b

$← {0, 1}
Return (pars, pk)

proc RoR(es,M)

If b = 1 Then C $← es.Enc(pars, ek ,M)
Else C $← es.Ctxts(pars)
S ← S ∪ {(es,C )}
Return C

proc Dec(es,C )
If (es,C ) ∈ S Then Return ⊥
If b = 1 Then M ← es.Dec(pars, dk ,C )
Else M ← ⊥
Return M

proc Finalize(b′)
Return (b′ = b)

Figure 3: Game ENC.AuE.Gmk for k ∈ N.

This definition is for both symmetric and asymmetric schemes, even though the latter can only
meet it if no Dec queries are allowed. The latter restriction results in the IND-R notion of privacy
under CPA that will be useful later.

Discussion. Our definition of a (possibly infinite) set Γ of schemes being agile is that every finite
compatible subset Π of it is agile, meaning the advantage of any Π-restricted adversary is negligible.
One might ask why we did not simply define Γ to be agile if the advantage of any Π-restricted adversary
is negligible for every compatible but not necessarily finite subset Π of Γ. The reason is that this notion
(let’s call it strong agility) is generically unachievable, meaning unachievable regardless of what is the
base notion of security, whether PRF, wPRF, AE or any other. To explain why, say S is a scheme
meeting the base notion of security. We show how to build an infinite, compatible set Π = {Si}∞i=1

of schemes such that each Si, taken individually, continues to meet the base notion of security, but Π
is not strongly agile because there exists a Π-restricted adversary with non-negligible advantage. The
idea is that Si behaves insecurely when the security parameter k equals i, and otherwise behaves like S.
For each i the scheme Si is still secure because only finitely many values of k lie below i. On the other
hand, an adversary against the agility of Π could, when the security parameter is k, provide Sk as the
scheme argument, attacking only this scheme and exploiting its insecurity to get a high advantage.

4 Negative results

We consider the central foundational question about agility, namely whether it can be achieved for the
set of all secure schemes of a given type. We begin by showing how to rule this out quite simply for
PRFs and AE. Similar methods yield negative results for many other primitives, but not for wPRFs.
We establish the connection between the latter and circular encryption, and then provide our negative
result on circular encryption, namely that IND-R does not imply CYC. This will be used to establish
non-agility of wPRFs.

4.1 Some simple non-agility results

Non-agility of PRFs. PRF agility is important because PRFs model blockciphers, for which agility
is important in practice, and also (cf. Section 5) because PRFs are “universal” with regard to providing
agility in the sense that if a set of PRFs is agile we can use it to build a class of authenticated encryption
schemes that is agile with respect to arbitrary substitution of the encryption. The following says the
set FF.PR.Sch of all PRFs is not a-agile for a ≥ 2 under the minimal assumption that PRFs exist.

Proposition 4.1 Let a ≥ 2. If the set FF.PR.Sch of all PR-secure FF-schemes is not empty then it is
not a-agile with respect to PR.
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Proof of Proposition 4.1: Let ff ∈ FF.PR.Sch. We construct a PR-secure scheme ff such that
the set Π = {ff,ff} is not 2-agile, meaning the two PRFs cannot securely use the same key. The
Proposition follows.

For the construction, we assume points in the range of ff are bitstrings. This is wlog since they can
always be encoded as such. The parameter generator, key generator and domain recognizer of ff are
the same as those of ff. On input pars,K, x, the evaluator ff.f lets y ← ff.f(pars,K, x) and returns
the bitwise complement y of y. The new FF-scheme has range defined by ff.Rng(pars) = { y : y ∈
ff.Rng(pars) }.

It is easy to see that ff is PR-secure (meaning, is a PRF) assuming ff is. The interesting question is
what happens when they share a key. Consider the Π-restricted adversary A that on input pars, begins
with a KeySetup(ff) query. Then it lets x

$← ff.Dom(pars) and lets y ← Fn(ff, x) and z ← Fn(ff, x).
(Note the definition of a Π-restricted adversary required it to not repeat an oracle query. This condition
is met because (ff, x) 6= (ff, x).) If z = y it outputs 1, else 0.

We assume |ff.Rng(pars)| ≥ 2. This is wlog because there are standard ways to extend the range of a
PRF. Now we claim that AdvPR

Π,A(·) ≥ 1/2, which shows that Π is not 2-agile as desired. We justify
the claim as follows. If b = 1 in game FF.PR.Gmk then z = y and A returns 1. If b = 0, it returns
1 with the probability that z = y when z is drawn at random from ff.Rng(pars) and y is drawn at
random from ff.Rng(pars). But both sets ff.Rng(pars) and ff.Rng(pars) have size at least two, so the
probability is at most 1/2.

The above says the class FF.PR.Sch of all PRFs is not a-agile for a ≥ 2. But it is still possible that
some proper subsets Γ of FF.PR.Sch are a-agile for some a ≥ 2. This is interesting for practice, where
one may be interested in a certain specific and quite small collection of schemes, and is why we defined
agility for subsets of FF.PR.Sch rather than merely for the whole.

Extensions. Similar ideas exclude agility for many other primitives. Let us illustrate by sketching
a counterexample to show that ENC.AuE.Sch is not a-agile with respect to AuE for any a > 1. Given
es ∈ ENC.AuE.Sch we construct es ∈ ENC.AuE.Sch which given pars,K,M lets C

$← es(pars,K,M)
and returns C. We claim {es, es} is not agile. This is because an attacker can query RoR(es,M) to
get back C and then query Dec(es, C) to get back a message that will be M if the challenge bit b was
1 and is unlikely to be M otherwise.

wPRFs? Our counter-example for PRF agility relied on having two functions compute related outputs
on the same, adversary-given input. This type of approach fails to yield a counter-example for wPRFs
because the inputs are not under adversary control. In particular, there seems to be no way to attack
the wPRF-agility of the two PRFs built in the proof of Proposition 4.1 because the attack relied on
the ability of the adversary to feed the same input to the two functions.

The fact that only random, non-adversarially controlled inputs are used seems to give wPRFs a lot
of agility potential. Yet, if we try to prove agility, we get stuck because it is unclear how to reduce the
agility of a pair of functions to the individual ones in a blackbox way when they share a key. We could
explore blackbox separation results, but these are only weak indications of separation since they rule
out proving the result by certain proof technique rather than ruling out the result itself. Instead, we
will get a counter-example just like we did for PRFs, by making a connection with circular encryption
and then establishing a negative result on the latter. Both steps are of independent interest.

4.2 Auxiliary definitions for encryption

We say that ENC-scheme es is IND-R-secure if AdvAuE
{es},A(·) is negligible for all PT, {es}-restricted

adversaries A that make no Dec queries. This strong version of privacy under CPA from [27] implies
the standard IND-CPA and is achieved by blockcipher modes of operation like CTR and CBC [6].
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proc Initialize

pars $← es.Pg(1k) ; b
$← {0, 1}

(ek1, dk1, pk1)
$← es.Kg(pars)

(ek2, dk2, pk2)
$← es.Kg(pars)

Return (pars, pk1, pk2)

proc Cyc()
If b = 1 then

C1
$← es.Enc(pars, ek1, dk2)

C2
$← es.Enc(pars, ek2, dk1)

Else
C1

$← es.Ctxts(pars)
C2

$← es.Ctxts(pars)
Return (C1,C2)

proc Finalize(b′)
Return (b′ = b)

Algorithm ffi.Pg(1k) // i = 1, 2

fpars $← ff.Pg(1k) ; epars $← es.Pg(1k)
Return pars ← (fpars, epars)

Algorithm ffi.Kg((fpars, epars)) // i = 1, 2

L
$← ff.Kg(fpars)

(K1,K1,⊥) $← es.Kg(epars)
(K2,K2,⊥) $← es.Kg(epars)
Return (L,K1,K2)

Algorithm ff1.f((fpars, epars), (L,K1,K2), x)
r ← ff.f(fpars, L, x) ; y ← es.Enc(epars,K1,K2; r)
Return y

Algorithm ff2.f((fpars, epars), (L,K1,K2), x)
r ← ff.f(fpars, L, x) ; y ← es.Enc(epars,K2,K1; r)
Return y

Figure 4: Game ENC.CYC.Gmk on the right, for k ∈ N. On the right, algorithms for FF-schemes ff1,ff2

of the proof of Theorem 4.2.

Say es can encrypt its own keys if dk ∈ es.Msg(pars) for every (ek , dk , pk) ∈ [es.Kg(pars)],
every pars ∈ [es.Pg(1k)] and every k ∈ N. For such an encryption scheme, let AdvCYC

es,A(k) =
Pr[ENC.CYC.GmA

k ] where the game in question is shown in Figure 4. Say es is CYC-secure if AdvCYC
es,A(·)

is negligible for all PT A. This asks that es have pseudorandom ciphertexts under a weak type of
circular-encryption attack. The adversary is given access to samples, each of which is either a circular
encryption of two keys or a pair of random strings, and is challenged to distinguish these two cases.
Normal chosen-plaintext queries are not allowed, so CYC-security does not imply IND-CPA. Since our
results are negative, this only strengthens them.

The definitions we have just given are for both the symmetric and asymmetric case.

4.3 Relating wPRF agility and encryption security

We show that if every pair of wPRFs is 2-agile, then every IND-R-secure symmetric ENC-scheme is
CYC-secure. We say that an FF-scheme ff has bit-output if there is a polynomial r(k) ≥ k such that
ff.Rng(pars) = {0, 1}r(k) for all pars ∈ [ff.Pg(1k)] and all k ∈ N.

Theorem 4.2 (wPRF-A =⇒ IND-is-CYC) Suppose the set FF.wPR.Sch of all wPR-secure FF-
schemes is 2-agile with respect to wPR, and further that wPR-secure FF-schemes with bit-output exist.
Then every IND-R-secure symmetric encryption scheme that can encrypt its own keys is also CYC-
secure.

To prove this, we start with an IND-R-secure symmetric ENC-scheme es and then build a pair of
wPRFs. Assuming wPRFs are 2-agile, this pair is 2-agile as a special case. We will then prove
CYC-security of es based on the 2-agility of the wPRF pair.

Accordingly, let es = (es.Pg, es.Kg, es.Enc, es.Dec,Enc.MsgR,Enc.CtxtR) be a symmetric ENC-scheme,
and let r(·) be the number of coins used by es.Enc. Let ff = (ff.Pg,ff.Kg,ff.f,ff.DomR,ff.RngR) be
a FF-scheme such that ff.Rng(pars) = {0, 1}r(k) for all pars ∈ [ff.Pg(1k)] and all k ∈ N. That an
FF-scheme with such range exists follows from the assumption that FF-schemes with bit-output exist,
for we can reduce output size by truncation or increase it by application of a PRG.
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proc KeySetup(gg) // G0, G1, G2

001 fpars $← ff.Pg(1k) ; epars $← es.Pg(1k)
002 L

$← ff.Kg(fpars) ; b
$← {0, 1}

003 (K1,K1,⊥) $← es.Kg(epars)
004 (K2,K2,⊥) $← es.Kg(epars)
005 Return (fpars, epars)

proc Fn(gg) // G0

011 x
$← ff.Dom(fpars)

012 r ← ff.f(fpars, L, x)
013 y ← es.Enc(epars,Ki,Kj ; r)
014 Return (x, y)

proc Fn(gg) // G1

101 x
$← ff.Dom(fpars)

102 r
$← ff.Rng(fpars)

103 y ← es.Enc(epars,Ki,Kj ; r)
104 Return (x, y)

proc Fn(gg) // G2

201 x
$← ff.Dom(fpars)

202 y
$← es.Ctxts(epars)

203 Return (x, y)

proc Finalize(b′) // G0, G1, G2

020 Return (b′ = 1)

Figure 5: Games for proof of Lemma 4.3.

For i = 1, 2 we now define FF-scheme ffi = (ffi.Pg,ffi.Kg,ffi.f,ffi.DomR,ffi.RngR). The parameter,
key-generation and evaluator algorithms are in Figure 4. Since es is symmetric, we are assuming
wlog that the encryption and decryption keys are the same, so that output of the j-th execution of
es.Kg(epars) in the code of ffi.Kg((fpars, epars)) has the form (Kj ,Kj ,⊥) (j = 1, 2). The FF-schemes
ff1 and ff2 are identical except for how their evaluators compute the output value y, where the roles of
K1 and K2 are reversed. We let ff1.DomR = ff2.DomR = ff.DomR, and ff1.RngR = ff2.RngR = es.CtxtR.
Since ff1,ff2 have the same parameter and key-generation algorithms, {ff1,ff2} is compatible. The
following says that each of ff1 and ff2, taken individually, is wPR-secure.

Lemma 4.3 Suppose symmetric ENC-scheme es is IND-R-secure and FF-scheme ff is wPR-secure. Let
ff1,ff2 be constructed from them as described above. Then ff1 and ff2 are both wPR-secure.

Proof of Lemma 4.3: Let i ∈ {1, 2} and let Ai be a {ffi}-restricted adversary against the wPR-
security of ffi making q(·) Fn queries. We design a {ff}-restricted adversary A against the wPR-security
of ff and a {es}-restricted adversary B against the AuE-security of es such that

AdvwPR
{ffi},Ai

(k) ≤ AdvwPR
{ff},A(k) + AdvAuE

{es},B(k) (1)

for all k ∈ N. Adversary A makes q(·) Fn queries. Adversary B makes q(·) RoR queries and zero
Dec queries. The running times of A,B are that of Ai. The lemma follows.

The games of Figure 5 will be executed with Ai. Remember this adversary begins with a KeySetup
query and then makes q(k) Fn queries. In all these queries, the scheme argument, denoted gg in the
games, will take value ffi. Game G0 is game FF.wPR.Gmk with challenge bit set to 1, specialized to
our case by using the definition of ffi in terms of ff, es, and returning true when the adversary output
is 1 rather than when it equals the challenge bit. We are letting j = 2 if i = 1 and j = 1 if i = 2, so
that es encrypts message Kj under key Ki at lines 013, 103 as per the definition of ffi. The formal
scheme argument gg is never actually used in the code since we know it will always equal ffi. We have

AdvwPR
{ffi},Ai

(k) = Pr[GAi
0 ]− Pr[GAi

2 ]

= (Pr[GAi
0 ]− Pr[GAi

1 ]) + (Pr[GAi
1 ]− Pr[GAi

2 ]) . (2)

Game G1 picks r at random at line 102 rather than letting it be ff.f(fpars, L, x) as at line 012. We
build adversary A so that

Pr[GAi
0 ]− Pr[GAi

1 ] ≤ AdvwPR
{ff},A(k) . (3)
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proc Initialize // G0, G1, G2

001 fpars $← ff.Pg(1k) ; epars $← es.Pg(1k)
002 L

$← ff.Kg(fpars)
003 (K1,K1,⊥) $← es.Kg(epars)
004 (K2,K2,⊥) $← es.Kg(epars)
005 Return (epars,⊥,⊥)

proc Cyc() // G0

010 r1
$← ff.Rng(fpars)

011 r2
$← ff.Rng(fpars)

012 y1 ← es.Enc(epars,K1,K2; r1)
013 y2 ← es.Enc(epars,K2,K1; r2)
014 Return (y1, y2)

proc Cyc() // G1

101 x1
$← ff.Dom(fpars) ; r1 ← ff.f(fpars, L, x1)

102 x2
$← ff.Dom(fpars) ; r2 ← ff.f(fpars, L, x2)

103 y1 ← es.Enc(epars,K1,K2; r1)
104 y2 ← es.Enc(epars,K2,K1; r2)
105 Return (y1, y2)

proc Cyc() // G2

201 y1
$← es.Ctxts(epars)

202 y2
$← es.Ctxts(epars)

203 Return (y1, y2)

proc Finalize(b′) // G0, G1, G2

020 Return (b′ = 1)

Figure 6: Games for proof of Lemma 4.4.

On input 1k, adversary A begins with the initializations

epars $← es.Pg(1k) ; (K1,K1,⊥) $← es.Kg(epars) ; (K2,K2,⊥) $← es.Kg(epars) .

It then runs Ai(1k). When the latter makes its KeySetup(ffi) query, A calls its own KeySetup
oracle on input ff to get back fpars and returns (fpars, epars) to Ai. When Ai now makes a Fn(ffi)
query, A responds via

(x, r) $← Fn(ff) ; y ← es.Enc(epars,Ki,Kj ; r)
Return (x, y)

where Fn in the code is A’s own Fn oracle. When Ai halts with output b′, adversary A returns b′.

We build adversary B so that

Pr[GAi
1 ]− Pr[GAi

2 ] ≤ AdvAuE
{es},B(k) . (4)

On input 1k, adversary B begins with the initializations

fpars $← ff.Pg(1k) ; (Kj ,Kj ,⊥) $← es.Kg(epars) .

It then runs Ai(1k). When the latter makes its KeySetup(ffi) query, B calls its own KeySetup
oracle on input es to get back epars and returns (fpars, epars) to Ai. When Ai now makes a Fn(ffi)
query, A responds via

y
$← RoR(es,Kj)

Return (x, y)

When Ai halts with output b′, adversary B returns b′.

Equation (1) follows from Equations (2), (3) and (4).

The next lemma says that if {ff1,ff2} is agile with respect to wPR, then es is CYC-secure.

Lemma 4.4 Suppose ff1,ff2 are constructed as described above from symmetric ENC-scheme es and
wPR-secure FF-scheme ff. Suppose {ff1,ff2} is agile with respect to wPR. Then es is CYC-secure.

Theorem 4.2 follows from these two lemmas.
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Proof of Lemma 4.4: Let C be an adversary against the CYC-security of es making q(·) Cyc
queries. We design a {ff}-restricted adversary A against the wPR-security of ff and a {ff1,ff2}-restricted
adversary B against the wPR agility of {ff1,ff2} such that

AdvCYC
es,C (k) ≤ AdvwPR

{ff},A(k) + AdvwPR
{ff1,ff2},B(k) (5)

for all k ∈ N. Adversaries A,B make 2q(·) Fn queries and have the same running time as C. The
lemma follows.

The games of Figure 6 will be executed with C. Remember this adversary has input the output
(epars,⊥,⊥) of Initialize and then makes q(k) Cyc queries. Game G0 is game ENC.CYC.Gmk with
the challenge bit set to 1 and returning true when the adversary output equals 1 rather than when it
equals the challenge bit. (There are some extra steps in Initialize that will be used in later games
but don’t affect G0.) We have

AdvCYC
es,C (k) = Pr[GC

0 ]− Pr[GC
2 ]

= (Pr[GC
0 ]− Pr[GC

1 ]) + (Pr[GC
1 ]− Pr[GC

2 ]) . (6)

At lines 101, 102, game G1 picks r1, r2 as the results of ff.f(fpars, L, ·) at random inputs rather then
directly at random as at lines 016, 017. We build adversary A so that

Pr[GC
0 ]− Pr[GC

1 ] ≤ AdvwPR
{ff},A(k) . (7)

On input 1k, adversary A begins with the initializations

epars $← es.Pg(1k) ; (K1,K1,⊥) $← es.Kg(epars) ; (K2,K2,⊥) $← es.Kg(epars) .

It then runs C((epars,⊥,⊥)). When the latter makes a Cyc() query, A responds via

(x1, r1)
$← Fn(ff) ; y1 ← es.Enc(epars,K1,K2; r1)

(x2, r2)
$← Fn(ff) ; y2 ← es.Enc(epars,K2,K1; r2)

Return (y1, y2)

where Fn in the code is A’s own Fn oracle. When C halts with output b′, adversary A returns b′.

We build adversary B so that

Pr[GC
1 ]− Pr[GC

2 ] ≤ AdvwPR
{ff1,ff2},B(k) . (8)

On input 1k, adversary B begins with a KeySetup(ff1) query, obtaining (fpars, epars) in response.
It then runs C(epars). When the latter makes a Cyc query, B responds via

(x1, y1)
$← Fn(ff1) ; (x2, y2)

$← Fn(ff2)
Return (y1, y2)

When C halts with output b′, adversary B returns b′.

Equation (5) follows from Equations (6), (7) and (8).

4.4 IND-R-but-not-IND-CYC encryption schemes

The SXDH assumption. Our counterexample encryption scheme that is IND-R-secure but not
CYC-secure relies on the SXDH assumption [2] which we now formalize. A group scheme is a PT
algorithm GS that on input 1k outputs (p, G1, G2, GT , e, g1, g2), where p is a k-bit prime, G1, G2, GT

are descriptions of groups of order p, e: G1 × G2 → GT is a non-degenerate bilinear map, and gi is
a generator for Gi, i = 1, 2. We assume that one can recognize and multiply elements of the groups
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proc Initialize

(p, G1, G2, GT , e, g1, g2)
$← GS(1k) ; x1, x2

$← Z∗
p ; b

$← {0, 1}
Return ((p, G1, G2, GT , e, g1, g2), X1, X2)

proc 2dh()

y1, y2, z1, z2
$← Zp

If (b = 1) then (Y1, Z1, Y2, Z2)← (gy1
1 , gx1y1

1 , gy2
2 , gx2y2

2 )
Else (Y1, Z1, Y2, Z2)← (gy1

1 , gz1
1 , gy2

2 , gz2
2 )

Return (Y1, Z1, Y2, Z2)

proc Finalize(b′)
Return (b′ = b)

Figure 7: Game SXDHGS,k, for k ∈ N, used to define the hardness of the SXDH problem in group
scheme GS.

involved as well evaluate e(·, ·) in time polynomial in k. The Symmetric External Diffie-Hellman
(SXDH) assumption [2] is that the Decisional Diffie-Hellman problem is hard in both G1 and G2.
Formally, let AdvSXDH

GS,A (k) = 2 Pr[SXDHA
GS,k]− 1 where the game is in Figure 7. The SXDH problem

is said to be hard for GS if AdvSXDH
GS,A (·) is negligible for every PT A that makes only one 2dh query.

The restriction to one query is not important. The following lemma, which will be useful later,
says that more queries won’t help. The proof is in Appendix A. It exploits a self-reducibility property
of the DH problem. The version of the latter we need, stated in [5], is a variant of one from [24].

Lemma 4.5 Let GS be a group scheme and A an adversary making q(·) 2dh queries. Then there is
an adversary A1 making 1 2dh query such that for all k ∈ N we have

AdvSXDH
GS,A (k) ≤ AdvSXDH

GS,A1
(k) +

2q(k)
2k−1

. (9)

The running time of A1 is that of A plus the time for O(q) exponentiations in the first two groups.

We assume that a group scheme comes equipped with a PT “key derivation function” H that, for
i = 1, 2, takes input pars = (p, G1, G2, GT , e, g1, g2) together with i and Z ∈ Gi, and returns a point
H(pars, i, Z) ∈ Zp. The only requirement we place on H is that for all pars ∈ [GS(1k)] and both
i = 1, 2, if Z is uniformly distributed over Gi, then H(pars, i, Z) is uniformly distributed over Zp.
This requirement can be relaxed to allow a negligible deviation from uniform, and, at the cost of
complications in the constructions, can even be dropped altogether.

IND-R-but-not-IND-CYC encryption schemes. The following says that if SXDH is true then
we can build counterexample encryption schemes, both symmetric and asymmetric, which are IND-R-
secure (and hence IND-CPA-secure) but are not CYC-secure.

Theorem 4.6 (SXDH =⇒ NOT IND-is-CYC) Suppose there exists a group scheme in which the
SXDH problem is hard. There there exist symmetric and asymmetric ENC-schemes which are IND-R-
secure but not CYC-secure.

To prove this, let GS be a group scheme for which SXDH is hard. For j ∈ {1, 2}, Figure 8 associates
to GS the ENC-scheme esj = (esj .Pg, esj .Kg, esj .Enc, esj .Dec, esj .MsgR, esj .CtxtR). ENC-scheme es1 is
symmetric and ENC-scheme es2 is asymmetric. Notice both schemes can encrypt their own keys. (That
is, the decryption keys are in the message space.) As described the schemes do not use coins that are
bitstrings of some length r(·) depending only on the security parameter as our definition requires, but
they may be easily modified to do this while retaining the attributes given by the Lemmas below. The
following says that both schemes are IND-R-secure (and hence IND-CPA secure) assuming SXDH.
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Algorithm esj .Pg(1k) // j = 1, 2
(p, G1, G2, GT , e, g1, g2)

$← GS(1k)
pars ← (p, G1, G2, GT , e, g1, g2)
Return pars

Algorithm es1.Kg(pars)
x1, x2

$← Z∗
p

X1 ← gx1
1 ; X2 ← gx2

2

dk ← (x1, x2) ; ek ← (X1, X2)
Return (ek , dk ,⊥)

Algorithm es2.Kg(pars)
x1, x2

$← Z∗
p

X1 ← gx1
1 ; X2 ← gx2

2

dk ← (x1, x2) ; ek ← (X1, X2)
Return (ek , dk , ek)

Algorithm esj .Enc(pars, ek , (m1,m2)) // j = 1, 2
(X1, X2)← ek ; y1, y2, u1, u2

$← Zp

Y1 ← gy1
1 ; U1 ← gu1

1 ; Z1 ← Xy1
1 ; T1 ← X

u1/m2

1

Y2 ← gy2
2 ; U2 ← gu2

2 ; Z2 ← Xy2
2 ; T2 ← X

u2/m1

2

c1 ← m1 + H(pars, 1, Z1)
c2 ← m2 + H(pars, 2, Z2)
C ← (Y1, U1, T1, Y2, U2, T2, c1, c2)
Return C

Algorithm esj .Dec(pars, dk ,C ) // j = 1, 2
(Y1, U1, T1, Y2, U2, T2, c1, c2, )← C
(x1, x2)← dk
m1 ← c1 −H(pars, 1, Y x1

1 )
m2 ← c2 −H(pars, 2, Y x2

2 )
Return (m1,m2)

Figure 8: ENC-scheme es1 is symmetric and es2 is asymmetric. For j = 1, 2 the message space is
esj .Msg(pars) = Z∗

p × Z∗
p and the ciphertext space is esj .Ctxts(pars) = G3

1 ×G3
2 × Z2

p.

Lemma 4.7 Let es1, es2 be the ENC-schemes associated to group scheme GS via Figure 8. Suppose
the SXDH problem is hard in GS. Then es1, es2 are IND-R-secure.

The tricky thing about the proof that follows is that the SXDH assumption will need to be invoked
twice, once to say that the T1, T2 components of the ciphertext look random and then again to say
the c1, c2 components also look random.

Proof of Lemma 4.7: Let i ∈ {1, 2} and let Ai be ad {esi}-restricted adversary against the AuE-
security of esi making q(·) RoR queries and zero Dec queries. We design adversaries B1, B2 against
the SXDH-security of GS such that

AdvAuE
{esi},Ai

(k) ≤ AdvSXDH
GS,B1

(k) + AdvSXDH
GS,B2

(k) (10)

for all k ∈ N. Adversaries B1, B2 make q(·) 2dh queries and have running time that of Ai. The lemma
follows from Lemma 4.5.

The games of Figure 9 will be executed with Ai. Remember this adversary begins with a KeySetup
query and then makes q(k) RoR queries. It makes no Dec queries, so the games omit this procedure.
In all Ai’s queries, the scheme argument, denoted es in the games, will take value esi. Game G0 is game
ENC.AuE.Gmk with challenge bit set to 1, specialized to our case by using the definition of esi and
returning true when the adversary output is 1 rather than when it equals the challenge bit. Initialize
returns pk = ⊥ in the symmetric case es = es1 and pk = ek in the asymmetric case es = es2. We have

AdvAuE
{esi},Ai

(k) = Pr[GAi
0 ]− Pr[GAi

4 ]

=
∑3

n=0(Pr[GAi
n ]− Pr[GAi

n+1]) . (11)

Game G1 picks Z1, Z2 at random at line 103 rather than the way they were picked at line 013. We
build adversary B1 so that

Pr[GAi
0 ]− Pr[GAi

1 ] ≤ AdvSXDH
GS,B1

(k) . (12)

On input (pars, X1, X2) where pars = (p, G1, G2, GT , e, g1, g2), adversary B1 lets pk ← ⊥ if i = 1 and
pk ← (X1, X2) otherwise and then runs Ai(1k). When the latter makes its KeySetup(esi) query, B1

returns (pars, pk). When Ai now makes a RoR(esi, (m1,m2)) query, B1 responds via
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proc KeySetup(es) // G0, G1, G2, G3, G4

001 (p, G1, G2, GT , e, g1, g2)
$← GS(1k)

002 pars ← (p, G1, G2, GT , e, g1, g2)
003 x1, x2

$← Z∗
p

004 X1 ← gx1
1 ; X2 ← gx2

2

005 dk ← (x1, x2) ; ek ← (X1, X2)
006 If es = es1 then pk ← ⊥ else pk ← ek
007 Return (pars, pk)

proc RoR(es, (m1,m2)) // G0

011 For j = 1, 2 do
012 yj , uj

$← Zp ; l← 1 + (j mod 2)
013 Yj ← g

yj

j ; Zj ← X
yj

j

014 Uj ← g
uj

j ; Sj ← X
uj

j

015 Tj ← S
1/ml

j

016 rj ← H(pars, j, Zj) ; cj ← mj + rj

017 C ← (Y1, U1, T1, Y2, U2, T2, c1, c2)
018 Return C

proc RoR(es, (m1,m2)) // G4

401 C $← G3
1 ×G3

2 × Z2
p

402 Return C

proc Finalize(b′) // G0, G1, G2, G3, G4

020 Return (b′ = 1)

proc RoR(es, (m1,m2)) // G1

101 For j = 1, 2 do
102 yj , uj , zj

$← Zp ; l← 1 + (j mod 2)
103 Yj ← g

yj

j ; Zj ← g
zj

j

104 Uj ← g
uj

j ; Sj ← X
uj

j

105 Tj ← S
1/ml

j

106 rj ← H(pars, j, Zj) ; cj ← mj + rj

107 C ← (Y1, U1, T1, Y2, U2, T2, c1, c2)
108 Return C

proc RoR(es, (m1,m2)) // G2

201 For j = 1, 2 do
202 yj , uj , zj , tj

$← Zp ; l← 1 + (j mod 2)
203 Yj ← g

yj

j ; Zj ← g
zj

j

204 Uj ← g
uj

j ; Sj ← g
tj
j

205 Tj ← S
1/ml

j

206 rj ← H(pars, j, Zj) ; cj ← mj + rj

207 C ← (Y1, U1, T1, Y2, U2, T2, c1, c2)
208 Return C

proc RoR(es, (m1,m2)) // G3

301 For j = 1, 2 do
302 yj , uj

$← Zp ; l← 1 + (j mod 2)
303 Yj ← g

yj

j ; Uj ← g
uj

j ; Tj
$← Gj

304 rj
$← Zp ; cj ← mj + rj

305 C ← (Y1, U1, T1, Y2, U2, T2, c1, c2)
306 Return C

Figure 9: Games for proof of Lemma 4.7.

(Y1, Z1, Y2, Z2)
$← 2dh()

u1, u2
$← Zp ; U1 ← gu1

1 ; T1 ← X
u1/m2

1 ; U2 ← gu2
2 ; T2 ← X

u2/m1

2

r1 ← H(pars, 1, Z1) ; r2 ← H(pars, 2, Z2) ; c1 ← m1 + r1 ; c2 ← m2 + r2

C ← (Y1, U1, T1, Y2, U2, T2, c1, c2)
Return C

When Ai halts with output b′, adversary B1 returns b′.

Game G2 picks S1, S2 at random at line 204 rather than the way they were picked at line 104. We
build adversary B2 so that

Pr[GAi
1 ]− Pr[GAi

2 ] ≤ AdvSXDH
GS,B2

(k) . (13)

On input (pars, X1, X2) where pars = (p, G1, G2, GT , e, g1, g2), adversary B2 lets pk ← ⊥ if i = 1 and
pk ← (X1, X2) otherwise and then runs Ai(1k). When the latter makes its KeySetup(esi) query, B1

returns (pars, pk). When Ai now makes a RoR(esi, (m1,m2)) query, B2 responds via

(U1, S1, U2, S2)
$← 2dh()

y1, y2, z1, z2
$← Zp ; Y1 ← gy1

1 ; Z1 ← gz1
1 ; Y2 ← gy2

2 ; Z2 ← gz2
2 ; T1 ← S

1/m2

1 ; T2 ← S
1/m1

2

r1 ← H(pars, 1, Z1) ; r2 ← H(pars, 2, Z2) ; c1 ← m1 + r1 ; c2 ← m2 + r2

C ← (Y1, U1, T1, Y2, U2, T2, c1, c2)
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Return C

When Ai halts with output b′, adversary B2 returns b′.

Game G3 picks r1, r2 at random at line 304 rather than getting them by applying H to Z1, Z2 as at
line 206. The uniformity assumption we made on H ensures that the distributions of r1, r2 are the
same. At line 303 it picks Tj at random rather than computing it as at line 205, but since ml ∈ Z∗

p,
the distribution of Tj is the same in both cases. Hence

Pr[GAi
2 ] = Pr[GAi

3 ] . (14)

Now we compare the distributions of C from lines 305 and 401 and see that they are the same, meaning

Pr[GAi
3 ] = Pr[GAi

4 ] . (15)

Equation (10) follows from Equations (11), (12), (13), (14), and (15).

Now we show, however, that the schemes are not circular secure.

Lemma 4.8 Let es1, es2 be the ENC-schemes associated to group scheme GS via Figure 8. Then
es1, es2 are not CYC-secure.

Proof: We describe a PT adversary A such that AdvCYC
esj ,A(k) ≥ 1 − 2−k+1 for both j = 1, 2. The

adversary ignores its input public key pk and hence works against both the symmetric and asym-
metric versions of the scheme. A(pk) issues a single query to Cyc and receives a pair (C1, C2)
whose component ciphertexts it parses as (Y1, U1, T1, Y2, U2, T2, c1, c2)← C1 and (Ŷ1, Û1, T̂1, Ŷ2, Û2, T̂2,
ĉ1, ĉ2)← C2. A returns 1 if e(U1, Û2) = e(T1, T̂2) and 0 otherwise. For the analysis, let dk1 = (x1, x2)
and dk2 = (x̂1, x̂2) be the decryption keys chosen in the game. If b = 1, then

e(T1, T̂2) = e(Xu1/x̂2

1 , X̂
û2/x1

2 ) = e(Ux1/x̂2

1 , Û
x̂2/x1

2 ) = e(U1, Û2),

so A outputs 1. If b = 0, then the ciphertexts were sampled at random from G3
1×G3

2×Z2
p, so e(T1, T̂2)

and e(U1, U2) are uniformly random and independent elements of GT , and thus A returns 1 with
probability 1/p.

Theorem 4.6 follows from these two lemmas.

Separating semantic and circular security of PKE. The public-key case of Theorem 4.6
resolves the following question, which has been noted in various forms since the seminal work of Gold-
wasser and Micali [14] and explicitly formulated by Boneh, Halevi, Hamburg and Ostrovsky [11]: does
IND-CPA security imply non-trivial “circular-security” for public-key encryption? The version of
circular-security used by Boneh et al. is similar to our notion of CYC security, except that the ad-
versary is allowed normal IND-CPA encryption queries in addition to Cyc queries, and instead of
distinguishing these ciphertexts from random, the adversary is required to distinguish the responses
from encryptions of some fixed message. This version of circular security is suitable for some applica-
tions, while our version is only intended to be a theoretical tool.

Our es2 gives a counterexample and answers this question in the negative. Under a plausible
assumption it is IND-R-secure, which implies that it is IND-CPA-secure. It is also easy to verify
that our scheme does not satisfy the notion of circular-security formulated in [11], using the attack
in Lemma 4.8. Intuitively, this attack is breaking the semantic security of the scheme and not the
pseudorandomness of its ciphertexts.

Prior work made partial progress on answering this question. The question for “1 cycles” is
much simpler, with a known counterexample (c.f. [11]), and the question for stateful symmetric
encryption was resolved using a simpler counter-example by Backes et al. [4]. Boneh et al. also give
a counterexample for the version of the question where one replaces semantic security with one-way
security. All of these counterexamples exploit their specific settings, and offer no obvious route toward

17



resolving the more difficult and relevant form of the question. Our approach is completely different
from prior work in this vein. We note that our technique does not immediately work for a version
of security where larger cycles are encrypted, but it seems likely that multi -linear forms could yield
appropriate counterexamples.

4.5 Non-agility of wPRFs

We can now combine Theorems 4.2 and 4.6 to rule out agility of wPRFs:

Theorem 4.9 Let a ≥ 2. Suppose there exists a group scheme in which the SXDH problem is hard and
further that wPR-secure FF-schemes with bit-output exist. Then the set FF.wPR.Sch of all wPR-secure
FF-schemes is not a-agile.

An explicit example of a pair {ff1,ff2} of wPR-secure FF-schemes that is not 2-agile can be obtained
by combining the proofs of the two theorems. However, it turns out we can give a simpler example by
directly using the techniques behind the proof of Theorem 4.6, constructing ff1,ff2 as follows. For j ∈
{1, 2} let ffj .Pg(1k) return pars = (p, G1, G2, GT , e, g1, g2)

$← GS(1k), let ffj .Kg(pars) return x
$← Z∗

p,

let ffj .Dom(pars) = Zp and ffj .Rng(pars) = G2
j . For an input y ∈ Zp, let ff1.f(pars, x, y) = (gy

1 , g
y/x
1 )

and ff2.f(pars, x, y) = (gy
2 , gxy

2 ). Individually, ff1 and ff2 can be proven to be secure wPRFs under
appropriate and relatively standard assumptions. But if the same key x is simultaneously used for
both function families, an obvious distinguishing attack in the same spirit as the one above against
es1 and es2 gives an adversary high advantage.

One might ask what is the value of Theorem 4.2 given this direct counterexample. First, we believe
Theorem 4.2 is interesting in its own right as a connection between seemingly unrelated primitives.
Also, if there are no group schemes in which SXDH is hard, Theorem 4.2, which is unconditional, still
stands, and could lead to either positive or negative results depending on the veracity of the underlying
conjectures. Notice that if wPRFs are shown agile, our results not only imply that all IND-R-secure
encryption schemes are CYC-secure but also that there are no group schemes where SXDH is true.

5 Positive results

The above may make us pessimistic about achieving agility but there is good news as well. First,
certain primitives are agile. Second, there are steps we can take to get strong agility in practice for
primitives like AE. The idea is to not use the key directly with AE but instead use a subkey derived
based on the description of the AE scheme. The latter brings out the key role of PRFs and wPRFs in
agility. Let us expand on these items.

5.1 Agile primitives

Collision-resistant hash functions, formalized as keyed families, are agile. IND-CPA secure public-key
encryption schemes are agile. (But not IND-CCA-secure public-key encryption schemes, and not IND-
CPA symmetric encryption schemes!) In both cases the reason is simple, namely that one only needs
access to public information (the hashing key or public encryption key) to simulate an adversary.

5.2 PRF-based agility for AE

The prevalence of AE schemes in practice and their continued appearance in this arena makes the
agility of AE important. We have seen that we can’t get agility for all AE schemes. Arguably, in
practice, however, it may be enough to get it for a subset of them, such as CCM, OCB, CWC, GCM,
EAX. However, the designs are sufficiently related that we suspect even this small set is in fact not
agile! (That is, using the same key for all of them at the same time is insecure.)
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Algorithm esff .Pg(1k)
fpars $← ff.Pg(1k) ; epars $← es.Pg(1k)
Return (fpars, epars)

Algorithm esff .Kg((fpars, epars))
K

$← ff.Kg(fpars)
Return (K, K,⊥)

Algorithm esff .Enc((fpars, epars),K,M)
Kes ← ff.f(fpars,K, 〈es〉)
C $← es.Enc(epars,Kes,M)
Return C

Algorithm esff .Dec((fpars, epars),K,C )
Kes ← ff.f(fpars,K, 〈es〉)
M ← es.Dec(epars,Kes,C )
Return M

Figure 10: The symmetric ENC-scheme scheme esff associated to symmetric ENC-scheme es and FF-
scheme ff.

We now show how to circumvent these difficulties and achieve AE agility, not only for the above
schemes, but for all AE schemes, by using the schemes not directly but inside a construction. The
requirement is a PRF that is either fixed or itself drawn from a small, agile space. This requirement is
not too onerous because there are more proposals and choices for higher level primitives like AE than
for the blockciphers that instantiate PRFs in practice. (Typically, one just uses AES.)

For our construction and analysis that follows now, we introduce some notation to ensure that the
components we are using “fit together.” Let `(·) be a polynomial. Let FF.PR.Sch[`] be the set of all
ff ∈ FF.PR.Sch such that ff.Dom(pars) = {0, 1}∗ and ff.Rng(pars) = {0, 1}`(k) for all pars ∈ [FF.Pg(1k)]
and all k ∈ N. Let ENC.AuE.Sch[`] be the set of all symmetric ENC-schemes es ∈ ENC.AuE.Sch such
that es.Kg(pars) returns (K, K,⊥) with K uniformly distributed over {0, 1}`(k) for all pars ∈ [es.Pg(1k)]
and all k ∈ N. We let 〈es〉 ∈ {0, 1}∗ be some unique string-encoding of the description of es in the
sense that no two schemes in ENC.AuE.Sch have the same encoding. Such an encoding always exists
since schemes are finite tuples of algorithms and thus have finite descriptions. To es ∈ ENC.AuE.Sch[`]
and FF.PR.Sch[`] we associate the ENC-scheme esff ∈ ENC.AuE.Sch defined via Figure 10. It has
esff .Msg((fpars, epars)) = es.Msg(epars) and esff .Ctxts((fpars, epars)) = es.Ctxts(epars). The following
says that the set of such schemes is agile as long as ff is drawn from an agile space, regardless of the
choice of es.

Theorem 5.1 Let `(·) be a polynomial. Let Γ ⊂ FF.PR.Sch[`] be a compatible, finite set that is agile
with respect to PR. Then, for every a ∈ N, the set { esff : es ∈ ENC.AuE.Sch[`] and ff ∈ Γ } is a-agile
with respect to AuE.

In particular, for any particular ff ∈ FF.PR.Sch[`] and every a ∈ N, the set {esff : es ∈ ENC.AuE.Sch[`]}
is a-agile with respect to ENC.AuE. Thus, if we have a PRF whose stability we can trust, we can make
authenticated encryption highly agile.

Proof of Theorem 5.1: Let Π be a size a, compatible subset of {esff : es ∈ ENC.AuE.Sch[`] and ff ∈
Γ }. Let

Πe = { es ∈ ENC.AuE.Sch[`] : ∃ff ∈ Γ such that esff ∈ Π }

Πf = { ff ∈ Γ : ∃ es ∈ ENC.AuE.Sch[`] such that esff ∈ Π } .

List the members of Πe as es1, . . . , esa1 and the members of Πf as ff1, . . . ,ffa2 where a1, a2 ≤ a. For
esff ∈ Π let Index(esff) return the unique (i, j) such that es = esi and ff = ffj . Since Π is a finite, fixed
set, this index function is easily computed.

Let A be a Π-restricted adversary against the AuE-agility of Π. We design a Πf -restricted adversary
B against the PR-agility of Πf and {esi}-restricted adversaries Ai,j against the AuE-security of esi for
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proc KeySetup(es) // G0

001 S ← ∅ ; b
$← {0, 1}

002 fpars $← ff1.Pg(1k) ; epars $← es1.Pg(1k)
003 K

$← ff1.Kg(fpars)
004 For i = 1, . . . , a1 do
005 For j = 1, . . . , a2 do
006 Ki,j ← ffj .f(fpars,K, 〈esi〉)
007 Return (fpars, epars)

proc RoR(es,M) // G0, G1

011 (i, j)← Index(es)
012 If b = 1 Then C $← esi.Enc(epars,Ki,j ,M)
013 Else C $← esi.Ctxts(epars)
014 S ← S ∪ {(i, j,C )}
015 Return C

proc KeySetup(es) // G1

101 S ← ∅ ; b
$← {0, 1}

102 fpars $← ff1.Pg(1k) ; epars $← es1.Pg(1k)
103 For i = 1, . . . , a1 do
104 For j = 1, . . . , a2 do
105 Ki,j

$← {0, 1}`(k)

106 Return (fpars, epars)

proc Dec(es,C ) // G0, G1

021 (i, j)← Index(es)
022 If (i, j,C ) ∈ S Then Return ⊥
023 If b = 1 Then M ← esi.Dec(epars,Ki,j ,C )
024 Else M ← ⊥
025 Return M

proc Finalize(b′) // G0, G1

031 Return (b′ = b)

Figure 11: Games for the proof of Theorem 5.1.

1 ≤ i ≤ a1 and 1 ≤ j ≤ a2 such that

AdvAuE
Π,A(k) ≤ 2 ·AdvPR

Πf ,B(k) +
a1∑
i=1

a2∑
j=1

AdvAuE
{esi},Ai,j

(k) (16)

for all k ∈ N. Adversary B makes a1a2 ≤ a2 Fn queries. The number of RoR and Dec queries made
by Ai,j is the same as A. The constructed adversaries have running time that of A plus the time for
O(a2) invocations of the key generation algorithm of ff1. Now, suppose A is PT. Then the assumption
that Πf is a-agile with respect to PR means that AdvPR

Πf ,B(·) is negligible. The assumption that each
esi, taken individually, is AuE-secure means that AdvAuE

{esi},Ai,j
is negligible for each i, j. Equation (16)

then implies that AdvAuE
Π,A(·) is negligible. (This uses in a crucial way that there is only a finite constant

number of terms in the sum.) The theorem follows.

The games of Figure 11 will be executed with A. Remember this adversary begins with a KeySetup
query. Knowing that the argument es of this query is one of the AuE-schemes from the compatible set
Π, procedure KeySetup of G0 ignores it and uses es1,ff1 for parameter generation. It then generates
a key Ki,j for use with esi

ffj as per the definition of the latter from Figure 10. This key is used to
answer RoR and Dec queries as per game ENC.AuE.Gmk. We have

1
2

+
1
2
·AdvAuE

Π,A(k) = Pr[GA
0 ] = Pr[GA

1 ] + (Pr[GA
0 ]− Pr[GA

1 ]) . (17)

Game G1 picks the keys Ki,j at random at line 105 rather than based on ffj as at line 006. The
agility of Πf , implied by the assumed agility of its superset Γ, says this makes no detectable difference.
Specifically we can build Πf -restricted adversary B such that

Pr[GA
0 ]− Pr[GA

1 ] ≤ AdvPR
Πf ,B(k) . (18)

On input 1k, adversary B begins with the initializations

S ← ∅ ; b
$← {0, 1} ; epars $← es1.Pg(1k) .

It then runs A. When the latter makes its KeySetup query, B calls its own KeySetup oracle on
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input ff1 to get back fpars and returns (fpars, epars) to A. For i = 1, . . . , a1 and j = 1, . . . , a2 it then
lets Ki,j

$← Fn(ffj , 〈esi〉). It can now easily answer RoR and Dec queries of A as per the code of G0.
When A halts with output b′, adversary B returns 1 if b = b′ and 0 otherwise.

To conclude, we need to build Ai,j (1 ≤ i ≤ a1, 1 ≤ j ≤ a2) such that

2 Pr[GA
1 ]− 1 ≤

a1∑
i=1

a2∑
j=1

AdvAuE
{esi},Ai,j

(k) . (19)

This is a quite straightforward hybrid argument. We visualize it as a simultaneous attack on es1, . . . , esa1 ,
furthermore with a2 instances of each scheme. But each of the a1a2 instances has its own, random
dedicated key, enabling the hybrid argument to work. We omit the details.

5.3 wPRF-based agility for AE

We would like to use wPRFs in place of PRFs because wPRF is a weaker assumption on a blockcipher
than a PRF and, as a result, a set of blockciphers is more likely to be agile with respect to wPRF
than to PRF. (We cannot of course hope for agility with respect to all wPRFs since that class is not
agile. But we’d like to get it for as large a subset of the class as possible.) We show this is possible.
This explains our interest in wPRFs and their importance in the agility domain.

The obvious naive modification to the above construction when ff is a wPRF rather than a
PRF is for esff((fpars, epars),K,M) to pick a random R, let Kes ← ff.f(fpars,K,R), let C

$←
es.Enc(epars,Kes,M), and return (C,R) as the ciphertext, R being included to allow decryption.
However it is easy to see that this is not secure. Even ignoring agility, esff fails to be a secure AE
scheme in general.

Instead, we consider the constructions of PRFs from wPRFs due to Naor and Reingold [25], Maurer
and Sjödin [21] and Maurer and Tessaro [22]. Some of these constructed PRFs make only blackbox
appeal to a single wPRF, evaluated on fixed number of independent keys. We claim that these types
of constructions are agility-preserving in the sense that the set of constructed PRFs obtained by using
wPRFs from a set Γ is agile with respect to PR if Γ was agile with respect to wPR. The intuition
is that an attack on the a-agility of the family of constructions (where each member of the family
accesses a different wPRF from Γ) will immediately imply an attack on the a-agility of Γ. The details
are tedious, but the high-level proof of the claim proceeds in the same manner as Theorem 5.1, but
instead of agile AE we are constructing agile PRFs. Composing the constructions from the claim with
Theorem 5.1, we get an agile family of AE schemes, assuming only that we start with an agile family
of wPRFs.
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A Proof of Lemma 4.5

We will use the following.

Lemma A.1 Let GS be a group scheme. Then there is an algorithm R which on input pars =
(p, G1, G2, GT , e, g1, g2) and (gx1

1 , gy1
1 , gz1

1 , gx2
2 , gy2

2 , gz2
2 ) ∈ G3

1×G3
2 returns a 4-tuple (gy′

1
1 , g

z′
1

1 , g
y′
2

2 , g
z′
2

2 ) ∈
G2

1 ×G2
2 such that the following hold:

(1) If zi ≡ xiyi (mod p) (i = 1, 2) then y′1, y
′
2 are uniformly and independently distributed over Zp

and z′i ≡ xiy
′
i (mod p) (i = 1, 2)

(2) If zi 6≡ xiyi (mod p) (i = 1, 2) then y′1, y
′
2, z

′
1, z

′
2 are uniformly and independently distributed over

Zp

In both cases, the statement is for all inputs to the algorithm with the probability being over the coins
of R alone. The running time of R is that of a constant number of exponentiations in G1, G2.

This is adapted from a lemma of [5]. The latter differs from the self-reducibility lemma of [24] in that
the xi are fixed.

Proof of Lemma 4.5: On input pars, X1, X2, where pars = (p, G1, G2, GT , e, g1, g2), adversary A1

begins by making its unique 2dh query to get (Y1, Z1, Y2, Z2). It then runs A on input pars, X1, X2.
When A makes a 2dh(), adversary A1 returns (Y ′

1 , Z
′
1, Y

′
2 , Z

′
2)

$← R(pars, (X1, Y1, Z1, X2, Y2, Z2)) to A
where R is the algorithm of Lemma A.1. When A halts with output b′, adversary A1 outputs b′.
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