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Abstract

Liskov proposed several weakened versions of the random oracle model, calledweakened ran-
dom oracle models(WROMs), to capture the vulnerability of ideal compression functions, which are
expected to have the standard security of hash functions, i.e., collision resistance, second-preimage
resistance, and one-wayness properties. TheWROMs offer additional oracles to break such proper-
ties of the random oracle. In this paper, we investigate whether public-key encryption schemes in
the random oracle model essentially require the standard security of hash functions by theWROMs.
In particular, we deal with fourWROMs associated with the standard security of hash functions;
the standard, collision tractable, second-preimage tractable, first-preimage tractable ones (ROM,
CT-ROM, SPT-ROM, andFPT-ROM, respectively), done by Numayama et al. for digital signature
schemes in theWROMs. We obtain the following results: (1) The OAEP is secure in all the four
models. (2) The encryption schemes obtained by the Fujisaki-Okamoto conversion (FO) are secure
in theSPT-ROM. However, some encryption schemes with FO are insecure in theFPT-ROM. (3)
We consider two artificial variants wFO and dFO of FO for separation of theWROMs in the con-
text of encryption schemes. The encryption schemes with wFO (dFO, respectively) are secure in
the CT-ROM (ROM, respectively). However, some encryption schemes obtained by wFO (dFO,
respectively) are insecure in theSPT-ROM (CT-ROM, respectively). These results imply that stan-
dard encryption schemes such as the OAEP and FO-based one do not always require the standard
security of hash functions. Moreover, in order to make our security proofs complete, we construct
an efficient sampling algorithm for the binomial distribution with exponentially large parameters,
which was left open in Numayama et al.’s paper.
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1 Introduction

Background: In order to design new cryptographic schemes, we often follow the random oracle
methodology [BR93]. First, we analyze the security of cryptographic schemes, by idealizing hash func-
tions as truly random functions called therandom oracle. When it comes to implementations of these
schemes, we replace the random oracles by cryptographic hash functions such as MD5 [Riv92] and
SHA-1 [Nat02]. This replacement is called an instantiation of the random oracle.

The random oracle methodology causes a trade-off between efficiency and provable security. The
schemes proven secure in the random oracle model (ROM) are in general more efficient than those
proven secure in the standard model. However, the security proofs in theROM do not directly guarantee
the security in the standard model, i.e., an instantiation of the random oracle might make the cryp-
tographic schemes insecure. Even worse, several recent works [CGH04, GK03, BBP04] showed that
some schemes secure in theROM have no secure instantiation.

There are several properties of theROM to prove the security of cryptographic properties. In partic-
ular, theROM is expected to satisfy the one-wayness, second-preimage resistance, and collision resist-
ance properties. We call these properties as thestandard security of hash functions. These properties
are indeed critical in many schemes for their security proofs. For example, the security of the Full-
Domain-Hash (FDH) signature schemes (e.g., [BR96]), which are secure in theROM, relies on the
collision-resistance property of theROM. That is, if we can obtain two distinct messagesm,m′ such that
H(m) = H(m′) and the signatureσ = Sig(H(m)), then we can obtain a valid forgery (m′, σ), whereH is
a hash function andSig is a signing algorithm. Leurent and Nguyen also presented the attacks extracting
the secret keys on severalhash-then-signtype signature schemes and identity-based encryption schemes
if the underlying hash functions are not collision resistant [LN09].

Recent progress on the attacks against cryptographic hash functions such as MD5 and SHA-1 raises
the question on the assumption that hash functions are collision resistant and one-way (e.g.,[WY05,
WYY05, AS09]). Therefore, it is significant to investigate whether the collision resistance property (as
well as the one-wayness and second-preimage resistance properties, which are weaker notions than the
collision resistance one) of theROM is essential to prove the security of the schemes or not. More gener-
ally, it is worth classifying the schemes by the first-preimage, second-preimage, and collision resistance
properties of theROM that their security essentially requires.

Weak versions of random oracle models: Several works recently highlighted some specific proper-
ties of theROM for secure cryptographic constructions in theROM.

Nielsen proposed thenon-programmablerandom oracle model where the random oracle is notpro-
grammable[Nie02]. In this model, one cannot set the values that the random oracle answers to some
convenient values. It was showed in [Nie02] that a non-interactive non-committing encryption scheme
exists in theROM (assuming that trapdoor permutations exists), but not in thenon-programmableran-
dom oracle model.

Unruh proposed aROM with oracle-dependentauxiliary inputs [Unr07]. In this setting, adversaries
obtain an auxiliary input that contains information with respect to the random oracle (e.g. collisions). He
showed that theRSA-OAEP encryption scheme [BR95] is secure in theROM even under the presence
of oracle-dependentauxiliary inputs.

Liskov proposed several weakened versions of the random oracle model, calledweakened random
oracle models(WROMs), which offer additional oracles to break some properties of the random ora-
cle [Lis07]. These model captures the situation that adversaries are given an attack algorithm for break-
ing some specific property of the functions. For example, the first-preimage tractable random oracle
model offers the random oracle and the first-preimage oracle associated with the random oracle, which
returns a first-preimage of the random oracle to adversaries. This first-preimage oracle then corresponds
to the attack to the first preimage property of a hash function. We can replace the additional oracle to
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others such as the second-preimage and collision ones that correspond to the attack to the properties.
Thus, theWROMs can capture vulnerability of hash functions even if the parties are allowed to utilize
ideal ones as in theROM. By usingWROMs, Liskov constructed hash functions based on weak ideal
compression functions and proved it is indifferentiable from the random oracle.

Several results already analyzed the security in theWROMs. Hoch and Shamir applied Liskov’s
idea to prove the indifferentiability of another hash construction [HS08]. Pasini and Vaudenay also ap-
plied Liskov’s idea to the security analysis of digital signature schemes [PV07]. They considered the
security ofhash-then-signtype signature schemes in the first-preimage tractable random oracle model.
Numayama, Isshiki, and Tanaka formalized theWROMs, which allows us to formally analyze the secu-
rity of the schemes [NIT08]. By using these models, they classified several digital signature schemes by
the properties of theROM. Fischlin and Lehmann also proposed a weakened random oracle model in a
similar way to Liskov’s one in the context of secure combiners [FL07].

Our contributions: In this paper, we investigate whether public-key encryption schemes constructed
in the ROM essentially require the standard security of hash functions by further extending the direc-
tion originated from Liskov. In particular, we consider their security in the standard, collision tracta-
ble, second-preimage tractable, and first-preimage tractable random oracle models (ROM, CT-ROM,
SPT-ROM, and FPT-ROM, respectively for short). Note that they are ordered according to their
strengths, i.e., the security of encryption schemes in theFPT-ROM implies that in theSPT-ROM and
such implications hold between each adjacent two models.

We demonstrate that the security notions in the fourWROMs can be strictly separated in the context
of encryption schemes. For the separation, we focus on the security of the encryption schemes obtained
by the Fujisaki-Okamoto conversion (FO) [FO99], its two artificial variants (dFO and wFO), and the
OAEP [BR95]. Precisely, we prove the following four statements:

1. OAEP isIND-CCA2 secure in theFPT-ROM.

2. FO is IND-CCA2 secure in theSPT-ROM, butnot IND-CPA secure in theFPT-ROM.

3. wFO is IND-CCA2 secure in theCT-ROM, butnot IND-CCA2 secure in theSPT-ROM.

4. dFO isIND-CCA2 secure in theROM, butnot IND-CCA2 secure in theCT-ROM.

We summarize the security of four schemes in Table1.

scheme/model ROM CT-ROM SPT-ROM FPT-ROM
OAEP secure

FO secure insecure
wFO secure insecure
dFO secure insecure

Table 1:Security of four schemes.

This separation suggests that some public-key encryption schemes essentially require the standard
security of hash functions. These notions were also separated in the context of digital signature schemes
in [NIT08]. We stress that the role of the collision and second-preimage oracles in encryption schemes
is not as clear as that in digital signature schemes. For example, it is easy to see that the collision
oracle, breaking the collision resistance property of the random oracle, directly makes a simple scheme
vulnerable, but not so easy for the case of encryption schemes. Actually, we need to develop new proof
techniques for the (in)security of encryption schemes under additional oracles.
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It also suggests that standard encryption schemes such as the OAEP and FO-based ones do not
always require the standard security of hash functions for the random oracle. We believe that our results
do not only give an example of the first application of theWROMs to encryption schemes, but they
are also of independent interest. As far as we know, our results give the first evidence that the OAEP
encryption scheme can be used in a practical application even without the first-preimage resistance
property, i.e., the one-wayness property. In other words, the OAEP remains secure even if we remove
the first-preimage resistance property. This can also be said on FO-based encryption schemes on the
second-preimage resistance property.

On the security of the OAEP, Kiltz and Pietrzak recently showed that there is no construction for
padding-based encryption schemes including the OAEP that has a black-box reduction from ideal trap-
door permutations to itsIND-CCA2 security in [KP09]. However, they wrote in the paper that the
security proof in theROM can be still a valid argument in practice. We believe so is our security proof
in theWROMs.

For the security proof, we explicitly show how to sample approximately in polynomial time from
binomial distributions with exponentially large parameters, that is, a polynomial-time sampling algo-
rithm whose output distribution is statistically close to the binomial distribution. For this algorithm, we
arrange and combine sampling algorithms that run over real numbers proposed in the field of statistics
[Dev86, AD74, AD80, Rel72], and give a precise analysis for discretization.

It should be noted that on the security proofs of the digital signature schemes in theWROMs [NIT08],
Numayama et al. assumed such an efficient sampling algorithm and thus gave no explicit construction.
They left the construction of the sampling algorithm as an open problem. By the sampling algorithm we
explicitly show, it is no longer necessary to assume the sampling algorithm in their security proofs of the
digital signature schemes [NIT08] as well as those of the public-key encryption scheme in this paper.

The sampling algorithm shown in this paper is adapted for cryptographic use since the statistical
closeness to the original distribution is measured by the total variation distance, which is standard in
cryptography but not usually required in statistics. The sampling algorithm is useful for other crypto-
graphic tasks as in Numayama et al.’s and this paper.

Comparisons with other models: As mentioned above, a few models that weaken the power of the
random oracle were already proposed such as the non-programmable model [Nie02] and the oracle-
dependent auxiliary input model [Unr07].

The non-programmable model is not simply comparable withWROMs since the programmability
does not imply the collision resistance and vice versa. The target of the oracle-dependent auxiliary input
model partially overlaps that of theWROMs.

For a simple comparison, we now focus on the security of the OAEP in both models. Unruh showed
a similar result as ours for the OAEP encryption scheme [Unr07]. He proposed a random oracle model
where oracle-dependent auxiliary inputs are allowed. In his setting, the adversary of some cryptographic
protocol obtains an auxiliary input that contains the information (e.g., collisions) on the random oracle.
He showed that the OAEP encryption scheme [BR95] is still secure in the random oracle model even in
his model. This result indicates an important fact that the security of the OAEP encryption scheme does
not depend on the collision resistance property since the oracle-dependent auxiliary input can contain a
sufficiently long list of collisions.

Our results also present the security of the OAEP in a weak version of the random oracle. However,
there are at least two differences between Unruh’s result and ours. First, the random oracle model with
the oracle-dependent auxiliary input does not completely capture theadaptivesecurity of hash functions,
and this model still has the second-preimage resistance and the first-preimage resistance properties.
Hence, only by his result, we cannot say whether these two properties are necessary or not in order
to prove the security of the OAEP encryption scheme. In contrast to Unruh’s result, our result clearly
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shows that the two adaptive securities of hash functions such as the first-preimage resistance and the
second-preimage resistance are not necessary to prove the security of the OAEP encryption scheme.

Second, Unruh constructed the reduction algorithm which breaks the partial-domain one-wayness
of the underlying trapdoor permutation using the adversary which breaks theIND-CCA2 security of
the OAEP encryption scheme. The running time of the reduction algorithm is not bounded by any
polynomial. Therefore, he use the security amplification technique for the partial-domain one-wayness.
By using this technique, he can avoid employing a stronger assumption that even quasi-polynomial time
adversary cannot break the partial-domain one-wayness, and can prove the security under the standard
partial-domain one-wayness against polynomial-time adversary.

In contrast to Unruh’s result, we construct the polynomial-time reduction algorithm using the ad-
versary, and hence we do not require the security amplification technique for the partial-domain one-
wayness, which can be considered as a simplification of Unruh’s proof.

Organization: In Section2, we describe the details of theWROMs and their properties. We also
discuss the simulation methods that are applicable to these models. In Section3, after reviewing the
encryption schemes we consider, we show their (in)security in theWROMs. Appendices contain several
technical details. AppendixA reviews the simulation methods ofWROMs by Numayama et al. Appen-
dices?? andB proves the technical lemmas, Lemmas2.3 and2.4, respectively. Proofs of the security
of dFO, wFO, FO, andOAEP are in AppendicesC, D, E, andF, respectively. In AppendixG, we give
an overview of the approximation sampling algorithms. AppendixH reviews the standard notions and
the arithmetic operations and AppendixI reviews the definitions of the standard distributions. In Ap-
pendixJ, we show several inequalities for the distributions. In AppendixK, we rigously analyze the
approximation sampling algorithms for several distributions.

Notation: Before starting technical parts of this paper, we introduce our notation used in the rest of
the paper. For a tableT = {(x, y)}, we defineT(y) = {(x′, y′) ∈ T | y′ = y}. For a distributionD, x← D
denotes thatx is sampled according toD. The functionD(x) stands for the probability function of the
distributionD.

Let s← S denote thats is sampled from the uniform distribution over a finite setS. #S denotes
the number of elements inS. For a probabilistic Turing machineA and its inputx, letA(x) denote the
output distribution ofA on inputx.

We usually denote byk a security parameter of a cryptographic scheme in this paper. We also
denote byk′ length of plaintexts unless it is specified.k′ is implicitly assumed to be polynomially
related to the security parameterk, that is,k′ = kΘ(1). We say a functionf (k) is negligible ink if
f (k) = 2−ω(logk). For two distributionsD1 and D2 over a finte setS, whose density functions are
denoted byfD1 and fD2, we denote the statistical distance (the total variation distance) between them
by ∆(D1,D2), defined by1

2

∑
s∈S

∣∣∣ fD1(s) − fD2(s)
∣∣∣. We say two distributionsD1 andD2 are statistically

close if∆(D1,D2) = 2−ω(logk).

2 The Weakened Random Oracle Models

In this section, we first review the definitions of theWROMs. Next, we present an important property
calledweak uniformityof theWROMs, which is useful for security proofs of encryption schemes. We
also discuss the simulation methods of [NIT08] used for the security proofs in theWROMs.
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2.1 Definitions of the Weakened Random Oracle Models

To give formal definitions of theWROMs, we define some notation. LetX andY be finite sets. LetH
be a hash function chosen randomly from all of the functions fromX to Y. We denote byTH the table
{(x,H(x)) | x ∈ X}. We identify the hash functionH with the tableTH.

We next define the random oracle and the additional oracles associated withH : X→ Y as follows.
(For more details, see [NIT08].)

Random oracleROH: Givenx, returny such that (x, y) ∈ TH.

Collision oracleCOH: On the query, first pick one entry (x, y) ∈ TH uniformly at random. If there is no
other entry (x′, y) ∈ TH, then answer⊥. Otherwise, pick one entry (x′, y) ∈ TH satisfyingx , x′

uniformly at random and answer (x, x′).

Second-preimage oracleSPOH: Given (x, y), if (x, y) < TH answer⊥. If there is no other entry
(x′, y) ∈ TH, then answer⊥. Otherwise, pick one entry (x′, y) ∈ TH satisfyingx , x′ uniformly at
random and answerx′.

First-preimage oracleFPOH: Giveny, if there is any entry (x, y) ∈ TH then return such anx uniformly
at random. Otherwise return⊥.

Remark 2.1. We usually identify the random oracle and the underlying hash function. However, in
this paper as in [NIT08], we explicitly distinguish them by regarding the random oracle as an interface
to the underlying hash function. This setting helps us to make theWROMs with an additional oracle
well-defined.

The formal definitions of theWROMs are given as follows. TheWROMs consist of three compo-
nents, a hash functionh chosen randomly from all of the functions fromX to Y, the random oracle, and
the additional oracle associated withh. The models are called theCT-ROM, SPT-ROM, andFPT-ROM,
if the additional oracle is the collision, second-preimage, and first-preimage oracle, respectively.

Remark 2.2. The collision oracle may output⊥ even if there exists a collision(x, x′) in the table. This
stems from the simulation method of Numayama et al. [NIT08], and causes no serious problems. Note
that the collision oracle outputs⊥ with probability (1 − 1/#Y)#X−1. In the case where#X ≥ #Y, we
can find a collision with polynomially many queries since(1 − 1/#Y)#X−1 ≤ exp(−(#X − 1)/#Y). In
the case where#Y = kO(1) · #X, we can again find a collision with polynomially many queries since
(1−1/#Y)#X−1 ≤ 1−1/kO(1). Finally, in the case where#Y = kω(1) ·#X, the following lemma shows that
there are no collisions with overwhelming probability.

Lemma 2.3. Let H : X → Y be the hash function, and ny the number of preimages of y under the
function H, that is, ny = #TH(y). LetBAD denote the event that there is some y such that ny > L. Then
for all sufficiently large Y, we havePrH[BAD] < 1

(#Y)2 , where L= 5 ln #Y
ln ln #Y

#X
#Y if #X ≥ #Y, or L = 5 ln #Y

ln ln #Y
otherwise.

The proof is obtained by the standard argument on the balls and bins game by regardingX andY as
sets of balls and bins, respectively. For the details on the game, see a standard textbook (e.g., [MR95]).

2.2 Difference from the Random Oracle Model

We observe an important difference between theROM and WROMs by considering theROM and
FPT-ROM. In the both models, the functionH, i.e., the tableTH is uniformly distributed.

In the ROM, if one queries somex that has never been queried to the random oracle, the value of
H(x) is uniformly distributed regardless of the past queries. That is, the knowledge of the past queries
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does not affect the entries not queried in the table. This property of theROM is calleduniformity. In
contrast to the situation in theROM, when it comes to theFPT-ROM, this property is not attained.
Recall that the first-preimage oracleuniformlyreturns one of the preimages, sayx, of queried valuey. If
the first-preimage oracle leaks a number of preimages ofy, the value ofH(x) is notuniformly distributed
for anx not queried yet.

In order to observe this situation, let us consider the following extreme case. Lety∗ = H(x∗) for some
x∗ ∈ X and suppose thaty∗ has the unique preimagex∗. Then the first-preimage oracle always returns
the samex∗ on the inputy∗, which convinces us that the number of the preimages ofy∗ is exactly 1. This
implies that the otherx , x∗ does not take a valuey∗ underH. Therefore, the random oracle no longer
has the uniformity in theFPT-ROM. This is a critical difference between theROM andFPT-ROM since
we often make use of the uniformity in the security proofs of the public-key encryption schemes.

We prove the following lemma to overcome this barrier in theWROMs, which states that the
WROMs still has weak uniformity instead of the uniformity. The weak uniformity is still useful for
the security proofs of the public-key encryption schemes in theWROMs. See AppendixB for the proof.

Lemma 2.4 (Weak Uniformity). In the WROMs, the output distribution of the random oracle is sta-
tistically close to the uniform distribution. More formally, it is stated as follows. Let H: X → Y be
the hash function in theWROMs. LetA be a probabilistic oracle Turing machine that makes at most
q queries to the random oracleROH and the additional oracleOH, whereOH represents one of the
additional oraclesCOH, SPOH, andFPOH. VA,H(x) denotes the random variable that represents the
hash valueROH(x), where x← AROH ,OH

and the correspondence(x,H(x)) ∈ TH is not answered by the
two oracles.

Then, for anyA, the following holds:

∆(VA,H(x),UY) ≤


1

#Y

(
5q+ 1+ 4q2

#Y + 20q ln #Y
ln ln #Y

)
if #X ≥ #Y,

1
#X

(
5q+ 1+ 4q2

#X + 20q ln #Y
ln ln #Y

)
if #X < #Y.

Here, the probability is taken over random choices of the hash function H and the random coin ofA.

2.3 Simulation Methods

In almost all the security proofs in theROM, the reduction algorithms simulate the random oracles.
When it comes to the security proofs in theWROMs, the reduction algorithms have to simulate both the
random and the additional oracle, which makes differences of the simulation methods in theWROMs
from those in theROM.

Numayama et al.’s methods: Numayama et al. proposed the simulation methods forWROMs, but
they required an unproven assumption. Let Bn(N, p) denote the binomial distribution with parameters
N and p whose probability function isfBn(x | N, p) =

(
N
x

)
px(1 − p)N−x for x = 0, . . . ,N, where the

parametersN andp take values approximately #X and 1/#Y for a hash functionH : X→ Y, say, (N, p) =
(2128, 2−128). Their simulation methods required the efficient sampler for Bn(N, p) with exponentially
largeN and smallp, and they assumed its existence.

Assumption 2.5. There is a probabilistic Turing machineBN such that the output distributionBN(N, p)
on inputs N and p is equal to the binomial distributionBn(N, p) and it runs in polynomial time inlogN
and log p−1, where N is a positive integer and0 ≤ p ≤ 1 is a rational number.

Under this assumption, they constructed the simulation algorithms,RO, CO, SPO, andFPO, for the
security proofs in theWROMs as given in the following proposition. See AppendixA for the details of
the algorithms.
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Proposition 2.6(Simulation Method [NIT08]). We can perfectly simulate the random oracle, the col-
lision oracle, second-preimage oracle, and first-preimage oracle in theWROMs under Assumption2.5.
That is, the output distributions of the random oracle, collision oracle, second-preimage oracle, and
first-preimage oracle in theWROMs are identical to the output distributions of the algorithmsRO, CO,
SPO, andFPO, under Assumption2.5.

Removing the assumption: For the security proof in theWROMs of digital signature schemes in
[NIT08] and encryption schemes in this paper, it is sufficient to utilize a weaker sampling algorithm
that generates a distributionnot equal but statistically closeto the binomial distribution Bn(N, p). Then,
their security proofs can work by just adding negligibly small errors induced by the statistical distance
in their analyses.

There are quite many papers (e.g., [Rel72]) on the efficient sampling methods from the binomial
distribution in the field of statistics. However, their basic computation model is totally different from the
model in the cryptography. As far as the authors’ knowledge, all these results are based on the compu-
tation model that directly manipulatesreal numbers without errors. If we translate them to those in the
bit computation model used in the cryptography, we have to bound the statistical distance between the
real distribution and the output distribution generated by the sampling algorithms in the bit computation
model rather than the real-number one. Numayama et al. mentioned that they could neither find precise
analyses of the statistical distance, nor construct the sampling algorithms by themselves in [NIT08].
Therefore, they had to put the above assumption.

In fact, there is an efficient sampling algorithm appropriate for our purpose in the real-number com-
putation model [Rel72]. We modify the algorithm and rigorously analyze the error bound in the bit
computation model. We can finally obtain the following theorem on the sampling algorithm.

Theorem 2.7. For ϵ, there is a probabilistic Turing machineBN such that, for the output distribution
BN(N, p) on inputs N, p, the statistical distance betweenBN(N, p) andBn(N, p) is at mostϵ and it runs
in polynomial time inlogN, log p−1 and logϵ−1, where N is a positive integer and0 ≤ p ≤ 1, 0 < ϵ ≤ 1
are rational numbers.

Note that the algorithm can control the error parameterϵ. This property is useful in cryptographic
applications for the security proofs even if the other parametersN and p are not sufficiently large. We
put the details of the algorithm and its analysis in Appendices.

As a result, we can remove the above assumption and obtain the following theorem.

Theorem 2.8(Simulation Method without Assumption2.5). We can statistically simulate the random
oracle, collision oracle, second-preimage oracle, and first-preimage oracle in theWROMs. That is, the
output distributions of the oracles in theWROMs are statistically close to the output distributions of the
algorithmsRO, CO, SPO, andFPO, respectively.

3 The Encryption Schemes and Their Security in the Weakened Random
Oracle Models

In this section, we examine the security in theWROMs of the public-key encryption schemes. We
particularly discuss separations for notions ofROM, CT-ROM, SPT-ROM, andFPT-ROM by showing
(in)security of public-key encryption schemes obtained by the Fujisaki-Okamoto conversion (FO) and
its two variants (dFO and wFO), and OAEP.

Public-key encryption schemes: We first give notation and notions for public-key encryption schemes
briefly. For details, see standard textbooks, e.g., [KL07].
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A public-key encryption schemePKE = (Gen,Enc,Dec) over a plaintext spaceM and a random
coin spaceR is defined by the following three algorithms. Letk denote the security parameter.

Key Generation: On input 1k, the key generation algorithmGen(1k) produces a public/secret key pair
(pk, sk).

Encryption: Given a public keypk, a plaintextm ∈ M, and a random stringr ∈ R, the encryption
algorithmEncpk(m; r) outputs a ciphertextc corresponding to the plaintextm.

Decryption: Given a secret keysk and ciphertextc, the decryption algorithmDecsk(c) outputs the
plaintextm ∈ M or the special symbol⊥ <M corresponding to the ciphertextc.

We require the perfect completeness, that is, for every (pk, sk) generated byGen(1k), every plaintext
m ∈ M, and every random stringr ∈ R, it should be satisfied thatDecsk(Encpk(m; r)) = m.

We only consider three standard security notions for public-key encryption schemes, the one-wayness
against chosen-plaintext attack (OW-CPA), the indistinguishability against chosen-plaintext attack (IND-CPA),
and the indistinguishability against adaptive chosen-ciphertext attack (IND-CCA2).

For γ = γ(k), we sayPKE is γ-uniform if for any key pair (pk, sk) generated byGen(1k), any
m ∈ M, andc ∈ {0, 1}∗, we have Prr←R[c = Encpk(m; r)] ≤ γ. There exists aOW-CPA public-key
encryption scheme withγ-uniformity (e.g., the ElGamal encryption scheme).

Brief review for FO: Fujisaki and Okamoto proposed a conversion, called the Fujisaki-Okamoto (FO)
conversion, to obtain highly secure public-key encryption schemes in theROM [FO99]. Since the
standard one-time pad satisfies the requirement of the FO conversion, we fix the one-time pad as the
symmetric-key encryption scheme used in the FO conversion for simplicity.

LetPKE be aOW-CPA secure andγ-uniform public-key encryption scheme over a plaintext space
M and a randomness spaceR. Then the FO conversion convertsPKE to an IND-CCA2 secure one
PKE′ = FO(PKE) over a plaintext spaceM′ = {0, 1}k′ and a randomness spaceR′ = M, where
k′ denotes the length of plaintexts, which is polynomially related to the security parameterk. The
encryption procedure ofPKE′ is given as follows: For a plaintextm ∈ M′ = {0, 1}k′ and a random
stringr ∈ R′ =M, the ciphertext is

(c1, c2) = (Encpk(r; H(m, r)),G(r) ⊕m),

whereH : {0,1}k′ ×M → R andG : M → {0, 1}k′ are hash functions modeled as the random oracles.
The decryption procedure is given as follows: For a given ciphertext (c1, c2), decryptc1 by sk and
obtain r. Then, extractm by c2 ⊕ G(r) and verifyc1 = Encpk(r; H(m, r)). If not output⊥. Roughly
speaking,H(m, r) ensures that if a ciphertext (c1, c2) is valid then the encryptor producing (c1, c2) knows
correspondingmandr.

3.1 The First Variant dFO

We introduce the first artificial variant dFO and show that dFO is secure in theROM, but not secure in
general in theCT-ROM.

The variant dFO converts a public-key encryption schemePKE (with the one-time pad) to another
public-key encryption schemePKE′ = dFO(PKE) similarly to FO. The encryption procedure ofPKE′
is defined as follows. For a plaintextm ∈ M′ = {0,1}k′ and a random stringr ∈ R′ =M, the ciphertext
of PKE′ is

(c1, c2) = (Encpk(r; H(F(m), r)),G(r) ⊕m),

whereF : {0, 1}k′ → P, G : M → {0, 1}k′ , andH : P × M → R, for an appropriate setP, are hash
functions modeled as the random oracle. Formal description is in Table1.
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Key Generation Encryption Decryption
Input: 1k

1: (pk, sk)← Gen(1k)
Output: (pk, sk)

Input: m ∈ {0, 1}k′

1: r ←M
2: g← G(r)
3: h← H(F(m), r)
4: c1← Encpk(r; h)
5: c2← m⊕ g

Output: (c1, c2)

Input: (c1, c2)
1: r ← Decsk(c)
2: g← G(r)
3: m← c2 ⊕ g
4: h← H(F(m), r)
5: If c1 = Encpk(r; h) seto← m
6: Otherwise seto← ⊥

Output: o

Figure 1:PKE′ obtained by the dFO conversion.

The idea to weaken the conversion is summarized as follows: Recall thatH(m, r) in the FO con-
version can be considered as encryptor’s signature (or a proof of knowledge) onm andr. To make it
vulnerable by a collision, we introduce a new random oracleF and replaceH(m, r) with H(F(m), r).
The replacement does not harm the security in the random oracle model, while it can be exploited by the
presence of the collision oracleCOF .

Formally, we have following theorems on the (in)security. The proof of Theorem3.1 is in Ap-
pendixC.

Theorem 3.1. Assume thatPKE is aOW-CPA secure andγ-uniform public-key encryption scheme for
some negligibleγ. Then,PKE′ = dFO(PKE) is IND-CCA2 secure in theROM if #P = 2ω(logk).

Theorem 3.2. LetPKE be a public-key encryption scheme. If#P ≤ 2k′ thenPKE′ = dFO(PKE) is
not IND-CCA2 secure in theCT-ROM.

Proof. We construct the adversaryA = (A1,A2) that breaks theIND-CCA2 security ofPKE′, which
exploits the collision oracleCOF of F.

The adversaryA1, on inputpk, first queries toCOF . If the answer is⊥, then the adversary flips a
random fair coinb′, outputsb′, and halts. Otherwise, it obtains a collision (m1,m2) of F and outputs it as
a challenge. The adversaryA2 receives the target ciphertext (c∗1, c

∗
2) = (Encpk(r; H(F(mb), r)),G(r)⊕mb)

for somer ∈ R′. It queries (c′1, c
′
2) = (c∗1, c

∗
2 ⊕m0 ⊕m1) to the decryption oracle and obtainsm1−b, since

c′1 = Encpk(r; H(F(m0), r)) = Encpk(r; H(F(m1), r)),

c′2 = G(r) ⊕mb ⊕m0 ⊕m1 = G(r) ⊕m1−b.

Hence, the adversary can answerb′ = b correctly.
Finally, we upper-bound the probability that the collision oracle outputs⊥, which stems from the

definition of the collision oracle. The probability is bounded by (1− 1/#P)2k′−1 ≤ exp(−(2k′ − 1)/#P) ≤
1/
√

e. This completes the proof. �

3.2 The Second Variant wFO

We next introduce the second artificial variant wFO and show that the obtained scheme by wFO is secure
in theCT-ROM, however not generally secure in theSPT-ROM.

The encryption procedure ofPKE′ = wFO(PKE) is given as follows. For a plaintextm ∈ M′ =
{0, 1}k′ and random strings (r, s) ∈ R′ =M×S, the ciphertext ofPKE′ is

(c1, c2, c3) = (Encpk(r; H(F(m, s), r)),G(r) ⊕m, s),

11



Key Generation Encryption Decryption
Input: 1k

1: (pk, sk)← Gen(1k)
Output: (pk, sk)

Input: m ∈ {0, 1}k′

1: r ←M
2: g← G(r)
3: s← S
4: h← H(F(m, s), r)
5: c1← Encpk(r; h)
6: c2← m⊕ g
7: c3← s

Output: (c1, c2, c3)

Input: (c1, c2, c3)
1: r ← Decsk(c)
2: g← G(r)
3: m← c2 ⊕ g
4: h← H(F(m, c3), r)
5: If c1 = Encpk(r; h) seto← m
6: Otherwise seto← ⊥

Output: o

Figure 2:PKE′ obtained by the wFO conversion.

whereF : {0, 1}k′ × S → P, G :M→ {0,1}k′ , andH : P ×M → R are hash functions modeled as the
random oracles. The formal definition is in Table2.

Notice that (H(F(m, s), r), s) is a proof of knowledge on (m, r, s) which resists a collision onF
however is vulnerable by a second-preimage attack againstF as in Numayama et al. [NIT08].

We can show that the obtained scheme isIND-CCA2 secure in theCT-ROM by using Lemma2.4.
See AppendixD for the proof.

Theorem 3.3.Suppose thatPKE is aOW-CPA secure andγ-uniform public-key encryption scheme for
some negligibleγ. Then,PKE′ = wFO(PKE) is IND-CCA2 secure in theCT-ROM if #P−1 and#S−1

are negligible in k.

However, its security is broken under the presence of the second-preimage oracle forF.

Theorem 3.4. Let PKE be a public-key encryption. If#P ≤ 2k′ · #S, then the schemePKE′ =
wFO(PKE) is not IND-CCA2 secure in theSPT-ROM.

Proof. We construct the adversaryA = (A1,A2) that exploits the second-preimage oracleSPOF asso-
ciated toF. The adversaryA1 chooses random distinct plaintextsm0 andm1 and queries them to the
challenger. The challenger responses

(c∗1, c
∗
2, c
∗
3) = (Encpk(r; H(F(mb, s), r)),G(r) ⊕mb, s).

Receiving (c∗1, c
∗
2, c
∗
3), the adversaryA2 queries (m0, s) to the second-preimage oracleSPOF . If it re-

ceives⊥ from the second-preimage oracle, then it flips a random fair coinb′, outputsb′, and halts.
Otherwise, it obtains (m′, s′) , (m0, s) such thatF(m0, s) = F(m′, s′). So, the adversary queries

(c′1, c
′
2, c
′
3) = (c∗1, c

∗
2 ⊕m0 ⊕m′, s′)

to the decryption oracle. Notice that, if (c∗1, c
∗
2, c
∗
3) is the valid ciphertext ofm0, then we have

c′1 = Encpk(r; H(F(m0, s), r)) = Encpk(r; H(F(m′, s′), r)),

c′2 = G(r) ⊕m0 ⊕m0 ⊕m′ = G(r) ⊕m′,

c′3 = s′,

and (c′1, c
′
2, c
′
3) is a valid ciphertext form′. On the other hand, if the ciphertext is the encryption ofm1,

we have
(c′1, c

′
2, c
′
3) = (Encpk(r; H(F(m1, s), r)),G(r) ⊕m1 ⊕m0 ⊕m′, s′).

12



Thus, if f = F(m1, s) is equal toF(m1 ⊕m0 ⊕m′, s′) the decryption oracle returnsm1 ⊕m0 ⊕m′(, m′).
Otherwise, the decryption oracle returns⊥.

Thus, if the answer ism′, then the adversary concludes that (c∗1, c
∗
2, c
∗
3) is the ciphertext ofm0, that

is, it outputsb′ = 0. Otherwise, the adversary concludes that it is the ciphertext ofm1, that is, it outputs
b′ = 1. Therefore,A can output the correct answer unlessA receives⊥ from the second-preimage
oracle.

We finally bound the probability that the oracle outputs⊥. It is bounded by (1− 1/#P)2k′ ·#S−1 ≤
exp(−(2k′ · #S − 1)/#P) ≤ 1/

√
eas required. This completes the proof. �

3.3 The Original Fujisaki-Okamoto Conversion

We next show that the obtained scheme by the conversion FO with the one-time pad is secure in the
SPT-ROM, but not secure in theFPT-ROM in some parameter setting.

Let G : M → {0, 1}k′ andH : {0, 1}k′ ×M → R be hash functions modeled as the random oracles.
Recall the encryption procedure ofPKE′ = FO(PKE). For a plaintextm ∈ M′ = {0, 1}k′ and a random
stringr ∈ R′ =M, the ciphertext is (Encpk(r; H(m, r)),G(r) ⊕m). The scheme is in Figure3.

Key Generation Encryption Decryption
Input: 1k

1: (pk, sk)← Gen(1k)
Output: (pk, sk)

Input: m ∈ {0, 1}k′

1: r ←M
2: g← G(r)
3: h← H(m, r)
4: c1← Encpk(r; h)
5: c2← m⊕ g

Output: (c1, c2)

Input: (c1, c2)
1: r ← Decsk(c)
2: g← G(r)
3: m← c2 ⊕ g
4: h← H(m, r)
5: If c1 = Encpk(r; h) seto← m
6: Otherwise seto← ⊥

Output: o

Figure 3:PKE′ obtained by the FO conversion.

Modifying the existing proofs, we can show the scheme is secure in theSPT-ROM using Lemma2.4.
The proof appears in AppendixE.

Theorem 3.5. Suppose thatPKE is OW-CPA secure andγ-uniform for some negligibleγ. Then,
PKE′ = FO(PKE) is IND-CCA2 secure in theSPT-ROM.

However, the presence of the first-preimage oracle forG violates theIND-CPA security ofPKE′ in
some parameter settings. Note that ifm is 0k′ , the second component of the ciphertext isG(r), which is
vulnerable the first-preimage oracle ofG.

Theorem 3.6. Let C = #M/2k′ . Assume that C= kO(1). Then,PKE′ = FO(PKE) is not IND-CPA
secure in theFPT-ROM.

Proof. We prove the theorem by constructing the adversaryA = (A1,A2) which exploits the first-
preimage oracle ofG, FPOG. The adversaryA1, on inputpk, queriesm0 = 0k′ andm1 = 1k′ to the
challenger. The adversaryA2, on input the target ciphertext (c∗1, c

∗
2), queriesc∗2 to the first-preimage

oracle ofG. If it obtains r̃, it checks thatc1 = Encpk(r̃; H(0k′ , r̃)). If the check passes, the adversary
outputsb′ = 0. Otherwise, it flips a random fair coinb′, outputsb′, and halts.

It is obvious that ifb = 0 and ˜r = r, the adversary answers correctly, that is, it outputsb′ = b.
If b = 1, the preimage of the queryG(r) ⊕ 1k′ never equals tor sinceG(r) , G(r) ⊕ 1k′ . Hence, the
adversary’s check fails ifb = 1.
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We estimate the probability that the adversary wins. By Lemma2.3, with probability at least 1−2−2k′ ,
there is no preimage of size larger thanL, where ifC ≥ 1 thenL = 5Ck′ ln 2/(ln k′+ ln ln 2) ≤ 4Ck′/ ln k′

and otherwiseL = 5k′ ln 2/(ln k′ + ln ln 2) ≤ 4k′/ ln k′ for all sufficiently largek′.
Let Good denote the event thatr ← FPOG(G(r)). We then have Pr[Good] ≥ (1− 2−2k′)/L. Hence,

we obtain that

Pr[b′ = b] = Pr[b′ = 0 | b = 0∧ Good] Pr[b = 0∧Good]

+ Pr[b′ = 0 | b = 0∧ ¬Good] Pr[b = 0∧ ¬Good]

+ Pr[b′ = 1 | b = 1] Pr[b = 1]

= 1 · 1
2
· Pr[Good] +

1
2
· 1

2
· (1− Pr[Good]) +

1
2
· 1

2

=
1
2
+

1
4

Pr[Good] ≥ 1
2
+

1− 2−2k′

4L
.

and 4L is a polynomial in the security parameterk. This completes the proof. �

As shown above, the FO conversion is not secure in theFPT-ROM, but there is a way to modify it
so as to maintain the security in theFPT-ROM. Naito, Wang, and Ohta proposed the conversion method
that converts a cryptosystem secure in theROM to that secure even in theFPT-ROM [NWO09]. In the
case of the FO conversion, the public key is (pk, c), wherec← {0, 1}k, and the ciphertext is

(c1, c2) = (Encpk(r; H(c,m, r)),G(c, r) ⊕m),

where the domains ofH andG are modified. Intuitively, this change makes the first-preimage oracles,
FPOH andFPOG, useless.

3.4 OAEP

We finally focus on the OAEP and present itsIND-CCA2 security in theFPT-ROM. For the security
parameterk, let k0 andk1 be functions ink, wherek0 < k − k0. Let F be a family of partial-domain
one-way trapdoor permutations of a domain{0, 1}k−k0 × {0, 1}k0. (See [FOPS04] for the definition of
the partial-domain one-wayness.) Furthermore, letG andH be hash functions such thatG : {0,1}k0 →
{0, 1}k−k0 andH : {0, 1}k−k0 → {0,1}k0. Then, the OAEP encryption scheme based onF is described in
Fig. 4. We obtain the following theorem that states the security of the OAEP encryption scheme in the

Key Generation Encryption Decryption
Input: 1k

1: ( fpk, gsk)← F
Output: (fpk, gsk)

Input: m ∈ {0, 1}k−k0−k1, fpk

1: r ← {0,1}k0

2: s← (m∥ 0k1) ⊕G(r)
3: t ← H(s) ⊕ r
4: c← fpk(s∥ t)

Output: c

Input: c, gsk

1: s∥ t ← gsk(c)
2: r ← t ⊕ H(s)
3: M ← s⊕G(r)
5: If M = m∥ 0k1 seto← m
6: Otherwise seto← ⊥

Output: o

Figure 4:OAEP

FPT-ROM.

Theorem 3.7. Let F be a family of partial-domain one-way trapdoor permutations. Then, the OAEP
encryption scheme based on F isIND-CCA2 secure in theFPT-ROM.

See AppendixF for the proof.
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4 Future Work

It should be noted that ourWROMs are based on a simplified variant, which Numayama et al. [NIT08]
and Pasini and Vaudenay [PV07] also adopted, of the originalWROMs of Liskov [Lis07].

The originalWROMs consists of the ideal compression functionh : {0, 1}k+k′ → {0,1}k of fixed
input lengthand the first-preimage oracle. Then, he discussed the security of theflexible input-length
hash functionsHh : {0,1}∗ → {0, 1}k employingh as the component in the context of indifferentiabil-
ity [MRH04]. A random oracleH is often instantiated by employing a compressionh. (See, e.g., the
survey in [LN09, Section 2].) Therefore, his work reflects the attacks against the compression function
of MD5 and SHA-1 rather than the constructionH.

On the contrary, we (and similarly [NIT08, PV07]) discussed themonolithicrandom oracleH and
the additional oracles associated withH. Hence, our model has a gap from such a realistic instantiation
of the random oracle in some sense. We leave filling this gap as future work.

Except for the FO conversion, there are several conversion methods in theROM, such as RE-
ACT [OP01] and GEM [CHJ+02]. It would also be interesting as future work to examine the security of
these conversion methods in theWROMs.
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A Simulation Algorithms of Numayama et al.

In this section, we review the details of the algorithmsRO, CO, SPO, andFPO which simulate the
random oracle, the collision oracle, the second-preimage oracle, and the first-preimage oracle in the
WROMs, respectively.

In each ofWROMs, two tablesT andL are shared by the simulation algorithmRO for the random
oracle and the simulation algorithm for the additional oracle, e.g.,CO in theCT-ROM. In the start of
the simulations, both tables are empty. In the simulations,T will contain the pair of values (x, y) such
that x = h(y) andL will contain the pair of values (y,n) such thatn = #{x ∈ X | x = h(y)}. For the table
T = {(x, y)}, we defineT(y) = {(x′, y′) ∈ T | y′ = y}.

First, we review how the algorithmRO runs on input ˆx in detail. If the hash value of ˆx is already
determined, then the algorithmRO returns it. Otherwise, there are two situations depending on whether
the algorithmRO returnsold ywhich is already appeared in the tableT or the algorithmRO returnsnew
y which is not yet appeared in the tableT. There are (#X − #T) elements whose hash values are not yet
determined, and among them there are

∑
(ỹ,ñ)∈L(ñ−#T(ỹ)) elements whose hash values are expected to be

old y. Therefore, the algorithmRO returns oldy or newy with this ratio. In case of oldy, the algorithm
RO picks oldy according to the number of the preimages of each oldy. In case of newy, the algorithm
RO picks newy uniformly at random, and defines the number of preimages ofy. The whole algorithm
is presented in Algorithm2.

Algorithm RO(x̂)

1. If ( x̂, y) ∈ T for somey, thenoutput y.

2. Let p be the following probability,

p =

∑
(ỹ,ñ)∈L(ñ− #T(ỹ))

#X − #T
.

3. With probability p, output old y as Steps (a)-(b).

(a) pick y← D according to the following distribution.

fD(y) =
n− #T∑

(ỹ,ñ)∈L(ñ− #T(ỹ))
for (y,n) ∈ L.

(b) insert (x̂, y) in T andoutput y.

4. With probability 1− p output newy as Steps (a)-(d).

(a) pick y← Y \∪(ỹ,ñ)∈L{ỹ} uniformly at random.

(b) n′ ← Bn(#X − ∑
(ỹ,ñ)∈L ñ − 1, 1

#Y−#L ). (Bn(N, p) denotes the binomial distribution with pa-
rametersN andp.)

(c) n← n′ + 1.

(d) insert (y, n) in L, insert (x̂, y) in T, andoutput y.

Algorithm 2: Simulation method of the random oracle.

Next, we review how the algorithmCO runs in detail. First, it picksx ← X as the original oracle
does. If the hash value ofx is not determined, it obtains the hash valuey by the algorithmRO. If n = 1,
which implies that there is only one preimage ofy, then the algorithmCO returns⊥. Otherwise, there
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are two situations depending on whether the algorithmCO returnsnew xwhich is not yet appeared in
the tableT or the algorithmCO returnsold x which is already appeared in the tableT. There aren
elements whose hash values are expected to bey, and among them there are #T(y) elements which are
already appeared in the tableT. Therefore, the algorithmCO returns oldx or newx with this ratio. In
case of oldx, the algorithmCO picks oldx according to both the current tableT and the number of the
preimages of each oldy defined in the tableL. In case of newx, the algorithmCO picks newx uniformly
at random. The whole algorithm is presented in Algorithm3.

Algorithm CO()

1. Pick x← X.

2. Invoke algorithmRO() and obtainsy← RO(x).

3. Look up (n, y) ∈ L.

4. If n = 1, output ⊥.

5. If n , 1, then compute the thresholdq = #T(y)−1
n−1 .

6. With probabilityq output x with an old element.

(a) pick one entry uniformly fromT such that ( ˜x, y) ∈ T, andoutput (x, x̃).

7. Otherwiseoutput x with a new element.

(a) pick uniformly x′ ← X such that (x′, ỹ) < T for any ỹ.

(b) insert (x′, y) in T, andoutput (x, x′).

Algorithm 3: Simulation method of the collision oracle.

We next review how the algorithmSPO runs on input ( ˆx, ŷ) in detail. Since ( ˆx, ŷ) must be inT, the
algorithm can obtain (ˆy,n) from L. If n = 1, which implies that there is only one preimage of ˆy, then
the algorithmSPO returns⊥. Otherwise, it returnsx as the algorithmCO does. The whole algorithm is
presented in Algorithm4.

Algorithm SPO(x̂, ŷ)

1. If ( x̂, ŷ) < T, output ⊥.

2. If n = 1 for (ŷ, n) ∈ L, output ⊥.

3. If n , 1 for (ŷ, n) ∈ L, then compute the probabilityq = #T(ŷ)−1
n−1 .

4. With probabilityq output old x.

(a) pick one entry ( ˜x, ŷ) ∈ T such that ˜x , x̂ uniformly at random, andoutput x̃.

5. Otherwiseoutput newx.

(a) pick x← X such that (x, ỹ) < T for any ỹ uniformly at random.

(b) insert (x, ŷ) in T, andoutput x.

Algorithm 4: Simulation method of the second-preimage oracle.
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Finally, we review how the algorithmFPO runs on input ˆy in detail. If ŷ is not yet determined
(i.e., the numbern of preimages of ˆy is not determined either), then the algorithmFPO first defines the
numbern of preimages of ˆy. If n = 0, which implies that there is no preimage of ˆy, then the algorithm
FPO returns⊥. Otherwise, the algorithmFPO returnsx as the algorithmCO does. Note that the ratio
in this case is not equal to that in the algorithmsCO andSPO. The whole algorithm is presented in
Algorithm 5.

Algorithm FPO(ŷ)

1. If ( ŷ,n) < L for anyn, then pickn← Bn(#X−∑
(ỹ,ñ)∈L ñ, 1

#Y−#L ), and insert (ˆy, n) ∈ L, thenoutput
⊥.

2. If n , 0 for (ŷ, n) ∈ L, then compute the probabilityq = #T(ŷ)
n .

3. With probabilityq output old x.

(a) pick one entry uniformly fromT such that ( ˜x, ŷ) ∈ T, andoutput x̃.

4. Otherwiseoutput newx.

(a) pick uniformly x← X such that (x, ỹ) < T.

(b) insert (x, ŷ) in T, andoutput x.

Algorithm 5: Simulation method of the first-preimage oracle.

B Proof of Lemma 2.4

We now start the proof of our main lemma.

Proof. In order to bound the statistical distance, we consider the algorithmRO instead of considering
the random oracleROH. It makes no difference because the distribution of the outputs of the algorithm
RO is identical to the distribution of the outputs of the random oracleROH by Proposition2.6.

We denote by “old y” the valuey which already appeared in the interaction with the two oracles, i.e.,
the correspondence (x, y) is already determined. We denote by “new y” the valuey which did not yet
appear. Furthermore, we use the same notationBAD as in Lemma2.3. That is,BAD denotes the event
that there is somey such that the number of preimages ofy, ny, is larger thanL.

Now, we evaluate the probability Pr[VA,H(x) = y] according to the algorithmRO.

Case 1:newy:

Pr[VA,H(x) = new y] =
#X −∑

n
#X − #T

· 1
#Y− #L

.

Let ny be the number of preimages ofy under the functionh. Then conditioned onny ≤ L for all y (i.e.,
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the eventBAD does not occur), this probability is bounded by

plow =
#X − qL

#X
· 1

#Y
≤ Pr[VA,H(x) = new y|¬BAD]

≤ #X
#X − q

· 1
#Y− q

≤ 1
#Y
· 1

1− q
#X

· 1

1− q
#Y

≤ 1
#Y

(
1+

2q
#X

) (
1+

2q
#Y

)
= pup.

Then, fornew ywe have∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤
∣∣∣ Pr[VA,H(x) = y |¬BAD] − Pr[UY = y |¬BAD]

∣∣∣ + Pr[BAD]

≤
∣∣∣ Pr[VA,H(x) = y |¬BAD] − 1

#Y

∣∣∣ + Pr[BAD]

≤ pup − plow + Pr[BAD]

≤ 1
#Y

((
1+

2q
#X

) (
1+

2q
#Y

)
−

(
1− qL

#X

))
+ Pr[BAD]

=
1

#Y

(
q(L + 2)

#X
+

2q
#Y
+

4q2

#X#Y

)
+ Pr[BAD].

Case 2:old y:

Pr[VA,H(x) = old y] =
n− #T(y)
#X − #T

.

Then conditioned onny ≤ L for all y (i.e., the eventBAD does not occur), this probability is bounded by,

Pr[VA,H(x) = old y |¬BAD] ≤ L
#X − q

.

Then, forold ywe have∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤
∣∣∣ Pr[VA,H(x) = y |¬BAD] − Pr[UY = y |¬BAD]

∣∣∣ + Pr[BAD]

≤
∣∣∣∣∣Pr[VA,H(x) = y |¬BAD] − 1

#Y

∣∣∣∣∣ + Pr[BAD]

≤ Pr[VA,H(x) = y |¬BAD] +
1

#Y
+ Pr[BAD]

≤ L
#X − q

+
1

#Y
+ Pr[BAD].

Now we can bound the statistical distance between the distribution onHA,h(x) and the uniform
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distribution onY as follows:∑
y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

=
∑
new y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣ +∑

old y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤
(
q(L + 2)

#X
+

2q
#Y
+

4q2

#X#Y

)
+

qL
#X − q

+
q

#Y
+ #Y · Pr[BAD]

≤ 2q
#X
+

3q
#Y
+

4q2

#X#Y
+

2qL
#X − q

+ #Y · Pr[BAD].

Finally by applying the lemma above, if #X ≥ #Y then we have∑
y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤ 2q
#X
+

3q
#Y
+

4q2

#X#Y
+

2q
#X − q

· 5 ln #Y
ln ln #Y

· #X
#Y
+

1
#Y

≤ 1
#Y

(
5q+ 1+

4q2

#Y
+ 4q · 5 ln #Y

ln ln #Y

)
.

Otherwise we have ∑
y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤ 2q
#X
+

3q
#Y
+

4q2

#X#Y
+

2q
#X − q

· 5 ln #Y
ln ln #Y

+
1

#Y

≤ 1
#X

(
5q+ 1+

4q2

#X
+ 4q · 5 ln #Y

ln ln #Y

)
.

Therefore we have

∆(VA,H(x),UY) ≤


1

#Y

(
5q+ 1+ 4q2

#Y + 20q ln #Y
ln ln #Y

)
, if #X ≥ #Y,

1
#X

(
5q+ 1+ 4q2

#X + 20q ln #Y
ln ln #Y

)
, if #X < #Y.

�

C Proof of the Security of dFO, Theorem3.1

We prove Theorem3.1 in the game style. We define a sequence of games and bound the advantage of
the adversary in theIND-CCA2 game by showing each of the subsequent pairs of games is statistically
close, and by relating the last game to theOW-CPA property of the underlying encryption scheme.

In order to prove theIND-CCA2 security, it is necessary to simulate the decryption oracle without
knowing the secret keysk. This is done by using the following plaintext extractorPE as in the original
proof [FO99].

The plaintext extractor PE: The plaintext extractor shares the three tablesTF , TG, andTH that are
involved in the simulation algorithmsROF , ROG, andROH, respectively. Given a decryption query
c = (c1, c2), PE inspects each entry (µ, fµ) ∈ TF , (γ, gγ) ∈ TG, and (f , γ, hf ,γ) ∈ TH. For each (γ, gγ) ∈
TG, it obtainsµ ← c2 ⊕ gγ. It next picks (µ, f ) ∈ TF and picks (f , γ, h) ∈ TH. It checks whether
c1 = Encpk(γ, h). If they hold,PE outputsµ as the decryption ofc and stops. Otherwise, the extractor
returns⊥.
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Sequence of games: We start with the original attack game with respect toIND-CCA2 in theROM,
and modify it step by step in order to obtain a game directly related to the adversary which breaks the
OW-CPA property ofPKE = (Gen,Enc,Dec).

• Game0: The original attack game with respect toIND-CCA2 in theROM. A pair of keys (pk, sk)
is generated by using the key generation algorithm ofGen. The adversaryA is given the public
key pk and has access to the decryption oracleD, the random oraclesROF , ROG, andROH. At
some point in the game the adversaryA is expected to output a pair of messages (m0,m1). Next
a challenge ciphertext is produced by flipping a coinb and producing a ciphertextc∗ of mb. This
ciphertextc∗ is constructed as follows:

r∗ ←M, g∗ ← ROG(r∗), c∗2← g∗ ⊕mb,

f ∗ ← ROF(mb), h∗ ← ROH( f ∗, r∗), c∗1← Encpk(r
∗; h∗).

Then the ciphertext (c∗1, c
∗
2) is given toA. Finally, the adversaryA outputs a bitb′.

• Game0.5: We replace the random oraclesROF , ROG, andROH with the algorithmsROF , ROG,
andROH respectively. These algorithms are obtained by the standard “on-the-fly” method.

Furthermore we replace the decryption oracleD with the algorithmD which simply runs the
decryption algorithm using secret keysk.

• Game1: We change the time for generatingr∗. The challenger first choosesr+ uniformly at
random and obtainsg+ ← ROG(r+).

• Game2: We modify the above game, by hooking queries to the algorithmsROG andROH. If the
query to the algorithm containsr+, the challenger stops. Otherwise, the query is passed to the
algorithms.

• Game3: We make the decryption algorithmD reject an undeterminedr. That is, the algorithmD
outputs⊥ if ( r, ∗) < TG for r ← Decsk(c1) in step 2. In the after games, the algorithmD does not
query toROG.

• Game4: We modify the generation ofg+. The challenger usesg+ ← {0,1}k′ instead ofg+ ←
ROG(r+).

• Game5: We modify the generation ofh+. The challenger choosesh+ ← R instead ofh+ ←
ROH(ROF(mb), r+). Hence,c∗ = (c∗1, c

∗
2) is (Encpk(r+; h+),g+ ⊕mb).

• Game6: We make the decryption algorithmD reject an undeterminedm. That is,D outputs⊥ if
(m, ∗) < TF in step 4. Additionally, we makeD reject an undetermined (f , r). I.e., D outputs⊥
if ( f , r, ∗) < TH in step 5. Notice that the algorithmD does not query toROF , ROG, andROH

anymore.

• Game7: Finally, we replace the decryption algorithmD with the plaintext extractorPE.

Sequence of lemmas: In the proofs of the following lemmas, we repeatedly use LemmaC.1below in
order to bound the distance of each of the subsequent pairs of games.

Lemma C.1. Let E1,E2, F1, and F2 be events defined on a probability space. If the followings hold:

|Pr[E1 ∧ ¬F1] − Pr[E2 ∧ ¬F2]| ≤ δ and Pr[F1] = Pr[F2] = ϵ,

then we have

|Pr[E1] − Pr[E2]| ≤ δ + ϵ.
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Proof.

|Pr[E1] − Pr[E2]| = |Pr[E1 ∧ ¬F1] + Pr[E1 ∧ F1] − Pr[E2 ∧ ¬F2] − Pr[E2 ∧ F2]|
≤ |Pr[E1 ∧ ¬F1] − Pr[E2 ∧ ¬F2]| + |Pr[E1 ∧ F1] − Pr[E2 ∧ F2]|

≤ δ +
∣∣∣∣ Pr[E1|F1] · Pr[F1] − Pr[E2|F2] · Pr[F2]

∣∣∣∣
= δ +

∣∣∣∣ Pr[E1|F1] − Pr[E2|F2]
∣∣∣∣ · ϵ

≤ δ + ϵ.

�

Let qF , qG, andqH denote the number of queries made by the adversary to the random oracles for
F, G, andH, respectively.qD denotes the number of queries made by the adversary to the decryption
oracle. We denote byS0 the eventb′ = b in theGame0 and use a similar notationSi in any subsequent
game. We denote byAdvIND

CCA2 the advantage of the adversary in theIND-CCA2 game in theROM.
Then by definition, we haveAdvIND

CCA2 = |2 Pr[S0] − 1|. We can bound this probability by the following
lemmas.

In the following, we denote byAskG andAskH the event that the adversary queriesr∗ to the random
oracle forG and the event that the adversary queries (g, r∗) to the random oracle forH for someg,
respectively. LetAskR = AskG ∨ AskH.

Note that

AdvIND
CCA2 ≤ |Pr[S0] − Pr[¬S0]| ≤ Pr[AskR0] + |Pr[S0 ∧ ¬AskR0] − Pr[¬S0 ∧ ¬AskR0]|.

Lemma C.2. Game0 andGame0.5 are identical and we have

Pr[S0] = Pr[S0.5].

Proof. The algorithmsROF , ROG, andROH can simulate the random oracles for the hash functionsF,
G, andH, respectively. Therefore,Game0 andGame0.5 are identical,

�

Lemma C.3. Game0.5 andGame1 are identical.

Proof. There is no change except the timing for the generation ofr∗. It is obvious that the change does
not affect the games. ThereforeGame0.5 andGame1 are identical.

�

Lemma C.4. Game1 andGame2 are identical if the eventAskR does not occur. Hence, we have that

AdvIND
CCA2 ≤ Pr[AskR2] + |Pr[S2 ∧ ¬AskR2] − Pr[¬S2 ∧ ¬AskR2]|.

Proof. If the one of two events occurs, the challenger inGame2 stops, but continues the game inGame1.
On the other hand, if the two events does not occur, the two games are identical. Therefore, we have that

Pr[AskR2] = Pr[AskR1],Pr[S2 ∧ ¬AskR2] = Pr[S1 ∧ ¬AskR1],Pr[¬S2 ∧ ¬AskR2] = Pr[¬S1 ∧ ¬AskR1].

The inequation thus follows from the above equations.
�
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Lemma C.5. Game2 andGame3 are identical if the eventFailG3 does not occur, whereFailG denotes
the event that the adversary asks a valid ciphertext c but r is not contained inTG in some decryption
query inGame3. Then, we have

|Pr[AskR3] − Pr[AskR2]| ≤ Pr[FailG3],

|Pr[S3 ∧ ¬AskR3] − Pr[S2 ∧ ¬AskR2]| ≤ Pr[FailG3],

|Pr[¬S3 ∧ ¬AskR3] − Pr[¬S2 ∧ ¬AskR2]| ≤ Pr[FailG3].

In particular, we have that

AdvIND
CCA2 ≤ Pr[AskR3] + |Pr[S3 ∧ ¬AskR3] − Pr[¬S3 ∧ ¬AskR3]| + 3 Pr[FailG3].

Additionally,

Pr[FailG3] ≤ qD ·
(qF

2k′
+

qH

#P + 2γ
)
.

Proof. The first part is trivial, since the decryption algorithms are equal ifFailG does not occur.
Let Failk denote the event thatFailG3 firstly occurs at thek-th query to the decryption oracle. Obvi-

ously, Pr[FailG3] =
∑qD

k=1 Pr[Failk].
Suppose that thek-th query to the decryption oracle isc = (c1, c2) and the eventFailk occurs. This

means thatc1 = Encpk(r; h′) for someh′, where (r, ∗) < TG, andD2 obtainsg← ROG(r), m← c2 ⊕ g,
f ← ROF(m) andh← ROH( f , r) such thatc1 = Encpk(r; h).

We split the event into the following four cases:

1. (m, f ) ∈ TF and (f , r, h) ∈ TH.

2. (m, ∗) < TF but (f ′, r,h) ∈ TH for somef ′.

3. (m, f ) ∈ TF but (f , r, ∗) < TH.

4. (m, ∗) < TF and (∗, r, ∗) < TH.

In the case 1, for any (m, f ) ∈ TF , there is the corresponding triplet (f , r, h) ∈ TH such thatc1 =

Encpk(r; h) in the worst case. Hence, the probability thatg ← ROG(r) satisfiesm′ = c2 ⊕ g for any
(m′, ∗) ∈ TF is at least that thatFailk occurs in this case. The probability is simply upper bounded by
qF/2k′ .

In the case 2, we assume that every triplet inTH is corresponding toc1 in the worst case, that is every
triplet is in the form (f ′, r,h′) such thatc1 = Encpk(r; h′). But, since the valuef is not determined, the
probability thatf ← ROF(m) equals to the one of the elements in triplets, is at mostqH/#P.

In the case 3, we have simply the upper boundγ becauseh is not determined.
In the case 4, sinceh is not determined yet, we have the upper boundγ.
By summing up, we have

Pr[Failk] ≤
qF

2k′
+

qH

#P + 2γ,

Pr[Failk] ≤ qD ·
(qF

2k′
+

qH

#P + 2γ
)
.

�

Lemma C.6. Game3 andGame4 are identical if the eventAskG does not occur. In particular, we have
that

AdvIND
CCA2 ≤ Pr[AskR4] + |Pr[S4 ∧ ¬AskR4] − Pr[¬S4 ∧ ¬AskR4]| + 3 Pr[FailG3].
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Proof. Obviously, if the eventAskG does not occur, these two games are identical.
�

Lemma C.7. Game4 andGame5 are identical if the eventAskR does not occur. Thus, we obtain that

AdvIND
CCA2 ≤ Pr[AskR5] + |Pr[S5 ∧ ¬AskR5] − Pr[¬S5 ∧ ¬AskR5]| + 3 Pr[FailG3].

Proof. Obviously, if the eventAskR does not occur, these two games are identical.
�

Lemma C.8. In Game5, we have

|Pr[S5 ∧ ¬AskR5] − Pr[¬S5 ∧ ¬AskR5]| = 0.

Proof. SinceAskR5 does not occur, the adversaryA cannot knowg+, which is uniformly distributed
over{0,1}k′ , and we conclude the proof.

�

Lemma C.9. Game5 andGame6 are identical ifFailD does not occur, whereFailD denotes the event
that D6 fails in some decryption query to the decryption oracle butD5 succeeds, whereDi denotes the
decryption algorithm inGamei . We have that

Pr[AskR5] ≤ Pr[AskR6] + Pr[FailD].

Proof. Obviously, if the eventFailD does not occur, these two games are identical. Thus, we have that

|Pr[AskR5] − Pr[AskR6]| ≤ Pr[FailD]

and the inequality in the statement.
�

Lemma C.10. In Game6, we have

Pr[FailD] = qD

(qH

#P + 2γ
)
.

Proof. Let D5 andD6 be the decryption algorithms inGame5 andGame6, respectively. LetFailk denote
D6 firstly fails in thek-th query to the decryption oracle butD5 succeeds. So, we have Pr[FailD] =∑qD

k=1 Pr[Failk].
Suppose that thek-th ciphertextc = (c1, c2) as the decryption query.
SinceD5 succeeds, we have thatc1 = Encpk(r; h) for somer ∈ M andh ∈ R, and (r, g) ∈ TG.

Additionally, sinceg is now fixed,m= c2⊕ g is also fixed. Moreover, we can fixf ← ROF(m). Finally,
we have that, for̃h← ROH( f , r), c1 = Encpk(r; h̃), since the final check ofD5 is passed.

On the other hand,D6 fails if f andh̃ are not determined.
We splitFailk into the following three cases:

1. (m, ∗) < TF and (f , r, h̃) ∈ TH for somef ,

2. (m, f ) ∈ TF for somef but (f , r, ∗) < TH.

3. (m, ∗) < TF and (∗, r, ∗) < TH.
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In the case 1,D5 succeeds if (f ′, r, h̃) ∈ TH where f ′ ← ROF(m). We can upper bound this
probability byqH/#P since f ′ is chosen uniformly at random fromP.

In the case 2,D5 succeeds ifc1 = Encpk(r; h′) whereh′ ← ROH( f , r). This probability is at mostγ
becauseh′ is chosen uniformly at random fromR.

In the case 3,D5 succeeds ifc1 = Encpk(r; h′) whereh′ ← ROH( f ′, r) and f ′ ← ROF(m). Sinceh′

is not determined, this probability is at mostγ.
Summing up them, we have

Pr[Failk] ≤
qH

#P + 2γ

and conclude the proof.
�

Lemma C.11. Game6 andGame7 are identical. We havePr[AskR6] = Pr[AskR7].

Proof. Recall that the decryption algorithmD6 in Game6 does not query to any random oracle. Hence,
we safely replaceD6 with PE.

�

Lemma C.12. In Game7, we have

Pr[AskR7] ≤ (qG + qH) · AdvOW
CPA.

Proof. We construct an adversaryB against theOW-CPA security of the underlying schemePKE from
the adversaryA in Game7. The description of the new adversaryB is as follows:

• B first choosesg+ ← {0, 1}k′ . Receiving (pk, c∗1 = Encpk(r+; h+)) from its challenger, where
r+ ←M andh+ ← R,B feedspk toA. On decryption queries,B runs the plaintext extractorPE.

• Receivingm0 andm1 from A, B generates the target ciphertext. First it queriesm0 andm1 to
ROF to determine the hash valuesf0 and f1 of m0 andm1, respectively. Then, it flips a fair coin
b← {0,1} and computesc∗2← g+ ⊕mb. Then, it feeds (c∗1, c

∗
2) toA.

• Finally,A outputsb′. Then,B randomly choosesr from TG andTH and outputsr.

Notice thatB simulatesGame7 perfectly and ifAskR7 occurs the one of two tables containsr+. We
have

Pr[AskR7] ≤ (qG + qH)AdvOW
CPA.

�

D Proof of the Security of wFO, Theorem3.3

As in the previou section, we prove Theorem3.3 in the game style. Again, in order to prove the
IND-CCA2 security, it is necessary to simulate the decryption oracle without knowing the secret key
sk. This is done by using the following plaintext extractorPE as in the original proof [FO99].

The plaintext extractor PE: The plaintext extractor shares the three tablesTF , TG, andTH that are
involved in the simulation algorithms forF, G, and H, respectively. Given a decryption queryc =
(c1, c2, c3), PE inspects each entry (µ, σ, fµ,σ) ∈ TF , (γ, gγ) ∈ TG, and (f , γ, hf ,γ) ∈ TH. For each
(γ,gγ) ∈ TG, it obtainsµ ← c2 ⊕ gγ. It next picks (µ, c3, f ) ∈ TF and picks (f , γ, h) ∈ TH. It checks
wheterc1 = Encpk(γ,h). If they hold,PE outputsµ as the decryption ofc and stops. Otherwise, the
extractor returns⊥.
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Sequence of games: We start with the original attack game with respect toIND-CCA2 in theCT-ROM,
and modify it step by step in order to obtain a game directly related to the adversary which breaks the
OW-CPA property ofPKE = (Gen,Enc,Dec).

• Game0: The original attack game with respect toIND-CCA2 in the CT-ROM. A pair of keys
(pk, sk) is generated by using the key generation algorithm of the wFO encryption scheme. The
adversaryA is given the public keypk and has access to the decryption oracleD, the random
oraclesROF , ROG, andROH, and the collision oraclesCOF , COG, andCOH. At some point in
the game the adversaryA is expected to output a pair of messages (m0,m1). Next a challenge
ciphertext is produced by flipping a coinb and producing a ciphertextc∗ of mb. This ciphertextc∗

is constructed as follows:

r∗ ←M, g∗ ← ROG(r∗), c∗2← g∗ ⊕mb,

s∗ ← S, f ∗ ← ROF(mb, s
∗), h∗ ← ROH( f ∗, r∗), c∗1← Encpk(r

∗; h∗).

Then the ciphertext (c∗1, c
∗
2, c
∗
3 = s∗) is given toA. Finally, the adversaryA outputs a bitb′.

• Game0.5: We replace the oraclesROF , ROG, ROH, COF , COG, andCOH with the algorithms
ROF , ROG, ROH, COF , COG, andCOH respectively. These algorithms are obtained by simply
modifying the algorithmsRO andCO in AppendixA for F, G, andH.

Furthermore we replace the decryption oracleD with the algorithmD which simply runs the
decryption algorithm using the secret keysk.

• Game1: We change the time for generatingr∗. The challenger first choosesr+ uniformly at
random and obtainsg+ ← ROG(r+).

• Game2: We modify the above game, by hooking queries to the algorithmsROG andROH. If the
query to the algorithm containsr+, the challenger stops. Otherwise, the query is passed to the
algorithms. Additionally, the challenger hooks answers from the algorithmsCOG andCOH. If
the answer containsr+, the challenger stops. Otherwise, the query is passed to the algorithms.

• Game3: We make the decryption algorithmD reject an undeterminedr. That is, the algorithmD
outputs⊥ if ( r, ∗) < TG for r ← Decsk(c1). In the after games, the algorithmD does not query to
ROG.

• Game4: We modify the generation ofg+. The challenger usesg+ ← {0,1}k′ instead ofg+ ←
ROG(r+).

• Game5: We modify the generation ofh+. The challenger choosesh+ ← R instead ofh+ ←
ROH(ROF(mb, s∗), r+). Hence,c∗ = (c∗1, c

∗
2, c
∗
3) is (Encpk(r+; h+),g+ ⊕mb, s∗), wheres∗ ← S.

• Game6: We make the decryption algorithmD reject an undeterminedm. That is,D outputs⊥ if
(m, c3, ∗) < TF in step 4. Additionally, we makeD reject an undetermind (f , r). I.e.,D outputs⊥
if ( f , r, ∗) < TH in step 5. In the after games, the algorithmD does not query toROF andROH.

• Game7: Finally, we replace the decryption algorithmD with the plaintext extractorPE.

Sequence of lemmas: Let qF , qG, andqH denote the number of queries made by the adversary to
the oracles corresponding toF, G, andH, respectively.qD denotes the number of queries made by
the adversary to the decryption oracle. In the following, we denote byAskG+ andAskH+ the event
that the adversary queriesr∗ to the random oracle forG and the event that the adversary query (f , r∗)
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to the random oracle forH for some f , respectively. We denote byAskG− andAskH− the event that
the adversary obtainsr∗ from the collision oracle forG and the event that the adversary obtains (f , r∗)
from the collision oracle forH for some f , respectively. LetAskG = AskG+ ∨ AskG−, AskH =
AskH+ ∨ AskH−, andAskR = AskG ∨ AskH.

Note that we have that

AdvIND
CCA2 ≤ |Pr[S0] − Pr[¬S0]| ≤ Pr[AskR0] + |Pr[S0 ∧ ¬AskR0] − Pr[¬S0 ∧ ¬AskR0]|.

Lemma D.1. Game0 andGame0.5 are statistically close1 and we have

Pr[S0] = Pr[S0.5].

Proof. The algorithmsROF , ROG, andROH can simulate the random oracles for the hash functionsF,
G, andH. The algorithmsCOF , COG, andCOH also can simulate the collision oracles for the hash
funciotnsF, G, andH, respectively. Therefore,Game0 andGame0.5 are identical,

�

Lemma D.2. Game0.5 andGame1 are identical.

Proof. There is no change except the timing for the generatin ofr∗. It is obvious that the change does
not affect the games. ThereforeGame0.5 andGame1 are identical.

�

Lemma D.3. Game1 andGame2 are identical if the eventAskR does not occur. Hence, we have that

AdvIND
CCA2 ≤ Pr[AskR2] + |Pr[S2 ∧ ¬AskR2] − Pr[¬S2 ∧ ¬AskR2]|.

Proof. If the one of two events occur, the challenger inGame2 stops, but continues the game inGame1.
On the other hand, if the two events does not occur, the two games are identical. Therefore, we have that

Pr[AskR2] = Pr[AskR1],Pr[S2 ∧ ¬AskR2] = Pr[S1 ∧ ¬AskR1],Pr[¬S2 ∧ ¬AskR2] = Pr[¬S1 ∧ ¬AskR1].

The inequation thus follows from the above equations.
�

Lemma D.4. Game2 andGame3 are identical if the eventFailG3 does not occur, whereFailG denotes
the event that the adversary asks a valid ciphertext c but r is not contained inTG in some decryption
query inGame3. Then, we have

|Pr[AskR3] − Pr[AskR2]| ≤ Pr[FailG3],

|Pr[S3 ∧ ¬AskR3] − Pr[S2 ∧ ¬AskR2]| ≤ Pr[FailG3],

|Pr[¬S3 ∧ ¬AskR3] − Pr[¬S2 ∧ ¬AskR2]| ≤ Pr[FailG3].

Additionally,

Pr[FailG3] ≤ qD ·
(qF

2k′
+

qH

#P + 2γ + neglF + neglG + 2neglH

)
,

1 Although Theorem2.8states that there is a statistical distance, we ignore the above statistical distance, in order to simplify
the analysis.
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where

neglF ≤


1

#P

(
5qF + 1+

4q2
F

#P + 20qF
ln #P

ln ln #P

)
if 2k′ · #S ≥ #P,

1
2k′ ·#S

(
5qF + 1+

4q2
F

2k′ ·#S + 20qF
ln #P

ln ln #P

)
if 2k′ · #S < #P,

neglG ≤


1

2k′

(
5qG + 1+

4q2
G

2k′ + 20qG
ln 2k′

ln ln 2k′

)
if #M ≥ 2k′ ,

1
#M

(
5qG + 1+

4q2
G

#M + 20qG
ln 2k′

ln ln 2k′

)
if #M < 2k′ ,

neglH ≤


1

#R

(
5qH + 1+

4q2
H

#R + 20qH
ln #R

ln ln #R

)
if #M · #P ≥ #R,

1
#M·#P

(
5qH + 1+

4q2
H

#M·#P + 20qH
ln #R

ln ln #R

)
if #M · #P < #R.

Proof. The first part is trivial, since the decryption algorithms are equal ifFailG does not occur. To show
the second part, we follow the arguments in [GMMV05] with little corrections.

Let Failk denote the event thatFailG3 firstly occurs at thek-th query to the decyrption oracle. Obvi-
ously, Pr[FailG3] =

∑qD

k=1 Pr[Failk].
Suppose that thek-th query to the decryption oracle isc = (c1, c2, c3) and the eventFailk occurs. This

means thatc1 = Encpk(r; h′) for someh′, where (r, ∗) < TG, andD2 obtainsg← ROG(r), m← c2 ⊕ g,
f ← ROF(m, c3) andh← ROH( f , r) such thatc1 = Encpk(r; h).

We split the event into the following four cases:

1. (m, f ) ∈ TF and (f , r, h) ∈ TH.

2. (m, ∗) < TF but (f ′, r,h) ∈ TH for somef ′.

3. (m, f ) ∈ TF but (f , r, ∗) < TH.

4. (m, ∗) < TF and (∗, r, ∗) < TH.

In the case 1, for any (m, f ) ∈ TF , there is the corresponding triplet (f , r, h) ∈ TH such thatc1 =

Encpk(r; h) in the worst case. Hence, the probabityg← ROG(r) satisfiesm′ = c2 ⊕ g for some (m′, ∗) ∈
TF is at least thatFailk occurs in this case. The probaiblity is simply upper bounded byqF/2k′ + neglG
by the help of Lemma2.4.

In the case 2, we assume that every triplet inTH is corresponding toc1 in the worst case, that is every
triplet is in the form (f ′, r,h′) such thatc1 = Encpk(r; h′). But, since the valuef is not determined, the
probability thatf obtained byROF(m, c3) is one of the elements in triplets, is at mostqH/#P + neglF .

In the case 3, we have simply the upper boundγ + neglH becauseh is not determined.
In the case 4, sinceh is not determined yet, we have the upper boundγ + neglH.
By summing up, we have

Pr[Failk] ≤
qF

2k′
+

qH

#P + 2γ + neglF + neglG + 2neglH ,

Pr[FailG] ≤ qD ·
(qF

2k′
+

qH

#P + 2γ + neglF + neglG + 2neglH

)
.

�

Lemma D.5. Game3 andGame4 are almost identical if the eventAskG does not occur. In particular,
we have that

AdvIND
CCA2 ≤ Pr[AskR4] + |Pr[S4 ∧ ¬AskR4] − Pr[¬S4 ∧ ¬AskR4]| + 3 Pr[FailG3] + 3neglG.
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Proof. If the eventAskG does not occur, inGame3, g+ ← ROG(r+) is almost uniformly at random from
our weak uniformity lemma (Lemma2.4). In Game4, g+ ← {0, 1}k′ is uniformly at random. Hence, two
games differ only withinneglG.

�

Lemma D.6. Game4 andGame5 are almost identical if the eventAskH does not occur. In particular,
we have that

AdvIND
CCA2 ≤ Pr[AskR5] + |Pr[S5 ∧ ¬AskR5] − Pr[¬S5 ∧ ¬AskR5]| + 3 Pr[FailG3] + 3neglG + 3neglH .

Proof. If the eventAskH does not occur, inGame4, h+ ← ROH(ROF(mb, s∗), r+) is almost uniformly
at random from our weak uniformity lemma (Lemma2.4). In Game5, h+ ← R is uniformly at random.
Hence, two games differ only withinneglH.

�

Lemma D.7. In Game5, we have

|Pr[S5 ∧ ¬AskR5] − Pr[¬S5 ∧ ¬AskR5]| ≤ 0.

Proof. Sinceg+ is uniformly distributed over{0, 1}k′ and the adversary cannot knowg+, the lemma
follows. �

Lemma D.8. Game5 andGame6 are identical ifFailD does not occur, whereFailD denotes the event
that D6 fails in some decryption query to the decryption oracle butD5 suceeds, whereDi denotes the
decryption algorithm inGamei . We have that

Pr[AskR5] ≤ Pr[AskR6] + Pr[FailD].

Proof. It follows the argument in the proof of Theorem3.1.
�

Lemma D.9. In Game6, we have

Pr[FailD] ≤ qD ·
(qH

#P + 2γ + neglF + 2neglH

)
.

Proof. Let Failk denote theD6 firstly fails in thek-th query to the decryption oracle butD5 succeeds. So,
we have Pr[FailD] =

∑qD

k=1 Pr[Failk].
Suppose that thek-th decryption query is the ciphertextc = (c1, c2, c3). SinceD5 suceeds, we have

thatc1 = Encpk(r; h) for somer ∈ M andh ∈ R, and (r,g) ∈ TG. Additionally, sinceg is now fixed,
m= c2⊕g is also fixed. Moreover, we can fixf ← ROF(m, c3). Finally, we have that, for̃h← ROH( f , r),
c1 = Encpk(r; h̃), since the final check ofD5 is passed.

On the other hand,D6 fails if f andh̃ are not determined.
We splitFailk into the following three cases:

1. (m, c3, ∗) < TF and (f , r, h̃) ∈ TH for somef ,

2. (m, c3, f ) ∈ TF for somef but (f , r, ∗) < TH.

3. (m, c3, ∗) < TF and (∗, r, ∗) < TH.
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In the case 1,D5 succeeds if (f ′, r, h̃) ∈ TH where f ′ ← ROF(m, c3). We can upper bound this
probability byqH/#P + neglF since f ′ is distributed according to almost uniform distribution overP.

In the case 2,D5 succeeds ifc1 = Encpk(r; h′) whereh′ ← ROH( f , r). This probability is at most
γ + neglH becauseh′ is distributed according to almost uniform distribution overR.

By the similar way to the above,D5 succeeds in ifc1 = Encpk(r; h′) whereh′ ← ROH( f ′, r) and
f ′ ← ROF(m, c3).

Summing up them, we have

Pr[Failk] ≤
qH

#P + 2γ + neglF + 2neglH ,

Pr[FailD] ≤ qD ·
(qH

#P + 2γ + neglF + 2neglH

)
.

�

Lemma D.10. Game6 andGame7 are identical. We havePr[AskR6] = Pr[AskR7].

Proof. Recall that the decryption algorithmD6 in Game6 does not query to any random oracle. Hence,
we can safely replaceD6 with PE.

�

Lemma D.11. In Game7, we have

Pr[AskR7] ≤ (qG + qH) · AdvOW
CPA.

Proof. We construct an adversaryB against the OW-CPA security of the underlying schemePKE from
the adversaryA in Game7. The description of the new adversaryB is as follows:

• B first choosesg+ ← {0, 1}k′ . Receiving (pk, c∗1 = Encpk(r+; h+)) from its challenger, where
r+ ←M andh+ ← R,B feedspk toA. On decryption queries,B runs the plaintext extractorPE.

• Receivingm0 andm1 fromA, B generates the target ciphertext. It choosess+ ← S and queries
(m0, s+) and (m1, s+) to ROF . Then, it flips a fair coinb ← {0,1} and computesc∗2 ← g+ ⊕ mb.
Then, it feeds (c∗1, c

∗
2, s
+) toA.

• Finally,A outputsb′. Then,B randomly choosesr from TG andTH and outputsr.

Notice thatB simulatesGame7 perfectly. SinceAskR7 occurs, the one of two tables containsr+.
We have

Pr[AskR7] ≤ (qG + qH)AdvOW
CPA.

�

E Proof of the Security of FO, Theorem3.5

We prove Theorem3.5 in the game style. In order to prove theIND-CCA2 security, it is necessary to
simulate the decryption oracle without knowing the secret keysk. This is done by using the following
plaintext extractorPE in the original proof [FO99].

The plaintext extractor PE: The plaintext extractor shares the two tablesTG andTH that are involved
in the simulation algorithmsROG andSPOG, and the simulation algorithmsROH andSPOH, respec-
tively. Given a decryption queryc = (c1, c2), PE inspects each entry (γ,gγ) ∈ TG and (µ, γ, hµ,γ) ∈ TH.
For each (γ,gγ) ∈ TG, it obtainsµ ← c2 ⊕ gγ. It next picks (µ, γ, h) ∈ TH. It checks wheter
c1 = Encpk(γ; h). If they hold,PE outputsµ as the decryption ofc and stops. Otherwise,PE returns⊥.
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Sequence of games: We start with the original attack game with respect toIND-CCA2 in theSPT-ROM,
and modify it step by step in order to obtain a game directly related to the adversary which breaks the
OW-CPA property ofPKE = (Gen,Enc,Dec).

• Game0: The original attack game with respect toIND-CCA2 in the SPT-ROM. A pair of keys
(pk, sk) is generated by using the key generation algorithmGen. The adversaryA is given the
public keypk and has access to the decryption oracleD, the random oraclesROG andROH, and
the second-preimage oraclesSPOG andSPOH. At some point in the game the adversaryA is
expected to output a pair of messages (m0,m1). Next a challenge ciphertext is produced by flipping
a coinb and producing a ciphertextc∗ of mb. This ciphertextc∗ is constructed as follows:

r∗ ←M, g∗ ← ROG(r∗), c∗2← g∗ ⊕mb,

h∗ ← ROH(mb, r
∗), c∗1← Encpk(r

∗; h∗).

Then the ciphertext (c∗1, c
∗
2) is given toA. Finally, the adversaryA outputs a bitb′.

• Game0.5: We replace the oraclesROG, ROH, SPOG, andSPOH with the algorithmsROG, ROH,
SPOG, andSPOH respectively. These algorithms are obtained by simply modifying the algo-
rithmsRO andSPO in AppendixA for G andH.

Furthermore we replace the decryption oracleD with the algorithmD which simply runs the
decryption algorithm using the secret keysk.

• Game1: We change the time for generatingr∗. The challenger first choosesr+ uniformly at
random and obtainsg+ ← ROG(r+).

• Game2: We modify the above game, by hooking queries to the algorithmsROG andROH. If the
query to the algorithm containsr+, the challenger stops. Otherwise, the query is passed to the
algorithms. Additionally, the challenger hooks answers from the algorithmsSPOG andSPOH. If
the answer containsr+, the challenger stops. Otherwise, the query is passed to the algorithms.

• Game3: We make the decryption algorithmD reject an undeterminedr. That is, the algorithmD
outputs⊥ if ( r, ∗) < TG for r ← Decsk(c1). In the after games, the algorithmD does not query to
ROG.

• Game4: We modify the generation ofg+. The challenger usesg+ ← {0,1}k′ instead ofg+ ←
ROG(r+).

• Game5: We modify the generation ofh+. The challenger choosesh+ ← R instead ofh+ ←
ROH(mb, r+). Hence,c∗ = (c∗1, c

∗
2) is (Encpk(r+; h+),g+ ⊕mb).

• Game6: We makeD reject an undetermind (m, r). I.e.,D outputs⊥ if (m, r, ∗) < TH in step 4. In
the after games, the algorithmD does not query to andROH.

• Game7: Finally, we replace the decryption algorithmD with the plaintext extractorPE.

Sequence of lemmas: Let qG and qH denote the number of queries made by the adversary to the
oracles corresponding toG andH, respectively.qD denotes the number of queries made by the adversary
to the decryption oracle. In the following, we denote byAskG+ andAskH+ the event that the adversary
queriesr∗ to the random oracle forG and the event that the adversary query (m, r∗) to the random oracle
for H for somem, respectively. We denote byAskG− andAskH− the event that the adversary obtains
r∗ from the collision oracle forG and the event that the adversary obtains (m, r∗) from the collision
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oracle forH for somem, respectively. LetAskG = AskG+ ∨ AskG−, AskH = AskH+ ∨ AskH−, and
AskR = AskG ∨ AskH.

Note that we have that

AdvIND
CCA2 ≤ |Pr[S0] − Pr[¬S0]| ≤ Pr[AskR0] + |Pr[S0 ∧ ¬AskR0] − Pr[¬S0 ∧ ¬AskR0]|.

Lemma E.1. Game0 andGame0.5 are statistically close2 and we have

Pr[S0] = Pr[S0.5].

Proof. The algorithmsROG andROH can simulate the random oracles for the hash functionsG andH.
The algorithmsSPOG andSPOH also can simulate the collision oracles for the hash funciotnsG and
H, respectively. Therefore,Game0 andGame0.5 are identical,

�

Lemma E.2. Game0.5 andGame1 are identical.

Proof. There is no change except the timing for the generatin ofr∗. It is obvious that the change does
not affect the games. ThereforeGame0.5 andGame1 are identical.

�

Lemma E.3. Game1 andGame2 are identical if the eventAskR does not occur. Hence, we have that

AdvIND
CCA2 ≤ Pr[AskR2] + |Pr[S2 ∧ ¬AskR2] − Pr[¬S2 ∧ ¬AskR2]|.

Proof. If the one of two events occur, the challenger inGame2 stops, but continues the game inGame1.
On the other hand, if the two events does not occur, the two games are identical. Therefore, we have that

Pr[AskR2] = Pr[AskR1],Pr[S2 ∧ ¬AskR2] = Pr[S1 ∧ ¬AskR1],Pr[¬S2 ∧ ¬AskR2] = Pr[¬S1 ∧ ¬AskR1].

The inequation thus follows from the above equations.
�

Lemma E.4. Game2 andGame3 are identical if the eventFailG3 does not occur, whereFailG denotes
the event that the adversary asks a valid ciphertext c but r is not contained inTG in some decryption
query inGame3. Then, we have

|Pr[AskR3] − Pr[AskR2]| ≤ Pr[FailG3],

|Pr[S3 ∧ ¬AskR3] − Pr[S2 ∧ ¬AskR2]| ≤ Pr[FailG3],

|Pr[¬S3 ∧ ¬AskR3] − Pr[¬S2 ∧ ¬AskR2]| ≤ Pr[FailG3].

Additionally,

Pr[FailG3] ≤ qD ·
(qH

2k′
+ γ + neglG + neglH

)
,

where

neglG ≤


1

2k′

(
5qG + 1+

4q2
G

2k′ + 20qG
ln 2k′

ln ln 2k′

)
if #M ≥ 2k′ ,

1
#M

(
5qG + 1+

4q2
G

#M + 20qG
ln 2k′

ln ln 2k′

)
if #M < 2k′ ,

neglH ≤


1

#R

(
5qH + 1+

4q2
H

#R + 20qH
ln #R

ln ln #R

)
if 2k′ · #M ≥ #R,

1
2k′ ·#M

(
5qH + 1+

4q2
H

2k′ ·#M + 20qH
ln #R

ln ln #R

)
if 2k′ · #M < #R.

2 Although Theorem2.8states that there is a statistical distance, we ignore the above statistical distance, in order to simplify
the analysis.
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Proof. The first part is trivial, since the decryption algorithms are equal ifFailG does not occur. To show
the second part, we follow the arguments in [GMMV05] with little corrections.

Let Failk denote the event thatFailG3 firstly occurs at thek-th query to the decyrption oracle. Obvi-
ously, Pr[FailG3] =

∑qD

k=1 Pr[Failk].
Suppose that thek-th query to the decryption oracle isc = (c1, c2) and the eventFailk occurs. This

means thatc1 = Encpk(r; h′) for someh′, where (r, ∗) < TG, andD2 obtainsg← ROG(r), m← c2 ⊕ g,
andh← ROH(m, r) such thatc1 = Encpk(r; h).

We split the event into the following two cases:

1. (m, r, h) ∈ TH.

2. (m, r, ∗) < TH.

In the case 1, for any (m, r,h) ∈ TH such thatc1 = Encpk(r; h) in the worst case. Hence, the probabity
thatg← ROG(r) satisfiesm= c2 ⊕ g for (m, r,h) ∈ TH is at least that thatFailk occurs in this case. This
probaiblity is simply upper bounded byqH/2k′ + neglG.

In the case 2, we have the upper boundγ + neglH becauseh is not determined.
By summing up, we have

Pr[Failk] ≤
qH

2k′
+ γ + neglG + neglH ,

Pr[FailG3] ≤ qD ·
(qH

2k′
+ γ + neglG + neglH

)
.

�

Lemma E.5. Game3 andGame4 are almost identical if the eventAskG does not occur. In particular,
we have that

AdvIND
CCA2 ≤ Pr[AskR4] + |Pr[S4 ∧ ¬AskR4] − Pr[¬S4 ∧ ¬AskR4]| + 3 Pr[FailG3] + 3neglG.

Proof. If the eventAskG does not occur, inGame3, g+ ← ROG(r+) is almost uniformly at random from
our weak uniformity lemma (Lemma2.4). In Game4, g+ ← {0, 1}k′ is uniformly at random. Hence, two
games differ only withinneglG.

�

Lemma E.6. Game4 andGame5 are almost identical if the eventAskH does not occur. In particular,
we have that

AdvIND
CCA2 ≤ Pr[AskR5] + |Pr[S5 ∧ ¬AskR5] − Pr[¬S5 ∧ ¬AskR5]| + 3 Pr[FailG3] + 3neglG + 3neglH .

Proof. If the eventAskH does not occur, inGame4, h+ ← ROH(mb, r+) is almost uniformly at random
from our weak uniformity lemma (Lemma2.4). In Game5, h+ ← R is uniformly at random. Hence,
two games differ only withinneglH.

�

Lemma E.7. In Game5, we have

|Pr[S5 ∧ ¬AskR5] − Pr[¬S5 ∧ ¬AskR5]| = 0.

Proof. If AskR5 does not occur, the adversary cannot knowg+. Hence,mb⊕ g+ is uniformly distributed
and the lemma follows.

�
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Lemma E.8. Game5 andGame6 are identical ifFailD does not occur, whereFailD denotes the event
that D6 fails in some decryption query to the decryption oracle butD5 suceeds, whereDi denotes the
decryption algorithm inGamei . We have that

Pr[AskR5] ≤ Pr[AskR6] + Pr[FailD].

Proof. It follows the argument in the proof of Theorem3.1.
�

Lemma E.9. In Game6, we have

Pr[FailD] ≤ qD · (γ + neglH).

Proof. Let Failk denote theD6 firstly fails in thek-th query to the decryption oracle butD5 succeeds.
So, we have Pr[FailD] =

∑qD

k=1 Pr[Failk]. Suppose that thek-th ciphertextc = (c1, c2) as the decryption
query.

SinceD5 suceeds, we have thatc1 = Encpk(r; h) for somer ∈ M andh ∈ R, and (r, g) ∈ TG.
Additionally, sinceg is now fixed,m = c2 ⊕ g is also fixed. Hence, we have that, forh̃ ← ROH(m, r),
c1 = Encpk(r; h̃), since the final check ofD5 is passed. On the other hand,D6 fails if h̃ is not determined,
that is, (m, r, ∗) < TH.

We can upper bound the probability thath′ ← ROH(m, r) andc1 = Encpk(r; h′) by γ + neglH sicne
h′ is distributed according to almost uniform distribution overR.

Summing up them, we have

Pr[Failk] ≤ γ + neglH ,

Pr[FailD] ≤ qD · (γ + neglH).

�

Lemma E.10. Game6 andGame7 are identical. We havePr[AskR6] = Pr[AskR7].

Proof. Recall that the decryption algorithmD6 in Game6 does not query to any random oracle. Hence,
we safely replaseD6 with PE.

�

Lemma E.11. In Game7, we have

Pr[AskR7] ≤ (qG + qH) · AdvOW
CPA.

Proof. We construct an adversaryB against the OW-CPA security of the underlying schemePKE from
the adversaryA in Game7. The description of the new adversaryB is as follows:

• B first choosesg+ ← {0, 1}k′ . Receiving (pk, c∗1 = Encpk(r+; h+)) from its challenger, where
r+ ←M andh+ ← R,B feedspk toA. On decryption queries,B runs the plaintext extractorPE.

• Receivingm0 andm1 fromA, B generates the target ciphertext. It flips a fair coinb← {0,1} and
computesc∗2← g+ ⊕mb. Then, it feeds (c∗1, c

∗
2) toA.

• Finally,A outputsb′. Then,B randomly choosesr from TG andTH and outputsr.

Notice thatB simulatesGame7 perfectly and ifAskR7 occurs the one of two tables containsr+. We
have

Pr[AskR7] ≤ (qG + qH)AdvOW
CPA.

�
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F Proof of the Security of OAEP, Theorem3.7

Now we prove Theorem3.7after the original proof of the OAEP encryption scheme in theROM [FOPS04].
In order to prove theIND-CCA2 security, it is necessary to simulate the decryption oracle without know-
ing the secret keysk. This is done by using the following plaintext extractorPE as in [FOPS04].

The plaintext extractor PE: The plaintext extractor shares the two tablesTG andTH that are com-
monly used in the simulation algorithmROG,FPOG andROH ,FPOH, respectively. Given a decryption
query y = f (s, t), PE inspects each entry (γ,gγ) ∈ TG and (δ,hδ) ∈ TH. For each combination of
elements, it defines the following values:

σ = δ, θ = γ ⊕ hδ, µ = gγ ⊕ δ,

and checks whethery = f (σ, θ) andµ has the formm ∥ 0k1. If both of these hold,PE outputsm as the
decryption ofy and stops. If no such pair is found, the extractor returns⊥.

Sequence of games: We start with the original attack game with respect toIND-CCA2 in theFPT-ROM,
and modify it step by step in order to obtain a game directly related to the adversary which breaks the
partial-domain one-wayness property of the underlying trapdoor permutation.

• Game0: The original attack game with respect toIND-CCA2 in the FPT-ROM. A pair of keys
(pk, sk) is generated by using the key generation algorithm of the OAEP encryption scheme. Let
f = fpk denote the trapdoor permutation and letg = gsk denote its inverse. The adversaryA is
given the public keypk and has access to the decryption oracleD, the random oraclesROG and
ROH, and the first-preimage oraclesFPOG andFPOH. At some point in the game the adversary
is expected to output a pair of messages (m0,m1). Next a challenge ciphertext is produced by
flipping a coinb and producing a ciphertexty∗ of mb. This ciphertexty∗ is constructed as follows:

r∗ ← {0, 1}k0, s∗ ← (mb ∥ 0k1) ⊕ ROG(r∗), t∗ ← r∗ ⊕ ROH(s∗),

x∗ ← (s∗, t∗), y∗ ← f (x∗).

Then the ciphertexty∗ is given toA. Finally, the adversaryA outputs a bitb′.

• Game0.5: We replace the random oraclesROG andROH, and the first-preimage oraclesFPOG

andFPOH with the algorithmsROG,ROH, andFPOG,FPOH, respectively3. These algorithms
are obtained by simply modifying the algorithmsRO andFPO in AppendixA for G andH.

Furthermore we replace the decryption oracleD with the algorithmD which simply runs the
decryption algorithm using secret keysk

• Game1: We modify the above game, by moving the generation of the seedr∗ and the image
ROG(r∗) to the beginning of the game. That is, we randomly pick ahead of time somer+ ←
{0,1}k0, and user+ andROG(r+) instead ofr∗ andROG(r∗), respectively. The game obeys the
following rule:

– Rule: r∗ = r+ ands∗ = (mb||0k1) ⊕ ROG(r+). The other variables are generated as described
above, i.e.,t∗ = r+ ⊕ ROH(s∗), x∗ = s∗ ∥ t∗, andy∗ = f (x∗).

3In the proof [FOPS04] in the ROM, they implicitly make the replacement of the random oracles with the algorithms
Std.RO.
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• Game2: We modify the above game, by replacing the imageROG(r+) by randomly choseng+ in
the construction ofs∗. (The challengerdoes notset the pair (r+, g+) in the table ofG.) That is,
we randomly pick ahead of time someg+ ← {0, 1}k−k0 and useg+ instead ofROG(r+). The game
obeys the following rule:

– Rule: r∗ = r+ ands∗ = (mb||0k1) ⊕ g+. The other variables are generated as described above,
i.e., t∗ = r+ ⊕ ROH(s∗), x∗ = s∗ ∥ t∗, andy∗ = f (x∗).

• Game3: We now move the generation ofs∗ andROH(s∗) to the beginning of the game and make
it independent of anything else. That is, we randomly pick a head of time somes+ ← {0, 1}k−k0,
and uses+ andROH(s+) instead ofs∗ andROH(s∗), respectively. The game obeys the following
rule:

– Rule: g+ = (mb ∥ 0k1) ⊕ s+ andt∗ = r+ ⊕ ROH(s+).

• Game4: We modify the above game, by replacing the imageROH(s+) by randomly chosenh+.
(Again, the challengerdoes notset the pair (s+, h+) in the table ofH.) That is, we randomly pick
a head of time someh+ ← {0, 1}k0, and useh+ instead ofROH(s+). The game obeys the following
the rule:

– Rule: g+ = (mb ∥ 0k1) ⊕ s+ andt∗ = r+ ⊕ h+.

• Game5: Again we change the generation of the challenge ciphertext. We now pickt+ ← {0, 1}k0

and replacet∗ by t+. Then the ciphertexty∗ = f (s+, t+) is a uniformly chosen image off .

• Game6: We now change the decryption algorithmD. We make the decryption algorithmD reject
all ciphertextsy = f (s, t) such that the hash value of the correspondingr = t ⊕ ROH(s) has not
been determined yet, i.e.,r has not been previously queried toROG or r has not been replied by
FPOG.

Note that from now on the decryption algorithmD does not make a new query toROG any more,
because the necessary query has been made already.

• Game7: We further change the decryption algorithmD. We make the decryption algorithmD
additionally reject all ciphertextsy = f (s, t) such that the hash value ofshas not been determined
yet, i.e.,s has not been previously queried toROH or s has not been replied byFPOH.

Note that from now on the decryption algorithmD does not make a new query toROH any more,
because the necessary query has been made already.

• Game8: Now the decryption algorithmD only decrypts ciphertexty such that correspondingr and
s have been already determined, respectively, and hence we can replace the decryption algorithm
D by the plaintext extractorPE which perfectly simulates the decryption algorithmD without
knowing the secret keysk.

Sequence of lemmas: Let qG andqH denote the number of queries made by the adversary to both
the random oracle and the first-preimage oracle forG andH, respectively. LetqD denote the number
of queries made by the adversary to the decryption oracle. We denote byS0 the eventb′ = b in the
Game0 and use a similar notationSi in any subsequent game. Furthermore, we denote byAdvIND

CCA2
the advantage of the adversary in theIND-CCA2 game in theFPT-ROM. Then by definition, we have
AdvIND

CCA2 = 2
∣∣∣Pr[S0] − 1

2

∣∣∣. We can bound this probability by the following lemmas.
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Lemma F.1. Game0 andGame0.5 are statistically to close4, we have

Pr[S0] = Pr[S0.5].

Proof. By Theorem2.8, the algorithmsROG andFPOG andROH andFPOH can simulate the random
oracles and the first-preimage oracle for the hash functionsG andH. Therefore,Game0 andGame0.5

are statistically close, and we have

Pr[S0] = Pr[S0.5].

�

Lemma F.2. Game0.5 andGame1 are identical, and we have

Pr[S0.5] = Pr[S1].

Proof. The seedr∗ is independent of anything else that is appear before generating the challenge cipher-
text. Therefore moving the generation of the seedr∗ to the beginning of the game does not change the
game. ThereforeGame0.5 andGame1 are identical, and we have

Pr[S0.5] = Pr[S1].

�

Lemma F.3. Game1 andGame2 are statistically close if the hash value of r+ is not determined and if
g⋄ = (m1−b ∥ 0k1) ⊕ s∗ is not queried toFPOG, and we have

|Pr[S1] − Pr[S2]| ≤ Pr[AskG2] + neglG,

neglG =
1

2k0

5qG + 1+
4q2

G

2k0
+ 80qG

k− k0

log(k− k0)

 ,
where qG = qD + qG, AskG2 is the event that the hash value of r+ is determined inGame2 or the value
g⋄ is queried toFPOG. Furthermore, inGame2 we have

Pr[S2] =
1
2
.

Proof. Notice that inGame1, the adversary could win if it queriesg⋄ to FPOG. Sincek − k0 > k0 if it
obtains⊥ with high probability, it could determine thatm1−b is not implanted iny∗. In Game2 the adver-
sary cannot win the game, sinceg+ contains no information corresponding tomb andm1−b. Conditioned
on the event thatg⋄ is not queried toFPOG, by Lemma2.4, Game1 andGame2 are statistically close,
if the hash value ofr+ is not determined, i.e.,r+ is not queried toROG andr+ is not replied fromFPOG.
More precisely, letAskG+2 denote the event thatr+ is queried toROG in theGame2 by the adversaryA
or the decryption algorithmD, and letAskG−2 denote the event thatROG(r+) or g+ is queried fromFPOG

by the adversaryA and the reply isr+. Additionally, letAskG⋄2 denote the event thatg⋄ is queried to
FPOG in theGame2 by the adversaryA. Furthermore, we denoteAskG2 = AskG+2 ∨ AskG−2 ∨ AskG⋄2.
We use similar notationsAskG−i , AskG+i , AskG⋄i , andAskGi for any subsequent game. Then, from the
fact thatk0 < k− k0, we have

|Pr[S1|¬AskG1] − Pr[S2|¬AskG2]| ≤ neglG,

4 Although Theorem2.8states that there is a statistical distance, we ignore the above statistical distance, in order to simplify
the analysis.
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where

neglG =
1

2k0

5qG + 1+
4q2

G

2k0
+ 80qG

k− k0

log(k− k0)

 ,
and hence

|Pr[S1] − Pr[S2]| ≤ Pr[AskG2] + neglG.

Furthermore, inGame2 g+ is just used inx∗ but does not appear anywhere else in the computation.
Thus, the distribution on the challenge ciphertexty∗ does not depend onb, and hence Pr[S2] = 1

2.
�

Lemma F.4. Game2 andGame3 are identical, and we have

Pr[AskG2] = Pr[AskG3].

Proof. Whereas inGame2 g+ is randomly chosen ands∗ is defined ass∗ = (mb ∥ 0k1) ⊕ g+, in Game3

s+ is randomly chosen, andg+ ands∗ are defined asg+ = (mb ∥ 0k1) ⊕ s+ ands∗ = s+. Therefore the
distributions of the variables are identical in both games, and henceGame2 andGame3 are identical.
Then we have

Pr[AskG2] = Pr[AskG3].

�

Lemma F.5. Game3 and Game4 are statistically close if the hash value of s+ is not determined, and
we have

|Pr[AskG3] − Pr[AskG4]| ≤ Pr[AskH4] + neglH ,

neglH =
1

2k0

5qH + 1+
4q2

H

2k0
+ 80qH

k0

logk0

 ,
where qH = qD + qH andAskH4 is the event that the hash value of s+ is determined inGame4. Further-
more, inGame4 we have

Pr[AskG4] ≤ qG + qD

2k0−3
+ Pr[AskG⋄4]

Proof. By Lemma2.4, Game3 andGame4 are statistically close, if the hash value ofs+ is not deter-
mined, i.e.,s+ is not queried toROH ands+ is not replied fromFPOH. More precisely, letAskH+4 denote
the event thats+ is queried toROH in theGame4 by the adversaryA or the decryption algorithmD, and
let AskH−4 denote the event thatROH(s+) or h+ is queried fromFPOH by the adversaryA and the reply
is s+. Furthermore, we denoteAskH4 = AskH+4 ∨ AskH−4 . We use an similar notationAskH−i ,AskH+i ,
andAskHi for any subsequent game. Then, from the fact thatk0 < k− k0, we have

|Pr[AskG3|¬AskH3] − Pr[AskG4|¬AskH4]| ≤ neglH ,

where

neglH =
1

2k0

5qH + 1+
4q2

H

2k0
+ 80qH

k0

logk0

 ,
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and hence

|Pr[AskG3] − Pr[AskG4]| ≤ Pr[AskH4] + neglH .

Furthermore, we have

Pr[AskG4] ≤ Pr[AskG+4 ] + Pr[AskG−4 ] + Pr[AskG⋄4]

≤ Pr[AskG+4 |¬AskG−4 ] + 2 Pr[AskG−4 ] + Pr[AskG⋄4].

Sinceh+ is uniformly distributed and never revealed,r+ = t∗ ⊕ h+ is uniformly distributed and indepen-
dent of the adversary’s view. Therefore we have

Pr[AskG+4 |¬AskG−4 ] ≤ qG + qD

2k0
.

Moreover, sincer+ is uniformly distributed and independent ofg+, we have

Pr[AskG−4 ] ≤ qG + qD

2k0−1
.

Therefore we can conclude

Pr[AskG4] ≤ qG + qD

2k0−3
+ Pr[AskG⋄4].

�

Lemma F.6. Game4 andGame5 are identical, and we have

Pr[AskH4] = Pr[AskH5] and Pr[AskG⋄4] = Pr[AskG⋄5].

Proof. Sinceh+ andr+ are uniformly distributed and never revealed, replacingt∗ = h+ ⊕ r+ by t+ does
not change the game, and hence we have

Pr[AskH4] = Pr[AskH5] and Pr[AskG⋄4] = Pr[AskG⋄5].

�

Lemma F.7. Game5 andGame6 are statistically close, and we have

|Pr[AskH5] − Pr[AskH6]| ≤ qD

(
1

2k1
+ negl′G

)
,

∣∣∣Pr[AskG⋄5] − Pr[AskG⋄6]
∣∣∣ ≤ qD

(
1

2k1
+ negl′G

)
,

negl′G =
1

2k0

5qG + 1+
4q2

G

2k0
+ 80qG

k− k0

log(k− k0)

 .
Proof. Game5 andGame6 only differ if y is a valid ciphertext, and the hash value of the corresponding
r is not determined. More precisely, letValidG6 denote the event that at the decryption query inGame6,
y is a valid ciphertext (i.e.,s⊕ ROG(r) has the formm ∥ 0k1), andr is not queried toROG andr is not
replied fromFPOG. There being at mostqD decryption queries, we have

|Pr[AskH5] − Pr[AskH6]| ≤ qD Pr[ValidG6].

In order to bound this probability, we consider another gameGame6.5 where we change the decryp-
tion algorithmD in Game6. In Game6.5 we replace the imageROG(r) by randomly choseng← {0,1}k1.
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By Lemma2.4, Game6 andGame6.5 are statistically close, if the hash value ofr is not determined,
i.e., r is not queried toROG and r is not replied fromFPOG. More precisely, letaskG+6.5 denote the
event thatr is queried toROG in the Game6.5 by the adversaryA, and letaskG−6.5 denote the event
thatROG(r) or g is queried fromFPOG by the adversaryA and the reply isr. Furthermore, we denote
askG6.5 = askG+6.5 ∨ askG−6.5. Here we note that

Pr[ValidG6] = Pr[¬askG6] Pr[ValidG6|¬askG6],

Pr[ValidG6.5] = Pr[¬askG6.5] Pr[ValidG6.5|¬askG6.5],

Pr[askG6] = Pr[askG6.5],

and we have

|Pr[ValidG6] − Pr[ValidG6.5]|
= Pr[¬askG6.5] |Pr[ValidG6|¬askG6] − Pr[ValidG6.5|¬askG6.5]|
≤ |Pr[ValidG6|¬askG6] − Pr[ValidG6.5|¬askG6.5]| .

Then by Lemma2.4, we have

|Pr[ValidG6] − Pr[ValidG6.5]| ≤ negl′G,

where

negl′G =
1

2k0

5qG + 1+
4q2

G

2k0
+ 80qG

k− k0

log(k− k0)

 .
Furthermore, sinceg is uniformly distributed and never revealed, it only occurs with probability 2−k1

thats⊕ g has the formm ∥ 0k1. Then we have

Pr[ValidG6.5] ≤ 1

2k1
.

Therefore we can conclude

|Pr[AskH5] − Pr[AskH6]| ≤ qD

(
1

2k1
+ negl′G

)
.

By using the same argument as in the above, we have also

∣∣∣Pr[AskG⋄5] − Pr[AskG⋄6]
∣∣∣ ≤ qD

(
1

2k1
+ negl′G

)
.

�

Lemma F.8. Game6 andGame7 are statistically close, and we have

|Pr[AskH6] − Pr[AskH7]| ≤ qD

( qG

2k0
+ negl′H

)
,∣∣∣Pr[AskG⋄6] − Pr[AskG⋄7]

∣∣∣ ≤ qD

( qG

2k0
+ negl′H

)
,

negl′H =
1

2k0

5qH + 1+
4q2

H

2k0
+ 80qH

k0

logk0

 .
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Proof. Game6 andGame7 only differ if y is a valid ciphertext, and the hash value of the correspondingr
is determined, while the hash value of the correspondings is not determined. More precisely, letValidH7

denote the event that at the decryption query inGame7, y is a valid ciphertext (i.e.,s⊕ ROG(r) has the
form m ∥ 0k1), andr is queried toROG or r is replied fromFPOG, while s is not queried toROH ands
is not replied fromFPOH. There being at mostqD decryption queries, we have

|Pr[AskH6] − Pr[AskH7]| ≤ qD Pr[ValidH7].

In order to bound this probability, we consider another gameGame7.5 where we change the decryp-
tion algorithmD in Game7. In Game7.5 we replace the imageROH(s) by randomly chosens← {0,1}k1.
By Lemma2.4, Game7 andGame7.5 are statistically close, if the hash value ofs is not determined,
i.e., s is not queried toROH and s is not replied fromFPOH. More precisely, letaskH+7.5 denote the
event thats is queried toROH in the Game7.5 by the adversaryA, and letaskH−7.5 denote the event
thatROH(s) or h is queried fromFPOH by the adversaryA and the reply iss. Furthermore, we denote
askH7.5 = askH+7.5 ∨ askH−7.5. Here we note that

Pr[ValidH7] = Pr[¬askH7] Pr[ValidH7|¬askH7],

Pr[ValidH7.5] = Pr[¬askH7.5] Pr[ValidH7.5|¬askH7.5],

Pr[askH7] = Pr[askH7.5],

and we have

|Pr[ValidH7] − Pr[ValidH7.5]|
= Pr[askH7.5] |Pr[ValidH7|¬askH7] − Pr[ValidH7.5|¬askH7.5]|
≤ |Pr[ValidH7|¬askH7] − Pr[ValidH7.5|¬askH7.5]| .

Then by Lemma2.4, we have

|Pr[ValidH7] − Pr[ValidH7.5]| ≤ negl′H ,

where

negl′H =
1

2k0

5qH + 1+
4q2

H

2k0
+ 80qH

k0

logk0

 .
Furthermore, sinceh is uniformly distributed and so isr = h ⊕ t. Therefore the probability thatr has
been queried toROG is at mostqG · 2−k0. Then we have

Pr[ValidH7.5] ≤ qG

2k0
.

Therefore we can conclude

|Pr[AskH6] − Pr[AskH7]| ≤ qD

( qG

2k0
+ negl′H

)
.

By the similar argument to the above, we have also∣∣∣Pr[AskG⋄6] − Pr[AskG⋄7]
∣∣∣ ≤ qD

( qG

2k0
+ negl′H

)
.

�
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Lemma F.9. Game7 andGame8 are identical, and we have

Pr[AskH7] = Pr[AskH8] and Pr[AskG⋄7] = Pr[AskG⋄8].

Furthermore, inGame8 we have

Pr[AskH8],Pr[AskG⋄8] ≤ Pr[AskH8 ∨ AskG⋄8] ≤ (qH + 2qG)AdvPD-OW,

whereAdvPD-OW is the success probability of the partial-domain one-wayness of the underlying trap-
door permutation f .

Proof. In Game7 andGame8, the decryption algorithmD only decrypts ciphertexty such that corre-
spondingr ands have been already determined, respectively, and hence we can replace the decryption
algorithmD by the plaintext extractor which perfectly simulates the decryption algorithmD. Therefore
Game7 andGame8 are identical, and we have

Pr[AskH7] = Pr[AskH8].

Furthermore, inGame8 we do not use the secret keysk any more. By using the adversaryA in
Game8, we can output ans such that (s, t) = g(y∗) with probability at least Pr[AskH8 ∨ AskG⋄8]/(qH +

2qG). This is done by making a list which contains the queries toROH, and (m0∥0k1)⊕g and (m1∥0k1)⊕g,
whereg denotes each hash value inTG, and choose one element in list at random. This probability is
bounded by the partial-domain one-wayness of the underlying trapdoor permutationf , and hence we
have

Pr[AskH8 ∨ AskG⋄8] ≤ (qH + 2qG)AdvPD-OW.

�
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Summarizing the above bounds we can conclude the theorem.

1
2

AdvIND
CCA2 =

∣∣∣∣∣Pr[S0] − 1
2

∣∣∣∣∣ ≤ Pr[AskG2] + neglG,

neglG =
1

2k0

5qG + 1+
4q2

G

2k0
+ 80qG

k− k0

log(k− k0)

 ,
Pr[AskG2] ≤ Pr[AskG4] + Pr[AskH4] + neglH

≤ qD + qG

2k0−3
+ Pr[AskG⋄4] + Pr[AskH4] + neglH ,

neglH =
1

2k0

5qH + 1+
4q2

H

2k0
+ 80qH

k0

logk0

 ,
Pr[AskH4] ≤ Pr[AskH6] + qD(

1

2k1
+ negl′G),

Pr[AskG⋄4] ≤ Pr[AskG⋄6] + qD(
1

2k1
+ negl′G),

negl′G =
1

2k0

5qG + 1+
4q2

G

2k0
+ 80qG

k− k0

log(k− k0)

 ,
Pr[AskH6] ≤ Pr[AskH7] + qD(

qG

2k0
+ negl′H)

≤ (qH + 2qG)AdvPD-OW + qD(
qG

2k0
+ negl′H),

Pr[AskG⋄6] ≤ Pr[AskG⋄7] + qD(
qG

2k0
+ negl′H)

≤ (qH + 2qG)AdvPD-OW + qD(
qG

2k0
+ negl′H),

negl′H =
1

2k0

5qH + 1+
4q2

H

2k0
+ 80qH

k0

logk0

 .
G Overview of Approximation Sampling Algorithms

Sampling from the binomial distribution: Let us denote the binomial distribution with parameters
N andp by Bn(N, p).

The simplest method for sampling from Bn(N, p) can be constructed by simulating a toss of a biased
coin that faces up the head with probabilityp as follows: (1) pick a sampleu from [0, 1) uniformly at
random and (2) ifu ≤ p output H, otherwise output T. Then, we toss the biased coinN times by this
method, and output the number ofH, which distributed according to the target distribution. However, it
requiresN tosses.

Relles proposed a smart idea to sample from Bn(N, p) only with O(logN) samples [Rel72] from
some other distribution. Instead of tossingN biased coins, we sample a mediansof N uniform variables
over [0, 1). The outcomes≤ p implies that at leastN/2 coins face up the heads and the outcomes> p
implies that at leastN/2 coins face up the tails. Thus, the outcomes ofN/2 tosses can be determined
by one median ofN uniform variables over [0, 1). Recursively performing this procedure, sampling
medians inO(logN) times decides the number of the coins facing up the heads.

Let us assume thatN = 2K − 1. It is well-known that the beta distribution with the parameterK,
denoted by Be(K,K), coincides with the distribution of the median ofN uniform variables over [0,1).
Therefore, if we have a sampling algorithm for the beta distribution, we can sample from the binomial
distribution efficiently.
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Sampling from the beta distribution: The sampling from the beta distribution is a relatively easy
task. Assume that random variablesX andY are distributed according to the gamma distributions with
the parametersa andb, denoted by Ga(a) and Ga(b), respectively. Then, the ratioX/(X+Y) has the beta
distribution Be(a,b). Hence, if we have a sampling algorithm for the gamma distribution, it is sufficient
to sample from the beta distribution.

Sampling from the gamma distribution: Ahrens and Dieter proposed a sampling algorithm for
the gamma distribution using the Cauchy distribution in [AD74]. The algorithm is designed with the
acceptance–rejection principle, which appeared in the paper by von Neumann [vN51].

As an example of the acceptance–rejection method, we see the algorithm of Ahrens and Dieter [AD74].
Let us assume that we have a sampling algorithm for the Cauchy distribution with some parameters
conditioned on that the output of the sampling algorithm is positive. Letf (x; a) and g(x; a) denote
the probability density functions of the gamma distribution with the parametera and the conditional
Cauchy distributions, respectively. Let us further suppose that there exists a good functionC(a) such
that f (x; a) < C(a) · g(x; a) for anyx > 0 anda > 1. The main algorithm is summarized as follows:

1. Samplex from the conditional Cauchy distribution.

2. Sampleu from the uniform distribution over [0, 1).

3. If u < f (x; a)/(C(a)g(x; a)) outputx. Otherwise output⊥.

It is easy to verify that the gamma distribution coincides with the output distribution conditioned on that
the above algorithm does not output⊥. (For the details, see AppendixK.1.) Ahrens and Dieter studied
the above algorithm and explicitly showedC(a) such that for anya > 1 andx > 0, f (x; a) < C(a)g(x; a).

Sampling from the Cauchy distribution: Let us denote the Cauchy distribution with the parameters
(m, s) by Ca(m, s). We note that ifX has the distribution Ca(0, 1) thensX+mhas the distrbution Ca(m, s).
Therefore, we only consider Ca(0, 1).

We note the fact that if (X,Y) is uniformly distributed in the 2-dimensional unit disc, the distribution
of the ratioX/Y coincides with Ca(0,1). In order to sample a point from the uniform distribution over
the disc, we use a simple rejection method: (1) samplex andy from the uniform distribution over [−1, 1)
and (2) ifx2 + y2 ≤ 1 output (x, y), otherwise output⊥.

Discretizing the distributions and the computations: All of the above algorithms are analyzed in
an idealized computation model, which allows us to store and manipulate directly the real numbers.
Turning to a standard computation model with bounded precisions, we must discretize the distributions
and the parameters appeared in the algorithms appropriciately. In this process, we have to esitimate
precisely the statistical distances from the target distribution in addition to the compuational costs and
spaces. In order to estimate the statistical distance, we carefully define the sequence of the algorithms
whose outputs are close to the target distributions, as frequently done in security proofs in cryptography.

Our main theorem is stated as follows.

Theorem G.1 (Informal). There is a sampling algorithm such that for any positive integer N, any
0 ≤ p ≤ 1 represented byℓ bits, and any positive realϵ, the following properties are satisfied:

• the distribution of the output of the algorithm isϵ-close to the binomial distributionBn(N, p) and

• the running time of the algorithm is a polynomial inlogN, ℓ, andlog (1/ϵ).

We again stress that the statistical distance can be controlled by the distance parameterϵ indepen-
dently of the other parametersN andp, which is significant for cryptographic applications.
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Note on the Poisson distribution: By a similar technique, we can construct an efficient algorithm of
sampling the Poisson distribution. In the case of the Poisson distribution, we make use of the sampling
algorithms for the binomial and the gamma distributions.

H Preliminaries for Approximation Sampling Algorithms

Let X andY be two random variables over a setS. Let DX and DY be the distributions ofX andY,
respectively. We often abuse the notation ofDX, which will stand for the probability density function or
probability function. The statistical distance ofDX andDY, denoted by∆(DX,DY), is defined to be

∆(DX,DY) =
1
2

∫
w∈S
|DX(w) − DY(w)|dw.

We sayDX is ϵ-close toDY if ∆(DX,DY) ≤ ϵ.
If D is a distribution,x ← D denotes thatx is sampled according toD. Let S be a finite set. Let

s← S denote thats is sampled from the uniform distribution onS.
For any real numberx and any small positive real number 0< ϵ < 1, let Rϵ(x) be the truncating

function with precisionϵ. That is,Rϵ(·) truncates an input to⌈− logϵ⌉ binary places. We note that, if
x < 2k, the integral part ofRϵ(x) is of k-bit length and the decimal part of it is of⌈− logϵ⌉ bits. We also
note that|Rϵ(x) − x| < ϵ. In particular ifϵ = 2−k, Rϵ(x) = 2−k⌊2kx⌋. For any real numbersa andã and
any small positive real 0< ϵ < 1, we say that̃a is an approximation ofa with precisionϵ if |a− ã| < ϵ.

Assume thatX is a random variable overR and has a distributionDX. D̃X with precisionϵ denotes
the distribution ofRϵ(X).

X ∼ DX stands for thatX is a random variable according to the distributionDX.
In the following we recall the basic facts for the computations of numbers and define the notation

for the costs of calculations. We denote byTU the computational cost to toss a fair coin.

H.1 Calculations

Arithmetic operations: We first review the precision of arithmetic operations, addition, multiplica-
tion, and division.

Theorem H.1. For any real numbers a and b, let̃a and b̃ be the approximations for a and b with
precisionsϵ, respectively. We assume that2−l1 < a, ã, b, b̃ < 2l2. Thus,ã and b̃ are represented by
l2 + log(1/ϵ) bit. Then we can bound the precisions of four arithmetic operations withã andb̃:

• For addition and subtraction,̃a+ b̃ andã− b̃ are approximations of a+b and a−b with precision
2ϵ, respectively,

• for multiplication,ã̃b is an approximation of ab with precistion2l2+1ϵ, and

• for division,ã/̃b is an approximation of a/b with precision22l1+l2+1ϵ.

The running times of all operations are at most O((l1 + l2 + log (1/ϵ))3), that is,poly(l1, l2, log (1/ϵ)).

We denote byTA(n),TM(n),TD(n) the computation costs of addition, multiplication, and division
with n-bit numbers, respectively.

Square root: Let x be a positive square root of a real numbera, i.e.,x2 = a. We assume that 0≤ a < 2l

has ann-bit representation. Then we can compute an approximationx̃ of x with precisionϵ = 2−lROOT by
using a binary search withO(l + lROOT) comparisons. We will denote byTS(n, ϵ) the computation cost
of taking square root of ann-bit number with precisionϵ.
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Logarithm: Let x be the logarithm of a real numbera to the basee, i.e., lna = x. Furthermore, we
assume that 2−l < a < 2l has an-bit representation. By using the Taylor series of the logarihtm, we can
compute an approximatioñx of x with precisionϵLOG which dependsl andn.

We denote byTL(n, ϵ) the computation cost of taking the logarithm of ann-bit number with precision
ϵ to the basee. We note the following theorem used in the analyses.

Lemma H.2. For any positive real number a, let̃a be the approximation for a with precisionϵ, and let
x and x̃ be x= ln a and x̃ = ln ã, respectively. Furthermore we assume a, ã > 2−l . Then, we have the
bound that|x̃− x| < 2lϵ.

I Definitions of the Distributions

In this section we review the definitions of the uniform, Cauchy, gamma, beta, binomial, and Poisson
distributions.

The uniform distribution: For any real numbersa andb (a < b), let Un(a,b) be the uniform distri-
bution over the interval [a,b). The probability density function of the uniform distribution Un(a,b) is
defined as follows:

fUn(x | a, b) =

 1
b−a (a ≤ x < b)

0 (x < a or b ≤ x)
.

The Cauchy distribution: The Cauchy distribution Ca(x0, γ) is a continuous probability distribution.
It has a location parameterx0, specifying the location of the peak of the distribution, and a scale param-
eterγ.

The probability density function of the Cauchy distribution is defined as follows:

fCa(x | x0, γ) =
1
π

(
γ

(x− x0)2 + γ2

)
, (−∞ < x < ∞).

A Cauchy distribution withx0 = 0 andγ = 1 is called the standard Cauchy distribution.

The gamma distribution: The gamma distribution Ga(α, β) is a continuous probability distribution.
It has a shape parameterα and a scale parameterβ.

The probability density function of the gamma distribution can be expressed in terms of the gamma
function as follows:

fGa(x | α, β) =
1

Γ(α) · βα xα−1e−x/β, (0 < x < ∞).

where

Γ(α) =
∫ ∞

0
xα−1e−xdx, (α > 0).

A gamma distribution withβ = 1 is known as the standard gamma distribution. In this paper we
simply denote standard gamma distribution with a shape parametera > 0 by Ga(a).
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The beta distribution: The beta distribution Be(α, β) is a continuous probability distribution defined
on the interval [0, 1]. It has two positive shape parameters, denoted byα andβ.

The probability density function of the beta distribution is defined as follows:

fBe(x | α, β) = B(α, β)−1xα−1(1− x)β−1, (0 < x < 1).

The beta functionB(α, β) is defined as follows:

B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx, (α, β > 0).

The binomial distribution: The binomial distribution Bn(N, p) is the discrete probability distribution
of the number of successes in a sequence ofN independent 0/1 experiments, each of which yields success
with probability p. Such a success/failure experiment is also called a Bernoulli experiment.

The probability function of the binomial distribution is defined as follows:

fBn(x | N, p) =

(
N
x

)
px(1− p)N−x, (x = 0,1,2, · · · ,N).

The Poisson distribution: The Poisson distribution Po(λ) is a discrete probability distribution that
expresses the probability of a number of events occurring in a fixed period of time if these events occur
with a known average rate and independently of the time since the last event.

The probability function of the Poisson distribution is defined as follows:

fPo(x | λ) =
λx

x!
e−λ, (x = 0, 1, 2, · · · ).

J Inequalities for the Distributions

J.1 Inequalities for the Cauchy Distribution

Recall that the probability density function is

fCa(x | x0, γ) =
1
π
· γ

(x− x0)2 + γ2
, (−∞ < x < ∞).

We often use the integration
∫

dx
x2+b2 =

arctan(x/b)
b +C for anyb , 0, whereC denotes an integral constant.

Lemma J.1.
Pr

X∼Ca(0,1)

[
0 ≤ X ≤ 2−l1

]
≤ 2−l1.

Proof. It follows from the fact thatfCa(x | 0, 1) = 1
π

1
1+x2 < 1 for anyx. �

Lemma J.2.

Pr
X∼Ca(a−1,

√
2a−1)

[X < 0] ≤ 1
2
.
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Proof. We perform integration.

Pr
X∼Ca(a−1,

√
2a−1)

[X < 0] =
∫ 0

−∞
fCa(x, a− 1,

√
2a− 1)dx

=
1
π

[
arctan

(
x− (a− 1)
√

2a− 1

)]0

−∞

=
1
π

(
arctan

(
− a− 1
√

2a− 1

)
+
π

2

)
≤ 1
π

(0+ π/2) =
1
2
.

�

Lemma J.3. For any0 < ϵ < π/6,

Pr
X∼Ca(0,1)

[
X ≥ 2π3

9ϵ4

]
≤ ϵ.

Proof. Let us consider the following probability:

Pr
X∼Ca(0,1)

[X ≥ K] =
∫ ∞

K
fCa(x | 0, 1)dx=

1
π

(
π

2
− arctanK

)
.

Thus, we show thatπ2 − arctanK < ϵ for any 0< ϵ < π/6 andK > 2π3/(9ϵ4); that isK > tan(π/2− ϵ).
Consider a tangent line of a functiony = tanx at a point (θ, tanθ). The line is represented by

y = tanθ +
1

cos2 θ
(x− θ).

Recall that the function tanx is convex forx ∈ (0, π/2) and 1/ cos2 θ > 1. Thus, we have that
tanθ < θ/ cos2 θ for any 0< θ < π/2. Replacingθ by π/2− ϵ, we have

tan(π/2− ϵ) < 1
cos2(π/2− ϵ) (π/2− ϵ) < π

2 sin2 ϵ
.

We now prove that 1/ sin2 ϵ < 4π2/(9ϵ4), that is, sinϵ−3ϵ2/(2π) > 0 for 0< ϵ < π/6. The derivative
of sinϵ − 3ϵ2/(2π) is cosϵ − 3ϵ/π. Hence, for 0< ϵ < π/6, the derivative is not negative. Replacingϵ
with 0, we have 0. Thus, we have proved the inequality. This completes the proof. �

Lemma J.4. For any real values s> 1, b, andδ > 0,

∆(Ca(b, s),Ca(b, s+ δ)) ≤ 2δ.

Proof. Without loss of generality, we can setb = 0. For a real valuex, we define

gs(x) = fCa(x | 0, s) − fCa(x | 0, s+ δ).

Calculating the function, we have

gs(x) =
δ

π

s(s+ δ) − x2

(x2 + s2)(x2 + (s+ δ)2)
.

This function changes the sign atx = ±
√

s(s+ δ). To simplify integration, we first consider the follow-
ing integration: ∫ ∞

0
|gs(x)|dx=

∫ √
s(s+δ)

0
gs(x)dx−

∫ ∞

√
s(s+δ)

gs(x)dx.
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The integration is equal to

h(s, δ) =
2
π

arctan

√ s+ δ
s

 − arctan

(√
s

s+ δ

) .
Thus, the statistical distance is

∆(Ca(0, s),Ca(0, s+ δ)) =
1
2
· 2h(s, δ) = h(s, δ).

Applying the mean-value theorem, we have

h(s, δ) =
2
π

(
√

(s+ δ)/s−
√

s/(s+ δ)) · (1/(1+ c2))

for somec ∈ (
√

s/(s+ δ),
√

(s+ δ)/s), where we use the fact that (arctanx)′ = 1/(1 + x2). Since 2/π
and 1/(1+ c2) are less than 1, we haveh(s, δ) ≤

√
(s+ δ)/s−

√
s/(s+ δ). Now, we prove that the RHS

is at most 2δ. We divide the RHS into two parts:√
(s+ δ)/s−

√
s/(s+ δ) = (

√
(s+ δ)/s− 1)+ (1−

√
s/(s+ δ)).

The first part is at mostδ. To prove this, we consider
√

(s+ δ)/s− 1 ≤ δ. Transforming this inequality,
we haveδ(δ + 2− 1/s) ≥ 0. The transformed inequality holds ifδ ≥ 0 ands≥ 1.

The second part is also at mostδ. In order to show this, we check that 1−
√

s/(s+ δ) ≤ δ. Trans-
forming this, we haves ≥ (1− δ)2/(2− δ). Thus, it holds for 0< δ < 1 ands ≥ 1. This completes the
proof. �

J.2 Inequalities for the Gamma Distribution

Before stating the lemmas, we first recall that the definitions of incomplete gamma functions. (See
Abramowitz and Stegun [AS72, 6.5.1].) We first review the lower and upper incomplete gamma func-
tions: For anya > 0 andK > 0,

γ(K; a) =
∫ K

0
e−tta−1dt,

Γ(K; a) =
∫ ∞

K
e−tta−1dt.

We next recall the regularized lower incomplete gamma function

P(K; a) =
1
Γ(a)

∫ K

0
e−tta−1dt, (K > 0,a > 0).

The recurrence formula of this function is in [AS72, 6.5.21]:

P(K; a+ 1) = P(K; a) − Kae−K

Γ(a+ 1)
,

P(K; 1) = 1− e−K .

We next define the regularized upper incomplete gamma function

Q(K; a) =
1
Γ(a)

∫ ∞

K
e−tta−1dt, (K > 0, a > 0).

By the recurrence formula ofP(K; a), we have that

Q(K; a+ 1) = Q(K; a) +
Kae−K

Γ(a+ 1)
,

Q(K; 1) = e−K .
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Lemma J.5. For any positive integer a and any positive real t,

Pr
X∼Ga(a)

[
X ≤ 2−t

]
≤ 2−a(t+1).

Proof. We perform an integration.

Pr
X∼Ga(a)

[
X ≤ 2−t

]
=

∫ 2−t

0
fGa(x | a,1)dx

=

∫ 2−t

0

1
Γ(a)

xa−1e−xdx

≤
∫ 2−t

0

1
Γ(a)

xa−1dx

=
1
Γ(a)

· 1
a
· (2−t)a

=
2−at

a!
≤ 2−a(t+1).

�

Lemma J.6. For any positive integer a> 1 and any real K> a, we have that

Pr
X∼Ga(a)

[X ≥ K] ≤ 2−K+1+(a−1) logK .

Proof. We have that

Pr
X∼Ga(a)

[X ≥ K] = Q(K; a)

=
Ka−1e−K

(a− 1)!
+ Q(K; a− 1),

=
Ka−1e−K

(a− 1)!
+

Ka−2e−K

(a− 2)!
+ Q(K; a− 2),

= . . .

=

a−1∑
i=0

K ie−K

i!
.

SinceK > a > 1, we have that

a−1∑
i=0

K ie−K

i!
≤ Ka−1e−K

a−1∑
i=0

1
i!

≤ Ka−1e−K
∞∑

i=0

1
i!

≤ Ka−1e−K+1,

where we use
∑∞

i=0 1/i! = e. Hence, we have that

Pr
X∼Ga(a)

[X ≥ K] ≤ Ka−1e−K+1 ≤ 2−(K−1)+(a−1) logK .

�
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J.3 Inequality for the Beta Distribution

Lemma J.7. For any integer a> 0 and any reals0 ≤ p ≤ 1 andϵ > 0, we have

Pr
X∼Be(a,a)

[
p ≤ X ≤ p+ ϵ

] ≤ 4a(2a− 1)3ϵ.

Proof. Let us recall that the incomplete beta functionB(t;α, β) and the regularized beta functionI (t;α, β),
which are defined as follows:

B(t;α, β) =
∫ 1

t
xα−1(1− x)β−1dx, 0 < t < 1,

I (t;α, β) =
B(t;α, β)
B(α, β)

, 0 < t < 1.

If α andβ are integers, we have that

I (t;α, β) =
α+β−1∑

i=α

(
α + β − 1

i

)
ti(1− t)α+β−1−i .

(See Abramowitz and Stegun [AS72].)
Let us estimate the target probability. We defineA = 2a− 1 for the clarity.

Pr
X∼Be(a,a)

[
p ≤ X ≤ p+ ϵ

]
= I (p+ ϵ; a, a) − I (p; a, a)

=

A∑
i=a

(
A
i

) (
(p+ ϵ)i(1− (p+ ϵ))A−i − pi(1− p)A−i

)
≤

A∑
i=a

(
A
i

) ∣∣∣(p+ ϵ)i(1− (p+ ϵ))A−i − pi(1− p)A−i
∣∣∣

≤
A∑

i=0

(
A
i

) ∣∣∣(p+ ϵ)i(1− (p+ ϵ))A−i − pi(1− p)A−i
∣∣∣

= 2∆(Bn(A, p+ ϵ),Bn(A, p))

≤ 2A3(A+ 1)ϵ,

where in the last inequality, we use LemmaJ.9in AppendixJ.4. �

J.4 Inequalities for the Binomial Distribution

Lemma J.8. Let p be a non-negative real value. Let N be a positive integer such that Np≤ ϵ. Then,

Pr
X∼Bn(N,p)

[X , 0] ≤ 2ϵ.

Proof. Simply, we have that
Pr
X

[X = 0] = (1− p)N ≥ 1− 2Np.

Hence, we obtain that
Pr
X

[X , 0] ≤ 2Np≤ 2ϵ.

�
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Lemma J.9. Let0 ≤ p ≤ 1 be a real value. Let pϵ = p+ δ, where|δ| < ϵ. The statistical distance of two
binomial distributionsBn(N, pϵ) andBn(N, p) is bounded by N3(N + 1)ϵ/2. That is

∆ (Bn(N, pϵ),Bn(N, p)) <
1
2

N3(N + 1)ϵ.

Proof. Let δ be the error i.e.,pϵ = p+ δ where|δ| < ϵ. For 0≤ x ≤ n, we define

dN,p(x) = | fBn(x | N, p+ δ) − fBn(x | N, p)| .

In order to prove the theorem, we have to show

N∑
x=0

dN,p(x) < N3(N + 1)ϵ.

Therefore it is sufficient if dN,p(x) < N3ϵ for all x.

Casex = 0: We define

g(p) = fBn(0 | N, p) = (1− p)N.

The derivative ofg(p) is g′(p) = −N(1− p)N−1 and|g′(p)| ≤ N. According to the mean value theorem,
there isξ betweenp andp+ δ such thatg(p+ δ) − g(p) = δ · g′(ξ). We have

dN,p(0) = |g(p+ δ) − g(p)| ≤
∣∣∣δ · g′(ξ)∣∣∣ ≤ Nϵ.

Casex = N: In the similar way as above, we have

dN,p(n) ≤ Nϵ.

Casex , 0,N: For the fixed valuex, we define

g(p) = fBn(x | N, p) =

(
N
x

)
px(1− p)N−x.

Then the derivative ofg(p) is

g′(p) =

(
N
x

)
px−1(1− p)N−x−1(x− Np)

=
N
x

(
N − 1
x− 1

)
px−1(1− p)N−x−1(x− Np)

= N

(
N − 1
x− 1

)
px−1(1− p)N−x−1

(
1− Np

x

)
.

According to the mean value theorem, there isξ betweenp andp+ δ such that

g(p+ δ) − g(p) = δ · g′(ξ).

We have

dN,p(x) = |g(p+ δ) − g(p)| ≤
∣∣∣δ · g′(ξ)∣∣∣ ≤ Nϵ

(
N − 1
x− 1

)
ξx−1(1− ξ)N−x−1

∣∣∣∣∣1− Nξ
x

∣∣∣∣∣ .
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We notice that

max
∣∣∣∣∣1− Nξ

x

∣∣∣∣∣ =
1− Nξ

N−1 < 1− ξ (case 1)

−(1− Nξ) < Nξ (case 2)
.

If case 1 occurs,

dN,p(x) ≤ Nϵ

(
N − 1
x− 1

)
ξx−1(1− ξ)N−x ≤

N−1∑
x=1

Nϵ

(
N − 1
x− 1

)
ξx−1(1− ξ)N−x = Nϵ.

If case 2 occurs,

dN,p(x) ≤ N2ϵ

(
N − 1
x− 1

)
ξx(1− ξ)N−x−1

= N2ϵ
x

N − x

(
N − 1

x

)
ξx(1− ξ)N−x−1

≤ N3ϵ

(
N − 1

x

)
ξx(1− ξ)N−x−1

≤
N−1∑
x=0

N3ϵ

(
N − 1

x

)
ξx(1− ξ)N−x−1

= N3ϵ.

In both cases, we have

dN,p(x) ≤ N3ϵ

as required. �

K Approximation Sampling Algorithms

In this section we show the algorithms that the distributions of the outputs of these algorithms are statis-
tically close to the discretized versions of the Cauchy, gamma, and beta distributions and the binomial
distribution, respectively.

We first recall the well-known acceptance–rejection method. Next, we review the existing algorithms
and analyze them.

Preliminaries: For ϵ = 2−i wherei is some positive integer, letRϵ(x) denote 2−i · ⌊2i x⌋. For a contin-
uous distributionD, the discretized distributioñD with precisionϵ meansRϵ(D).

K.1 The Acceptance–Rejection Method

We recall the acceptance–rejection method, the one of the basic methodologies for sampling from non-
uniform distributions. This technique is formalized by von Neumann [vN51].

Suppose that we want to sample values according to a distributionD f overS which is defined by a
probability density functionf (x). Assume that we can sample values according to another distribution
Dg overS which is defined by a probability density functiong(x). If, for anyx ∈ S, we havef (x) < cg(x)
for somec > 1, we can use the acceptance–rejection method in order to sample fromD f . The algorithm
is as follows:
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1. Samplex← Dg andu← Un(0,1).

2. If u < f (x)/cg(x), outputx. Otherwise output⊥.

In order to simplify the notation, we defineh(x) = f (x)/(cg(x)) in this subsection. LetDh denote
the distribution of the output of the above algorithm usingh(x). Dh(x) denotes the probability density
function of the distributionDh.

For a random variableU ∼ U(0, 1) andx ∈ S,

Pr

[
U ≤ f (x)

cg(x)

]
= Pr

[
U ≤ f (X)

cg(X)
| X = x

]
=

f (x)
cg(x)

= h(x).

Thus,

Dh(x) =

 f (x)
cg(x) · g(x) = f (x)

c (x ∈ S)

1− 1/c (x = ⊥)
.

Therefore,D f coincides with the distribution of the output conditioned on that the output is not⊥.
The following lemmas are used in later.

Lemma K.1. Consider the following algorithm:

1. Initialize i← 0.

2. Sample x← Dg and u← Un(0,1).

3. If u < f (x)/(cg(x)), output x. If i≥ r output⊥. Otherwise go to Step 2.

Let D denote the output distribution of the above algorithm. Then,

∆(D,D f ) =

(
1− 1

c

)r

.

Lemma K.2. Let h̃(x) be a function such that for any x∈ S ,
∣∣∣h(x) − h̃(x)

∣∣∣ < ϵ. Then, we have

∆(Dh,Dh̃) ≤ ϵ.

Lemma K.3. Let DUn denote the distribution of the output of the algorithm using u← Un(0,1). Let
DŨn denote the distribution of the output of the algorithm using u← {0, 1}l . Then,

∆(DUn,DŨn) ≤ 2−l .

Proof of LemmaK.1. SinceD f coincides with the conditional distribution given that the output is not
⊥, we have that

D(x) =

(1− (1− 1/c)r ) f (x) (x ∈ S)

(1− 1/c)r (x = ⊥)
.

To ease of notation, letδ denote (1− 1/c)r . We obtain that

∆(D,D f ) =
1
2

∫
x∈S∪{⊥}

|D(x) − f (x)|dx

=
1
2

(
D(⊥) +

∫
x∈S
|D(x) − f (x)|dx

)
=

1
2

(
δ +

∫
x∈S

(1− δ) f (x)dx

)
=

1
2
· 2δ = δ,

which completes the proof. �
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Proof of LemmaK.2. Let us consider the distributionDh̃. If we useh̃ in the criterion, we have that for a
random variableU ∼ U(0,1) andx ∈ S

Pr[U ≤ h̃(x)] = Pr[U ≤ h̃(X) | X = x] = h̃(x).

So, ∣∣∣∣Dh̃(⊥) − Dh(⊥)
∣∣∣∣ = ∣∣∣∣∣∣

(
1−

∫
x∈S

h̃(x)g(x)dx

)
−

(
1−

∫
x∈S

h(x)g(x)dx

)∣∣∣∣∣∣
=

∣∣∣∣∣∫
x∈S

(h̃(x) − h(x))g(x)dx
∣∣∣∣∣

≤
∫

x∈S

∣∣∣h̃(x) − h(x)
∣∣∣ g(x)dx

≤
∫

x∈S
ϵ · g(x)dx

= ϵ.

Suppose thatDh̃(⊥) = Dh(⊥)+δ = 1−1/c+δ. We note that|δ| ≤ ϵ. The probability density function
of Dh̃ is

Dh̃(x) =

h̃(x) · g(x) (x ∈ S)

1− 1/c+ δ (x = ⊥)
.

We obtain the inequality as follows:

∆(Dh̃,Dh) =
1
2

∫
x∈S

∣∣∣∣Dh̃(x) − Dh(x)
∣∣∣∣ dx+

1
2

∣∣∣∣Dh̃(⊥) − Dh(⊥)
∣∣∣∣

≤ 1
2

∫
x∈S

∣∣∣h̃(x) − h(x)
∣∣∣ g(x)dx+

ϵ

2

≤ ϵ
2
+
ϵ

2
≤ ϵ.

�

Proof of LemmaK.3. Let us define

h̃(x) = Pr
u←{0,1}l

[u ≤ h(x)] .

The probability density functionDŨn(x) for x ∈ S is DŨn(x) = h̃(x)g(x). Notice that for anyx ∈ S,∣∣∣∣∣∣ Pr
u←Un(0,1)

[u ≤ h(x)] − Pr
u←{0,1}l

[u ≤ h(x)]

∣∣∣∣∣∣ ≤ 2−l .

The remaining part of the proof is the same as the proof of LemmaK.2. �

K.2 Sampling from the Cauchy Distribution based on the Uniform Distribution

We adopt the algorithmCU in [Dev86, Chapter 9.5.3] with a little modification in order to discretize
outputs. Let us introduce two parameters, the threshold parameterrCU ∈ N and the precision parameter
ϵCU = 2−a for some positive integera. See Figure5 for the description of the algorithmCU.

Theorem K.4. The distribution of the output of the algorithmCU is 2−rCU-close toC̃a(0, 1) with preci-
sionϵCU. That is,

∆(CU, C̃a(0, 1)) ≤ 2−rCU .
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Algorithm CU
1. Initialize i ← 0.
2. Take samplesu ← Un(−1, 1) andv ←

Un(0,1).
3. Setx← u/v.
4. If u2 + v2 ≤ 1 then outputRϵCU(x). If i ≥

rCU then output⊥. Otherwisei ← i + 1
and go to Step 2.

Figure 5:Algorithm CU

Algorithm DiscCU
1. Initialize i ← 0.
2. Take samplesu ← {0,1}lu+1 and v ←
{0,1}lu.

(a) Consider asu ∈ [−1,1) andv ∈
[0, 1).

(b) If |u| < 2−tu or v < 2−tu,

i. if i ≥ rCU then output⊥.
ii. Otherwise increasei ← i + 1

and go to Step 2.

3. Setx← u/v.

(a) If |x| < 2−tlow or |x| > 2thigh,

i. if i ≥ rCU then output⊥.
ii. Otherwise increasei ← i + 1

and go to Step 2.

4. If u2 + v2 ≤ 1 then outputRϵCU(x). If i ≥
rCU then output⊥. Otherwise increase
i ← i + 1 and go to Step 2.

Figure 6:Algorithm DiscCU

Proof. Conditioned on thatCU does not output⊥, the conditional distribution of the output is exactly
C̃a(0, 1) [Dev86]. Since the area of the half of the unit disk isπ/2, in each iteration, the probability that
the output is⊥ is 1− π/4 ≤ 1/2. By LemmaK.1, the statistical distance is at most 2−rCU . �

We adapt the algorithmCU to discrete samplings. We call our algorithmDiscCU. In the algorithm
(Figure6), we use a lot of (flexible) parameters. The properties of the algorithm (e.g., precision) depend
on the flexible parameters.

Theorem K.5. The sample from the algorithm has following properties:

• The output length islog(HCU) + log(1/ϵCU) bits,
• the running time of the algorithm is at most TCU,
• the absolute value of output is at most HCU and at least LCU, and
• the output distribution is∆CU-close toC̃a(0, 1) with precisionϵCU,

where the parameters are as follows:

ϵCU > 2−lu+(2tu+1),

TCU ≤ rCU ·O ((2lu + 1)TU + TD(lu) + TM(lu) + TA(2lu)) ,

HCU = 2thigh,

LCU = 2−tlow ,

∆CU ≤ 2−rCU + rCU(2−tu+1 + 2−tlow+1 + 2−thigh/4+1 + 8π2−lu).

Proof.

On ϵCU: We first estimate the precision of the output. At Step 1, we sampleu andv in lu + 1 andlu
bits, respectively, which means that eachu andv has precision 2−lu. Since we guarantee 2−tu ≤ |u| , v, by
Theorem 1,x has precision at least 2−lu+(2tu+1). In the following, we setϵCU > 2−lu+2tu+1.
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On HCU and LCU: At Step 3-(a), we reject too large or smallx. It is obvious that 2−tlow ≤ |x| ≤ 2thigh.
Thus,HCU = 2thigh andLCU = 2−tlow .

On ∆CU: In order to estimate the statistical distance, we consider the sequence of the algorithms.

CU0(): This is the algorithmCU() with no repeat.

CU1(): We add the discarding procedure to Step 3. The algorithm discardsx if |x| < 2−tlow or |x| > 2thigh.

CU2(): Let us defineδ = 2−lu. We replace the criterionu2 + v2 ≤ 1 with Rδ(u)2 + Rδ(v)2 ≤ 1.

CU3(): We replace the output procedurex← RϵCU(u/v) with x← RϵCU(Rδ(u)/Rδ(v)).

CU4(): We discard badu andv. In Step 2, if|u| < 2−tu or v < 2−tu then discard them.

CU5(): We revivego to in Steps 2, 3, and 4. This is the algorithmDiscCU().

We first estimate∆(CU0,CU1), the effect of the discarding procedure in Step 3. The two lemmas
in AppendixJ.1(LemmaJ.1and LemmaJ.3) show thatx falls into [2−tlow ,2thigh] with high probability.
By setting 2thigh = 2π3/(9ϵ4) in LemmaJ.3, we have that the probability thatx > 2thigh is less than
ϵ ≤ 2−thigh/4. Thus, this discarding causes the statistical distance from the target distribution at most
2−tlow+1 + 2−thigh/4+1.

Next, we estimate∆(CU1,CU2). Note that, for small positiveδ, π(1 + 2δ)2 − π ≤ 8πδ. Thus, the
change of the criterion induces the statistical distance at most 8π2−lu.

We next estimate∆(CU2,CU3). Since we setϵCU > 2−lu+(2tu+1), this causes no error, that is,
∆(CU2,CU3) = 0.

We also estimate∆(CU3,CU4). If |u| , v < 2−tu, the algorithmCU4 outputs⊥. So, the statistical
distance is at most 2−tu+1.

Summing up the above discussions, the statistical distance∆(CU0,CU4) is at most 2−tu+1+2−tlow+1+

2−thigh/4+1 + 8π2−lu.
Additionally, at Step 4, a rejection occurs with probability (2− π/2)/2 ≤ 1/2. Thus, repeating the

algorithmrCU times, the probability that the algorithm outputs⊥ is at most 2−rCU .
Compiling the above arguments,∆CU is at most 2−rCU+rCU(2−tu+1+2−tlow+1+2−thigh/4+1+8π2−lu). �

K.3 Sampling from the Gamma Distribution based on the Cauchy and the Uniform Dis-
tribution

We adopt the algorithm in [AD74] with slight modification. We define the functionsf , g, andC which
appear in the criteria:

f (x,a) = fGa(x | a,1) =
e−xxa−1

Γ(a)
,

g(x,a) = fCa(x | a− 1,
√

2a− 1) =
1
π
·

√
2a− 1

(x− (a− 1))2 + (2a− 1)
,

C(a) =
πe−(a−1)(a− 1)a−1

√
2a− 1

Γ(a)
.

Ahrens and Dieter showed thatf (x,a) < C(a)g(x,a) for any x > 0 and that
√
π < C(a) < π for any

a > 1. The algorithmGC in Figure7 is a modified version of [AD74]. (In [AD74], they inlined a
subroutine sampling from the Cauchy distribution. In the algorithm, we call the subroutine explicitely.)
In order to simplify arguments, we only consider the case that the parametera > 1 is an integer.
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Algorithm GC(a): a is an integer and larger than 1

1. Setb← a−1,A← a+b, ands← A1/2.
2. Initialize i ← 0.
3. Initialize j ← 0.
4. Generatex← Ca(b, s).

(a) If x < 0,

i. if j ≥ rGC then output⊥.
ii. Otherwise increasej ← j + 1

and go to Step 4.

5. Generateu← Un(0, 1).
6. If u ≤ f (x,a)/(C(a)g(x, a)) output

RϵGC(x). If i ≥ rGC then output⊥ Oth-
erwise increasei ← i + 1 and go to Step
3.

Figure 7:Algorithm GC

Algorithm DiscGC(a)

1. Setb← a−1, A← a+b, ands← A1/2.
2. Initialize i ← 0.
3. Initialize j ← 0.
4. Generatet ← DiscCU. Computex ←

st+ b.

(a) If x < 2−tx,

i. if j ≥ rGC then output⊥.
ii. Otherwise increasej ← j + 1

and go to Step 4.

5. Generateu← {0, 1}lGC . (Consideru as a
real value in [0, 1).)

(a) If u < 2−tGC ,

i. if i ≥ rGC then output⊥.
ii. Otherwise increasei ← i + 1

and go to Step 3.

6. If ln u ≤ b(ln x− ln b) − (x− b) + ln(A+
(x− b)2) − ln A outputx. If i ≥ rGC then
output⊥. Otherwise incrementi ← i +1
and go to Step 3.

Figure 8:Algorithm DiscGC

Theorem K.6 ([AD74, p.229]). The output distribution ofGC(a) is (7/10)rGC-close toG̃a(a) with pre-
cisionϵGC.

We modify the algorithmGC to treat the precision and analyze the statistical distance. We call it
DiscGC (see Figure8). Again, we assume that an inputa is an integer.

Theorem K.7. The sample from the algorithm has following properties: If a≤ 2n then

• the output has precisionϵGC,
• the running time of the algorithm is at most TGC,
• the output is at most HGC and at least LGC, and
• the output distribution is∆GC-close toG̃a(a) with precisionϵGC,

where the parameters are as follows:

ϵGC > 2n+1LCU,

TGC ≤ TS(n+ 1;ϵROOT) + rGC ·O(TL(z; ϵLOG) + TA(z) + rGC(TCU + TM(z) + TA(z) + lGC · TU))

HGC = 2n(HCU + 1),

LGC = 2−tx,

∆GC ≤ 2−rGC/2

+ rGC(2−tGC + 2−tx+1 + 2−lGC + ϵSQRT+ (2k+tx + 1)ϵGC + (2k + 2tGC + 3)ϵLOG + 2n+1ϵCU + ∆CU),

where z= O(n+ lGC + log(HCU) + log(1/ϵCU) + log(1/ϵROOT) + log(1/ϵLOG)).

Proof.
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On ϵGC: Recall thats=
√

2a− 1 is less thana ≤ 2n and so isb = a− 1. Additionally,b is an integer.
Thus, the precision ofx = st+ b is at most 2n+1LCU.

On HGC and LGC: Since the output ofDiscCU(0, 1) is in [−HCU,HCU], x is in [−HCU·2n, (HCU+1)·2n].
Thus, we have thatHGC = (HCU + 1) · 2n. We cut off x at Step 3-(a). So, we have thatLGC = 2−tx.

On ∆GC: We start withGC and add procedures toGC sequentially.

GC0(a): This is the algorithmGC(a) with no repeat.

GC1(a): We add the discarding procedure to Step 5. The algorithm discardsu if u < 2−tGC .

GC2(a): In Step 4, we replace the criterionx < 0 with x < 2−tx.

GC3(a): We modify the sampling method ofu. We replaceu← U(0, 1) with u← {0, 1}lGC in Step 5.

GC4(a): We replace the criterionu ≤ f (x, a)/(C(a)g(x, a)) in Step 6 with lnu ≤ ln( f (x, a))− ln(C(a))−
ln(g(x, a)).

GC5(a): Let s′ denote the computed value ofA1/2 with precisionϵSQRT. Let δ ∈ [−ϵSQRT, ϵSQRT] be a
real value such thatδ = A1/2 − s′. We replace the samplingx← Ca(b, s) with x← (Ca)(b, s+ δ).

GC6(a): We again modify the sampling method. The samplex is sampled as follows:t ← Ca(0,1) and
x← s′t + b.

GC6(a): We next modify the sampling method oft and computations in the criterion at Step 6. We
replacet ← Ca(0, 1) with t ← C̃a(0,1) with precisionϵCU.

GC7(a): We replacẽCa(0,1) with the algorithmDisCU.

GC8(a): We revivego to in Steps 4, 5, and 6. This is the algorithmDiscGC(a).

We first estimate∆(GC0(a),GC1(a)). Clearly, the change induces the distance 2−tGC .
Next, we estimate∆(GC1(a),GC2(a)). Notice that

Pr
X∼Ca(a−1,

√
2a−1)

[0 ≤ X ≤ 2−tx] =
∫ 2−tx

0
g(x,a)dx≤

∫ 2−tx

0
dx≤ 2−tx.

So, the distance is at most 2−tx.
We next upper bound∆(GC2(a),GC3(a)). We have changedu ← U(0,1) at Step 5 withu ←

{0, 1}lGC . The effect is at most 2−lGC by LemmaK.3.
The distance∆(GC3(a),GC4(a)) is 0. This is because

f (x, a)
C(a)g(x,a)

=
e−xxb(A+ (x− b)2)

e−bbbA
,

ln( f (x, a)) − ln(C(a)) − ln(g(x, a)) = b(ln(x) − ln(b)) − (x− b) + ln(A+ (x− b)2) − ln(A).

We next estimate∆(GC4(a),GC5(a)). We have replacedx← Ca(b, s) with x← Ca(b, s′) = Ca(b, s+
δ), since the square root is not computed precisely. The distance between Ca(b, s) and Ca(b, s+ δ) is at
most 2δ from LemmaJ.4in AppendixJ.1. Sinceδ is at mostϵSQRT, so is the distance. This shows that
∆(GC4(a),GC5(a)) ≤ 2ϵSQRT.

Clearly the distance∆(GC5(a),GC6(a)) is 0, sinces′t + b is distributed according to Ca(b, s′).

59



We next estimate∆(GC6(a),GC7(a)). Replacingt ← Ca(0,1) with t ← C̃a(0, 1) with precisionϵCU

effects the value ofx. This causes the precision of computation ln(f (x, a)) − ln(C(a)) − ln(g(x,a)). To
determine their effect to the distance, we compute the precision of them. lnx has precisionϵLOG+2txϵGC,
sincex > 2−tx. Also, lnb has precisionϵLOG. x − b = s′t has precision 2n+1ϵCU. ln (A+ (x− b)2) has
precisionϵLOG + ϵGC, sinceA + (x − b)2 > 1. lnA has precisionϵLOG. Thus,b(ln x − ln b) − (x − b) +
ln(A+ (x− b)2) − ln A has precision 2k(ϵLOG + 2txϵGC) + ϵGC + ϵLOG + ϵLOG + ϵLOG + 2n+1ϵCU, that is,
ϵGC(2k+tx + 1)+ ϵLOG(2k + 3)+ 2n+1ϵCU. We also replace ln(u) with the approximation of the logarithm.
This causes the error at most 2lGCϵLOG.

Finally, we estimate∆(GC6(a),GC7(a)). The distance at most∆CU, since we only replace the sam-
pling algorithms.

Compiling the above arguments,∆(GC(a),GC8(a)) is upper bounded by

2−tGC + 2−tx+1 + 2−lGC + ϵSQRT+ ϵGC(2k+tx + 1)+ ϵLOG(2k + 3)+ 2n+1ϵCU + ϵLOG2tGC + ∆CU.

Thus, the statistical distance∆GC = ∆(G̃a(a),DiscGC(a)) is upper bounded by

(7/10)rGC+rCU(2−tGC+2−tx+1+2−lGC+ϵSQRT+ϵGC(2k+tx+1)+ϵLOG(2k+3)+2n+1ϵCU+ϵLOG2tGC+∆CU)

= 2−rGC/2+ rCU(2−tGC +2−tx+1+2−lGC + ϵSQRT+ ϵGC(2k+tx +1)+ ϵLOG(2k+2tGC +3)+2n+1ϵCU +∆CU).

�

K.4 Sampling from the Beta Distribution based on the Gamma Distribution

According to the fact that ifX ∼ Ga(a) andY ∼ Ga(b) thenX/(X + Y) ∼ Be(a, b), we can sample from
any beta distribution by using random variables sampled from two gamma distributions. Obviously, the
algorithmBG in Figure9 samples from̃Be(a, b) with precisionϵBG.

Replacing the sampling algorithm and adding the criterion, we obtain the algorithmDiscBG(a,b) in
Figure10.

Algorithm BG(a, b)

1. Take samplesx ← Ga(a) and y ←
Ga(b).

2. OutputRϵBG(x/(x+ y)).

Figure 9:Algorithm BG

Algorithm DiscBG(a, b)

1. Take samplesx ← DiscGC(a) andy ←
DiscGC(b).

2. If 2−tlow < x, y < 2thigh then output
RϵBG(x/(x+ y)). Otherwise output⊥.

Figure 10:Algorithm DiscBG

Theorem K.8. The sample from the algorithmDiscBG(a, b) has the following properties:

• The output has precisionϵBG,
• the running time of the algorithm is at most TBG,
• the output is at most HBG and at least LBG, and
• the output distribution ofDiscBG(a,b) is ∆BG-close toB̃e(a,b) with precisionϵBG,

where the parameters are as follows:

ϵBG = 2thigh+2tlow+2ϵGC,

TBG ≤ O(TGC + TA(z) + TD(z))

HBG = 1,

LBG = 2−(thigh+tlow+1),

∆BG ≤ 2∆GC + 2−a(tlow+1) + 2−b(tlow+1) + 2−2thigh+(a−1)thigh + 2−2thigh+(b−1)thigh,
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where z= O(log(HGC) + log(1/ϵGC)).

Proof.

On ϵBG: It is easy to verify that the precision ofx/(x+ y) is bounded by 2thigh+2tlow+1ϵGC.

On HBG and LBG: We have

2−(thigh+tlow+1) <
1

1+ 2thigh+tlow
<

1
1+ y/x

=
x

x+ y
<

1

1+ 2−(thigh+tlow)
< 1− 2−(thigh+tlow+1).

On ∆BG: We denote byDiscBG∗(a, b) the algorithmDiscBG(a, b) using Ga(·) instead ofDiscGC(·).

∆
(
B̃e(a,b),DiscBG(a, b)

)
≤ ∆

(
B̃e(a, b),BG(a, b)

)
+ ∆

(
BG(a, b),DiscBG∗(a, b)

)
+ ∆

(
DiscBG∗(a,b),DiscBG(a,b)

)
≤ 0+ Pr

x∼Ga(a)

[
x < 2−tlow or x > 2thigh

]
+ Pr

x∼Ga(b)

[
x < 2−tlow or x > 2thigh

]
+ 2∆GC

≤ 2∆GC + 2−a(tlow+1) + 2−b(tlow+1) + 2−2thigh+(a−1)thigh + 2−2thigh+(b−1)thigh,

where in the last inequality we use LemmaJ.5and LemmaJ.6in AppendixJ.2. �

K.5 Sampling from the Binomial Distribution based on the Bernoulli Experiments

Based on the fact that the binomial distribution describes the number of successes inN independent
Bernoulli experiments, we have the following algorithmsBU(N, p) and DiscBU(N, p̃) in Figures11
and12, respectively, where ˜p denotes an approximation ofp with precisionϵp,BU.

Algorithm BU(N, p)

1. Initialize i ← 0 andc← 0.

2. Generateu← Un(0, 1). If u ≤ p score a
success:c← c+ 1.

3. Increasei ← i + 1. If i < n go to Step 2,
otherwise outputc.

Figure 11:Algorithm BU

Algorithm DiscBU(N, p̃)

1. Initialize i ← 0 andc← 0.

2. Generateu ← {0,1}lBU . (Consideru as
a real value in [0,1).) If u ≤ p̃ score a
success:c← c+ 1.

3. Increasei ← i + 1. If i < N go to Step 2,
otherwise outputc.

Figure 12:Algorithm DiscBU

Theorem K.9. For the inputs N and̃p, the sampling algorithmDiscBU(N, p̃) has following properties:
If the inputs satisfy

• N: a positive integer between0 ≤ N ≤ n,
• p̃: a positive real between0 ≤ p̃ ≤ 1 which is an approximation of0 ≤ p ≤ 1 with precisionϵp,BU,

then

• the output distribution ofDiscBU(N, p̃) is ∆BU-close toBn(N, p) and
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• the running time is at most TBU,

where the parameters are as follows:

∆BU ≤ N(ϵp,BU + 2−lBU),

TBU ≤ N ·O(TA(logN) + lBUTU).

Proof. By using the triangle inequality, we have that

∆BU = ∆ (Bn(N, p),DiscBU(N, p̃))

≤ ∆ (Bn(N, p),BU(N, p)) + ∆ (BU(N, p),BU(N, p̃)) + ∆ (BU(N, p̃),DiscBU(N, p̃))

≤ 0+ N · ϵp,BU + N · 2−lBU

≤ N(ϵp,BU + 2−lBU).

�

K.6 Sampling from the Binomial Distribution based on the Beta Distribution

The algorithmBU is simple, but has a drawback that the running time grows exponentially in input size
of N. In order to overcome this drawback, the following lemma in [Rel72] is useful.

Lemma K.10 ([Rel72]). The following procedure samples correctly from a binomial distributionBn(n, p).

1. Select any two positive integersa andb such thata+ b− 1 = n.

2. Take a samples from the beta distribution Be(a, b).

3. If s≤ p take a samplex from the binomial distribution Bn(b− 1, (p− s)/(1− s)) and
outputx← a+ x.

4. If s> p take a samplex from the binomial distribution Bn(a− 1, p/s) and outputx.

The slightly modified algorithmBB in Figure13 appeared in [Rel72]. As the consequence of the
lemma, the algorithm correctly samples according to Bn(n, p). We note the running time of this algo-
rithm grows linearly in logn.

We next modify the algorithmBB by replacing subroutines. The obtained algorithmDiscBB is in
Figure14, wherep̃ is an approximation ofp with precisionϵp,BB andδ is the cut-off parameter such that
Nδ andN4ϵp,BBδ

−n is negligible inn. Note that we add Steps 1-(a) and 1-(b) toDiscBB by the technical
reason.

Theorem K.11. For the inputs N and̃p, the sampling algorithmDiscBB(N, p̃) has following properties:
If the inputs satisfy

• N: a positive integer between0 ≤ N ≤ 2n.
• p̃: a positive real betweenδ < p̃ < 1− δ which is an approximation p with precisionϵp,BB, 5

then

• the output distribution is∆BB-close toBn(N, p)

• and the running time is at most TBB,

5By modifying the algorithm using Chebyshev’s inequality or LemmaJ.8we can treat in the case 0≤ p ≤ 1. This is done
by Steps 1-(a) and 1-(b).
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Algorithm BB(N, p)

1. If N ≤ 2 generatex← Bn(n, p) and out-
put x.

2. If N is even then generatey← Bn(1, p)
andx← Bn(N − 1, p), and outputx+ y.

3. If N is odd then seta ← (N + 1)/2 and
generates← Be(a,a).

4. If s≤ p thenx← Bn(a−1, (p−s)/(1−s))
and outputx+a. Otherwisex← Bn(a−
1, p/s) and outputx.

Figure 13:Algorithm BB

Algorithm DiscBB(N, p̃)

1. If N ≤ 2 generatex ← DiscBU(N, p̃)
and outputx.

(a) If p̃ ≤ δ then output 0.

(b) If p̃ ≥ 1− δ then outputN.

2. If N is even then generatey ←
DiscBU(1, p̃) andx← DiscBB(N−1, p̃),
and outputx+ y.

3. If N is odd then seta ← (N + 1)/2 and
generates← DiscBG(a,a).

4. If s ≤ p̃ then x ← DiscBB(a − 1, (p̃ −
s)/(1 − s)) and outputx + a. Otherwise
x← DiscBB(a− 1, p̃/s) and outputx.

Figure 14:Algorithm DiscBB

where the parameters are as follows:

∆BB ≤ δ−n24n+1ϵp,BB + n24nϵBG + 2n · 2−lBU + n∆BG,

TBB ≤ n ·O(TA(z) + TD(z) + TBG + TBU)),

where z= O(n+ log(1/ϵp,BB)).

Proof of TheoremK.11. On∆BB: Before giving the proof, we introduce the notation for clarity.
We first defined(ϵ,N) in order to treat the effect of recursive sampling:

d(ϵ,N) = max
p

max
p̃:|p−p̃|<ϵ

∆(Bn(N, p),DiscBB(N, p̃)).

In order to estimated(ϵ,N) above, we define the algorithmsBBi . We upper bound each∆(BBi ,BBi+1)
and then upper bound∆(Bn(N, p),DiscBB(N, p̃)) by the triangle inequality. We define the algorithms
BBi as follows:

BB0(N, p): This is the algorithmBB(N, p) which correctly samples from Bn(N, p).

BB1(N, p̃): We replace the inputp with p̃ in BB0.

BB2(N, p̃): We usẽBe with precisionϵBG instead of Be in BB1.

BB3(N, p̃): We replacẽBe with DiscBG in the algorithmBB2.

BB4(N, p̃): We useDiscBU instead of Bn at Steps 1 and 2 in the algorithmBB3.

BB5(N, p̃): We finally replace Bn with DiscBB at Step 4 in the algorithmBB4. The obtained algorithm
coincides withDiscBB.

From the above definitions,

∆(Bn(N, p),DiscBB(N, p̃)) ≤ ∆(Bn(N, p),Bn(N, p̃)) + ∆(Bn(N, p̃),DiscBB(N, p̃))

≤ ∆(Bn(N, p),Bn(N, p̃)) +
4∑

i=1

∆(BBi(N, p̃),BBi+1(N, p̃)).
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By using LemmaJ.9, we have that

∆(Bn(N, p),Bn(N, p̃)) ≤ N4ϵ.

We next consider∆(BB1(N, p̃),BB2(N, p̃)). The change ofs at Step 4 effects the distance at most
2a(a− 1)3ϵBG ≤ N4ϵBG by LemmaJ.7in AppendixJ.3.

It is obvious that∆(BB2(N, p̃),BB3(N, p̃)) ≤ ∆BG. Is is also obvious that∆(BB3(N, p̃),BB4(N, p̃)) ≤
2(ϵ + 2−lBU). We next consider∆(BB4(N, p̃),BB5(N, p̃)). Since we change the choosing method forx at
Steps 3 and 4, we have that

∆(BB3(N, p̃),BB4(N, p̃)) ≤ max{∆ (Bn (a− 1, p1) ,DiscBB (a− 1, p̃1)) ,∆ (Bn (a− 1, p2) DiscBB (a− 1, p̃2))} ,

wherep1 = (p̃ − s)/(1 − s), p2 = p̃/s, and each ˜pi is an approximation ofpi , respectively. By simple
calculation, we have that

|p1 − p̃1| =
∣∣∣∣∣ p− s
1− s

− p̃− s
1− s

∣∣∣∣∣ = ∣∣∣∣∣ p− p̃
1− s

∣∣∣∣∣ ≤ ϵ

1− s
≤ ϵ

1− p̃
≤ ϵ
δ
,

|p2 − p̃2| =
∣∣∣∣∣ ps − p̃

s

∣∣∣∣∣ = ∣∣∣∣∣ p− p̃
s

∣∣∣∣∣ ≤ ϵs ≤ ϵp̃ ≤ ϵδ .
Thus, we have that

∆(BB3(N, p̃),BB4(N, p̃)) ≤ d(ϵ/δ,a− 1) ≤ d(ϵ/δ,N/2).

Summarizing the above calculation, we have that

∆(Bn(N, p),DiscBB(N, p̃)) ≤ ∆(Bn(N, p),Bn(N, p̃)) +
3∑

i=1

∆(BBi(N, p̃),BBi+1(N, p̃))

≤ N4 · ϵ + N4 · ϵBG + ∆BG + 2(ϵ + 2−lBU) + d(ϵ/δ,N/2).

Thus, we have that

d(N, ϵp,BB) ≤ N4 · ϵp,BB + N4 · ϵBG + 2(ϵp,BB + 2−lBU) + ∆BG + d(ϵp,BB/δ,N/2)

≤ N4(ϵp,BB + ϵp,BB/δ) + 2N4 · ϵBG

+ 2(ϵp,BB + ϵp,BB/δ + 2 · 2−lBU) + ∆BG + d(ϵp,BB/δ
2,N/4)

≤ N4ϵp,BB(1+ 1/δ + · · · + 1/δn) + nN4 · ϵBG

+ 2(ϵp,BB(1+ 1/δ + · · · + 1/δn) + n · 2−lBU) + n∆BG + d(ϵp,BB/δ
n, 1)

≤ N4ϵp,BBδ
−n + nN4ϵBG + 2ϵp,BBδ

−n + 2n · 2−lBU + n∆BG) + δ−nϵp,BB

= δ−n(N4 + 2)ϵp,BB + nN4ϵBG + 2n · 2−lBU + n∆BG.

where in the last inequality we use
∑n

i=0 1/δi = (1/δn+1 − 1)/(1/δ − 1) = δ−n(1− δn+1)(1− δ) ≤ δ−n. �
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