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Abstract

Liskov proposed several weakened versions of the random oracle model,wali&dned ran-
dom oracle model8BVROMS), to capture the vulnerability of ideal compression functions, which are
expected to have the standard security of hash functions, i.e., collision resistance, second-preimage
resistance, and one-wayness properties. WWR®OMs dofer additional oracles to break such proper-
ties of the random oracle. In this paper, we investigate whether public-key encryption schemes in
the random oracle model essentially require the standard security of hash functionS\fiy@s.
In particular, we deal with foutWROMs associated with the standard security of hash functions;
the standard, collision tractable, second-preimage tractable, first-preimage tractabl®©Kgs (
CT-ROM, SPT-ROM, andFPT-ROM, respectively), done by Numayama et al. for digital signature
schemes in th&VROMs. We obtain the following results: (1) The OAEP is secure in all the four
models. (2) The encryption schemes obtained by the Fujisaki-Okamoto conversion (FO) are secure
in the SPT-ROM. However, some encryption schemes with FO are insecure iRRMeEROM. (3)
We consider two artificial variants wFO and dFO of FO for separation ofNR©Ms in the con-
text of encryption schemes. The encryption schemes with wFO (dFO, respectively) are secure in
the CT-ROM (ROM, respectively). However, some encryption schemes obtained by wFO (dFO,
respectively) are insecure in i T-ROM (CT-ROM, respectively). These results imply that stan-
dard encryption schemes such as the OAEP and FO-based one do not always require the standard
security of hash functions. Moreover, in order to make our security proofs complete, we construct
an dficient sampling algorithm for the binomial distribution with exponentially large parameters,
which was left open in Numayama et al.’s paper.

Keywords: public-key encryption schemes, weakened random oracle models, OAEP, Fujisaki-
Okamoto conversion.
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1 Introduction

Background: In order to design new cryptographic schemes, we often follow the random oracle
methodologyBR9J. First, we analyze the security of cryptographic schemes, by idealizing hash func-
tions as truly random functions called trendom oracle When it comes to implementations of these
schemes, we replace the random oracles by cryptographic hash functions such aRivE2b 4nd
SHA-1 [Nat0Z. This replacement is called an instantiation of the random oracle.

The random oracle methodology causes a tratibetween #iciency and provable security. The
schemes proven secure in the random oracle mdRieM) are in general morefigcient than those
proven secure in the standard model. However, the security proofs RQhkedo not directly guarantee
the security in the standard model, i.e., an instantiation of the random oracle might make the cryp-
tographic schemes insecure. Even worse, several recent Wo@dQ4 (GKO03, BBP04 showed that
some schemes secure in R&M have no secure instantiation.

There are several properties of tROM to prove the security of cryptographic properties. In partic-
ular, theROM is expected to satisfy the one-wayness, second-preimage resistance, and collision resist-
ance properties. We call these properties assthadard security of hash functian¥hese properties
are indeed critical in many schemes for their security proofs. For example, the security of the Full-
Domain-Hash (FDH) signature schemes (e/BR%€), which are secure in thROM, relies on the
collision-resistance property of tfROM. That is, if we can obtain two distinct message#s such that
H(m) = H(nY) and the signature- = Sig(H(m)), then we can obtain a valid forgemn(, o), whereH is
a hash function anflig is a signing algorithm. Leurent and Nguyen also presented the attacks extracting
the secret keys on sevetash-then-sigtype signature schemes and identity-based encryption schemes
if the underlying hash functions are not collision resistamN(9].

Recent progress on the attacks against cryptographic hash functions such as MD5 and SHA-1 raises
the question on the assumption that hash functions are collision resistant and one-wa¥Y@%}.,[
WYYO05, /ASQ9). Therefore, it is significant to investigate whether the collision resistance property (as
well as the one-wayness and second-preimage resistance properties, which are weaker notions than the
collision resistance one) of tlROM is essential to prove the security of the schemes or not. More gener-
ally, it is worth classifying the schemes by the first-preimage, second-preimage, and collision resistance
properties of th&ROM that their security essentially requires.

Weak versions of random oracle models: Several works recently highlighted some specific proper-
ties of theROM for secure cryptographic constructions in @M.

Nielsen proposed theon-programmableandom oracle model where the random oracle ispnot
grammableNie0Z]. In this model, one cannot set the values that the random oracle answers to some
convenient values. It was showed [Mi€0Z that a non-interactive non-committing encryption scheme
exists in theROM (assuming that trapdoor permutations exists), but not imtdreprogrammablean-
dom oracle model.

Unruh proposed &0M with oracle-dependerduxiliary inputs|JnrQ7]. In this setting, adversaries
obtain an auxiliary input that contains information with respect to the random oracle (e.g. collisions). He
showed that th&®@SA-OAEP encryption schemeéBR9Y is secure in thd(ROM even under the presence
of oracle-dependerduxiliary inputs.

Liskov proposed several weakened versions of the random oracle model,wali&gdned random
oracle modelfWROMSs), which dfer additional oracles to break some properties of the random ora-
cle |[LisO7]. These model captures the situation that adversaries are given an attack algorithm for break-
ing some specific property of the functions. For example, the first-preimage tractable random oracle
model dfers the random oracle and the first-preimage oracle associated with the random oracle, which
returns a first-preimage of the random oracle to adversaries. This first-preimage oracle then corresponds
to the attack to the first preimage property of a hash function. We can replace the additional oracle to



others such as the second-preimage and collision ones that correspond to the attack to the properties.
Thus, theW ROMs can capture vulnerability of hash functions even if the parties are allowed to utilize
ideal ones as in thROM. By usingWROMSs, Liskov constructed hash functions based on weak ideal
compression functions and proved it is ifidrentiable from the random oracle.

Several results already analyzed the security iniiROMs. Hoch and Shamir applied Liskov's
idea to prove the indlierentiability of another hash constructidd30§. Pasini and Vaudenay also ap-
plied Liskov's idea to the security analysis of digital signature schel@€81|]. They considered the
security ofhash-then-sigiype signature schemes in the first-preimage tractable random oracle model.
Numayama, Isshiki, and Tanaka formalized YWiBOMs, which allows us to formally analyze the secu-
rity of the schemesNITO08]. By using these models, they classified several digital signature schemes by
the properties of th®OM. Fischlin and Lehmann also proposed a weakened random oracle model in a
similar way to Liskov’s one in the context of secure combin&tsd7].

Our contributions:  In this paper, we investigate whether public-key encryption schemes constructed
in the ROM essentially require the standard security of hash functions by further extending the direc-
tion originated from Liskov. In particular, we consider their security in the standard, collision tracta-
ble, second-preimage tractable, and first-preimage tractable random oracle nR@IISGT-ROM,
SPT-ROM, and FPT-ROM, respectively for short). Note that they are ordered according to their
strengths, i.e., the security of encryption schemes irFPiIE-ROM implies that in theSPT-ROM and
such implications hold between each adjacent two models.

We demonstrate that the security notions in the #ROMs can be strictly separated in the context
of encryption schemes. For the separation, we focus on the security of the encryption schemes obtained
by the Fujisaki-Okamoto conversion (FCBQ99, its two artificial variants (dFO and wFO), and the
OAEP BR9Y. Precisely, we prove the following four statements:

1. OAEP isIND-CCA2 secure in thé&PT-ROM.

2. FO isIND-CCAZ2 secure in th&sPT-ROM, butnot IND-CPA secure in thé&PT-ROM.
3. wFO iSIND-CCA2 secure in th&€T-ROM, butnot IND-CCA2 secure in th&SPT-ROM.
4. dFO isIND-CCA2 secure in th&ROM, butnot IND-CCA2 secure in the€T-ROM.

We summarize the security of four schemes in Tdble

schemgnodel | ROM | CT-ROM | SPT-ROM | FPT-ROM
OAEP secure
FO secure \ insecure
wFO secure | insecure
dFO secure| insecure

Table 1:Security of four schemes.

This separation suggests that some public-key encryption schemes essentially require the standard
security of hash functions. These notions were also separated in the context of digital signature schemes
in [NITQ8]. We stress that the role of the collision and second-preimage oracles in encryption schemes
is not as clear as that in digital signature schemes. For example, it is easy to see that the collision
oracle, breaking the collision resistance property of the random oracle, directly makes a simple scheme
vulnerable, but not so easy for the case of encryption schemes. Actually, we need to develop new proof
techniques for the (in)security of encryption schemes under additional oracles.



It also suggests that standard encryption schemes such as the OAEP and FO-based ones do not
always require the standard security of hash functions for the random oracle. We believe that our results
do not only give an example of the first application of IWROMs to encryption schemes, but they
are also of independent interest. As far as we know, our results give the first evidence that the OAEP
encryption scheme can be used in a practical application even without the first-preimage resistance
property, i.e., the one-wayness property. In other words, the OAEP remains secure even if we remove
the first-preimage resistance property. This can also be said on FO-based encryption schemes on the
second-preimage resistance property.

On the security of the OAEP, Kiltz and Pietrzak recently showed that there is no construction for
padding-based encryption schemes including the OAEP that has a black-box reduction from ideal trap-
door permutations to itfND-CCA2 security in KP0Y. However, they wrote in the paper that the
security proof in the(ROM can be still a valid argument in practice. We believe so is our security proof
in the WROMs.

For the security proof, we explicitly show how to sample approximately in polynomial time from
binomial distributions with exponentially large parameters, that is, a polynomial-time sampling algo-
rithm whose output distribution is statistically close to the binomial distribution. For this algorithm, we
arrange and combine sampling algorithms that run over real numbers proposed in the field of statistics
[Dev86 AD74,/AD80, [Rel7d, and give a precise analysis for discretization.

It should be noted that on the security proofs of the digital signature schemes¥Rb®s [NITO8],
Numayama et al. assumed such #icent sampling algorithm and thus gave no explicit construction.
They left the construction of the sampling algorithm as an open problem. By the sampling algorithm we
explicitly show, it is no longer necessary to assume the sampling algorithm in their security proofs of the
digital signature schemeBIIT08] as well as those of the public-key encryption scheme in this paper.

The sampling algorithm shown in this paper is adapted for cryptographic use since the statistical
closeness to the original distribution is measured by the total variation distance, which is standard in
cryptography but not usually required in statistics. The sampling algorithm is useful for other crypto-
graphic tasks as in Numayama et al.’s and this paper.

Comparisons with other models: As mentioned above, a few models that weaken the power of the
random oracle were already proposed such as the non-programmable Mig@2| pnd the oracle-
dependent auxiliary input modéUhr07).

The non-programmable model is not simply comparable WROMs since the programmability
does not imply the collision resistance and vice versa. The target of the oracle-dependent auxiliary input
model partially overlaps that of thYROMSs.

For a simple comparison, we now focus on the security of the OAEP in both models. Unruh showed
a similar result as ours for the OAEP encryption schebh@07]. He proposed a random oracle model
where oracle-dependent auxiliary inputs are allowed. In his setting, the adversary of some cryptographic
protocol obtains an auxiliary input that contains the information (e.g., collisions) on the random oracle.
He showed that the OAEP encryption schefBR9Y is still secure in the random oracle model even in
his model. This result indicates an important fact that the security of the OAEP encryption scheme does
not depend on the collision resistance property since the oracle-dependent auxiliary input can contain a
sufficiently long list of collisions.

Our results also present the security of the OAEP in a weak version of the random oracle. However,
there are at least twofiierences between Unruh’s result and ours. First, the random oracle model with
the oracle-dependent auxiliary input does not completely captusstqaivesecurity of hash functions,
and this model still has the second-preimage resistance and the first-preimage resistance properties.
Hence, only by his result, we cannot say whether these two properties are necessary or not in order
to prove the security of the OAEP encryption scheme. In contrast to Unruh’s result, our result clearly



shows that the two adaptive securities of hash functions such as the first-preimage resistance and the
second-preimage resistance are not necessary to prove the security of the OAEP encryption scheme.
Second, Unruh constructed the reduction algorithm which breaks the partial-domain one-wayness
of the underlying trapdoor permutation using the adversary which breakSlIR€CA2 security of
the OAEP encryption scheme. The running time of the reduction algorithm is not bounded by any
polynomial. Therefore, he use the security amplification technique for the partial-domain one-wayness.
By using this technique, he can avoid employing a stronger assumption that even quasi-polynomial time
adversary cannot break the partial-domain one-wayness, and can prove the security under the standard
partial-domain one-wayness against polynomial-time adversary.
In contrast to Unruh’s result, we construct the polynomial-time reduction algorithm using the ad-
versary, and hence we do not require the security amplification technique for the partial-domain one-
wayness, which can be considered as a simplification of Unruh’s proof.

Organization: In Section2, we describe the details of tht’ROMs and their properties. We also
discuss the simulation methods that are applicable to these models. In $diver reviewing the
encryption schemes we consider, we show their (in)security imRe®Ms. Appendices contain several
technical details. Appendi#&l reviews the simulation methods WfROMs by Numayama et al. Appen-
dices?? andBl proves the technical lemmas, Lemnia8 and2.4, respectively. Proofs of the security
of dFO, wFO, FO, an®AEP are in Appendice€] [D] [E, andE, respectively. In Appendiks, we give

an overview of the approximation sampling algorithms. Appeftfibeviews the standard notions and
the arithmetic operations and Appendixeviews the definitions of the standard distributions. In Ap-
pendixJ, we show several inequalities for the distributions. In Appeli€ixve rigously analyze the
approximation sampling algorithms for several distributions.

Notation: Before starting technical parts of this paper, we introduce our notation used in the rest of
the paper. For a tabl = {(x,y)}, we definel(y) = {(X',y’) € T | y = y}. For a distributiorD, x « D
denotes thak is sampled according tb. The functionD(x) stands for the probability function of the
distributionD.

Let s « S denote thas is sampled from the uniform distribution over a finite Set#S denotes
the number of elements 8. For a probabilistic Turing machin@ and its inputx, let A(X) denote the
output distribution ofA on inputx.

We usually denote bk a security parameter of a cryptographic scheme in this paper. We also
denote byk’ length of plaintexts unless it is specified! is implicitly assumed to be polynomially
related to the security parameterthat is,k’ = k®@). We say a functionf (k) is negligible ink if
f(k) = 27«09k For two distributionsD; and D, over a finte seS, whose density functions are
denoted byfp, and fp,, we denote the statistical distance (the total variation distance) between them
by A(D1, D), defined by} ¥s.s | fo,(S) — fo,(3)|. We say two distribution®; andD; are statistically
close ifA(D1, D,) = 2-«(109K)

2 The Weakened Random Oracle Models

In this section, we first review the definitions of tikROMs. Next, we present an important property
calledweak uniformityof the WROMSs, which is useful for security proofs of encryption schemes. We
also discuss the simulation methods/HfT08] used for the security proofs in th@ROMSs.



2.1 Definitions of the Weakened Random Oracle Models

To give formal definitions of th&®/ROMs, we define some notation. L¥tandY be finite sets. LeH
be a hash function chosen randomly from all of the functions ffoto Y. We denote byl the table
{(x, H(X)) | x € X}. We identify the hash functioHl with the tableTy.

We next define the random oracle and the additional oracles associatdd wKh— Y as follows.
(For more details, se@NIT08].)

Random oracleRO": Givenx, returny such thatx,y) € Th.

Collision oracle CO"': On the query, first pick one entry,y) € T uniformly at random. If there is no
other entry ¥, y) € Ty, then answern.. Otherwise, pick one entri(,y) € Ty satisfyingx # X’
uniformly at random and answex, (x').

Second-preimage oracleSPO": Given (x,y), if (x,y) ¢ Ty answerL. If there is no other entry
(X,y) € Ty, then answer.. Otherwise, pick one entry{, y) € Ty satisfyingx # X" uniformly at
random and answex'.

First-preimage oracleFP0O": Giveny, if there is any entryX, y) € Ty then return such axuniformly
at random. Otherwise return.

Remark 2.1. We usually identify the random oracle and the underlying hash function. However, in
this paper as in[NITO§, we explicitly distinguish them by regarding the random oracle as an interface
to the underlying hash function. This setting helps us to mak&#ROMs with an additional oracle
well-defined.

The formal definitions of th&/ROMs are given as follows. Th&/ROMs consist of three compo-
nents, a hash functiamchosen randomly from all of the functions fra¥ito Y, the random oracle, and
the additional oracle associated withThe models are called til@&r-ROM, SPT-ROM, andFPT-ROM,
if the additional oracle is the collision, second-preimage, and first-preimage oracle, respectively.

Remark 2.2. The collision oracle may output even if there exists a collisigix, x') in the table. This
stems from the simulation method of Numayama efNIT0g, and causes no serious problems. Note
that the collision oracle outputs with probability (1 — 1/#Y)*1. In the case wheréX > #Y, we
can find a collision with polynomially many queries sir{@e- 1/#Y)>1 < exp(#X — 1)/#Y). In

the case wherg¢tY = kO . #X, we can again find a collision with polynomially many queries since
(1-1/#Y)>1 < 1-1/K°D). Finally, in the case wherdY = k“(1). #X, the following lemma shows that
there are no collisions with overwhelming probability.

Lemma 2.3. Let H : X — Y be the hash function, ang the number of preimages of y under the
function H, that is, p = #TH(y). LetBAD denote the event that there is some y such that h. Then

foLaII sufficiently large Y, we haver[BAD] < ﬁ, where L= 2 EX if X > #Y, or L= 2I&
otherwise.

The proof is obtained by the standard argument on the balls and bins game by regaadichy as
sets of balls and bins, respectively. For the details on the game, see a standard textbodkR65}), [

2.2 Difference from the Random Oracle Model

We observe an important ference between thROM and WROMs by considering th&)ROM and
FPT-ROM. In the both models, the functidd, i.e., the tablél'y is uniformly distributed.

In the ROM, if one queries soma that has never been queried to the random oracle, the value of
H(X) is uniformly distributed regardless of the past queries. That is, the knowledge of the past queries
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does not fect the entries not queried in the table. This property ofRB&/ is calleduniformity. In
contrast to the situation in thROM, when it comes to th&€PT-ROM, this property is not attained.
Recall that the first-preimage oraalaiformlyreturns one of the preimages, sqyf queried valug. If
the first-preimage oracle leaks a number of preimaggstbe value oH(x) is notuniformly distributed
for anx not queried yet.
In order to observe this situation, let us consider the following extreme casg. £di(x*) for some
x* € X and suppose that has the unique preimagé. Then the first-preimage oracle always returns
the samex* on the inputy*, which convinces us that the number of the preimages isfexactly 1. This
implies that the othex # x* does not take a valug underH. Therefore, the random oracle no longer
has the uniformity in th&PT-ROM. This is a critical diference between tHROM andFPT-ROM since
we often make use of the uniformity in the security proofs of the public-key encryption schemes.
We prove the following lemma to overcome this barrier in IRROMs, which states that the
WROMSs still has weak uniformity instead of the uniformity. The weak uniformity is still useful for
the security proofs of the public-key encryption schemes iVtROMs. See Appendill for the proof.

Lemma 2.4 (Weak Uniformity) In the WROMSs, the output distribution of the random oracle is sta-
tistically close to the uniform distribution. More formally, it is stated as follows. Let K — Y be
the hash function in th&/ROMs. LetA be a probabilistic oracle Turing machine that makes at most
q queries to the random oracl@O" and the additional oracle®", whereO" represents one of the
additional oraclesco™, SPo™, andFPot. V4 1(X) denotes the random variable that represents the
hash valueRO" (x), where x— AR and the correspondend®, H(x)) € Ty is not answered by the
two oracles.

Then, for anyA, the following holds:

A (sa+ 1+ 57+ 200035 ) itax > #Y,

A(Van(X), Uy) <
A (50+ 1+ 5 + 20085 ) itax <#Y.

nin#Y

Here, the probability is taken over random choices of the hash function H and the random ¢&in of

2.3 Simulation Methods

In almost all the security proofs in tHROM, the reduction algorithms simulate the random oracles.
When it comes to the security proofs in tAROMSs, the reduction algorithms have to simulate both the
random and the additional oracle, which make$edénces of the simulation methods in #tMROMs
from those in thdROM.

Numayama et al.’s methods: Numayama et al. proposed the simulation methodsNf®OMs, but
they required an unproven assumption. Le{l® p) denote the binomial distribution with parameters
N and p whose probability function idgy(x | N, p) = (E) pX(1 — p)N>for x = O,...,N, where the
parameterdl andp take values approximately&and J/#Y for a hash functiomd : X — Y, say, (\, p) =
(2128 27128) Their simulation methods required thiieient sampler for B(N, p) with exponentially
largeN and smallp, and they assumed its existence.

Assumption 2.5. There is a probabilistic Turing machiri&y such that the output distributioBy (N, p)
on inputs N and p is equal to the binomial distributiBr(N, p) and it runs in polynomial time ifog N
andlog p~, where N is a positive integer arfii< p < 1is a rational number.

Under this assumption, they constructed the simulation algoritR@s,CO, SPO, andFPO, for the
security proofs in th&/ROMSs as given in the following proposition. See Apperidifor the details of
the algorithms.



Proposition 2.6 (Simulation MethodINITO8]). We can perfectly simulate the random oracle, the col-
lision oracle, second-preimage oracle, and first-preimage oracle itR®OMs under AssumptidAd.3

That is, the output distributions of the random oracle, collision oracle, second-preimage oracle, and
first-preimage oracle in th&vROMs are identical to the output distributions of the algorithR®, CO,

SPO, andFPO, under Assumptidg.3.

Removing the assumption: For the security proof in th&VROMs of digital signature schemes in
[NITO8] and encryption schemes in this paper, it ishisient to utilize a weaker sampling algorithm
that generates a distributiomt equal but statistically clos®e the binomial distribution B(N, p). Then,
their security proofs can work by just adding negligibly small errors induced by the statistical distance
in their analyses.

There are quite many papers (e.@Re[72) on the dficient sampling methods from the binomial
distribution in the field of statistics. However, their basic computation model is totdibreint from the
model in the cryptography. As far as the authors’ knowledge, all these results are based on the compu-
tation model that directly manipulatesal numbers without errors. If we translate them to those in the
bit computation model used in the cryptography, we have to bound the statistical distance between the
real distribution and the output distribution generated by the sampling algorithms in the bit computation
model rather than the real-number one. Numayama et al. mentioned that they could neither find precise
analyses of the statistical distance, nor construct the sampling algorithms by themseNEEOS8].|
Therefore, they had to put the above assumption.

In fact, there is anfécient sampling algorithm appropriate for our purpose in the real-number com-
putation modellRel74. We modify the algorithm and rigorously analyze the error bound in the bit
computation model. We can finally obtain the following theorem on the sampling algorithm.

Theorem 2.7. For ¢, there is a probabilistic Turing machingy such that, for the output distribution
Bn(N, p) on inputs N p, the statistical distance betweBr(N, p) and Bn(N, p) is at moste and it runs
in polynomial time irog N, log p~* andloge™1, where N is a positive integer afid< p<1,0<e< 1
are rational numbers.

Note that the algorithm can control the error parameterhis property is useful in cryptographic
applications for the security proofs even if the other paramélesiad p are not stficiently large. We
put the details of the algorithm and its analysis in Appendices.

As a result, we can remove the above assumption and obtain the following theorem.

Theorem 2.8(Simulation Method without Assumptidd5). We can statistically simulate the random
oracle, collision oracle, second-preimage oracle, and first-preimage oracle iwWR@Ms. That is, the
output distributions of the oracles in tW¢gROMs are statistically close to the output distributions of the
algorithmsRO, CO, SPO, andFPO, respectively.

3 The Encryption Schemes and Their Security in the Weakened Random
Oracle Models

In this section, we examine the security in h&R0OMs of the public-key encryption schemes. We
particularly discuss separations for notion®R@M, CT-ROM, SPT-ROM, andFPT-ROM by showing
(in)security of public-key encryption schemes obtained by the Fujisaki-Okamoto conversion (FO) and
its two variants (dFO and wFO), and OAEP.

Public-key encryption schemes: We first give notation and notions for public-key encryption schemes
briefly. For details, see standard textbooks, eKLO[/].
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A public-key encryption schemBXKE = (Gen, Enc, Dec) over a plaintext spacat and a random
coin spaceR is defined by the following three algorithms. Letlenote the security parameter.

Key Generation: On input ¥, the key generation algorith@en(1¥) produces a publisecret key pair
(pk, sK).

Encryption: Given a public keypk, a plaintextm € M, and a random string € R, the encryption
algorithmEnc,,(m; r) outputs a ciphertext corresponding to the plaintext

Decryption: Given a secret kegk and ciphertext, the decryption algorithnDecsk(c) outputs the
plaintextm € M or the special symbal ¢ M corresponding to the ciphertext

We require the perfect completeness, that is, for evekysk) generated bysen(1¥), every plaintext
me M, and every random stringe R, it should be satisfied th@llecsk(Encyk(m; r)) = m.

We only consider three standard security notions for public-key encryption schemes, the one-wayness
against chosen-plaintext attacd\/-CPA), the indistinguishability against chosen-plaintext attaio¢CPA),
and the indistinguishability against adaptive chosen-ciphertext atfdbk@CA2).

Fory = y(k), we sayPKE is y-uniform if for any key pair pk, sk) generated byzen(1¥), any
m e M, andc € {0,1}*, we have RBi_g[c = Encp(m;r)] < y. There exists ®W-CPA public-key
encryption scheme with-uniformity (e.g., the EIGamal encryption scheme).

Brief review for FO. Fujisaki and Okamoto proposed a conversion, called the Fujisaki-Okamoto (FO)
conversion, to obtain highly secure public-key encryption schemes iR@ [FO99. Since the
standard one-time pad satisfies the requirement of the FO conversion, we fix the one-time pad as the
symmetric-key encryption scheme used in the FO conversion for simplicity.

Let PKE be aOW-CPA secure ang-uniform public-key encryption scheme over a plaintext space
M and a randomness spaRe Then the FO conversion conve®sKE to anIND-CCA2 secure one
PKE = FOPKE) over a plaintext spacal’ = {0,1}¥ and a randomness spa® = M, where
k' denotes the length of plaintexts, which is polynomially related to the security paraknefene
encryption procedure dPKE’ is given as follows: For a plaintexh € M’ = {0,1}¥ and a random
stringr € R = M, the ciphertext is

(€1, ¢2) = (Encpk(r; Him, 1)), G(r) & m),

whereH : {0, }¥ x M — R andG : M — {0, 1}¥ are hash functions modeled as the random oracles.
The decryption procedure is given as follows: For a given ciphertxty), decryptc; by sk and
obtainr. Then, extractn by ¢, @ G(r) and verifyc; = Encpk(r; H(m,r)). If not output_L. Roughly
speakingH(m, r) ensures that if a ciphertext( c,) is valid then the encryptor producing(c,) knows
correspondingn andr.

3.1 The First Variant dFO

We introduce the first artificial variant dFO and show that dFO is secure iRG@M, but not secure in
general in theCT-ROM.
The variant dFO converts a public-key encryption sch@w&E (with the one-time pad) to another
public-key encryption scheneKE = dFOPKE) similarly to FO. The encryption procedure®KE’
is defined as follows. For a plaintexte M’ = {0, 1}¥ and a random stringe R’ = M, the ciphertext
of PKE' is
(c1, €2) = (Encpk(r; H(F(m), 1)), G(r) & m),

whereF : {0,1) - P, G : M — {0,1)¥, andH : £ x M — R, for an appropriate se®, are hash
functions modeled as the random oracle. Formal description is in [Table

10



Key Generation Encryption Decryption

Input: I Input: me {0, ¥ Input:  (C1, Cp)
1:  (pk,sk) « Gen(1¥) 1. reM 1: 1 « Decg(C)
Output:  pk, sk) 2: g« G(r) 2: g« G(r)

3: he« H(F(m),r) 3 Mmecag

4: ¢y < Ency(r; h) 4: h« H(F(m),r)

5. o< mag 5. If cp = Encpk(r; h) seto « m

Output:  €1,C) 6: Otherwise seb « L
Output: o

Figure 1:PKE&’ obtained by the dFO conversion.

The idea to weaken the conversion is summarized as follows: RecaH{nat) in the FO con-
version can be considered as encryptor’s signature (or a proof of knowledgepodr. To make it
vulnerable by a collision, we introduce a new random or&clend replaceH(m,r) with H(F(m),r).

The replacement does not harm the security in the random oracle model, while it can be exploited by the
presence of the collision oraaz".

Formally, we have following theorems on the (in)security. The proof of The@sghis in Ap-
pendixC.

Theorem 3.1. Assume thaPKE is a OW-CPA secure and/-uniform public-key encryption scheme for
some negligible. ThenPKE = dFOPKE) is IND-CCA2 secure in theROM if #p = 2«09k

Theorem 3.2. Let PKE be a public-key encryption scheme## < 2K thenPKE = dFOPKE) is
notIND-CCA2 secure in theCT-ROM.

Proof. We construct the adversamt = (A1, Ay) that breaks théND-CCA2 security of PKE’, which
exploits the collision oracl€OF of F.

The adversaryA;, on inputpk, first queries taCOF. If the answer isL, then the adversary flips a
random fair coirty’, outputsy’, and halts. Otherwise, it obtains a collisiom(my) of F and outputs it as
achallenge. The adversa#, receives the target ciphertext (c3) = (Encuk(r; H(F(mb), r)), G(r)emy)
for somer € R'. It queries €], ;) = (c], C; ® mp ® my) to the decryption oracle and obtaimg_y, since

¢} = Encpk(r; H(F(mo), 1)) = Encpk(r; H(F(m), 1)),
=Grnememem =G(r)®m_p.

Hence, the adversary can answee b correctly.
Finally, we upper-bound the probability that the collision oracle outpyte/hich stems from the

definition of the collision oracle. The probability is bounded byL(Jl/#SD)Zk"1 < exp((2¥ - 1)/#P) <
1/ +/e. This completes the proof. m|

3.2 The Second Variant wFO

We next introduce the second artificial variant wFO and show that the obtained scheme by wFO is secure
in the CT-ROM, however not generally secure in t88T-ROM.

The encryption procedure K& = wFOPKE) is given as follows. For a plaintexh € M’ =
{0, 1} and random stringg(s) € R' = M x S, the ciphertext oPKE’ is

(C1,C2, C3) = (Encpk(r; H(F(M, 9),1)),G(r) @ m, s),

11



Key Generation Encryption Decryption

Input: I Input: me {0, ¥ Input:  (Cy, Cp, C3)
1:  (pk,sk) « Gen(1¥) 1. reM 1: 1 « Decg(C)

Output:  pk, sk) 2: g« G(r) 2. g« G(r)
3 s<S8 3 mecadg
4: h« H(F(m, 9),r) 4: h« H(F(m,c3),r)
5. c1 « Ency(r; h) 5. If ¢y = Encp(r; h) seto < m
6: Coe—mag 6: Otherwise seb « L
7. C3«S Output: o

Output: €1, C2, C3)

Figure 2:PKE’ obtained by the wFO conversion.

whereF : {0,1}¥ xS —» P, G : M — {0,1}¥, andH : £ x M — R are hash functions modeled as the
random oracles. The formal definition is in TaBle

Notice that H(F(m, s),r), s) is a proof of knowledge onng,r, s) which resists a collision ofr
however is vulnerable by a second-preimage attack agaiastin Numayama et alNITO§].

We can show that the obtained schemiNB-CCA2 secure in theCT-ROM by using Lemm&.4
See AppendifDl for the proof.

Theorem 3.3. Suppose thaPK & is aOW-CPA secure and-uniform public-key encryption scheme for
some negligible.. ThenPKE = WFOPKE) is IND-CCA2 secure in theCT-ROM if #P~L and#S~1
are negligible in k.

However, its security is broken under the presence of the second-preimage or&cle for

Theorem 3.4. Let PKE be a public-key encryption. WP < 2¥ . #S, then the schem@XKE =
WFO(PKE) is notIND-CCA2 secure in theSPT-ROM.

Proof. We construct the adversai = (A1, Ay) that exploits the second-preimage orasjeO™ asso-
ciated toF. The adversaryA; chooses random distinct plaintexts andm; and queries them to the
challenger. The challenger responses

Receiving €], C;, ¢3), the adversaryA, queries (n, S) to the second-preimage oracd¥O". If it re-
ceivesL from the second-preimage oracle, then it flips a random fair bgimutputsb’, and halts.
Otherwise, it obtainsnf/, ') # (my, s) such that~(mg, s) = F(m', ). So, the adversary queries

(cl.c5,c5) =(C,c;@mpaem,s)
to the decryption oracle. Notice that, @;(c5, c3) is the valid ciphertext ofrp, then we have

¢y = Encpi(r; H(F(my, 5), 1)) = Encp(r; H(F(', S), 1)),
c,=G(remaemem =G(r)en,
=9,

and €3, ¢, ;) is a valid ciphertext fon?. On the other hand, if the ciphertext is the encryptiomef

we have
(¢}, €, C5) = (Encpk(r; H(F(my, 8),1)),Gr) e m e mye ', s).

12



Thus, if f = F(my, 9) is equal toF(my & mg @ v, §') the decryption oracle returms; & mp & m'(# nY).
Otherwise, the decryption oracle returns

Thus, if the answer ig7, then the adversary concludes theit, €, ;) is the ciphertext ofng, that
is, it outputsb’ = 0. Otherwise, the adversary concludes that it is the ciphertaxi ofhat is, it outputs
b" = 1. Therefore, A can output the correct answer unledsreceivesL from the second-preimage
oracle.

We finally bound the probability that the oracle outputs It is bounded by (- 1/#P)2#S-1 <
exp((2¥ - #S — 1)/#P) < 1/ v/e as required. This completes the proof. O

3.3 The Original Fujisaki-Okamoto Conversion

We next show that the obtained scheme by the conversion FO with the one-time pad is secure in the
SPT-ROM, but not secure in thEPT-ROM in some parameter setting.

LetG : M — {0,1}¥ andH : {0, 1} x M — R be hash functions modeled as the random oracles.
Recall the encryption procedure BKE’ = FOPXE). For a plaintexim e M’ = {0, 1}¥ and a random
stringr € R” = M, the ciphertext isknc(r; H(m, r)), G(r) & m). The scheme is in Figuf@

Key Generation Encryption Decryption
Input: I Input: me {0, ¥ Input:  (c1, Cp)
1:  (pk,sk) « Gen(1¥) 1. reM 1: r « Decg(c)
Output:  pk, sk) 2: g« G(r) 2: g« G(r)
3: he H(mr) 3 Mmecag
4: ¢y « Ency(r; h) 4: he« H(mr)
5. c;—mag 5. If cp = Encpk(r; h) seto < m
Output:  €1,C) 6: Otherwise seb « L
Output: o

Figure 3:PKE&' obtained by the FO conversion.

Modifying the existing proofs, we can show the scheme is secure BRAIEROM using Lemm&.4
The proof appears in Appendi

Theorem 3.5. Suppose thaPKE is OW-CPA secure andy-uniform for some negligible. Then,
PKE = FOPKE) is IND-CCA2 secure in theSPT-ROM.

However, the presence of the first-preimage oracléfoiolates theND-CPA security of PKE’ in
some parameter settings. Note thatifs 0€, the second component of the ciphertex®{s), which is
vulnerable the first-preimage oracle®f

Theorem 3.6. Let C = #M/2X. Assume that G= k°Y, Then,PKE = FOPKE) is notIND-CPA
secure in th&PT-ROM.

Proof. We prove the theorem by constructing the adversdry (A, Ay) which exploits the first-
preimage oracle o6, ¥P0®. The adversaryA;, on inputpk, queriesmg = 0K andmy = 1¥ to the
challenger. The adversari,, on input the target ciphertexty( c), queriesc; to the first-preimage
oracle ofG. If it obtainsr; it checks that; = Encp(f; H(OX,F)). If the check passes, the adversary
outputsb’ = 0. Otherwise, it flips a random fair cobi, outputst’, and halts.

It is obvious that ifbo = 0 andr™ = r, the adversary answers correctly, that is, it outfts b.
If b = 1, the preimage of the que3(r) @ 1¥ never equals to sinceG(r) # G(r) ® 1¥. Hence, the
adversary’s check fails th = 1.
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We estimate the probability that the adversary wins. By Lef@iavith probability at least 222,
there is no preimage of size larger tHarwhere ifC > 1 thenL = 5CK In2/(Ink’ +InIn2) < 4CK /InK
and otherwisd. = 5k’ In2/(Ink’ + InIn 2) < 4k’/ In k’ for all sufficiently largek’.

Let Good denote the event that— FPOg(G(r)). We then have Pgood] > (1 — 2-%)/L. Hence,
we obtain that

Prlb’ =b] = Pr[b’ = 0| b= 0A Good] Pr[b = 0 A Good]
+Prlt’ =0|b=0A -Good] Pr[b = 0A -Good]
+Prl"=1|b=1]Prb=1]

NI =
NI =

1 11
=1. > Pr[Good] + 5°3" (1 - Pr[Good]) +

1 1 1 1-27%
_§+ZPr[Good]2§+ TR

and 4 is a polynomial in the security parameterThis completes the proof. O

As shown above, the FO conversion is not secure irFPIE-ROM, but there is a way to modify it
S0 as to maintain the security in tR@T-ROM. Naito, Wang, and Ohta proposed the conversion method
that converts a cryptosystem secure in R@M to that secure even in tHePT-ROM [NWOQY. In the
case of the FO conversion, the public keypk, ), wherec « {0, 1}k, and the ciphertext is

(c1.€2) = (Encpk(r; H(c,mr)),G(c,r) ® m),

where the domains dfl andG are modified. Intuitively, this change makes the first-preimage oracles,
FPO" andFPOC, useless.

3.4 OAEP

We finally focus on the OAEP and presentli#D-CCA2 security in theFPT-ROM. For the security
parametek, let kg andk; be functions ink, whereky < k — kg. Let F be a family of partial-domain
one-way trapdoor permutations of a dom#ni}<+ x {0, 1}%. (See [FOPS04% for the definition of

the partial-domain one-wayness.) Furthermore@GeindH be hash functions such th@t: {0, 1} —

{0, 1}% k0 andH : {0, 1}k* — {0, 1}. Then, the OAEP encryption scheme basedrda described in
Fig.[4 We obtain the following theorem that states the security of the OAEP encryption scheme in the

Key Generation Encryption Decryption
Input: 1 Input:  me {0, 1kRoke £ Input:  C, gsk
10 (fok.Osk) « F 1. r« {01k 1 s||te gs(©)
Output:  (fok, Osk) 2. s« (m]0%)eG(r) 2. re—toH(9)
3 t—H(gaor 3 M saG(r)
4: ¢« fou(sllt) 5. If M =m]| 0% seto—m
Output: ¢ 6: Otherwise seb « 1L
Output: o

Figure 4:0AEP

FPT-ROM.

Theorem 3.7. Let F be a family of partial-domain one-way trapdoor permutations. Then, the OAEP
encryption scheme based on ARD-CCA2 secure in th&=PT-ROM.

See Appendif for the proof.
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4 Future Work

It should be noted that oWWROMSs are based on a simplified variant, which Numayama eN4T.Q8]
and Pasini and VaudenglRVY07] also adopted, of the origin®/ROMs of Liskov [LisQ7].

The original WROMs consists of the ideal compression functton {0, 1}** — {0, 1}k of fixed
input lengthand the first-preimage oracle. Then, he discussed the security éxiitde input-length
hash functiondd" : {0,1}* — {0, 1} employingh as the component in the context of ifidrentiabil-
ity [MRHO4]. A random oracleH is often instantiated by employing a compresdion(See, e.g., the
survey in LNQO9, Section 2].) Therefore, his work reflects the attacks against the compression function
of MD5 and SHA-1 rather than the constructibin

On the contrary, we (and similarlNITO8, [PV07]) discussed thenonolithicrandom oracled and
the additional oracles associated with Hence, our model has a gap from such a realistic instantiation
of the random oracle in some sense. We leave filling this gap as future work.

Except for the FO conversion, there are several conversion methods RQke such as RE-
ACT [OPO0] and GEM [CHJ 02]. It would also be interesting as future work to examine the security of
these conversion methods in 'WROMs.
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A Simulation Algorithms of Numayama et al.

In this section, we review the details of the algorithR®, CO, SPO, andFPO which simulate the
random oracle, the collision oracle, the second-preimage oracle, and the first-preimage oracle in the
WROMS, respectively.

In each ofWROMSs, two tablesl andLL are shared by the simulation algoritiR® for the random
oracle and the simulation algorithm for the additional oracle, €@.jn the CT-ROM. In the start of
the simulations, both tables are empty. In the simulati@ingjll contain the pair of valuesx y) such
thatx = h(y) andLL will contain the pair of valuesy(n) such thah = #{x € X | x = h(y)}. For the table
T = {(x y)}, we defineT(y) = {(X,y) € T|y =y}

First, we review how the algorithrRO runs on inputx’in detail. If the hash value of i5 already
determined, then the algorithRO returns it. Otherwise, there are two situations depending on whether
the algorithmRO returnsold ywhich is already appeared in the tafiler the algorithnRO returnsnew
y which is not yet appeared in the talife There are (¥ — #T) elements whose hash values are not yet
determined, and among them there g (M —#T(Y)) elements whose hash values are expected to be
oldy. Therefore, the algorithrRO returns oldy or newy with this ratio. In case of olg, the algorithm
RO picks oldy according to the number of the preimages of eachyold case of new, the algorithm
RO picks newy uniformly at random, and defines the number of preimaggs @he whole algorithm
is presented in Algorithi.

Algorithm RO(X)
1. If (X, y) € T for somey, thenoutput y.

2. Let p be the following probability,

_ Zne (i —#T()
B #X — #T

3. With probability p, output old y as Steps (a)-(b).
(a) picky « D according to the following distribution.

n—#T
f = - — f , L.
o) = 5 ) O Ve

(b) insert K y) in T andoutput y.
4. With probability 1— p output newy as Steps (a)-(d).

(@) picky « Y\ Ug,nety} uniformly at random.

(b) "« BN#X - Xgme N — 1, m). (BN(N, p) denotes the binomial distribution with pa-
rametersN andp.)

) nen"+1.
(d) insert f,n) in L, insert  y) in T, andoutput y.

Algorithm 2: Simulation method of the random oracle.

Next, we review how the algorithi@O runs in detail. First, it pickx <« X as the original oracle
does. If the hash value ofis not determined, it obtains the hash vajugy the algorithmRO. If n =1,
which implies that there is only one preimageypthen the algorithn€O returnsL. Otherwise, there
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are two situations depending on whether the algori@®nreturnsnew xwhich is not yet appeared in
the tableT or the algorithmCO returnsold x which is already appeared in the tafite There aren
elements whose hash values are expected g &rd among them there ar&@) elements which are
already appeared in the talile Therefore, the algorithr@O returns oldx or newx with this ratio. In
case of oldx, the algorithmCO picks oldx according to both the current takifeand the number of the
preimages of each olddefined in the tabl&. In case of hew, the algorithmCO picks newx uniformly
at random. The whole algorithm is presented in AlgorifBim

Algorithm CO()

1. Pickx « X.
2. Invoke algorithmRO() and obtainy « RO(X).
3. Look up ,y) € L.
4. If n=1,output L.
5. If n# 1, then compute the threshaid= %
6. With probability g output x with an old element.
(a) pick one entry uniformly fronT such thatXy) € T, andoutput (X, X).
7. Otherwiseoutput X with a new element.

(a) pick uniformly X" « X such that X', y) ¢ T for anyy.
(b) insert ,y) in T, andoutput (X, X).

Algorithm 3: Simulation method of the collision oracle.

We next review how the algorithi@@PO runs on input Xy) in detail. Since X,'y) must be inT, the
algorithm can obtainy(h) from L. If n = 1, which implies that there is only one preimageypthen
the algorithmSPO returns.L. Otherwise, it returng as the algorithn€O does. The whole algorithm is
presented in Algorithrdl

Algorithm SPO(X, Y)

1. 1f (%, 9) ¢ T, output L.
2. If n=1for (y,n) € L, output L.
3. If n# 1 for (¥, n) € L, then compute the probability= %
4. With probability g output old x.
(a) pick one entry X7y) € T such thatx* X uniformly at random, andutput X.

5. Otherwiseoutput new x.

(a) pick x « X such thatx, ) ¢ T for anyy uniformly at random.
(b) insert x,¥) in T, andoutput X.

Algorithm 4: Simulation method of the second-preimage oracle.

17



Finally, we review how the algorithr®PO runs on inputy’in detail. If y is not yet determined
(i.e., the numben of preimages of is not determined either), then the algoritfRO first defines the
numbern of preimages of.” If n = 0, which implies that there is no preimageythen the algorithm
FPO returnsL. Otherwise, the algorithrRPO returnsx as the algorithn€O does. Note that the ratio
in this case is not equal to that in the algorith@® and SPO. The whole algorithm is presented in

Algorithm[5

Algorithm FPO(Y)

1. 1f (¥, n) ¢ L for anyn, then pickn « BN(#X - ¥ )L D, ﬁ), and inserty;n) € L, thenoutput
1.

2. If n# 0for (¥, n) € L, then compute the probability= #TT(V)
3. With probabilityq output old x.

(a) pick one entry uniformly fronT such that§;y) € T, andoutput X.
4. Otherwiseoutput newx.

(a) pick uniformly x « X such thatx, V) ¢ T.
(b) insert x,¥) in T, andoutput X.

Algorithm 5: Simulation method of the first-preimage oracle.

B Proof of LemmaZ.4

We now start the proof of our main lemma.

Proof. In order to bound the statistical distance, we consider the algofRGnmstead of considering
the random oracl®0O". It makes no dierence because the distribution of the outputs of the algorithm
RO is identical to the distribution of the outputs of the random or&?%' by Propositiofi2.8

We denote by 6ld y’ the valuey which already appeared in the interaction with the two oracles, i.e.,
the correspondence,(y) is already determined. We denote byeW y the valuey which did not yet
appear. Furthermore, we use the same not&ish as in Lemmd2.3 That is,BAD denotes the event
that there is somg such that the number of preimagesyphy, is larger tharl.

Now, we evaluate the probability Rfg 1 (X) = y] according to the algorithrRO.

Case 1l:newy:

#X-Yn 1
HX —#T #Y —#L

PVan(x) = new y =

Let ny be the number of preimages wptinder the functiort. Then conditioned ony < L for all y (i.e.,
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the evenBAD does not occur), this probability is bounded by

_#X—qL i
Piow = —#X #Y
< PriVan(x) = new y|-BAD]
#X 1
THEX-q #Y-q
1 1 1
THY 1-4 1-1
1 2q 2q
—(1+—=—|1
- #Y( #X)( #Y)
= Pup-

Then, fornew ywe have

|PriVan(X) = y] - PriUy =]
< |PriVau(X) = y [-BAD] — Pr[Uy =y |-BAD]| + Pr{BAD]
<|PriVan(x) = y|-BAD] - %| + Pr[BAD]
< Pup = Pow + PI[BAD]

<1 ((1+ E)(u E)—(l qL))+Pr[BAD]

#Y #X #Y - #X
1 (gL+2) 29 4
B #Y( ax T av ey T PBAD
Case 2:0ldYy:
_ _ N-=#I(y)
PriVan(x) =oldy] = WX HT

Then conditioned ony < L for all y (i.e., the evenBAD does not occur), this probability is bounded by,

PriVan(x) = old y|=-BAD] < X—q

Then, forold y we have

|PrVan(X) =yl - PriUy = ]|
< |PriVau(X) = y [-BAD] — Pr[Uy =y |-BAD]| + Pr{BAD]

< ‘Pr[\/ﬂH(x) =y |-BAD] - #_1\(‘ + Pr[BAD]
< PriVgn(x) =y |-BAD] + % + Pr[BAD]

1
< — 4+ Pr[BAD].
<ax_q v *PBAD]

Now we can bound the statistical distance between the distributioH gf(x) and the uniform
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distribution onY as follows:

3 [PrVan(¥) =1 - PrlUy = y]|
y
= > [PIVan() = Y1 = PriUy =y][ + > [PrVan(x) = 1 - PriUy = ]|

newy oldy

aL+2) 29 49 qL q
S( ax Yy T axay) T + — + #Y - Pr[BAD]

#X—q  #Y
29 3q 4 = 20qL

B #X #Y HXHY | #X —

Finally by applying the lemma above, ii#> #Y then we have

Z | PrIVan(¥) =yl - PrlUy = V]|

gt Pr[BAD].

29 3q  4¢ 20 5In# #X 1

<S—+—+ + it

#X #Y  #HXHEY #X-( Inin#Y #Y T #Y
4cf 4 5 In#Y)

<i5 +1+—+4q- ———
= v | w ey

Otherwise we have

D IPVan() =yl - Priuy = V]|
y

2q+3q+ 4cf . 2q 5In#Y+ 1
THX O HY  #HXHEY  #X-—q Inln#Y  #Y

2
1 (5q+1+4q + 4q 5In#Y)

= X #X “Inin#Y )
Therefore we have

nin#Y

5q+ 1+ + 20q|r'{;rf‘;Y), it #X < #Y.

AVan(X),Uy) <

(5q+ 1+ 1 o0 sy ) if #X > #Y,

C Proof of the Security of dFO, Theorem3.1

We prove Theorer8.1in the game style. We define a sequence of games and bound the advantage of
the adversary in thtND-CCA2 game by showing each of the subsequent pairs of games is statistically
close, and by relating the last game to @\&/-CPA property of the underlying encryption scheme.

In order to prove théND-CCA2 security, it is necessary to simulate the decryption oracle without
knowing the secret kegk. This is done by using the following plaintext extracRE as in the original
proof [FO99.

The plaintext extractor PE: The plaintext extractor shares the three tafilesTg, andTy that are
involved in the simulation algorithmROg, ROg, andROy, respectively. Given a decryption query
¢ = (c1, Cp), PE inspects each entry(f,) € T, (y,0,) € Tg, and (f,y, h¢,) € Ty. For eachy,g,) €
Tg, it obtainsy « ¢, @ g,. It next picks fi, f) € Tr and picks §,y,h) € Ty. It checks whether
¢1 = Encpk(y, h). If they hold, PE outputsu as the decryption of and stops. Otherwise, the extractor
returns.L.
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Sequence of games: We start with the original attack game with respectN®-CCA2 in the ROM,
and modify it step by step in order to obtain a game directly related to the adversary which breaks the
OW-CPA property ofPKE = (Gen, Enc, Dec).

e Gameg: The original attack game with respectiMD-CCA2 in theROM. A pair of keys pk, sk)
is generated by using the key generation algorithrGefi. The adversaryA is given the public
key pk and has access to the decryption oralethe random oracleROF, RO®, andROM. At
some point in the game the adversadyis expected to output a pair of messages, (). Next
a challenge ciphertext is produced by flipping a do@nd producing a ciphertext of m,. This
ciphertextc* is constructed as follows:

r* — M, g° « ROC(r), G — g &m,
f* — ROF (my), h* — RO™(f*,1%), C; — Encp(r'; hv).
Then the ciphertext{, ;) is given toA. Finally, the adversaryl outputs a bit'.

e Gamegs: We replace the random oracl&®", RO®, andROM with the algorithmsROg, ROg,
andROy respectively. These algorithms are obtained by the standard “on-the-fly” method.

Furthermore we replace the decryption ora€lewith the algorithmD which simply runs the
decryption algorithm using secret kely.

e Game;: We change the time for generating The challenger first chooses$ uniformly at
random and obtaing" « ROg(r*).

e Gamey: We modify the above game, by hooking queries to the algoritRg andROy. If the
query to the algorithm containg, the challenger stops. Otherwise, the query is passed to the
algorithms.

e Games: We make the decryption algorithBhreject an undetermined That is, the algorithnD
outputs.L if (r, ) ¢ Tg forr « Decgk(C1) in step 2. In the after games, the algoritbndoes not
query toROg.

e Games: We modify the generation aj*. The challenger useg’ « {0,1}¥ instead ofg" «
ROg(r*).

e Games: We modify the generation dfi*. The challenger choosdg « R instead ofh* «
ROK{(ROF(Mp), ). Hencec® = (cj, ¢;) is (Encpk(r*; h*), g™ & my).

e Gameg: We make the decryption algorithBrreject an undeterminem. That is,D outputs.L if
(m, %) ¢ T in step 4. Additionally, we mak® reject an undetermined (r). l.e., D outputsL
if (f,r,x) ¢ Ty in step 5. Notice that the algorithid does not query t&ROr, ROg, andROy
anymore.

e Gamey: Finally, we replace the decryption algoritibrwith the plaintext extractoPE.

Sequence of lemmas: In the proofs of the following lemmas, we repeatedly use Leffthitbelow in
order to bound the distance of each of the subsequent pairs of games.

Lemma C.1. Let B, Ep, F1, and F, be events defined on a probability space. If the followings hold:
IPr[E1 A =F1] — Pr[Ex A =F3]| < 6 and Pr[F4] = Pr[F3] = €,
then we have

|Pr[E1] — Pr[E2]| € 6 + €.
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Proof.
|Pr[E1] — Pr[E2]| = IPr[E1 A =F1] + Pr[E1 A F1] — Pr[E> A =F2] — Pr[Ex A F3]|
< |Pr[E1 A =F1] = Pr[Ex A =F5]| + |Pr[E1 A F1] — Pr[Ez A F2]|
<0+ | Pr[E1|F1] - Pr[F1] — Pr[Ex|F>] - Pr[F2]
— 5+ | Pr[E1IF1] — Pr{EalF]| - €
<J0+e
O

Let gr, gg, andgy denote the number of queries made by the adversary to the random oracles for
F, G, andH, respectively.qp denotes the number of queries made by the adversary to the decryption
oracle. We denote bgg the eventy = b in the Gameg and use a similar notatio®; in any subsequent
game. We denote bAadv(,, the advantage of the adversary in theD-CCA2 game in theROM.

Then by definition, we havAdv’,, = 12 Pr[Sq] — 1]. We can bound this probability by the following
lemmas.

In the following, we denote bjskG andAskH the event that the adversary quenigso the random
oracle forG and the event that the adversary querigs*) to the random oracle foH for someg,
respectively. LeAskR = AskG Vv AskH.

Note that

AdVEE,, < | Pr[Sq] — Pr[=Sq]| < Pr[AskRo] + | Pr[Sg A =AskRg] — Pr{=So A ~AskRq]|.
Lemma C.2. Gameg and Gameg s are identical and we have
PI’[S()] = Pr[So_5].

Proof. The algorithm®R0Og, ROg, andROy can simulate the random oracles for the hash functigns
G, andH, respectively. Therefor&gameg andGamegs are identical,
O

Lemma C.3. Gamegs andGame; are identical.

Proof. There is no change except the timing for the generatiari.at is obvious that the change does
not dfect the games. Therefo@ameg s andGame; are identical.
|

Lemma C.4. Game; and Game; are identical if the evemAskR does not occur. Hence, we have that
AdVLE,, < Pr[AskR2] + | Pr[S; A ~AskRg] — Pr[=S; A =AskR2]|.

Proof. If the one of two events occurs, the challengeGame; stops, but continues the gamedame;.
On the other hand, if the two events does not occur, the two games are identical. Therefore, we have that

Pr[AskRz] = Pr[AskR1], Pr[So A =AskR2] = Pr[S1 A =AskR1], Pr[=S2 A =AskR>] = Pr[-S1 A =AskR1].

The inequation thus follows from the above equations.
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Lemma C.5. Game, andGames are identical if the everfailGsz does not occur, whergailG denotes
the event that the adversary asks a valid ciphertext ¢ but r is not containgg in some decryption
guery inGames. Then, we have

| PrlAskR3] — Pr[AskR;]| < Pr{FailGs],
| Pr[S3 A =AskR3] — Pr[S, A =AskRy]| < Pr[FailG3],
| Pr[=S3 A =AskR3z] — Pr[=S, A =AskR>]| < Pr[FailGs3].

In particular, we have that
AdVLE,, < Pr{AskRg] + | Pr[Ss A ~AskR3] — Pr[=Sg A —AskRs]| + 3 PrlFailGs].

Additionally,
- O | OH
Pr[FailGs] < gp - (2_k + e + Zy).

Proof. The first part is trivial, since the decryption algorithms are equiiilG does not occur.

Let Faily denote the event th&ailGs firstly occurs at thé-th query to the decryption oracle. Obvi-
ously, PrFailGs] = ¥, Pr[Faily].

Suppose that thketh query to the decryption oracle és= (¢, ¢2) and the evenfailg occurs. This
means that; = Encp(r; ') for someh’, where (, ) ¢ Tg, andD> obtainsg < ROg(r), m < c; ® g,
f « ROg(m) andh « ROy(f, r) such thaty = Encp(r; h).

We split the event into the following four cases:

1. (m f) e Tg and (f,r,h) € TH.
2. (m %) ¢ Tg but (f’,r, h) € Ty for somef’.
3. (m, f) e T but (f,r, %) ¢ Th.
4. (m *) ¢ Tg and , 1, %) ¢ Th.

In the case 1, for anyng, f) € Tg, there is the corresponding triplet, ¢, h) € Ty such thatc; =
Encpk(r; h) in the worst case. Hence, the probability tigat— ROg(r) satisfies¥ = ¢, @ g for any
(', %) € T is at least that thafail, occurs in this case. The probability is simply upper bounded by
e /2¢.

In the case 2, we assume that every triplétjinis corresponding to; in the worst case, that is every
triplet is in the form ', r, ) such thatc; = Encpk(r; h’). But, since the valué is not determined, the
probability thatf «— ROg(m) equals to the one of the elements in triplets, is at magHPr.

In the case 3, we have simply the upper boyrizkcausdn is not determined.

In the case 4, sinceis not determined yet, we have the upper boynd

By summing up, we have

Pr[Faily] < g—lf + 27'4) + 2y,
- 9r  OH
Pr[Faily] < gp - (2—k *ap Tt Zy).

O

Lemma C.6. Gamez andGameg, are identical if the evemiskG does not occur. In particular, we have
that

AdVLE,, < PrlAskRa] + | Pr[Ssq A ~AskR4] — Pr[=Ss A =AskRa]| + 3 PrlFailGs].
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Proof. Obviously, if the evenAskG does not occur, these two games are identical.
O

Lemma C.7. Games and Games are identical if the evemiskR does not occur. Thus, we obtain that

AdV Sy, < Pr{AskRs] + | Pr[Ss A ~AskRs] — Pr[=Ss A =AskRs]| + 3 Pr[FailGg].

Proof. Obviously, if the evenf\skR does not occur, these two games are identical.

Lemma C.8. In Games, we have
| Pr[S5 A =AskRs] — Pr[-=Ss A =AskRs]| = 0.

Proof. SinceAskRs does not occur, the adversa# cannot knowg™, which is uniformly distributed
over{0, 1}¥, and we conclude the proof.
]

Lemma C.9. Games and Gameg are identical ifFailD does not occur, whergailD denotes the event
that Dg fails in some decryption query to the decryption oracle bgisucceeds, whet; denotes the
decryption algorithm irGame;. We have that

Pr[AskRs] < Pr[AskRg] + Pr[FailD].
Proof. Obviously, if the evenFailD does not occur, these two games are identical. Thus, we have that
| PrfAskRs] — Pr[AskRg]| < Pr[FailD]

and the inequality in the statement.

Lemma C.10. In Gameg, we have

Pr{FailD] = o (2—; + 2y).

Proof. Let Ds andDg be the decryption algorithms Bames andGameg, respectively. LeFaily denote
Dg firstly fails in thek-th query to the decryption oracle bDg succeeds. So, we have PafID] =
b, PriFaily].

Suppose that thieth ciphertextc = (¢;, ¢z) as the decryption query.

SinceDs succeeds, we have thet = Ency(r; h) for somer € M andh € R, and ¢, g) € Tc.
Additionally, sinceg is now fixed,m = ¢, @ g is also fixed. Moreover, we can fiix < ROg(m). Finally,
we have that, foh « ROR(f,r), c1 = Encp(r; ﬁ), since the final check dbs is passed.

On the other hand)g fails if f andh are not determined.

We splitFailk into the following three cases:

1. (m =) ¢ T and (f,r, h) € Ty for somef,
2. (m, f) € Tg for somef but (f,r, *) ¢ Ty.

3. (M x) ¢ Tr and ¢, 1, %) ¢ Ty.
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In the case 1Ds succeeds if {/,r,h) € Ty where f’ « ROg(m). We can upper bound this
probability byqy /#P sincef’ is chosen uniformly at random frof.

In the case 2Ds succeeds i€; = Encpk(r; h') whereh” « ROy(f,r). This probability is at mosy
becauséy is chosen uniformly at random froR.

In the case 3Ds succeeds i€, = Encyk(r; h’) whereh' « ROy (f’,r) and f’ « ROg(m). Sinceh’
is not determined, this probability is at magst

Summing up them, we have

Pr[Faily] < 27'1 + 2y

and conclude the proof.

Lemma C.11. Gameg andGamey are identical. We haver[AskRg] = Pr[AskR7].

Proof. Recall that the decryption algorithBy in Gameg does not query to any random oracle. Hence,
we safely replac®g with PE.
m|

Lemma C.12. In Gamez, we have

Pr[AskR7] < (gc + OH) - Advg\é\i.

Proof. We construct an adversayagainst thedW-CPA security of the underlying schem®E from
the adversaryA in Gamey. The description of the new adversaByis as follows:

e B first choosegyt « {0,1}X. Receiving pk, ¢} = Encpk(r*; h™)) from its challenger, where
r — Mandh* « R, 8 feedspk to A. On decryption queries runs the plaintext extract®E.

e Receivingmg andmy from A, B generates the target ciphertext. First it querigsand my to
ROEf to determine the hash valuésand f; of mg andy, respectively. Then, it flips a fair coin
b < {0, 1} and computes; < g" @ my. Then, it feedsq, c;) to A.

e Finally, A outputsb’. Then,B randomly choosesfrom Tg andTy and outputs.

Notice thatB simulatesGamey; perfectly and ifAskR; occurs the one of two tables contairfs We
have

Pr{AskR7] < (g + gn)Adv2y.

D Proof of the Security of wFO, Theorem3.3

As in the previou section, we prove Theor@&8 in the game style. Again, in order to prove the
IND-CCAZ2 security, it is necessary to simulate the decryption oracle without knowing the secret key
sk. This is done by using the following plaintext extracRE as in the original proofff099.

The plaintext extractor PE: The plaintext extractor shares the three tafilesTg, andTy that are
involved in the simulation algorithms fd¥, G, andH, respectively. Given a decryption quety=
(c1, 2, C3), PE inspects each entryi(o, f,+) € Tr, (v,09,) € Te, and (f,y,hs,) € Ty. For each
(v,9y) € Tg, it obtainsu < C; ® g,. It next picks fi, c3, f) € Tr and picks €,y,h) € Ty. It checks
wheterc; = Ency(y, h). If they hold, PE outputsu as the decryption of and stops. Otherwise, the
extractor returng..
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Sequence of games: We start with the original attack game with respediND-CCAZ2 in the CT-ROM,
and modify it step by step in order to obtain a game directly related to the adversary which breaks the
OW-CPA property ofPKE = (Gen, Enc, Dec).

e Gameg: The original attack game with respectitéD-CCA2 in the CT-ROM. A pair of keys
(pk, sk) is generated by using the key generation algorithm of the wFO encryption scheme. The
adversaryA is given the public keyk and has access to the decryption orablethe random
oraclesRO", RO®, andRO", and the collision oraclesO™, CO®, andCoM. At some point in
the game the adversarf is expected to output a pair of messages, ;). Next a challenge
ciphertext is produced by flipping a cdirand producing a ciphertegt of my. This ciphertext*
is constructed as follows:

I — M, g« ROS(r"), C,— g ®m,
S« S, f* — RO™(my, 59, h* «— ROT(f*, 1), C; « Encp(r*; h*).

Then the ciphertext{, c;, ¢; = ') is given toA. Finally, the adversaryi outputs a bit’.

e Gamegs: We replace the oracleBO™, RO®, RO, coF, co®, andco™ with the algorithms
ROE, ROg, ROy, COg, COg, andCOy respectively. These algorithms are obtained by simply
modifying the algorithm®O andCO in AppendiXAlfor F, G, andH.

Furthermore we replace the decryption oraglewith the algorithmD which simply runs the
decryption algorithm using the secret keky

e Game;: We change the time for generatin§ The challenger first choose$ uniformly at
random and obtaing" < ROg(r*).

e Game;: We modify the above game, by hooking queries to the algoritRg andROy. If the
guery to the algorithm containg, the challenger stops. Otherwise, the query is passed to the
algorithms. Additionally, the challenger hooks answers from the algorith@s andCOy. If
the answer contains’, the challenger stops. Otherwise, the query is passed to the algorithms.

e Games: We make the decryption algorithBhreject an undetermined That is, the algorithnD
outputsL if (r, x) ¢ Tg for r < Decg(c1). In the after games, the algorithbndoes not query to
ROG.

e Games: We modify the generation aj*. The challenger useg’ « {0,1}¥ instead ofg" «
ROg(r*).

e Games: We modify the generation di*. The challenger choosdg « R instead ofh* «
RO{(ROF(mp, s°),r*). Hencec" = (¢}, c;, ¢3) is (Encpk(r*; h*),g" @ my, s*), wheres® « S.

e Gameg: We make the decryption algorithBrreject an undeterminem. That is,D outputs.L if
(m,c3, %) ¢ Tr in step 4. Additionally, we makB reject an undetermindf(r). l.e.,D outputsL
if (f,r,+) ¢ Ty in step 5. In the after games, the algoritBndoes not query tROr andROy.

e Gamey: Finally, we replace the decryption algoritibrwith the plaintext extractoPE.
Sequence of lemmas: Let g, gs, andgy denote the number of queries made by the adversary to
the oracles corresponding £, G, andH, respectively. o denotes the number of queries made by

the adversary to the decryption oracle. In the following, we denotédikG* and AskH* the event
that the adversary queries to the random oracle fd& and the event that the adversary queryr{)
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to the random oracle faf for somef, respectively. We denote byskG™ andAskH™ the event that
the adversary obtains from the collision oracle foG and the event that the adversary obtaifig*)
from the collision oracle foH for some f, respectively. LetAskG = AskG* v AskG~, AskH =
AskH* v AskH™, andAskR = AskG Vv AskH.

Note that we have that

AdVRE,, < | Pr[Sq] — Pr[=So]l < Pr[AskRo] + | Pr[Sg A =AskRg] — Pr[=So A ~AskRq]|.
Lemma D.1. Gameg andGamegs are statistically clos® and we have
Pr[So] = Pr[Sos].

Proof. The algorithms®ROg, ROg, andROy can simulate the random oracles for the hash functigns
G, andH. The algorithmsCOf, COg, andCOy also can simulate the collision oracles for the hash
funciotnsF, G, andH, respectively. Therefor&ameg andGameg are identical,

O

Lemma D.2. Gamegs and Game; are identical.

Proof. There is no change except the timing for the generatiri oft is obvious that the change does
not dfect the games. Therefo@ameg s andGame; are identical.
|

Lemma D.3. Game; andGame; are identical if the evemiskR does not occur. Hence, we have that
AdVLE,, < PrlAskR2] + | Pr[S; A ~AskRj] — Pr{=S; A =AskR2]|.

Proof. If the one of two events occur, the challengeGiame, stops, but continues the gamedame;.
On the other hand, if the two events does not occur, the two games are identical. Therefore, we have that

Pr[AskRy] = Pr[AskR1], Pr[Sz A =AskRy] = Pr[S1 A =AskR1], Pr[=S, A =AskR3] = Pr[-S; A =AskR1].

The inequation thus follows from the above equations.
m|

Lemma D.4. Game, and Games are identical if the everfailGsz does not occur, wherailG denotes
the event that the adversary asks a valid ciphertext ¢ but r is not containgg in some decryption
guery inGames. Then, we have

| Pr[AskR3z] — Pr[AskR]| < Pr[FailG3],
| Pr[S3 A =AskR3] — Pr[S, A =AskR3]| < Pr|FailG3],
| Pr[=S3 A =AskR3] — Pr[-=S; A =AskR3]| < Pr|[FailG3].

Additionally,
Pr[FailGs] < gp - (g—lf + 2—; + 2y + neglg + neglg + 2negIH),

! Although TheorerfZ.8states that there is a statistical distance, we ignore the above statistical distance, in order to simplify
the analysis.
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where

| (SQF +1+ qF + 200 IAT:QD) if 2K . #S > #P,
e BUE + 1+ gk + 200 A225) if 2. #S < #P
Zk, S F Zk' Finin#p ,
In2 . K
negle < |7 L (506 +1+ 3 Zk, + 200G ) it M= 2,
(500 + 1+ 55 + 2006825 ) if#M < 2,
#(5‘1***1*%*20‘1%1@) if #M - HP > #R,
negly <

4q? .
s (5CIH +1+ #/\2‘2@ + 2004 Irﬂr?ﬁk) If #M- #P < #R.

Proof. The first part is trivial, since the decryption algorithms are equadiifs does not occur. To show
the second part, we follow the arguments@MMVO05] with little corrections.

Let Faily denote the event th&ailGs firstly occurs at thé-th query to the decyrption oracle. Obvi-
ously, PrFailGs] = 3, Pr[Faily].

Suppose that thieth query to the decryption oracleds= (c1, ¢y, ¢3) and the everfail, occurs. This
means that; = Encp(r; ") for someh’, where (, ) ¢ Tg, andD> obtainsg < ROg(r), m < C; ® g,
f « ROg(m, c3) andh « ROy(f, r) such thaty = Encp(r; h).

We split the event into the following four cases:

1. (m f) e T and (f,r,h) € Ty.
2. (m, %) ¢ Tg but (f’,r,h) € Ty for somef’.
3. (m f) e Te but (f,r,*) ¢ Ty.
4. (m ) ¢ Tk and ¢, 1, %) ¢ Th.

In the case 1, for anyng, f) € Tg, there is the corresponding triplet, ¢, h) € Ty such thatc; =
Encpk(r; h) in the worst case. Hence, the probaluity- ROg(r) satisfiesn’ = ¢, @ g for some (i, ) €
Tk is at least thaFail, occurs in this case. The probaiblity is simply upper boundedd&y®2¥ + neglg
by the help of LemmR.4

In the case 2, we assume that every tripl€tjnis corresponding to; in the worst case, that is every
triplet is in the form ¢, r, ') such thatt; = Ency(r; h"). But, since the valué is not determined, the
probability thatf obtained byROg(m, c3) is one of the elements in triplets, is at mggy/# + neglg.

In the case 3, we have simply the upper boyndnegl, becausd is not determined.

In the case 4, sindeis not determined yet, we have the upper boyrdnegly.

By summing up, we have

PrlFaily] < — + :;'D + 2y + neglg + neglg + 2negly,
Pr[FailG] < qp - (qF + Ll + 2y + neglg + neglg + 2negIH)
2K H#P

O

Lemma D.5. Gamesz and Game, are almost identical if the evertskG does not occur. In particular,
we have that

AdVLE,, < PrlAskRa4] + | Pr[Saq A —~AskR4] — Pr[=Ss A =AskRa]| + 3 PrFailGs] + 3neglg.
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Proof. If the eventAskG does not occur, iGGames, gt <« ROg(r*) is almost uniformly at random from
our weak uniformity lemma (Lemnf&3d). In Gamey, g* « {0, 1}¥ is uniformly at random. Hence, two
games dter only withinneglg.

m|

Lemma D.6. Game4 and Games are almost identical if the evertskH does not occur. In particular,
we have that

AdVD < Pr[AskRs] + | Pr[Ss A ~AskRs] — Pr[~Ss A =AskRs]| + 3 Pr[FailGs] + 3neglg + 3negly,.

Proof. If the eventAskH does not occur, ittamey, h* « ROy{(ROg(my, s¥), r*) is almost uniformly
at random from our weak uniformity lemma (Lem{@a). In Games, h* « R is uniformly at random.
Hence, two games fiier only withinnegly.

|

LemmaD.7. In Games, we have
| Pr[Ss A =AskRs] — Pr[=Ss A =AskRs]| < 0.

Proof. Sinceg* is uniformly distributed over0, 1} and the adversary cannot knay, the lemma
follows. =

Lemma D.8. Games and Gameg are identical ifFailD does not occur, whergailD denotes the event
that Dg fails in some decryption query to the decryption oracle Dgitsuceeds, wherB; denotes the
decryption algorithm irGame;. We have that

Pr[AskRs] < Pr[AskRg] + Pr[FailD].

Proof. It follows the argument in the proof of Theord3xl

Lemma D.9. In Gameg, we have
. OH
Pr[FailD] < gp - s + 2y + neglg + 2negly ).

Proof. Let Faily denote thég firstly fails in thek-th query to the decryption oracle D succeeds. So,
we have PifailD] = ¥°, PriFaily].

Suppose that thk-th decryption query is the ciphertext= (¢, C2, C3). SinceDs suceeds, we have
thatc; = Encpk(r; h) for somer € M andh € R, and (,g) € Tg. Additionally, sinceg is now fixed,
m = c,@gis also fixed. Moreover, we can fix«— ROg(m, c3). Finally, we have that, fdn — ROy (f, ),
c1 = Encpk(r; h), since the final check ds is passed.

On the other hand)g fails if f andh are not determined.

We splitFailk into the following three cases:

1. (m,cs, =) ¢ Tr and (f, r, h) € Ty for somef,
2. (m,c3, f) € Tk for somef but (f,r, «) ¢ Ty.

3. (mc3,*) ¢ T and ,r, ) ¢ Ty.
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In the case 1Ps succeeds if {/,r,h) € Ty where f’ — ROg(m,c3). We can upper bound this
probability bygy /#P + neglg sincef’ is distributed according to almost uniform distribution oger

In the case 2Ds succeeds i€; = Encyk(r; h’) whereh” « ROy(f,r). This probability is at most
v + negly becausd’ is distributed according to almost uniform distribution ofer

By the similar way to the abové)s succeeds in ity = Ency(r; h’) whereh' « ROy (f’,r) and
f’ « ROE(m, c3).

Summing up them, we have

Pr[Faily] < 2—; + 2y + neglg + 2negly,

Pr[FailD] < gp - (2% + 2y + neglg + 2negIH).

Lemma D.10. Gameg andGamey are identical. We haver[AskRg] = Pr[AskR7].

Proof. Recall that the decryption algorithBy in Gameg does not query to any random oracle. Hence,
we can safely repladeg with PE.
|

Lemma D.11. In Game7, we have

Pr{AskR7] < (0 + 0n) - AdV2Py.

Proof. We construct an adversafyagainst the OW-CPA security of the underlying sche?gé& from
the adversaryA in Gamey. The description of the new adversaByis as follows:

e B first choosegyt « {0,1}¥. Receiving pk, ¢} = Encp(r*;h™)) from its challenger, where
r — Mandh* « R, 8 feedspk to A. On decryption queries runs the plaintext extract®E.

e Receivingmy andmy, from A, B generates the target ciphertext. It chooses— S and queries
(mo, s") and ¢y, s™) to ROg. Then, it flips a fair coirb « {0, 1} and computes;, < g* & m,.
Then, it feeds;, c;, s") to A.

¢ Finally, A outputsb’. Then,B randomly choosesfrom Tg andTy and outputs.

Notice thatB simulatesGamey perfectly. SinceAskR; occurs, the one of two tables contairts
We have
Pr[AskR7] < (gc + qH)Advg‘F’,‘/Q.

E Proof of the Security of FO, Theorem3.5

We prove Theorer3.3in the game style. In order to prove théD-CCA2 security, it is necessary to
simulate the decryption oracle without knowing the secretdteyThis is done by using the following
plaintext extractoPE in the original proof[FO99.

The plaintext extractor PE: The plaintext extractor shares the two talilgsandTy that are involved
in the simulation algorithmROg andSPOg, and the simulation algorithmROy andSPOy, respec-
tively. Given a decryption query = (c, C2), PE inspects each entry(g,) € T and (,y, h,,) € Th.
For each ¢,9,) € Tg, it obtainsy < C, ® g,. It next picks f,y,h) € TH. It checks wheter
c1 = Encp(y; h). If they hold,PE outputsu as the decryption of and stops. Otherwis@E returns..
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Sequence of games: We start with the original attack game with respediND-CCA2 in theSPT-ROM,
and modify it step by step in order to obtain a game directly related to the adversary which breaks the
OW-CPA property ofPKE = (Gen, Enc, Dec).

e Gameg: The original attack game with respectitdD-CCA2 in the SPT-ROM. A pair of keys
(pk, sk) is generated by using the key generation algorithem. The adversaryA is given the
public keypk and has access to the decryption ora®lehe random oracle®O® andRO", and
the second-preimage oracl8®0® and SPO". At some point in the game the adversaflyis
expected to output a pair of messages, fn). Next a challenge ciphertext is produced by flipping
a coinb and producing a ciphertegt of my,. This ciphertext* is constructed as follows:

r* — M, g — RO®(r"), Cy —g" ®m,
h* «— RO (my, r*), C; « Encp(r*; h).

Then the ciphertexic{, c;) is given toA. Finally, the adversary# outputs a bib’.

e Gamegs: We replace the oracl®0®, RO, SPOC, andSPO" with the algorithmsROg, ROH,
SPOg, andSPOy respectively. These algorithms are obtained by simply modifying the algo-
rithmsRO andSPO in AppendixAl for G andH.

Furthermore we replace the decryption oraglewith the algorithmD which simply runs the
decryption algorithm using the secret keky

e Game;: We change the time for generating The challenger first chooses$ uniformly at
random and obtaing" « ROg(r*).

e Game;: We modify the above game, by hooking queries to the algoritRg andROy. If the
guery to the algorithm containg, the challenger stops. Otherwise, the query is passed to the
algorithms. Additionally, the challenger hooks answers from the algorigP@s andSPOy. If
the answer containg’, the challenger stops. Otherwise, the query is passed to the algorithms.

e Games: We make the decryption algorithBrreject an undetermined That is, the algorithnD
outputsL if (r, «) ¢ Tg for r < Decg(c1). In the after games, the algorithbndoes not query to
ROgG.

e Games: We modify the generation aj*. The challenger useg’ « {0,1}¥ instead ofg" «
ROg(r*).

e Games: We modify the generation di*. The challenger choosdg « R instead ofh* «
ROp (mp, r*). Hencec™ = (c;, ¢5) is (Encpk(r™; ™), g" @ my).

e Gameg: We makeD reject an undetermindrr). l.e.,D outputsL if (m,r,*) ¢ Ty in step 4. In
the after games, the algorithindoes not query to andOy.

e Gamey: Finally, we replace the decryption algoritibnwith the plaintext extractoPE.

Sequence of lemmas: Let gz and gy denote the number of queries made by the adversary to the
oracles corresponding ®@andH, respectivelygp denotes the number of queries made by the adversary
to the decryption oracle. In the following, we denoteAskG™ andAskH* the event that the adversary
guerieg* to the random oracle f@g and the event that the adversary queryr() to the random oracle

for H for somem, respectively. We denote yskG™ andAskH™ the event that the adversary obtains
r* from the collision oracle foG and the event that the adversary obtaimsr{) from the collision
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oracle forH for somem, respectively. LeAskG = AskG™* v AskG~, AskH = AskH" v AskH™, and
AskR = AskG Vv AskH.
Note that we have that

AdVRE,, < | Pr[Sq] — Pr[=So]l < Pr[AskRo] + | Pr[Sg A =AskRg] — Pr[=So A ~AskRq]|.
Lemma E.1. Gameg andGameg s are statistically clos& and we have
PI’[S(J] = PF[S()_5].

Proof. The algorithm®k0Os andROy can simulate the random oracles for the hash funct®asdH.
The algorithmsSPOg andSPOy also can simulate the collision oracles for the hash funciGtiasd
H, respectively. Therefor&ameg andGamegs are identical,

|

Lemma E.2. Gamegs andGame; are identical.

Proof. There is no change except the timing for the generatiri oft is obvious that the change does
not dfect the games. Therefo@amegs andGame; are identical.
|

Lemma E.3. Game; andGame; are identical if the evenmskR does not occur. Hence, we have that
AdVLE,, < PrlAskR2] + | Pr[S; A ~AskRj] — Pr[=S; A =AskR2]|.

Proof. If the one of two events occur, the challengeGiame, stops, but continues the gamedame;.
On the other hand, if the two events does not occur, the two games are identical. Therefore, we have that

PT[ASkRz] = PI’[ASkR]_], PI’[SZ A —|AS|(R2] = PI’[S]_ A —|AS|(R1], Pr[—182 A —|AS|(R2] = Pr[ﬂsl A —|AS|(R1].

The inequation thus follows from the above equations.
]

Lemma E.4. Game; andGames are identical if the everftailGs does not occur, whergailG denotes
the event that the adversary asks a valid ciphertext ¢ but r is not containgg in some decryption
guery inGames. Then, we have

| Pr{AskR3] — Pr[AskR2]| < Pr{FailG3],

| Pr[S3 A —AskR3] — Pr[S; A =AskRy]| < Pr[FailGg],
| Pr[=S3 A =AskR3z] — Pr[=S, A =AskR>]| < Pr[FailGs3].

Additionally,
Pr[FailG3] < gp - (g—r + v+ neglg + negIH),
where
(SqG +1+ zk, + 200G Imnzgk,) if #M > 2,
neglg < . ,
e (SqG +1+ ;qM + 20qG|Ar|‘22k,) if #M < 2,
(5qH +1+ g 4q” + 200 .,L“.:;;) if 2. #M > #R,
negly <

4q2 - 4
g (50 + 1+ o + 200u K ) i 2 #M < 4R

2 Although TheorerfZ.gstates that there is a statistical distance, we ignore the above statistical distance, in order to simplify
the analysis.
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Proof. The first part is trivial, since the decryption algorithms are eqUadillc does not occur. To show
the second part, we follow the arguments@MMVO05] with little corrections.

Let Faily denote the event th&hilGs firstly occurs at thé-th query to the decyrption oracle. Obvi-
ously, PrFailGs] = ¥,°, Pr[Fail].

Suppose that thke-th query to the decryption oracle ¢s= (¢, ¢2) and the evenfailg occurs. This
means that; = Ency(r; ") for somel’, where (, =) ¢ Tg, andD, obtainsg < ROg(r), m < C; ® g,
andh « ROy(m, r) such that; = Encp(r; h).

We split the event into the following two cases:

1. (mr,h) eTy.
2. (mr, =) ¢ Ty.

In the case 1, for anyng r,h) € Ty such thaic; = Ency(r; h) in the worst case. Hence, the probabity
thatg « ROg(r) satisfieam= c, & g for (m,r, h) € Ty is at least that theRail, occurs in this case. This
probaiblity is simply upper bounded lay;/2¢ + neglg.

In the case 2, we have the upper boyne negly becausd is not determined.

By summing up, we have

Pr[Fail] < g—kH + v + neglg + negly,

Pr[FailGs] < gp - (g—kH +7v +neglg + negIH).
|

Lemma E.5. Gamez and Game, are almost identical if the evertskG does not occur. In particular,
we have that

AdV By, < Pr{AskR4] + | Pr[Sa A ~AskR4] — Pr[=Ss A —AskR]| + 3 Pr[FailGs] + 3neglg.

Proof. If the eventAskG does not occur, iGGames, g* <« ROg(r*) is almost uniformly at random from
our weak uniformity lemma (Lemni&3). In Games, g* « {0, 1}¥ is uniformly at random. Hence, two

games dier only withinneglg.
m|

Lemma E.6. Game4 and Games are almost identical if the evertskH does not occur. In particular,
we have that

AdV Sy, < Pr[AskRs] + | Pr[Ss A ~AskRs] — Pr[=Ss A —AskRs]| + 3 Pr[FailGs] + 3neglg + 3negly.

Proof. If the eventAskH does not occur, itamey, h* « ROy (my, r*) is almost uniformly at random
from our weak uniformity lemma (Lemnid4). In Games, h* « R is uniformly at random. Hence,

two games dter only withinnegly.
m|

Lemma E.7. In Games, we have
| PI’[S5 A —|ASkR5] - PI’[—|SS A ﬂASkR5]| =0.

Proof. If AskRs does not occur, the adversary cannot knipwHencem, @ g* is uniformly distributed

and the lemma follows.
O
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Lemma E.8. Games and Gameg are identical ifFailD does not occur, whergailD denotes the event
that Dg fails in some decryption query to the decryption oracle Dsitsuceeds, wherB; denotes the
decryption algorithm irGame;. We have that

Pr[AskRs] < Pr[AskRg] + Pr[FailD].

Proof. It follows the argument in the proof of Theord3l

Lemma E.9. In Gameg, we have
Pr[FailD] < gp - (y + negly).

Proof. Let Fail, denote theDg firstly fails in thek-th query to the decryption oracle bDt succeeds.
So, we have PHailD] = ZEZl Pr[Faili]. Suppose that thle-th ciphertextc = (ci, ¢) as the decryption
query.

SinceDs suceeds, we have thei = Encpy(r; h) for somer € M andh € R, and ¢,9) € Te.
Additionally, sinceg is now fixed,m = ¢, & g is also fixed. Hence, we have that, for— ROy (M, r),
C1 = Encpy(r; F]), since the final check ds is passed. On the other harm fails if his not determined,
thatis, (r, =) ¢ Ty.

We can upper bound the probability thét— ROy (m, r) andcy = Ency(r; ') by v + negly sicne
h’" is distributed according to almost uniform distribution ofRer

Summing up them, we have

Pr[Faily] <y + negly,
Pr[FailD] < gp - (y + negly).

Lemma E.10. Gameg and Gamey are identical. We haver[AskRg] = Pr[AskR7].

Proof. Recall that the decryption algorithBy in Gameg does not query to any random oracle. Hence,
we safely replas®g with PE.
|

Lemma E.11. In Game7, we have
Pr[AskR7] < (dc + Qu) - AdVg\FI,\A

Proof. We construct an adversagyagainst the OW-CPA security of the underlying sche&?gé& from
the adversaryA in Gamey. The description of the new adversaByis as follows:

e B first choosegy" « {0,1}X. Receiving pk,c; = Encp(r*;h*)) from its challenger, where
r* «— Mandh* « R, 8 feedspk to A. On decryption querie$ runs the plaintext extract®E.

e Receivingmg andm, from (A, B generates the target ciphertext. It flips a fair doin- {0, 1} and
computes; « g & my. Then, it feedsd], ;) to A.

¢ Finally, A outputsb’. Then,B randomly choosesfrom Tg andTy and outputs.

Notice thatB simulatesGamey; perfectly and ifAskR; occurs the one of two tables contairts We
have

PrfAskR7] < (g + gn)Adv2.
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F Proof of the Security of OAEP, Theorem3.7

Now we prove Theoref@.1after the original proof of the OAEP encryption scheme inRiaav [FOPSO04
In order to prove théND-CCAZ2 security, it is necessary to simulate the decryption oracle without know-
ing the secret kegk. This is done by using the following plaintext extracRE as in [FOPS04

The plaintext extractor PE: The plaintext extractor shares the two tabllegsandTy that are com-
monly used in the simulation algorithROg, FPOg andROy, FPOy, respectively. Given a decryption
queryy = f(st), PE inspects each entry(g,) € T and ¢,hs) € Ty. For each combination of
elements, it defines the following values:

oc=96, 0=yehs, u=0g,®49,

and checks whethagr= f(c, 6) andu has the forrm || 0K. If both of these holdPE outputsm as the
decryption ofy and stops. If no such pair is found, the extractor returns

Sequence of games: We start with the original attack game with respediND-CCA2 in theFPT-ROM,
and modify it step by step in order to obtain a game directly related to the adversary which breaks the
partial-domain one-wayness property of the underlying trapdoor permutation.

e Gameg: The original attack game with respectitdD-CCA2 in the FPT-ROM. A pair of keys
(pk, sk) is generated by using the key generation algorithm of the OAEP encryption scheme. Let
f = fo denote the trapdoor permutation anddet gsx denote its inverse. The adversaflyis
given the public keyk and has access to the decryption ora®lehe random oracleRO® and
RO", and the first-preimage oraclgg?0® and##0". At some point in the game the adversary
is expected to output a pair of messages, m). Next a challenge ciphertext is produced by
flipping a coinb and producing a ciphertext of m,. This ciphertexy* is constructed as follows:

r* « {0, 1}, s« (my || 0) @ ROC(r7), t* — r* o ROM(s),
X (s, 1Y), v f(x).

Then the ciphertext® is given toA. Finally, the adversaryA outputs a bib’.

e Gamegs: We replace the random oracl®9° andRO™, and the first-preimage oraclggP0®
andFPo" with the algorithmsROg, ROy, andFPOg, FPOy, respectivel?. These algorithms
are obtained by simply modifying the algorithiR® andFPO in AppendixAl for G andH.

Furthermore we replace the decryption ora€lewith the algorithmD which simply runs the
decryption algorithm using secret kel

e Game;: We modify the above game, by moving the generation of the seeahd the image
ROg(r*) to the beginning of the game. That is, we randomly pick ahead of time sbome
{0,1}%, and use* andROg(r*) instead ofr* andROg(r*), respectively. The game obeys the
following rule:

— Rule: r* = r* ands’ = (mp||0%) @ ROg(r*). The other variables are generated as described
above, i.e.t* =r* @ ROKx(s), x* = s" || t*, andy* = f(X*).

%In the proof FOPSO} in the ROM, they implicitly make the replacement of the random oracles with the algorithms
Std.RO.
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e Game;: We modify the above game, by replacing the im&g&;(r*) by randomly choseg® in
the construction o&*. (The challengedoes notset the pair(*, g*) in the table ofG.) That is,
we randomly pick ahead of time sorgé « {0, 1} % and usey* instead ofROg(r*). The game
obeys the following rule:

— Rule: r* = r* ands* = (mp||0%) @ g*. The other variables are generated as described above,
e, t* =r" ®ROy(s), X =s" || t", andy* = f(X").

e Games: We now move the generation §f andROy(s*) to the beginning of the game and make
it independent of anything else. That is, we randomly pick a head of time sbre {0, 1}k,
and usest andROy(s") instead ofs* andROy(s"), respectively. The game obeys the following
rule:

— Rule: g* = (my || 0%) @ s" andt* = r* @ ROp(s").

e Games: We modify the above game, by replacing the im&g®(s*) by randomly choseh*.
(Again, the challengedoes notet the pair ¢, h*) in the table ofH.) That is, we randomly pick
a head of time somle™ « {0, 1}*¢, and usé* instead 0ROy (s*). The game obeys the following
the rule:

— Rule: g* = (mp || M) @ s* andt* =r* @ h*.

e Games: Again we change the generation of the challenge ciphertext. We novi‘piek{0, 1}
and replacé* by t*. Then the ciphertext = f(s*,t") is a uniformly chosen image df.

e Gameg: We now change the decryption algoritiim We make the decryption algorithbireject
all ciphertextsy = f(s,t) such that the hash value of the correspondingt & ROy(S) has not
been determined yet, i.e.has not been previously queriedR®¢ or r has not been replied by
FPOg.

Note that from now on the decryption algoritibnrdoes not make a new queryRDg any more,
because the necessary query has been made already.

e Gamey7: We further change the decryption algorititn We make the decryption algorithi
additionally reject all ciphertextg= f(s,t) such that the hash value shas not been determined
yet, i.e.,shas not been previously queriedR@y or s has not been replied POy

Note that from now on the decryption algoritibrdoes not make a new queryRDy any more,
because the necessary query has been made already.

e Gameg: Now the decryption algorithrd only decrypts ciphertextsuch that correspondingand
shave been already determined, respectively, and hence we can replace the decryption algorithm
D by the plaintext extractoPE which perfectly simulates the decryption algoritinwithout
knowing the secret kegk.

Sequence of lemmas: Let gz andqgy denote the number of queries made by the adversary to both
the random oracle and the first-preimage oracledandH, respectively. Letjp denote the number

of queries made by the adversary to the decryption oracle. We denddg the eventt’ = b in the
Gameg and use a similar notatio; in any subsequent game. Furthermore, we denota&dwir-,,

the advantage of the adversary in thiD-CCA2 game in theFPT-ROM. Then by definition, we have

AdVEE,, = 2|Pr[Se] - 3|. We can bound this probability by the following lemmas.
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Lemma F.1. Gameg and Gameg 5 are statistically to closB, we have
PI’[SQ] = PF[S()_5].

Proof. By Theoren2.§, the algorithm®R0Os andFPOg andROy andFPOy can simulate the random
oracles and the first-preimage oracle for the hash funct®aadH. Therefore Gameg andGamegs
are statistically close, and we have

PI’[S(J] = PF[S()_5].

Lemma F.2. Gamegs andGame; are identical, and we have
PI’[SQE] = PT[S]_].

Proof. The seed* is independent of anything else that is appear before generating the challenge cipher-
text. Therefore moving the generation of the seetb the beginning of the game does not change the
game. Therefor&amegs andGame; are identical, and we have

PI’[SQE,] = PT[S]_] .
O

Lemma F.3. Game; and Game; are statistically close if the hash value dfiis not determined and if
g° = (Mi_p || %) & s* is not queried td-POg, and we have

IPr[S1] — Pr[S;]| < Pr[AskG;] + neglg,

1 402 k- ko
negIG = z_ko 5qG+1+2_k((J3 +8mem ,

where @ = p + gg, AskGs is the event that the hash value 6fis determined irGame; or the value
g° is queried toFPOg. Furthermore, inGame, we have

1
Pr[Sz] = E

Proof. Notice that inGame1, the adversary could win if it querigg to FPOg. Sincek — kg > kg if it
obtainsL with high probability, it could determine that_p is not implanted iry*. In Game, the adver-
sary cannot win the game, singe contains no information correspondingrty andm;_,. Conditioned
on the event thag® is not queried t&POg, by Lemmd2.4 Game; andGame; are statistically close,
if the hash value of* is not determined, i.er;" is not queried tROg andr* is not replied fronFPOg.
More precisely, leAskG; denote the event that is queried tdROg in the Game, by the adversaryA
or the decryption algorithrd, and letAskG;, denote the event th&Og(r*) org* is queried fronFPOg
by the adversaryd and the reply is*. Additionally, letAskG; denote the event thaf is queried to
FPOg in the Game; by the adversaryd. Furthermore, we denoteskG; = AskG; v AskG; V AskG3.
We use similar notation&skG; , AskGi+, AskG;, andAskG; for any subsequent game. Then, from the
fact thatkg < k — ko, we have

|Pr[S1|=AskG1] — Pr[Sy|-AskG,]| < neglg,

4 Although TheorerfZ.gstates that there is a statistical distance, we ignore the above statistical distance, in order to simplify
the analysis.

37



where

402 k — ko )

1
negIG_2 (ng+1+ o +80qGIog(k—ko) ,

and hence
IPr[S1] — Pr[S2]| < Pr[AskG;] + neglg.

Furthermore, irGame; g* is just used inK* but does not appear anywhere else in the computation.
Thus, the distribution on the challenge ciphertgxtioes not depend dm and hence PH,] = 5
|

Lemma F.4. Game,; andGames are identical, and we have
Pr[AskG;] = Pr[AskGs].

Proof. Whereas irGame, g* is randomly chosen ansf is defined as* = (my, || 0) ® g*, in Games
st is randomly chosen, argl ands* are defined ag* = (m, || 0) ® st ands* = s*. Therefore the
distributions of the variables are identical in both games, and héaoee,; and Games are identical.
Then we have

Pr[AskG;] = Pr[AskGs;].
O

Lemma F.5. Gamez and Game, are statistically close if the hash value of s not determined, and
we have

|Pr[AskGs] — Pr[AskGa]| < Pr[AskH4] + negly,

2 logko

where ¢4 = gp + gy andAskHy is the event that the hash value dfis determined irGame,. Further-
more, inGame4 we have

1 2
nengzz—ko 5qH+1+4qkO + 800y —— Ko )

Oc +dp

Pr[AskG,] < o3

+ Pr[AskGy]

Proof. By Lemma2.4 Gamez and Game, are statistically close, if the hash value $3fis not deter-
mined, i.e.s" is not queried t&ROy ands" is not replied fronFPOy. More precisely, leAskH, denote
the event thas' is queried t(ROy in the Game4 by the adversaryd or the decryption algorithrd, and
let AskH, denote the event th&O4(s*) or h* is queried fromFPOy by the adversaryd and the reply
is s". Furthermore, we denotiskH, = AskHZ V AskH,. We use an similar notatioAskHi‘,Aska“,
andAskH; for any subsequent game. Then, from the fact kgat k — kg, we have

|Pr[AskG3|—AskHs] — Pr[AskG4|—=AskH,]| < negly,
where

4 2
negly = 21 (SqH +1+—— q + 804 Io:oko)
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and hence
|Pr[AskG3] — Pr[AskGa]| < Pr[AskHa] + negly.
Furthermore, we have

Pr[AskGa] < Pr[AskG;] + Pr[AskG,] + Pr[AskGj]
< Pr[AskG;|-AskG,] + 2 Pr[AskG,] + Pr[AskGj].

Sinceh* is uniformly distributed and never revealed,= t* @ h* is uniformly distributed and indepen-
dent of the adversary’s view. Therefore we have

Oc + db

Prl[AskG;|-AskG,] < o

Moreover, since™ is uniformly distributed and independent@f, we have

Oc + dp

PI’[ASkGZ] < W

Therefore we can conclude

Oc + db

Pr[AskG4] < W

+ Pr[AskGy].
Lemma F.6. Game4 andGames are identical, and we have
Pr[AskHa] = Pr[AskHs] and Pr[AskG;] = Pr[AskG¢].

Proof. Sinceh* andr™ are uniformly distributed and never revealed, replating h* @ r* by t* does
not change the game, and hence we have

Pr[AskH4] = Pr[AskHs] and PrAskG;] = Pr[AskGZ].

Lemma F.7. Games and Gameg are statistically close, and we have
1 ’
|Pr[AskHs] — Pr[AskHg]| < gp > +negls |,

< o 1 ’
|Pr[AskG5] - Pr[AskG6]| <dp (% + negIG),

, 1 493 k- ko
negIG = 2—k0(5q6+1+ Z_kO +8mGM .

Proof. Games andGameg only differ if y is a valid ciphertext, and the hash value of the corresponding
r is not determined. More precisely, MtlidGg denote the event that at the decryption quergameg,

y is a valid ciphertext (i.e.s® ROg(r) has the fornm || 0%), andr is not queried t®ROg andr is not
replied fromFPOg. There being at mosjp decryption queries, we have

IPr[AskHs] — Pr[AskHg]| < qp Pr[ValidGg].

In order to bound this probability, we consider another g@ameg s where we change the decryp-
tion algorithmD in Gameg. In Gameg s we replace the imagReOg(r) by randomly choseg « {0, 1}%.
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By Lemmal2.4, Gameg and Gamegs are statistically close, if the hash valuerofs not determined,

i.e.,r is not queried t(ROg andr is not replied fromFPOg. More precisely, leaskG¢ ; denote the

event thatr is queried toROg in the Gameg s by the adversaryA, and letaskGg ; denote the event
thatROg(r) or g is queried fromFPOg by the adversaryd and the reply is. Furthermore, we denote
askGes = askGg ¢ V askGg 5. Here we note that

Pr[ValidGg] = Pr[-askGg] Pr[ValidGg|-askGg],
Pr[ValidGgs] = Pr[-askGegs] Pr[ValidGgs|—askGg 5],
PrlaskGg] = PrlaskGegs],

and we have

IPr[ValidGg] — Pr[ValidGe s]|
= Pr[—-askGG,5] |Pr[\/a|idG6|ﬂasst] - Pr[\/alidG6.5|—|askG6,5]|
< |Pr[ValidGg|—askGg] — Pr[ValidGg5|—askGegs]| .

Then by Lemm&.4, we have
|Pr[ValidGe] — Pr[ValidGgs]| < neglg,

where

498 k- ko )

1
negIG_Z—ko(5q6+1+ o +8Oqelog(k—ko) .

Furthermore, sinceg is uniformly distributed and never revealed, it only occurs with probabilit§ 2
thatse g has the forrm || 0. Then we have

: 1
Pr[ValidGgs] < o
Therefore we can conclude
1
|Pr[AskHs] — Pr[AskHg]| < qD( + negly )
By using the same argument as in the above, we have also

1
|PrAskGg] - PrlAskGg]| < qD( + negly )

Lemma F.8. Gameg and Gamey are statistically close, and we have

|Pr[AskHg] — Pr[AskH7]| < b (g—z + neglg),

< < qG ’
’Pr[AskG6] - Pr[AskG7]| <dp (2_|<o + negIH),

1 4q2 ko
negly = = % (SqH +1+ — +8004—— logko )"
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Proof. Gameg andGamey only differ if y is a valid ciphertext, and the hash value of the corresponding
is determined, while the hash value of the correspondisgnot determined. More precisely, MlidH>
denote the event that at the decryption quergameyz, y is a valid ciphertext (i.e.s® ROg(r) has the
form m || 0%), andr is queried taROg or r is replied fromFPOg, while sis not queried tiROy ands

is not replied fronFPOy. There being at mosip decryption queries, we have

IPr[AskHg] — Pr[AskH7]| < qp Pr[ValidH-].

In order to bound this probability, we consider another g&@amey; 5 where we change the decryp-
tion algorithmD in Game7. In Gamey 5 we replace the imagROy (s) by randomly choses « {0, 1}%.
By Lemmal2.4 Game; and Gamey s are statistically close, if the hash value ©fs not determined,
i.e., sis not queried tROy ands is not replied fromFPOy. More precisely, leaskH? . denote the
event thats is queried toROy in the Gamezs by the adversaryA, and letaskH; 5 denote the event
thatROw(s) or hiis queried fronFPOy by the adversaryA and the reply is. Furthermore, we denote
askH7 5 = askH7 . v askH7 .. Here we note that

Pr[ValidH7] = Pr[-askH7] Pr[ValidH7|-askH7],
Pr[ValidH7s] = Pr[-askH7s] Pr[ValidH7 s|~askH7s],
PrlaskH7] = PrlaskH75],

and we have

|Pr[ValidH7] — Pr[ValidH75]|
= Pr[askH7 5] |Pr[ValidH7|-askH7] — Pr[ValidH7 5|—askH7g]|
< |Pr[validH7|-askH7] — Pr[ValidH7 5|-askH7s]| .

Then by Lemm&.4, we have
|Pr[ValidH7] — Pr[ValidH7s]| < negly;,
where

1 4q2 ko
negly, = = 2% (SqH +1+ — +80Qy—— logko |

Furthermore, sincé is uniformly distributed and so is = h& t. Therefore the probability thathas
been queried tROg is at mosig - 2. Then we have

. G
Pr{ValidHy 5] < g—ko.
Therefore we can conclude
|Pr[AskHg] — Pr[AskH7]| < gp (g_ki + neglg).
By the similar argument to the above, we have also

|Pr[AskGg] — Pr{AskGS]| < dp (q + neglf, )

41



Lemma F.9. Game; andGameg are identical, and we have
Pr[AskH7] = Pr[AskHg] and Pr[AskG3J] = Pr[AskGg].
Furthermore, inGameg we have
Pr[AskHs], PrlAskGg] < Pr[AskHg v AskGg] < (qu + 2dc) AdV" POV,

where AdV"P°W is the success probability of the partial-domain one-wayness of the underlying trap-
door permutation f.

Proof. In Gamey and Gameg, the decryption algorithnD only decrypts ciphertext such that corre-
spondingr ands have been already determined, respectively, and hence we can replace the decryption
algorithmD by the plaintext extractor which perfectly simulates the decryption algoridhifherefore

Game7 andGameg are identical, and we have

Pr[AskH7] = Pr[AskHg].

Furthermore, inGameg we do not use the secret ket any more. By using the adversa® in
Gameg, we can output as such that § t) = g(y*) with probability at least PAskHg v AskGg]/(aQH +
20c). This is done by making a list which contains the querie®@gy, and (rp||0<)@g and (n||0)@g,
whereg denotes each hash valueTig, and choose one element in list at random. This probability is
bounded by the partial-domain one-wayness of the underlying trapdoor permutatoil hence we
have

Pr[AskHg v AskGg] < (qu + 2dc) AdV"P OV,
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Summarizing the above bounds we can conclude the theorem.

1 1
AV, = [Prisl - 3| < Priaskez] + negl,

2
1 403 k- ko

negIG = 2_k0 (SqG +1+ 2_k0 + SCXJGM ,

Pr[AskGgy] < Pr[AskGa] + Pr[AskH4] + negly
+ <
< q;ko_gG + Pr[AskG;] + Pr[AskHg4] + negly,
4q2 ko
negly = > (SqH +1+— +80gy—— logks )’

Pr[AskHg4] < Pr[AskHg] + qD(% +neglg),
< o l ’
Pr[AskG;] < Pr[AskGg] + qD(% +neglg),

402 k- ko ]

z_ko + 80 oak k) )

Pr[AskHg] < Pr[AskH7] + qD( ko +negly)

negl; = zi (Sqe +1+

< (OH + 206) AdVPOW 4 qD(_ +negly),
PrlAskGg] < Pr[AskG7] + qD( ko +negly)
< (n + 206) AdVP OV + 0|D(2 + negly,),

1 4CI2 ko
negl = 2 5qH+1+ OqHIogko)'

G Overview of Approximation Sampling Algorithms

Sampling from the binomial distribution:  Let us denote the binomial distribution with parameters
N andp by Bx(N, p).

The simplest method for sampling fromk@\, p) can be constructed by simulating a toss of a biased
coin that faces up the head with probabiliyas follows: (1) pick a sampla from [0, 1) uniformly at
random and (2) it < p output H, otherwise output T. Then, we toss the biased bbiimes by this
method, and output the numberldf which distributed according to the target distribution. However, it
requiresN tosses.

Relles proposed a smart idea to sample frorNB p) only with O(log N) samples|Rel72 from
some other distribution. Instead of tossiNdpiased coins, we sample a medsof N uniform variables
over [0 1). The outcomes < p implies that at lead/2 coins face up the heads and the outcawep
implies that at leasiN/2 coins face up the tails. Thus, the outcomef@2 tosses can be determined
by one median oN uniform variables over [A). Recursively performing this procedure, sampling
medians imO(log N) times decides the number of the coins facing up the heads.

Let us assume thad = 2K — 1. It is well-known that the beta distribution with the parame€er
denoted by B(K, K), coincides with the distribution of the median Mfuniform variables over [Q).
Therefore, if we have a sampling algorithm for the beta distribution, we can sample from the binomial
distribution dficiently.
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Sampling from the beta distribution: The sampling from the beta distribution is a relatively easy
task. Assume that random variablésndY are distributed according to the gamma distributions with
the parametera andb, denoted by &(a) and Gi(b), respectively. Then, the rati/(X + Y) has the beta
distribution B:(a, b). Hence, if we have a sampling algorithm for the gamma distribution, itfiscgent

to sample from the beta distribution.

Sampling from the gamma distribution: Ahrens and Dieter proposed a sampling algorithm for
the gamma distribution using the Cauchy distributionADF4]. The algorithm is designed with the
acceptance-rejection principle, which appeared in the paper by von Neuwh#sij. [

As an example of the acceptance—rejection method, we see the algorithm of Ahrens anDiédkr |
Let us assume that we have a sampling algorithm for the Cauchy distribution with some parameters
conditioned on that the output of the sampling algorithm is positive. fi(gta) and g(x; a) denote
the probability density functions of the gamma distribution with the paranzeterd the conditional
Cauchy distributions, respectively. Let us further suppose that there exists a good fi@{elicuch
that f(x;a) < C(a) - g(x; a) for anyx > 0 anda > 1. The main algorithm is summarized as follows:

1. Samplex from the conditional Cauchy distribution.
2. Sampleu from the uniform distribution over [@).
3. If u< f(x;a)/(C(a)g(x; a)) outputx. Otherwise output..

It is easy to verify that the gamma distribution coincides with the output distribution conditioned on that
the above algorithm does not output (For the details, see Appendi&Il) Ahrens and Dieter studied
the above algorithm and explicitly show€da) such that for anya > 1 andx > 0, f(x; a) < C(a)g(x; a).

Sampling from the Cauchy distribution: Let us denote the Cauchy distribution with the parameters
(m, s) by Ca(m, s). We note that iX has the distribution &0, 1) thensX+mhas the distrbution &m, s).
Therefore, we only consideraQ, 1).

We note the fact that ifX, Y) is uniformly distributed in the 2-dimensional unit disc, the distribution
of the ratioX/Y coincides with G(0, 1). In order to sample a point from the uniform distribution over
the disc, we use a simple rejection method: (1) samgledy from the uniform distribution over-1, 1)
and (2) ifx? + y? < 1 output &, y), otherwise output..

Discretizing the distributions and the computations: All of the above algorithms are analyzed in

an idealized computation model, which allows us to store and manipulate directly the real numbers.
Turning to a standard computation model with bounded precisions, we must discretize the distributions
and the parameters appeared in the algorithms appropriciately. In this process, we have to esitimate
precisely the statistical distances from the target distribution in addition to the compuational costs and
spaces. In order to estimate the statistical distance, we carefully define the sequence of the algorithms
whose outputs are close to the target distributions, as frequently done in security proofs in cryptography.

Our main theorem is stated as follows.

Theorem G.1 (Informal). There is a sampling algorithm such that for any positive integer N, any
0 < p < 1represented by bits, and any positive real, the following properties are satisfied:

¢ the distribution of the output of the algorithmésclose to the binomial distributioBN(N, p) and
¢ the running time of the algorithm is a polynomiallog N, ¢, andlog (1/¢).
We again stress that the statistical distance can be controlled by the distance patanuspen-

dently of the other parametelsand p, which is significant for cryptographic applications.
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Note on the Poisson distribution: By a similar technique, we can construct dhaent algorithm of
sampling the Poisson distribution. In the case of the Poisson distribution, we make use of the sampling
algorithms for the binomial and the gamma distributions.

H Preliminaries for Approximation Sampling Algorithms

Let X andY be two random variables over a st Let Dx and Dy be the distributions oK andY,
respectively. We often abuse the notatiorbgf, which will stand for the probability density function or
probability function. The statistical distanced§ andDy, denoted byA(Dx, Dy), is defined to be

ADx.Dv) = 5 [ IDx(w) - Dy(wi

We sayDy is e-close toDy if A(Dx,Dy) < e.

If D is a distribution,x < D denotes thak is sampled according tD. Let S be a finite set. Let
s « S denote thasis sampled from the uniform distribution &

For any real numbex and any small positive real numberfQe < 1, letR.(X) be the truncating
function with precisiore. That is,R.(:) truncates an input tp-log €] binary places. We note that, if
x < 2%, the integral part oR.(X) is of k-bit length and the decimal part of it is pf log €] bits. We also
note thatR.(x) — | < e. In particular ife = 27%, R(x) = 27| 2*x|. For any real numbers anda and
any small positive real & € < 1, we say tha@i is an approximation of with precisione if |a—3al < e.

Assume tha is a random variable ovét and has a distributioBy. Dy with precisione denotes
the distribution ofR.(X).

X ~ Dy stands for thaK is a random variable according to the distribut@g.

In the following we recall the basic facts for the computations of numbers and define the notation
for the costs of calculations. We denotey the computational cost to toss a fair coin.

H.1 Calculations

Arithmetic operations: We first review the precision of arithmetic operations, addition, multiplica-
tion, and division.

Theorem H.1. For any real numbers a and b, I& ancﬂ[ﬁ be the approximations for a and b with
precisionse, respectively. We assume thaf: < a,a b,b < 22. Thus,a andb are represented by
I> + log(1/e) bit. Then we can bound the precisions of four arithmetic operationsawthdb:

e For addition and subtractiora + b anda-b are approximations of a b and a— b with precision
2¢, respectively,

o for muItipIication,“afB is an approximation of ab with precisti@?*'e, and
« for division,a/b is an approximation of & with precision2?1+/2+1¢,
The running times of all operations are at mog(I@+ | + log (1/¢€))3), that is,poly(l1, I», log (1/€)).
We denote byT #(n), T (n), Tp(n) the computation costs of addition, multiplication, and division

with n-bit numbers, respectively.

Square root: Let x be a positive square root of a real numagice.,x? = a. We assume that8 a < 2!
has am-bit representation. Then we can compute an approximati with precisione = 2-'root py
using a binary search wit®(l + Iroot) comparisons. We will denote Blys(n, €) the computation cost
of taking square root of an-bit number with precision.
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Logarithm: Let x be the logarithm of a real numbarto the base, i.e., Ina = x. Furthermore, we
assume that2 < a < 2' has an-bit representation. By using the Taylor series of the logarihtm, we can
compute an approximatianof x with precisione_og which dependsandn.

We denote by £(n, €) the computation cost of taking the logarithm ofrahit number with precision
€ to the base. We note the following theorem used in the analyses.

Lemma H.2. For any positive real number a, l@tbe the approximation for a with precisienand let
x andX be x= Ina andX = Inq, respectively. Furthermore we assuma & 27!, Then, we have the
bound thafX — x| < 2'e.

| Definitions of the Distributions

In this section we review the definitions of the uniform, Cauchy, gamma, beta, binomial, and Poisson
distributions.

The uniform distribution:  For any real numbera andb (a < b), let Un(a, b) be the uniform distri-
bution over the intervald, b). The probability density function of the uniform distributiom(d, b) is

defined as follows:

1
f(xla)={oa @=Xx<b
0 (x<aorb<x)

The Cauchy distribution:  The Cauchy distribution &g, ) is a continuous probability distribution.
It has a location parameteg, specifying the location of the peak of the distribution, and a scale param-
etery.

The probability density function of the Cauchy distribution is defined as follows:

Y

m), (—o0 < X < ).

1
fea(X | Xo,7) = ;(

A Cauchy distribution withxg = 0 andy = 1 is called the standard Cauchy distribution.

The gamma distribution: The gamma distribution &a, B8) is a continuous probability distribution.
It has a shape parameteand a scale parametgr

The probability density function of the gamma distribution can be expressed in terms of the gamma
function as follows:

1
Xa—l
[(a) - p

feu(X | @, B) = e*f,  (0<x< ).

where
I'(e) = f x* e Xdx, (a > 0).
0

A gamma distribution wittg = 1 is known as the standard gamma distribution. In this paper we
simply denote standard gamma distribution with a shape paramet@rby Ga(a).
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The beta distribution: The beta distribution Ba, 8) is a continuous probability distribution defined
on the interval [01]. It has two positive shape parameters, denoted bgdg.
The probability density function of the beta distribution is defined as follows:

fee(X | @, B) = B(a, B) " 1x*71(1 - xP 1, (0< x < 1).

The beta functioB(«, §) is defined as follows:
1
B(a,B) = f X711 - xtdx (a,8 > 0).
0

The binomial distribution:  The binomial distribution B(N, p) is the discrete probability distribution
of the number of successes in a sequend¢ioflependent A experiments, each of which yields success
with probability p. Such a succefailure experiment is also called a Bernoulli experiment.

The probability function of the binomial distribution is defined as follows:

N
fBN(X | N9 p) = (X)px(l - p)N_X’ (X = 03 1’ 29 Tt N)

The Poisson distribution: The Poisson distributiondfl) is a discrete probability distribution that
expresses the probability of a number of events occurring in a fixed period of time if these events occur
with a known average rate and independently of the time since the last event.

The probability function of the Poisson distribution is defined as follows:

X

A
fpo(X | A) = ge‘”, (x=0,1,2,---).

J Inequalities for the Distributions

J.1 Inequalities for the Cauchy Distribution

Recall that the probability density function is

1 y
fea(X | X0,7) = =+ ————, —00 < X < 00).
C(|XO7’) ju (X— )2+’}/2 ( )

We often use the integratiof 2% = amtal?*/ b 4+ C for anyb # 0, whereC denotes an integral constant.
Lemma J.1.
Pr[0sXx<2™]<2™
X~Ca(0,1)
Proof. It follows from the fact thatfc,(x | 0,1) = 1L < 1 for anyx. O
Lemma J.2.

Pr [X<0]< :—L
X~Ca(a-1, V2a-1) 2
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Proof. We perform integration.

[X<0]= fch(xa 1, V2a - 1)dx

_1 arcta x-(@- 1))]
N

X~CA(a—1 V2a-1)

—}(arcta _a-d )+E)
n V2a-1/ 2
S}(0+7T/2)=1-
T

Lemma J.3. Forany0 < € < n/6,

3
> — | <e€.
X~(§z{0,l) [X - 964} =€

Proof. Let us consider the following probability:

1
. CA(01)[ >K] = f fea(x]10,1)dx = _(E —arctarK)

Thus, we show tha§ — arctarK < e for any 0< e < 7/6 andK > 273/(9¢?); that isK > tan(r/2 — e).
Consider a tangent line of a functigr= tanx at a point ¢, tand). The line is represented by

1
= tand X —6).
y " o 9( )
Recall that the function taxis convex forx € (0,7/2) and ¥ cos’# > 1. Thus, we have that
tand < 6/ cos @ for any 0< 6 < /2. Replacing by 7/2 — €, we have

tanfr/2 —€) < (r/2-¢€) <

1 n
co@(n/2 — €) 2sirfe
We now prove that Asir? e < 472/(9¢?), that is, sire—3e2/(2r) > 0 for 0 < € < /6. The derivative
of sine — 3€2/(2n) is cose — 3¢/n. Hence, for O< e < /6, the derivative is not negative. Replaciag
with 0, we have 0. Thus, we have proved the inequality. This completes the proof. O

Lemma J.4. For any real values s- 1, b, ands > 0,
A(Ca(b, s), Ca(b, s+ 8)) < 26.
Proof. Without loss of generality, we can det 0. For a real value, we define
gs(X) = fea(x10,9) = feu(x1 0, s+ 9).
Calculating the function, we have

) S(s+6) — X2
7 (2 + P+ (s+6)2)

gs(X) =

This function changes the signxat + v/s(s+ 6). To simplify integration, we first consider the follow-

ing integration:
oo VS(s+6) 00
[ tos0grax= [ guax- [ gt
0 0 Vs(s+6)
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The integration is equal to

h(s,6) = ; (arctar{ 1\ / S%S] - arctar( A /sTS(S))

Thus, the statistical distance is
A(Ca(0, s), Ca(0,s+9)) = % -2h(s,8) = h(s, 9).

Applying the mean-value theorem, we have
2
h(s 6) = ~( V(s+06)/s— \s/(s+6)) - (1/(1 +¢?))

for somec € (Vs/(S+ 9), V(S+ 0)/9), where we use the fact that (arctgh = 1/(1 + x?). Since 2r
and /(1 + ¢) are less than 1, we hawgés, 6) < V(s+ 0)/s— Vs/(s+ o). Now, we prove that the RHS
is at most 4. We divide the RHS into two parts:

V(s+6)/s— s/(s+6) = (V/(s+6)/s— 1)+ (1L — /s/(s+ ).

The first part is at most. To prove this, we considet/(s+ 6)/s— 1 < 6. Transforming this inequality,
we haves(s + 2 — 1/s) > 0. The transformed inequality holdsdif> 0 ands > 1.

The second part is also at ma@stin order to show this, we check that-1/s/(s+ d) < 6. Trans-
forming this, we haves > (1 - 6)%/(2 - 6). Thus, it holds for O< § < 1 ands > 1. This completes the
proof. O

J.2 Inequalities for the Gamma Distribution

Before stating the lemmas, we first recall that the definitions of incomplete gamma functions. (See
Abramowitz and StegurAS72, 6.5.1].) We first review the lower and upper incomplete gamma func-
tions: For anya > 0 andK > 0,

K
y(K;a) = f e 't21dt,
0
I'(K;a) = f e 't 1dt.
K

We next recall the regularized lower incomplete gamma function
1 “ ta
P(K;a) = —f e 't dt, (K >0,a>0).
'@ Jo

The recurrence formula of this function is IA$72, 6.5.21]:

an—K
P(K:a+ 1) = P(K: a) — %,

PK;1)=1-¢eX.

We next define the regularized upper incomplete gamma function

. _i * —fra-1
Q(K,a)_r(a)fK e 't hdt, (K>0,a>0).

By the recurrence formula &¥(K; a), we have that
K& —K
Q(Kl a+ 1) = Q(Kv a) + Ma

Q(K;1) = ek,
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Lemma J.5. For any positive integer a and any positive real t,

Pr [X < 2‘t] < 2-at+l),
X~Ga(a)

Proof. We perform an integration.
271
Pr [x<2'|= f fea(x | @, 1)dx
0

X~Ga(a)
271
1
= —x®le*dx
fo I'(a)

2t 1 Xa]_
< ——x*dx
fo I'(a)
_ 11 o
" I(@ a )
2—at

T oal
< 2—a(t+1).

Lemma J.6. For any positive integer & 1 and any real K> a, we have that

Pr [X > K] < 2—K+1+(a—1) IogK'
X~Ga(@) -

Proof. We have that

Pr [X=K]
X~Ga(a)

Q(K; a)

Ka—le—K
= @ +Q(K;a-1),
Ka—le—K Ka—Ze—K

@1 gy TAGAA

SinceK > a > 1, we have that

(o)

1
< Ka_le_K Z -
o
< Kalg K+l

where we usg >, 1/i! = e. Hence, we have that

Pr [X > K] < K& 1gK+l < p-(K-1+@-1)logk
X~Ga(a) - - =
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J.3 Inequality for the Beta Distribution

Lemma J.7. For any integer a> 0 and any real® < p < 1ande > 0, we have

3
< < < — .
X~I?E{a,a) [pP<X<p+e]<daa-1)e

Proof. Let us recall that the incomplete beta functB(n; «, 8) and the regularized beta functibft; «, 8),
which are defined as follows:
1
B(t; @, ) = f x*11-xFftdx  0<t<1,
t

B(t; @, 8)

s O<t< 1
B(a.B)

I(t; @, 8) =

If @ andp are integers, we have that

a+p-1

(t a.p) = Z (a +[i§ - 1) (1 — tyets1,

i=a

(See Abramowitz and SteguA$77.)
Let us estimate the target probability. We define 2a — 1 for the clarity.

Pr [p<X<p+e|=I(p+eaa)-I(p;a a)
X~Bge(a,a)

(A) ((p+ /(1 (p+ QY™ - p(d— py™)

()|(p+e)(1 (p+ ) - P

el M i

IA

()|(p+e)(1 (p+ ™ - pa-pr|

= 2A(BN(A, p + €), BN(A, p))
< 2A3(A + 1)e,

Il
o

where in the last inequality, we use Lemih8in AppendixJ.4 ]

J.4 Inequalities for the Binomial Distribution

Lemma J.8. Let p be a non-negative real value. Let N be a positive integer such that & @hen,

[X#0] < 2e.
X~ BN(N p)

Proof. Simply, we have that
PX=0]=(1- pN >1-2Np

Hence, we obtain that
I?(r{x #0] < 2Np< 2e.
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Lemma J.9. LetO < p < 1be areal value. Let p= p+ 6, wherels| < e. The statistical distance of two
binomial distributionsBy(N, pe) andBx(N, p) is bounded by R(N + 1)e/2. That is

A (BN(N, po), BN(N, p)) < %N3(N +1)e.

Proof. Leté be the errori.e.p. = p+ 6 where|d| < €. For 0< x < n, we define

dn,p(X) = [fen(X | N, p+0) = fex(X I N, p)I.

In order to prove the theorem, we have to show
N
D dnp(0) < N3¥(N + e
x=0

Therefore it is sfficient if dy p(X) < N3¢ for all x.

Casex =0: We define

9(p) = fex(0I N, p) = (1 - p)™.

The derivative ofy(p) is g’(p) = -N(1 — p)N~t and|g’(p)| < N. According to the mean value theorem,
there is¢ betweenp andp + 6 such thag(p + 6) — g(p) = 6 - g'(£). We have

di.p(0) = Ig(p + ) — g(P)l < |6 - g'(€)] < Ne.
Casex = N: In the similar way as above, we have
dn,p(n) < Ne.
Casex # 0,N: For the fixed value, we define
9(p) = fex(X| N, p) = (')\(')px(l— PN
Then the derivative of(p) is

) = o - -

_NN_]- x-1r1 _ \WN-Xx-1¢y,
o] iy R O

=N (T__ll)px‘l(l— p)N>x1 (1— %))

According to the mean value theorem, theré etweenp andp + 6 such that

g(p+9)—9(p) =6-g'(&).

We have

1-—

N—f\

dN’p(X)zlg(p+5)_g(p)|5|5‘9'(§)|§Ne(l:__ll)fx‘l(l—f)'\'_x_l x|
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We notice that

_ N _
max‘l_ &‘ _Jl-xz<1-¢ (case 1)'
X1 {-(1-N& <N¢ (case?)
If case 1 occurs,

N-1

N-1 N-1
dn.p(¥) < Nf(x_ l)fx_l(l - < XZ:; Ne(x_ 1)§X_1(1 — &N = Ne.

If case 2 occurs,

N-1) x —X—
dnp(X) < Nze(x_ 1)5 (1=t
_ NZEN )i - (N ; 1)§x(1 _gNx1

< NSE(N ; 1) fx(l _ f)N_X_l

= 5 (N-1
3 X N-x-1
SXEZON e( « )g—‘(l—f)

= NBe.

In both cases, we have
dn.p(X) < N3

as required. O

K Approximation Sampling Algorithms

In this section we show the algorithms that the distributions of the outputs of these algorithms are statis-
tically close to the discretized versions of the Cauchy, gamma, and beta distributions and the binomial
distribution, respectively.

We first recall the well-known acceptance—rejection method. Next, we review the existing algorithms
and analyze them.

Preliminaries: Fore = 27 wherei is some positive integer, I&.(x) denote 2' - | 2'x]. For a contin-
uous distributiorD, the discretized distributio® with precisione meansR.(D).

K.1 The Acceptance—Rejection Method

We recall the acceptance—rejection method, the one of the basic methodologies for sampling from non-
uniform distributions. This technique is formalized by von Neumab[].

Suppose that we want to sample values according to a distribDtiamver S which is defined by a
probability density functiorf (x). Assume that we can sample values according to another distribution
Dg overS which is defined by a probability density functig(x). If, for any x € S, we havef (x) < cg(x)
for somec > 1, we can use the acceptance—rejection method in order to sampl®#ronte algorithm
is as follows:
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1. Samplex < Dg andu « Un(0, 1).
2. If u< f(x)/cg(x), outputx. Otherwise outpud..

In order to simplify the notation, we defiftgx) = f(x)/(cg(x)) in this subsection. Leb" denote
the distribution of the output of the above algorithm usifg). D"(x) denotes the probability density
function of the distributiorD".

For a random variable ~ U(0, 1) andx € S,

) f%) )
MP (J P{U o) | =X ooy ~ Y-

Thus,
f f
iy = [ IR =T (xeS)
1-1/c (x=1)

Therefore D¢ coincides with the distribution of the output conditioned on that the output is.not
The following lemmas are used in later.

Lemma K.1. Consider the following algorithm:

1. Initialize i « O.
2. Sample x— Dg and u« UN(0, 1).
3. Ifu < f(x)/(cg(x)), output x. If i> r output_L. Otherwise go to Step 2.

Let D denote the output distribution of the above algorithm. Then,
1 r
A(D,Dg) = (1— E) .
LemmaK.2. Let ﬁ(x) be a function such that for anyS ,|h(x) - F](X)| < €. Then, we have

A(D", D" < e.

Lemma K.3. Let DY~ denote the distribution of the output of the algorithm using-uU~(0, 1). Let
DY~ denote the distribution of the output of the algorithm using 40, 1}'. Then,

A(DYY, DY) < 271,

Proof of Lemm&.1l SinceD; coincides with the conditional distribution given that the output is not
1, we have that

Dm:{ﬂ—ﬂ—ﬂdﬁm (xes)
(1-1/c) (x=1)
To ease of notation, Iétdenote (1- 1/c)". We obtain that

MQD0=%]FMJM@—HMMX

_ %(D(J_) + fxes ID(X) - f(x)|dx)

_ %(5 ; fxes(l - 6)f(x)dx)

=—-:20=4,

NIl

which completes the proof. O
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Proof of Lemm&_.2 Let us consider the distributidd". If we useh in the criterion, we have that for a
random variablé&J ~ U(0,1) andx € S

PrlU < h(x)] = PrlU < h(X) | X = x] = h(x).

So,

DN(1) - Dh(J_)‘ = ‘(1 - fx . Fl(x)g(x)dx) - (1 - fx . h(x)g(x)dx)

€

f () ~ )X
XeS
< fx Es|ﬁ(x)—h(x)|g(x)dx
< f € g(x)dx

XeS
= €.

Suppose tthﬁ(J_) = D"(1)+6 = 1-1/c+6. We note thals| < e. The probability density function
of DMis

DR = {2(x)1- 9¥ (xeS)
-1/c+6 (x=1)

We obtain the inequality as follows:

A(DM, D" = % f

XeS
< %£S|ﬁ(x)—h(x))g(x)dx+

<

DN(x) — Dh(x)| dx+ % ’DE(J_) ~D(w)

€

2

m

+ = <e

NI m
NI m

Proof of Lemm&.3 Let us define
h(x)= Pr [u<h(¥].
u—{0,1}!

The probability density functioa“(x) forxeSis DLTN(X) = h(x)g(X). Notice that for any € S,

Pr [u<h(X]- Pr [u<hX)]/ <2
u<_uN(o,1)[ < h(x)] u(_{Oyl}l[ < h(X)]| <

The remaining part of the proof is the same as the proof of Lefdi#la m]

K.2 Sampling from the Cauchy Distribution based on the Uniform Distribution

We adopt the algorithn€U in [Dev86 Chapter 9.5.3] with a little modification in order to discretize
outputs. Let us introduce two parameters, the threshold paramgterN and the precision parameter
ecu = 2-2 for some positive integaa. See Figur& for the description of the algorithi@u.

Theorem K.4. The distribution of the output of the algorith@U is 2-"cv-close to&(o, 1) with preci-
sionecy. That is, .
A(CU, Ca(0,1)) < 27"ev,
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Algorithm DiscCU
1. Initializei « 0.
2. Take samplesi « {0, 1}u*? andv «
{0, 1),

(a) Consider asu € [-1,1) andv €
[0,1).

Algorithm CU —t, —t,
1. Initialize | — 0, (b) If jul < 27 orv < 27,

2. Take samplesi « Un(-1,1) andv « i if i > rcy then outputL.
UN(O, 1). ii. Otherwise increase« i + 1

and go to Step 2.

3. Setx « u/v.
4. If u? +Vv2 < 1 then outpuRe,(X). If i > 3. Setx « u/v.
rcy then outputL. Otherwisel « i+ 1

(@) If |x| < 27w or|x| > 2tish,
and go to Step 2.

i. if i >rcy then outputL.
ii. Otherwise increase« i +1
Figure 5:Algorithm CU and go to Step 2.

4. If u? +v2 < 1 then outpuR.,(X). If i >
rcu then outputL. Otherwise increase
i «<i+1andgoto Step 2.

Figure 6:Algorithm DiscCU

Proof. Conditioned on thaCU does not output, the conditional distribution of the output is exactly
Ca(0,1) [Dev84. Since the area of the half of the unit diskadi&2, in each iteration, the probability that
the output isL is 1 - z/4 < 1/2. By LemmdK_.1], the statistical distance is at most®. i

We adapt the algorithr@U to discrete samplings. We call our algoritiiiscCU. In the algorithm
(Figurelg), we use a lot of (flexible) parameters. The properties of the algorithm (e.g., precision) depend
on the flexible parameters.

Theorem K.5. The sample from the algorithm has following properties:

The output length ilog(Hcy) + log(1/ecy) bits,
the running time of the algorithm is at mostJ,
the absolute value of output is at mosgdHand at least ky, and
the output distribution ig\cy-close toa(o, 1) with precisionecy,

where the parameters are as follows:

€cu > 2—|u+(2tu+1)’

TCU <TIcu- O((Zlu + 1)T(LI + Tg)(lu) + TM(lu) + Tﬂ(Zlu)) .
Hey = 24,

Ley = 271w,

Acy < 27" 4 ry(27tutt 4 27wt D thign/4+1 4 gaplu),

Proof.

On ecy:  We first estimate the precision of the output. At Step 1, we sampledv in I, + 1 andl
bits, respectively, which means that eacindv has precision 2v. Since we guarantee®? < |u, v, by
Theorem 1x has precision at least2*(@u+1)_|n the following, we setcy > 2 ut2u+l,
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On Hey and Ley: At Step 3-(a), we reject too large or small It is obvious that 2tow < |x| < 2thiah,
ThUS,HCU = Dthigh and Lcy = 2 tow

On Acy: Inorder to estimate the statistical distance, we consider the sequence of the algorithms.

CUo(): This is the algorithnCU() with no repeat

CU1(): We add the discarding procedure to Step 3. The algorithm disgafdg < 2-%w or |x| > 2tisn,
CU(): Let us defines = 27'v. We replace the criterioo? + v < 1 with Rs(u)? + Rs(v)? < 1.

CU3(): We replace the output procedure— R, (u/v) with X « R.,(Rs(u)/Rs(v)).

CUy4(): We discard badi andv. In Step 2, ifjul < 2% orv < 27 then discard them.

CUs(): We revivego toin Steps 2, 3, and 4. This is the algoritidiscCU().

We first estimateA(CUg, CU1), the dfect of the discarding procedure in Step 3. The two lemmas
in AppendixJ.1 (LemmaJ.d and Lemmdl.3 show thatx falls into [2 %ow, 2tish] with high probability.
By setting 2ion = 273/(9¢*) in LemmaJ.3 we have that the probability that > 2t is less than
e < 27%en/4 Thus, this discarding causes the statistical distance from the target distribution at most
2—t|ow+1 + 2—thigh/4+l_

Next, we estimaté\(CU1, CU). Note that, for small positivé, 7(1 + 26)°> — = < 8r6. Thus, the
change of the criterion induces the statistical distance at mastg

We next estimate\(CU», CU3). Since we sekcy > 27w+@u+l) | this causes no error, that is,
A(CUy, CU3) = 0.

We also estimaté(CUs, CUy). If |ul,v < 27, the algorithmCU,4 outputsL. So, the statistical
distance is at most2+*,

Summing up the above discussions, the statistical dista(@ep, CU,) is at most 2u*1 4 2 tow*1 4
27 thigh/4+1 4 82—l

Additionally, at Step 4, a rejection occurs with probability{2/2)/2 < 1/2. Thus, repeating the
algorithmr¢y times, the probability that the algorithm outputss at most 2'cu,

Compiling the above argumentsg, is at most 270U 41y (27t 4 2-towt1 4 2~thign/4+1 4 g2-lu) - o

K.3 Sampling from the Gamma Distribution based on the Cauchy and the Uniform Dis-
tribution

We adopt the algorithm inAD74] with slight modification. We define the functiorfs g, andC which
appear in the criteria:

) xXa—l

f(x,a) = feu(x]a, 1) = W’

1 V2a-1
g(x,a) = feu(xla-1, v2a—-1) = = x—(@-D)P+@a-1)

re@D@-121v2a-1
I'(a)

C@ =

Ahrens and Dieter showed théfx,a) < C(a)g(x, a) for any x > 0 and thatyr < C(a) < « for any

a > 1. The algorithmGC in Figure[d is a modified version ofAD74]. (In [AD74], they inlined a
subroutine sampling from the Cauchy distribution. In the algorithm, we call the subroutine explicitely.)
In order to simplify arguments, we only consider the case that the paraaettiis an integer.
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Algorithm DiscGC(a)
1. Setb « a—1,A « a+b, ands « A2,

2. Initializei « 0.
: : : 3. Initialize j « 0.
Algorithm GC(a): ais an integer and larger than 1
g @ g ?2 4. Generatd < DiscCU. Computex «
1. Setb « a—1,A« a+b, ands « Al/Z, <t+b
2. Initializei « 0. ' L
3. Initialize j « 0. (@) If x <27,
4. Generatex — Ca(b, 9). i. if j > rgc then outputL.
@) If x<0, ii. Otherwise increasg« j+1
S and go to Step 4.
i. if j > rgc then outputL. .
ii. Otherwise increasg « j + 1 5. Generatau « {0, 1}'ec. (Considem as a
and go to Step 4. real value in [01).)
5. Generatal «— UN(0, 1). (@) If u< 2,
6. If u < f(xa/(C(ag(x,a) output i. if i >rgc then outputL.
Reec (X). If i > rgc then outputL Oth- ii. Otherwise increase« i+ 1
erwise increase« i + 1 and go to Step and go to Step 3.
3. 6. IfInu < b(nx—Inb) — (x— b) + In(A +
Figure 7:Algorithm GC (x—b)?) — InAoutputx. If i > rgc then

output_L. Otherwise incremerit— i +1
and go to Step 3.

Figure 8:Algorithm DiscGC

Theorem K.6 (JAD74, p.229]) The output distribution oC(a) is (7/10Y¢c-close toGa(a) with pre-
cisionegc.

We modify the algorithniGC to treat the precision and analyze the statistical distance. We call it
DiscGC (see Figur@). Again, we assume that an inpats an integer.

Theorem K.7. The sample from the algorithm has following properties: ¥ 8" then

the output has precisiogsc,

the running time of the algorithm is at mosgd,

the output is at most &k and at least k¢, and

the output distribution if\cc-close toGa(a) with precisionesc,

where the parameters are as follows:

ecc > 2" ey,

Toc < Ts(n+ 1, erooT) + rec - O(T£(z eLoc) + Ta(?) + rec(Teu + Tm(2) + Ta(2 + lec - Tw))
Hoc = 2"(Heu + 1),

Lec = 27",

Agc < 2—fec/2

+rge(27tec + 275+ 4 27lee 4 egopr+ (2% + 1)ege + (2€ + 2¢ + B)eLoc + 2™ Lecy + Acu),

where z= O(n + Igc + log(Hcy) + l0g(1/ecu) + l0g(1/ eroor) + 109(1/eL0c))-

Proof.
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On esc: Recallthats = V2a - 1is less tham < 2" and so i = a— 1. Additionally,b is an integer.
Thus, the precision of = st+ bis at most 2*1Lcy.

OnHgcandLge:  Since the output dDiscCU(0, 1) is in [-Hcy, Heul, Xisin [-Hcy 2", (Hou+1)-27.
Thus, we have thatlge = (Heu + 1) - 27. We cut df x at Step 3-(a). So, we have tHatc = 27,

On Agc:  We start withGC and add procedures @C sequentially.

GCo(a): This is the algorithnGC(a) with no repeat

GC1(a): We add the discarding procedure to Step 5. The algorithm discafds< 2tec.

GCy(a): In Step 4, we replace the criterionk 0 with x < 27%,

GCs(a): We modify the sampling method of We replaces «— U(0, 1) with u « {0, 1}'ec in Step 5.

GCy(a): We replace the criterion < f(x, a)/(C(a)g(x, a)) in Step 6 with Inu < In(f(x, a)) — In(C(a)) —
In(g(x, a)).

GCs(a): Let s denote the computed value At/? with precisionesgrr Letd € [~esqrm esorT] be a
real value such that = AY? — 5. We replace the sampling« Ca(b, s) with x « (Ca)(b, s+ 9).

GCg(a): We again modify the sampling method. The sampie sampled as followd: « Ca(0, 1) and
X« St+bh.

GCg(a): We next modify the sampling method bfand computations in the criterion at Step 6. We
replacet < Ca(0, 1) witht « Ca(0, 1) with precisionecy.

GCy(a): We replaceCa(0, 1) with the algorithmDisCU.

GCg(a): We revivego toin Steps 4, 5, and 6. This is the algoritidiscGC(a).

We first estimate\(GCo(a), GC1(a)). Clearly, the change induces the distance2
Next, we estimat&(GCi(a), GC»(a)). Notice that

2—tx 2—tx
Pr D<X<2%= f g(x, a)dx < f dx< 27,
X~Ca(a-1, v2a-1) 0 0

So, the distance is at most'2

We next upper bound(GC,(a), GCz(a)). We have changed « U(0,1) at Step 5 withu «
{0, 1}'ec. The dfect is at most 2ec by LemmdK.3

The distancé\(GC3z(a), GC4(a)) is 0. This is because

f(xa) _ e*x°(A+(x-h)?)
C(a)g(x,a) ebpbA ’
In(f(x, a)) — In(C(a)) — In(g(x, a)) = b(In(x) — In(b)) — (x— b) + In(A + (x — b)?) — In(A).

We next estimaté (GC4(a), GCs(a)). We have replacex < Ca(b, s) with x « Ca(b, ') = Ca(b, s+
), since the square root is not computed precisely. The distance betwégs)@nd G(b, s+ ) is at
most & from Lemma&J.4in AppendixJ.1 Since¢ is at mostesgrr, SO is the distance. This shows that
A(GC4(a), GCs(a)) < 2esqrT-

Clearly the distancA(GCs(a), GCg(a)) is 0, sinces't + b is distributed according toAb, s').

59



We next estimat@a (GCg(a), GC7(a)). Replacing « Ca(0, 1) witht « a(o, 1) with precisionecy
effects the value ok. This causes the precision of computationflpx(a)) — In(C(a)) — In(g(x, a)). To
determine theirfect to the distance, we compute the precision of them hias precisior, o +2*egc,
sincex > 2%, Also, Inb has precisior oc. X — b = S't has precision Zecy. In (A + (x—b)?) has
precisione o + esc, SinceA + (x — b)? > 1. InA has precisior og. Thus,b(Inx —Inb) — (x — b) +
In(A + (x— b)) — In A has precision e og + 2%eac) + €sc + €Loc + €L0G + €Loa + 2™ ecy, that is,
ecc(2% + 1) + g oc(2X + 3) + 2™ 1ecy. We also replace Inj with the approximation of the logarithm.
This causes the error at mo$t2| oc.

Finally, we estimate\(GCg(a), GC7(a)). The distance at mogic, since we only replace the sam-
pling algorithms.

Compiling the above argumenis(GC(a), GCg(a)) is upper bounded by

27tec 4 p7btl § p-lec 4 €SQRT + EG(;(ZKHx +1)+ E|_o(3(2k +3)+ 2n+16cu + E|_o(32tGC + Acu.
Thus, the statistical distandesc = A(@(a), DiscGC(a)) is upper bounded by
(7/20)5¢ +rey(27tec + 275y 27l 4 egorr+ e (2% + 1) + €L o (24 + 3) + 2™ Lecy + €.062%C + Acy)
= 27fec/2 yrey(27tee 4 27 4 27lee 4 egorT+ eac (275 + 1) + € 06 (2 + 216¢ + 3) + 2™ ey + Acy).

O

K.4 Sampling from the Beta Distribution based on the Gamma Distribution

According to the fact that iK ~ Ga(a) andY ~ Ga(b) thenX/(X +Y) ~ Bg(a, b), we can sample from
any beta distribution by using random variables sampled from two gamma distributions. Obviously, the
algorithmBG in Figure@ samples fronﬁ(a, b) with precisionegg.

Replacing the sampling algorithm and adding the criterion, we obtain the algdpiguBG(a, b) in
FigurellQ

Algorithm DiscBG(a, b)

Algorithm BG(a, b)

1. Take samplex « Ga(a) andy «
Ga(b).

2. OutputR., (X/(X +Y)).
Figure 9:Algorithm BG

1. Take samples « DiscGC(a) andy «
DiscGC(h).

2. 1f 27w < xy < 2Wheh then output
Rese (X/(X +Y)). Otherwise output..

Figure 10:Algorithm DiscBG

Theorem K.8. The sample from the algorithBiscBG(a, b) has the following properties:

The output has precisiogg,

the running time of the algorithm is at mostd,

the output is at most g and at least kg, and

the output distribution obiscBG(a, b) is Ags-close toBe(a, b) with precisionesg,

where the parameters are as follows:

bl

Tee < O(Tec + Ta(2 + To(2)
Hgc = 1,
Lgg = 2_(thigh+tlow+1)’

€BG = 2thigh+2tlow+2€GC

A < 2Age + 2 Atowtd) 4 o-btow+1) | 0~ 2M9"-+(@-L)tnigh __ 2—2thigh+(b—1)thigh’
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where z= O(log(Hgc) + log(1/esc)).

Proof.

On ess: Itis easy to verify that the precision &f(x + y) is bounded by Por+2low+1es .

On Hgg and Lgg: We have

1 1 X 1
1+ 2thigh+tlow < 1+ y/x - X+Yy < 1+ 2—(thigh+tlow) <

2 (tigh+tiow+1) 1 — 2~ (thigh*tiow+1).

On Agg: We denote byiscBG*(a, b) the algorithmDiscBG(a, b) using Gi(-) instead oDiscGC(:).

A (Be(a, b). DiscBG(a, b)) < A (Be(a. b). BG(a, b)) + A (BG(a, b), DiscBG* (a, b))
+ A (DiscBG*(a, b), DiscBG(a, b))

<0+ Pr [x < 27w or x > 2‘*"9“]
x~Ga(a)

P 2~ tow Dthigh 2A
+ X~GAr(b) [X < or x> ] + GC

< 2Ace + o-altiow+1) | o—-bltiow+1) | 2—21high+(a—1)thigh 4 2—2thigh+(b—1)thigh,
where in the last inequality we use Lemfh&and Lemmal.6in AppendixJ.2 ]

K.5 Sampling from the Binomial Distribution based on the Bernoulli Experiments

Based on the fact that the binomial distribution describes the number of succes¢eésdapendent
Bernoulli experiments, we have the following algorith®&(N, p) and DiscBU(N, f) in Figures1]
andl2, respectively, wherg denotes an approximation pfwith precisionep gu.

Algorithm DiscBU(N, p)

Algorithm BU(N, p)
1. Initialize i « 0 andc « 0.

1. Initializei « 0 andc « 0.

2. Generatau « {0, 1}'su. (Consideru as
a real value in [01).) If u < p score a
successc « c+ 1.

2. Generatal < UN(0,1). If u < pscore a
successc « ¢+ 1.

3. Increasd « i+ 1. Ifi < ngoto Step 2,

otherwise output. 3. Increase «— i+ 1. Ifi < Ngoto Step 2,

otherwise output.

Figure 11:Algorithm BU Figure 12:Algorithm DiscBU

Theorem K.9. For the inputs N and, the sampling algorithrdiscBU(N, p) has following properties:
If the inputs satisfy

e N: a positive integer betwedh< N < n,
e [: apositive real betweed < p < 1 which is an approximation df < p < 1 with precisione, gy,

then

¢ the output distribution oDiscBU(N, f) is Agy-close toBn(N, p) and
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e the running time is at mostg[j,

where the parameters are as follows:

Agu < N(eppu + 27e),
Teu < N-O(T#(logN) + lguTqy).

Proof. By using the triangle inequality, we have that

Agu = A (BN(N, p), DiscBU(N, {))
< A(BN(N, p), BU(N, p)) + A (BU(N, p), BU(N, f§)) + A (BU(N, ), DiscBU(N, p))
<0+ N-eppy+N-27e

< N(fp,BU + 2_IBU).

K.6 Sampling from the Binomial Distribution based on the Beta Distribution

The algorithmBU is simple, but has a drawback that the running time grows exponentially in input size
of N. In order to overcome this drawback, the following lemmaRel77 is useful.

LemmaK.10([Rel72d). The following procedure samples correctly from a binomial distribuBe(m, p).

1. Select any two positive integeasandb such thaa+ b -1 = n.
2. Take a samplsfrom the beta distribution Ba, b).

3. If s< ptake a sample& from the binomial distribution B(b - 1, (p - s)/(1 - s)) and
outputx « a+ Xx.

4. If s> ptake a sample& from the binomial distribution B(a — 1, p/s) and outputx.

The slightly modified algorithnBB in Figure[13 appeared inRel7d. As the consequence of the
lemma, the algorithm correctly samples according t#grBp). We note the running time of this algo-
rithm grows linearly in log.

We next modify the algorithnBB by replacing subroutines. The obtained algoritbiscBB is in
Figurell4, wherep'is an approximation op with precisione, gg andé is the cut-¢f parameter such that
N¢ and N4ep,556‘” is negligible inn. Note that we add Steps 1-(a) and 1-(bpiscBB by the technical
reason.

Theorem K.11. For the inputs N ang, the sampling algorithr®iscBB(N, ) has following properties:
If the inputs satisfy

e N: a positive integer betwedh< N < 2",
e [: a positive real betweefi< p < 1 — § which is an approximation p with precisima,BB,

then
¢ the output distribution if\gg-close toBn(N, p)

e and the running time is at mostg,

5By modifying the algorithm using Chebyshev’s inequality or Lenifiwe can treat in the casep < 1. This is done
by Steps 1-(a) and 1-(b).
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Algorithm DiscBB(N, p)

1. If N < 2 generatex « DiscBU(N, p)
and outputx.

Algorithm BB(N, p)

1. If N < 2 generatex < Bn(n, p) and out-
put X.

(@) If p <6 then output O.
, (b) If p> 1- ¢ then outpuiN.
2. If N is even then generate<— BN(1, p)
andx <« Bn(N — 1, p), and outpuix + . 2. If N is even then generaty «
DiscBU(1, p) andx < DiscBB(N-1, ),

3. If N is odd then se& «— (N + 1)/2 and and outputx + .

generates — Be(a, a).
3. If Nis odd then sed « (N + 1)/2 and

4. If s< pthenx « Bn(a—1, (p-9)/(1-9)) generates « DiscBG(a, a).

and outpuix + a. Otherwisex « Bn(a-—

1, p/s) and outputx. 4. If s < pthenx « DiscBB(a— 1, (p -
9)/(1 - 9)) and outputx + a. Otherwise
X « DiscBB(a - 1, f/s) and outpuix.

Figure 13:Algorithm BB

Figure 14:Algorithm DiscBB

where the parameters are as follows:
Agp < 6 "2 e, pg + N2Megg + 2n - 2718V 4 nAgg,
Teg <N-O(Ta(d + To(d + Tec + Tau))s

where z= O(n + log(1/eppg))-

Proof of TheorerflK.11 On Agg: Before giving the proof, we introduce the notation for clarity.
We first defined(e, N) in order to treat theféect of recursive sampling:

d(e,N) = mpax~ |ma~|x A(BN(N, p), DiscBB(N, f)).
pilp-pl<e

In order to estimatel(e, N) above, we define the algorithnB8;. We upper bound each(BB;, BBj.1)

and then upper bountl(Bn(N, p), DiscBB(N, p)) by the triangle inequality. We define the algorithms
BB; as follows:

BBo(N, p): This is the algorithnBB(N, p) which correctly samples fromgN, p).
BB1(N, p): We replace the inpup with p in BBg.

BB2(N, p): We useBE with precisionegg instead of B in BB;.

BB3(N, fi): We replaceBe with DiscBG in the algorithmBBs.

BB4(N, p): We useDiscBU instead of Br at Steps 1 and 2 in the algorithBBs.

BBs(N, p): We finally replace B with DiscBB at Step 4 in the algorithrBB4. The obtained algorithm
coincides withDiscBB.

From the above definitions,

A(BN(N, p), DiscBB(N, p)) < A(BN(N, p), BN(N, P)) + A(BN(N, p), DiscBB(N, p))

4
< ABN(N, p). BN(N. ) + ) A(BBi(N. B). BBi (N B)).
i=1
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By using Lemm&J.9 we have that
ABN(N, p), BN(N, ) < Ne.

We next consideA(BB1(N, p), BB2(N, p)). The change of at Step 4 ffects the distance at most
2a(a— 1)%egc < N*eag by LemmdI Zin AppendixI3

It is obvious thatA(BB2(N, p), BB3(N, p)) < Agg. Is is also obvious that(BB3(N, p), BB4(N, p)) <
2(e + 27'sv). We next consideA(BB4(N, p), BBs(N, fi)). Since we change the choosing methodxXat
Steps 3 and 4, we have that

A(BB3(N, p), BB4(N, p)) < max{A(Bn(a- 1, p1),DiscBB(a- 1, p1)),A(BN(a— 1, p2) DiscBB(a— 1, )},

wherep; = (- 9)/(1 - 9), p2 = p/s, and eaclpis an approximation of;, respectively. By simple
calculation, we have that

o _p—s_p—s_p—r) € € €
IPL=Pal = |75 1—5‘_‘1—SS1—SS1—[5S5’
s |P_Bl_|P=Pl_€_€_c¢
Ip2 |02|—’S < ‘ S ‘Sssﬁsé'

Thus, we have that
A(BB3(N, p), BB4(N, p)) < d(e/6,a— 1) < d(e/5,N/2).

Summarizing the above calculation, we have that

3
A(BN(N7 p)’ DISCBB(N’ ﬁ)) < A(BN(N7 p)’ BN(N7 f))) + Z A(BBI(N’ f’)’ BBi+1(N’ ﬁ))
i=1
< N* e+ N*. eag + Agg + 2(e + 27'%9) + d(e/6, N/ 2).

Thus, we have that

d(N, epps) < N* - epge + N* - eag + 2(epps + 27'%) + Apg + d(eppa/d, N/2)
< N4(6p,BB + €ppe/d) + 2N* - eac
+ 2(epp + €ppB/S + 2+ 27%) + Agg + d(eppa/8°, N/4)
< Nppa(1+1/6+---+1/6") +nN*. ez
+2(eppa(L+1/6 + -+~ + 1/6") + n-27%) 4 nAgg + d(eppa/d", 1)
< N4ep,BBc5‘” +NN*egg + 2eppB0 "+ 2n- 27180 4 nAgg) + 6 "eppB

= 5_n(N4 + 2)€p,BB + nN4eBG +2n- 2_IBU + NAgG.

where in the last inequality we usgl ,1/6' = (1/6™1 - 1)/(1/6 - 1) =6 "1 -sMY)(1-6) < 6™ O

64



References

[AD74]

[ADS0]

[AS72]

[AS09]

[BBPO4]

[BR93]

[BR95]

[BR96]

[CGHO4]

[CHJ*02]

[Dev86]
[FLO7]

[FO99]

[FOPS04]

[GKO3]

Joachim H. Ahrens and Ulrich Dieter. Computer methods for sampling from Gamma,
Beta, Poisson and Binomial distributioSomputing 12(3):223-246, 1974.

Joachim H. Ahrens and Ulrich Dieter. Sampling from Binomial and Poisson distributions:
A method with bounded computation timeSomputing 25(3):193-208, 1980.

Milton Abramowitz and Irene A. Stegun, editorslandbook of matehmatical functians
Number 55 in National Bureau of Standards Applied Mathematics Series. United States
Government Printing, tenth edition, 1972.

Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step MD5 and
more. In Michael J. Jacobson, Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors,
SAC 2009volume 5867 of NCS pages 103-119. Springer, Heidelberg, 2009.

Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-
oracle-model scheme for a hybrid-encryption problem. In Matthew K. Franklin, editor,
CRYPTO 2004volume 3152 oL NCS pages 171-188. Springer, Heidelberg, 2004.

Mihir Bellare and Phillip Rogaway. Random oracle are practical: A paradigm for designing
efficient protocols. IrCCS '93 pages 62—73. ACM, 1993.

Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis,
editor, EUROCRYPT '94volume 950 oL.NCS pages 92-111. Springer, Heidelberg, 1995.

Mihir Bellare and Phillip Rogaway. The exact security of digital signatures — how to sign
with RSA and Rabin. In Ueli M. Maurer, editdEUROCRYPT '96volume 1070 o£NCS
pages 399-416. Springer, Heidelberg, 1996.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
Journal of the ACM51(4):557-594, 2004. Preliminary version3iOC '98 1998.

Jean-&bastien Coron, Helena Handschuh, Marc Joye, Pascal Paillier, David Pointcheval,
and Christophe Tymen. Gem: A Generic chosen-ciphertext secure Encryption Method.
In Bart Preneel, editoiCT-RSA 2002volume 2271 ofLNCS pages 175-184. Springer,
Heidelberg, 2002.

Luc Devroye DevroyeNon-Uniform Random Variate Generatio8pringer-Verlag, 1986.

Marc Fischlin and Anja Lehmann. Security-amplifying combiners for collision-resistant
hash functions. In MenezeBenQ7], pages 224-243.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, edi©®RYPTO 99 volume 1666 oLNCS
pages 537-554. Springer, Heidelberg, 1999.

Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-OAEP
is secure under the RSA assumptidournal of Cryptology17(2):81-104, 2004.

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm.
In 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003)
pages 102-113, Cambridge, MA, USA, October 2003. IEEE Computer Society.

65



[GMMVO05] David Galindo, SebastiMartin, Paz Morillo, and Jorge L. Villar. Fujisaki-Okamoto hybrid

[HS08]

[KLO7]

[KPO9]

[LisO7]

[LNO9]

[MenQ7]

[MR95]

[MRHO4]

[Nat02]

[Nie02]

[NITOS]

[NWOO9]

[OPO1]

encryption revisitedinternational Journal of Information Securit$(4):228—-241, 2005.

Jonathan J. Hoch and Adi Shamir. On the strength of the concatenated hash combiner
when all the hash functions are weak. In Luca Aceto, lvan Damgard, Leslie Ann Goldberg,
Magnis M. Halldbrsson, Anna Inglfsdbttir, and Igor Walukiewicz, editordCALP 2008,

Part 11, volume 5126 oL NCS pages 616—630. Springer, Heidelberg, 2008.

Jonathan Katz and Yehuda Lindelhtroduction to Modern CryptographyChapman &
Hall/CRC, 2007.

Eike Kiltz and Krzysztof Pietrzak. On the security of padding-based encryption schemes
(or: Why we cannot prove OAEP secure in the standard model). In Antoine Joux, editor,
EUROCRYPT 20Q%olume 5479 of. NCS pages 389-406. Springer, Heidelberg, 2009.

Moses Liskov. Constructing an ideal hash function from weak ideal compression functions.
In Eli Biham and Amr M. Youssef, editor§SAC 2006volume 4356 oL NCS pages 358—
375. Springer, Heidelberg, 2007.

Geétan Leurent and Phong Q. Nguyen. How risky is the random-oracle model? In Shai
Halevi, editor, CRYPTO 2009volume 5677 olLNCS pages 445-464. Springer, Heidel-
berg, 2009. The full version is availablelattp: //eprint.iacr.org/2008/441.

Alfred Menezes, editorAdvances in Cryptology - CRYPTO 2007, 27th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings
volume 4622 oL.NCS Springer, Heidelberg, 2007.

Rajeev Motwani and Prabhakar Raghav@andomized Algorithm&€ambridge University
Press, 1995.

Ueli M. Maurer, Renato Renner, and Clemens Holensteinfilerdintiability, impossibility
results on reductions, and applications to the random oracle methodology. In Moni Naor,
editor, TCC 2004 volume 2951 o NCS pages 21-39. Springer, Heidelberg, 2004.

National Institute of Standards and Technology. Secure hash standard. FIPS 180-2, August
2002.

Jesper Buus Nielsen Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In Moti Yung, edi@RYPTO 2002/0lume
2442 of LNCS pages 111-126. Springer, Heidelberg, 2002.

Akira Numayama, Toshiyuki Isshiki, and Keisuke Tanaka. Security of digital signature
schemes in weakened random oracle models. In Ronald Cramer, B&i©2008 volume
4939 of LNCS pages 268-287. Springer, Heidelberg, 2008.

Yusuke Naito, Lei Wang, and Kazuo Ohta. How to construct cryptosystems and hash func-
tions in weakenend random oracle models. Cryptology ePrint Archive, ReportS5I)9
20009.

Tatsuaki Okamoto and David Pointcheval. REACT: Rapid enhanced-security asymmetric
cryptosystem transform. In David Naccache, edi@F;RSA 200lvolume 2020 o£NCS
pages 159-175. Springer, Heidelberg, 2001.

66


http://eprint.iacr.org/2008/441

[PVO7]

[Rel72]

[RivO2]

[UnrO7]

[VN51]

[WYO05]

[WYYO05]

Sylvain Pasini and Serge Vaudenay. Hash-and-sign with weak hashing made secure. In
Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, edié&tSP 2007 volume 4586 of
LNCS pages 338-354. Springer, Heidelberg, 2007.

Daniel A. Relles. A simple algorithm for generating Binomial random variables when
is large.American Statistical Associatip67(339):612—-613, 1972.

Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Comments,
April 1992. RFC 1321.

Dominique Unruh. Random oracles and auxiliary input. In MenekésnD7], pages
205-223.

John von Neumann. Various techniques used in connection with random digits. Monte
Carlo methodsNat. Bureau Standar¢g42:36—-38, 1951.

Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald
Cramer, editorEUROCRYPT 20Q5/0lume 3494 ol .NCS pages 19-35. Springer, Hei-
delberg, 2005.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1.
In Victor Shoup, editorCRYPTO 2005volume 3621 ofLNCS pages 17-36. Springer,
Heidelberg, 2005.

67



	1 Introduction
	2 The Weakened Random Oracle Models
	2.1 Definitions of the Weakened Random Oracle Models
	2.2 Difference from the Random Oracle Model
	2.3 Simulation Methods

	3 The Encryption Schemes and Their Security in the Weakened Random Oracle Models
	3.1 The First Variant dFO
	3.2 The Second Variant wFO
	3.3 The Original Fujisaki-Okamoto Conversion
	3.4 OAEP

	4 Future Work
	A Simulation Algorithms of Numayama et al.
	B Proof of Lemma 2.4
	C Proof of the Security of dFO, Theorem 3.1
	D Proof of the Security of wFO, Theorem 3.3
	E Proof of the Security of FO, Theorem 3.5
	F Proof of the Security of OAEP, Theorem 3.7
	G Overview of Approximation Sampling Algorithms
	H Preliminaries for Approximation Sampling Algorithms
	H.1 Calculations

	I Definitions of the Distributions
	J Inequalities for the Distributions
	J.1 Inequalities for the Cauchy Distribution
	J.2 Inequalities for the Gamma Distribution
	J.3 Inequality for the Beta Distribution
	J.4 Inequalities for the Binomial Distribution

	K Approximation Sampling Algorithms
	K.1 The Acceptance–Rejection Method
	K.2 Sampling from the Cauchy Distribution based on the Uniform Distribution
	K.3 Sampling from the Gamma Distribution based on the Cauchy and the Uniform Distribution
	K.4 Sampling from the Beta Distribution based on the Gamma Distribution
	K.5 Sampling from the Binomial Distribution based on the Bernoulli Experiments
	K.6 Sampling from the Binomial Distribution based on the Beta Distribution


