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Abstract—The second round of the NIST public competition
is underway to find a new hash algorithm(s) for inclusion
in the NIST Secure Hash Standard (SHA-3). Computational
efficiency of the algorithms in hardware is to be addressed during
the second round of the contest. For software implementations
NIST specifies an application programming interface (API) along
with reference implementation for each of the designs, thereby
enabling quick and easy comparison and testing on software
platforms, however no such specification was given for hardware
analysis. In this paper we present a hardware wrapper interface
which attempts to encompass all the competition entries (and
indeed, hash algorithms in general) across any number of both
FPGA and ASIC hardware platforms. This interface comprises
communications and padding, and attempts to standardise the
hashing algorithms to allow accurate and fair area, timing and
power measurement between the different designs.

I. I NTRODUCTION

With the rapid growth of the internet, the need for protecting
files and other information stored on computers has become
of vital importance. Part of the requirement for trusted com-
puting are cryptographic algorithms, used as network security
measures to protect data during transmission, of which hash
functions form an integral part as they operate at the heart of
contemporary cryptographic protocols.

A hash functionH maps a messagex of variable length to
a string of fixed length. The process of applyingH to x is
called ‘hashing’, and the outputH(x) is called the ‘message
hash’ or ‘message digest’. Cryptographic hash functions are
hash functions that possess the following properties:

• Pre-image Resistance. This requirement means that for
a given hash valuey, it should be computationally in-
feasible for an adversary to find an inputx such that
H(x) = y. Pre-image resistance is also known as ‘one-
wayness’ [1].

• Second Pre-image Resistance. This implies that for a
given inputx1, it should be computationally infeasible

to find another inputx2, such thatH(x1) = H(x2). This
property is also known as ‘weak collision resistance’.

• (Strong) Collision Resistance. It should be computation-
ally infeasible for an adversary to find any two distinct
inputsx1 andx2, such thatH(x1) = H(x2).

Currently, NIST is holding a competition to develop a new
cryptographic hash algorithm(s) [2], similar to the contest
held to choose the Advanced Encryption Standard (AES)
algorithm [3]. The new hash function(s) will be called SHA-3
(or the Advanced Hash Standard (AHS)), and may ultimately
supersede the functions in the SHA-2 family. The contest
initially received 64 submissions from designers all around
the world, and 51 of these designs progressed through to the
first round of the contest. The second round candidates were
announced in Q3 of 2009 and the competing designs were
reduced to 14. These hash algorithms are available for public
comment and scrutiny and NIST has stated that computational
efficiency of the algorithms in hardware, over a wide range of
platforms, will be addressed during the second round of the
contest [4]. Over the coming years the number of candidate
designs will be reduced, until eventually it is planned to
announce the successful hash function(s) in 2012.

Some initial work has already been completed on document-
ing the hardware speed and size for different types of hard-
ware, both by the authors [5][6] and others [7][8]. A webpage
called the ‘SHA-3 Zoo’ has been set up by the Institute for
Applied Information Processing and Communications (IAIK)
in Graz to track these hardware implementation results [9].

Difficulties arise in comparison analysis when one considers
that there are fourteen different designs, some of which have
varying architectures for the different{224, 256, 384, 512}
hash variants. Each of these can be further broken down into
high-speed and low-area designs (and everything in between).
Added to this is the wide range of different FPGA devices
that can be used for the implementation, each of which has
different underlying technology and different standards of
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measurements both between different vendors and in some
cases between different families of the same vendor. This
makes any form of comparison between implementations
challenging.

A current topic of discussion within the cryptography com-
munity is whether or not the padding for the hash function
should be included in the hardware design, or implemented
externally (for example in software) and therefore not taken
into account when analysing the speed and area of any partic-
ular SHA-3 candidate. The authors feel that while inclusion
of the padding will increase the difficulty (and therefore the
time taken to implement and test the designs), to not include
padding can be viewed as incomplete results and as such
give unfair advantage to certain hash functions over others, as
some hash functions require a number of rounds of padding as
standard, whereas others can process the padding with no extra
rounds required. We also show in our results a case where the
padding block contains the critical path of the design and as
such affects the overall speed of the hash design.

As such, we attempt a compromise and present a wrapper
that can be used to interface between any particular hash
function algorithm and the outside world where the padding is
included in the wrapper as opposed to the hash function block
itself. In this way, ’fully autonomous’ designs can be easily
and efficiently inserted inside the wrapper thereby allowing
fast test times. It allows re-use of any padding scheme that
can be used in multiple hash functions which cuts down on
design time. It also alleviates any issues concerning designs
which do not take into account bandwidth limitations or extra
area or timing due to ’external’ stages.

While some very good attempts have been made to define a
standard hardware interface for hash algorithms, such as those
by Chenet al. [10], Gaj [11] and Kobayshiet al. [12], these
concentrate on the communications aspect and assume in all
cases that the padding is done either externally or within the
hash function itself. Using our method, the area and timing
measurement of any particular hash function implementation
can be given inclusive of the hash function, communications
and padding, or just the hash function as a stand-alone entity.

The rest of the paper is defined as follows; Section II
presents our hardware interface and associated logic, in Sec-
tion III we give an example of two of the current SHA-3
second round candidates, JH and Hamsi, using their224-bit
hash variants. These designs were chosen due to the large
difference in the input message block size, 512-bits and 32-
bits respectively. We give area and timing results computedfor
the hash functions both inclusive and exclusive of the wrapper
for the two cases to show the different effect of the wrapper on
hash functions which require large and small message sizes.
We also give examples of how particular hash functions can
be affected by communication bottlenecks. In Section IV we
state our conclusions.

II. H ARDWARE INTERFACE

The hardware wrapper can be best described in four main
sections. In the first section, we give an overview of the
hardware block as a whole. In the second section, we describe
the interface signals connecting the wrapper to the hash block
and also to the outside world. The third section describes the
various padding schemes used and how they are generated.
The fourth section lists and defines the constants that can be
modified prior to synthesis.

A. Hardware Overview

Figure 1 shows a block diagram of the interface archi-
tecture1. It comprises an input register which includes any
padding required, an output shift-register and control circuitry.
The input data can be set to any size,w, but for a represen-
tation of a real world communications system, we set it to
32-bits, a standard word size. The input shift-register readsin
and stores thesew-bit values to the size required,m, which
is the message block size of the hash function under test. If a
message ends prior to this register being completely filled,

1Note that we have also developed variants on the design shownhere which
include extra bus lines from the control block to the hash function block where
necessary, i.e. for designs which require counter or salt values to be input as
part of the message.



padding is added to the partial message to bring it to the
required size. The output shift-register performs a similar task,
holding the hashed message digest of sized, while the output
bus reads it outw bits at a time. The control circuitry controls
the shift register operation, padding, and all communication
signals.

B. Communications Protocol

Table I defines the various communication signals between
the wrapper and the external world. It can be seen from
Figure 1 that the communications protocol between the hash
function and wrapper, as well as between the wrapper and
the outside world is similar to that suggested by Gaj [11].
It differs however in the fact that a user wishing to hash
a message does not need to do any preprocessing to their
plaintext before sending the message, such as adding message
length data, but only needs to set an end of message (EOM)
signal high, in this case defined as a last block(lb in) signal
either simultaneously with the last block of the message or at
any time after transmission of the last message block.

While there is valid data on the line, a data present(dp in)
flag is set high. To avoid the need to transmit a count of
the number of valid message bits in the input block, and
thus needing to know the lengths of message sections prior
to transmission, the data present signal is set high when all
of the data on the input bus are valid message bits, i.e. each
message blocks read in is of sizew. When the wrapper reads
in the data on(d in) it acknowledges that the data has been
read in by setting(ack in) high. It is then ready to receive the
next block of data. Conversely, when the message digest is
ready to be read out on the output bus,(dp out) is set high by
the function wrapper. This data will remain on the output bus
until a return acknowledge(ack out) is received. The system
then returns to its initial state in preparation for the nexthash
message.

TABLE I
WRAPPERINTERFACE

Signal IO Description
clk in Global clock
rst in Global reset,Active HIGH . Initialises the

circuitry to begin hashing a new message
d in in The input bus
dp in in Data present on theinput bus
ack in out Data present on theinput bus has been read
lb in in Data present on theinput bus is the

last block of the message to be hashed
d out out The output bus
dp out out Data present on theoutput bus
ack out in Data present on theoutput bus has been read
lb out out Data present on theoutput bus is the last

block of the hashed message

Table II defines the various communication signals between
the hash function and the wrapper. These closely mirror the
external signal lines, and in most cases perform equivalent
functions between the hash block and the interface as the
externals do between the interface and the outside world.
However, there is nolb out equivalent as the hashed digest,
d, is output to the output shift-register as one complete block.

TABLE II
HASH INTERFACE

Signal IO Description
clk in Global clock
rst in Global resetActive HIGH
mes in in Data-in bus
dp h in in Valid data onData-in bus

Set whenbuffer-in shift-register is full
ack h in out Data present onData-in bus has been read
lb h in in Last block is present onData-in bus

Inclusive of padding where required
hash out out Data-out bus
ack h out in Data present onData-out bus has been read.
dp h out out Message digest is present onData-out bus

C. Padding Protocol

There are many different padding schemes utilised by the
designers of the hash functions, and in some cases varying
padding schemes between the different sizes of the same hash
function. Table III gives a brief outline of the various padding
schemes used by the different round two candidates.

As can be seen from Table III, similarities between most
of the different padding schemes allow us to generate a
generic block for variants of Merkle-Damgård strengthen-
ing [1] padding schemes, as well as paddings types of all-zeros
or one-and-trailing-zeros.

Figure 2 shows the block diagram of the selection process
for some of the different padding schemes. The input wordw
is saved in a register, and is shiftedw-bits every subsequent
input until the register is full. In this way, the message is
read into the hash block when it is the required sizem. If
the message ends prior to filling of the register, the relevant
padding scheme is selected via multiplexer. For example in the
case of Fugue, the register is filled twice more, firstly with
all zeros followed by anm-bit representation of number of
message blocks. In the case of Shabal, append a one and zeros
to the size of the registerm. Using this method of filling up
the register from the bottom-up allows for easy concatenation
of the padding to the end of the input message block.

D. Design Dependent Options

Because of the different design methods and message sizes
that comprise all the different hash functions, a number of user
defined constants are specified at the top level of the VHDL
and as such can be easily modified by the user to select the
equivalent message size and padding scheme necessary to run
a particular hash function. These constants are defined as:

• The hash function required.
• The counter size required for message length addition

during padding.
• The message digest size required.
• The input message block size of the hash function.
The hash function for a given digest size is then synthesized

according to these constants. Also, each of the hash functions
and their variants have an initial vector (IV) as part of the
input, but for the SHA-3 competition each of these IV’s are
fixed to a specific value throughout, and as such we do not
consider them as part of the input but rather as stored constants
within each hash function itself.
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Fig. 2. Padding Block

TABLE III
PADDING SCHEMES PERSHA-3 TYPE

Hash Function Padding
BMW Append a ’1’ followed by ’0’s, followed by the message length as an64-bit integer such that
Hamsi the output is a multiple of the input block size.
Grøstl Append a ’1’ followed by ’0’s, followed by the number of messageblocks as an64-bit integer such

that the output is a multiple of the input block size.
CubeHash Append a ’1’ followed by as many ’0’s as required to get a multiple of the input block size.

Luffa
Shabal
Skein Pad with ’0’s to get a multiple of the input block size.
SIMD Pad with ’0’s to get a multiple of the block size. Add an extra block containing the message length.
Fugue

SHAvite-3 Append a ’1’ followed by ’0’s, followed by the message length, followed by the digest length such that
the output is a multiple of the input block size.

ECHO Append a ’1’ followed by ’0’s, followed by a16-bit representation of the message digest size, followed
by a 128-bit representation of the message length such that the output is a multiple of the input block size.

Blake-28 Append a ’1’ followed by ’0’s followed by a64-bit representation of the message length.
Blake-32 Append a ’1’ followed by ’0’s followed by a ’1’. Then append a64-bit representation of the message length.
Blake-48 Append a ’1’ followed by ’0’s followed by a128-bit representation of the message length.
Blake-64 Append a ’1’ followed by ’0’s followed by a ’1’. Then append a128-bit representation of the message length.

JH Append a ’1’ followed by ’0’s followed by a128-bit representation of the message length.
Keccak Append a ’1’ followed by ’0’s to a multiple of ’8’, followed by a digest specific constant, followed by a

’1’ and ’0’s to a multiple of the input block size.

III. T EST RESULTS

Here we give example results of two of the SHA-3 round 2
candidates, namely JH and Hamsi, and show how the area and
timing results vary dependent on whether the hash function
is used inside the interface or as a stand alone entity. As
mentioned previously, these particular hash functions were
chosen because of their contrasting input message block sizes.
We implemented the hash algorithms in VHDL and testing was
done using Xilinx ISE 9.2 and the test platform was a Xilinx
Virtex5 XC5VLX110. The results are taken from post-place-
and-route map and timing reports.

A. JH Overview

Hongjun Wu designed the hash function family JH [13]. Its
four variants{224,256,384 and 512} are based on the same
compression function.

The compression function of JH combines a 1024-bit pre-
vious hash block(Hi−1) with a 512-bit message block(Mi)
to produce a 1024-bit hash bock(Hi). The output message
digest is the truncation of the end of the last hash block to the
required size.

The hash function consists of four main stages:

• Initialisation: The initial hash value,H0 is set according
to the message digest size.

• Message Padding: The message is padded with a ’1’,
trailing zeros and a 128-bit vector equal to the message
length so that it’s length is a multiple of 512-bits, with
at least 512-bits of padding.

• Message Compression: The compression function is ap-
plied to each message block,Mi. This reqiures an initial
xor between the lower 512-bits ofHi−1 andMi followed
by a bijective function and an xor between the upper 512-
bits of the updatedHi−1 andMi.



• Truncation: The message digest is determined by a trun-
cation of the final hash value according the message
digest size.

B. Hamsi Overview

The hash function Hamsi [14] was submitted by Küçük from
Katholieke Universiteit Leuven in Belgium.

Hamsi-224 and Hamsi-256 are both very similar using
the same state size and number of rounds. Likewise with
Hamsi-384 and Hamsi-512, which both use a larger state
size and more rounds than Hamsi-224 and Hamsi-256. The
Hamsi hash function is based on aConcatenate-Permute-
Truncate construction, influenced by both Grindahl [15] and
Serpent [16].

It consists of 4 main operations:
• Message Expansion: Implemented using linear codes.
• Concatenation: A256-bit chaining value or an initial

value to form the512 bit state.
• Several rounds of a non-linear permutation
• Truncation: Selects the relevant bits for the output mes-

sage digest once the non-linear permutation is complete.

C. Hardware Results

For the purposes of this examination, we concentrate ex-
clusively on the smallest variant of each, the224-bit hash.
In this variant, JH has an input message size of512-bits and
Hamsi has an input message size of32-bits. They both hash
an output digest of size224-bits. We hashed a message of size
1024-bits to enable each hash function to perform a number
of hashing rounds along with the finalisation round which
includes the padding. While the area results are given both
with and without the padding, the clock cycle count for the
hash functions necessarily needs to include the time taken to
hash the padding bits, as this is a fundamental part of hashing
the message correctly. It is assumed that the hash as a stand
alone unit has access to some form of external padding for
the purposes of timing analysis, which is passed as part of the
message block. We measure the area in slices and the time
taken to hash the1024-bit block is calculated as follows:

Time= 1
Maximum Clock frequency× Number of Clock Cycles

For our implementation of JH using the ideal case512-bit
input bus to maximise performance of the hash function, each
message block requires38 clock cycles, one for each of the36
input blocks and two more for the initial xor and for reading in
the data. To hash the1024-bit message requires3 hash rounds;
two for the input message and one for the512-bit padding
block, thus giving114 clock cycles. When the hash block is
inserted in the wrapper, the same message requires138 clock
cycles. The latency is due to the initial reading in and out of
the message inw-bit blocks. For subsequent message blocks,
data is read in while the current data is being processed by
the hash function, so the input latency only affects the first
message block.

Hamsi, which operates on a message size of32-bits, can
process one message block in two clock cycles, one to read the

message and one to hash the round. For the1024-bit message,
there are32 blocks followed by three blocks of96-bit padding.
The entire process exclusive of the wrapper takes73 clock
cycles and83 clock cycles when in the wrapper.

Table IV gives the breakdown for the cycle count for JH
and Hamsi for a single message block. The table shows that
both interfaces require7 clock cycles to output the224-
bit digest, on the 32-bit bus,w, and the other variants will
naturally required/w clock cycles, whered is the digest size,
to transmit to the output. However, it can be seen that JH, with
the larger message size, requires16 clock cycles to load the
initial data to the required message size. As such, any hash
function requiring a large message size,m, will be subject
to this latency ofm/w clock cycles. This latency becomes
especially apparent when hashing short messages where the
data to be hashed is smaller than the message size required by
the hash. Fugue and the other hash functions which operate
over smaller message sizes wherem = w do not suffer from
this latency.

It is also interesting to note that while neither of these two
hash functions are affected by a transmission bottleneck on
the input, as in both cases the time taken to load a message is
the same or less than that required to process a message, other
hash functions are susceptible to this latency. An example of
such a SHA-3 hash function that does is Keccak{224} [17].
Keccak requires24 clock cycles per hash round, but is of
block size1152-bits, and therefore requires36 clock cycles
for message loading. This results in a delay of12 clock
cycles every message round while the hash block waits for
the message block to read in data.

TABLE IV
SINGLE {224-HASH} MESSAGEBLOCK CLOCK COUNT

Design JH Hamsi
Message size 512 32

Location Process Clks Clks

Wrapper Message Load 16 -
Wrapper Data Transfer 1 1

Hash i/o Functions 2 7
Hash Message Block 37 3
Hash Last Block 37 2

Wrapper Hash output 7 7

TABLE V
HASH RESULTS

Design Area Max. Freq. Clk Cycles Time
slices (MHz) (ns)

JH 1,394 303.0 114 376
Interface 1,558 188.8 138 731

Hamsi 1,704 70.5 73 1035
Interface 1,890 69.8 83 1189

The area and throughput results are given in Table V. From
the area results, we can see that the interface had very little
impact overall in relation to the hash function, with an increase
of approximately170 slices when included. The maximum
frequency in the case of Hamsi is the same both within
and without the wrapper, with the slight variation due to the
synthesis software, as the critical path within the hash function
is identical. For JH, the reduction in clock frequency while



embedded in the interface is caused by the critical path being
through the128-bit counter required for the padding scheme,
and as such, can be considered a part of the hash function
even though the padding is processed through the interface.
The time results for Hamsi show an increase for the interface.
This is due to the data loading between the outside world,
the interface and the wrapper. The increase in time for JH is
obviously due to the decrease in clock frequency because of
the critical path in addition to the data loading time.

IV. CONCLUSIONS

In this paper we have presented a hardware wrapper in-
terface to enable fair and accurate comparison testing of the
SHA-3 hash function competition entries, able to run across
any number of hardware platforms. This interface comprises
communication, padding, initialisation and finalisation,and
attempts to standardise the timing and area measurement
results between the different designs, in an attempt to aid the
NIST competition body in their selection of an eventual winner
of the SHA-3 competition.
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