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~ Abstract—The second round of the NIST public competition to find another input:,, such that(x,) = H(zz). This
is underway to find a new hash algorithm(s) for inclusion property is also known as ‘weak collision resistance’.
in the NIST Secure Hash Standard (SHA-3). Computational | (girong) Collision Resistance. It should be computation-

efficiency of the algorithms in hardware is to be addressed during IV infeasible f d to find wo distinct
the second round of the contest. For software implementations ally Infeasibie for an adversary to Tind any two distinc

NIST specifies an application programming interface (API) along inputs z; andzz, such thatH(x1) = H(x2).

with reference implementation for each of the designs, thereby  Currently, NIST is holding a competition to develop a new

enabling quick and easy comparison and testing on software cryptographic hash algorithm(s) [2], similar to the contes

platforms, however no such specification was given for hardware held to choose the Advanced Encryption Standard (AES)

analysis. In this paper we present a hardware wrapper interface . - .
which attempts to encompass all the competition entries (and &/gorithm [3]. The new hash function(s) will be called SHA-3

indeed, hash algorithms in general) across any number of both (Or the Advanced Hash Standard (AHS)), and may ultimately
FPGA and ASIC hardware platforms. This interface comprises supersede the functions in the SHA-2 family. The contest
communications and padding, and attempts to standardise the jnjtially received 64 submissions from designers all aun
hashing algorithms to allow accurate and fair area, timing and the world, and 51 of these designs progressed through to the
power measurement between the different designs. . ' .
first round of the contest. The second round candidates were
announced in Q3 of 2009 and the competing designs were
reduced to 14. These hash algorithms are available for gubli
) ) ) ~ comment and scrutiny and NIST has stated that computational
_ With the rapid growth of the internet, the need for protegtinggficiency of the algorithms in hardware, over a wide range of
files and other information stored on computers has becorﬂ‘étforms, will be addressed during the second round of the
of vital importance. Part of the requirement for trusted eongniest [4]. Over the coming years the number of candidate
puting are cryptographic algorithms, used as network #§curyesigns will be reduced, until eventually it is planned to
measures to protect data during transmission, of which haghhounce the successful hash function(s) in 2012.
functions form an integral part as they operate at the hdart 0 gome initial work has already been completed on document-
contemporary cryptographic protocols. _ ing the hardware speed and size for different types of hard-
A hash functiont{ maps a message of variable length to \yare, both by the authors [5][6] and others [7][8]. A webpage
a string of fixed length. The process of applyi#gto = is  cajled the ‘SHA-3 Zoo' has been set up by the Institute for
called *hashing’, and the outpd(z) is called the ‘message ppplied Information Processing and Communications (IAIK)
hash’ or ‘message digest'. Cryptographic hash functio®s ap Graz to track these hardware implementation results [9].
hash functions that possess the following properties: Difficulties arise in comparison analysis when one consider
« Pre-image Resistance. This requirement means that fbat there are fourteen different designs, some of whicle hav
a given hash valug, it should be computationally in- varying architectures for the differeq224, 256, 384, 512
feasible for an adversary to find an inputsuch that hash variants. Each of these can be further broken down into
H(z) = y. Pre-image resistance is also known as ‘ondrigh-speed and low-area designs (and everything in befjween
wayness’ [1]. Added to this is the wide range of different FPGA devices
o Second Pre-image Resistance. This implies that fortlat can be used for the implementation, each of which has
given inputzy, it should be computationally infeasibledifferent underlying technology and different standards o

I. INTRODUCTION
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Fig. 1. Wrapper

measurements both between different vendors and in som&he rest of the paper is defined as follows; Section I
cases between different families of the same vendor. Thugesents our hardware interface and associated logic,dn Se
makes any form of comparison between implementatiotisn Ill we give an example of two of the current SHA-3
challenging. second round candidates, JH and Hamsi, using thirbit

A current topic of discussion within the cryptography comhash variants. These designs were chosen due to the large
munity is whether or not the padding for the hash functiodifference in the input message block size, 512-bits and 32-
should be included in the hardware design, or implementeils respectively. We give area and timing results compftded
externally (for example in software) and therefore not takehe hash functions both inclusive and exclusive of the weapp
into account when analysing the speed and area of any parfar-the two cases to show the different effect of the wrapmer o
ular SHA-3 candidate. The authors feel that while inclusidmash functions which require large and small message sizes.
of the padding will increase the difficulty (and therefore thWe also give examples of how particular hash functions can
time taken to implement and test the designs), to not inclutle affected by communication bottlenecks. In Section IV we
padding can be viewed as incomplete results and as swthte our conclusions.
give unfair advantage to certain hash functions over offeess
some hash functions require a number of rounds of padding as Il. HARDWARE INTEREFACE

standard, whereas others can process the padding with rgo ext.l.he hardware wrapper can be best described in four main
rounds required. We also show in our results a case where &tions. In the first section. we give an overview of the

padding block contains the critical path of the _design and A8rdware block as a whole. In the second section, we describe
suzh aﬁ‘eﬁts the E[)tveraltl speed of th_e hask:j deS|gn.t the interface signals connecting the wrapper to the hastkblo
S such, we attempt a compromise and present a Wraphhy 554 1o the outside world. The third section describes th

]Ehat fcan Ibe _L:rs]ed tod Lr;]terfafg dbetwelgn ra]my ;t)k?rtlcu(lj?jr. h’ﬂl%}ious padding schemes used and how they are generated.
unction aigorithm an € outside world where the patamg o ¢, ,rth section lists and defines the constants that can be

?ncluded in.the Wrapper as opposed t,o the' hash function blpr% dified prior to synthesis.
itself. In this way, 'fully autonomous’ designs can be easil
and efficiently inserted inside the wrapper thereby all@gwvin
fast test times. It allows re-use of any padding scheme tifat Hardware Overview
can be used in multiple hash functions which cuts down onFigure 1 shows a block diagram of the interface archi-
design time. It also alleviates any issues concerning dssigecturé. It comprises an input register which includes any
which do not take into account bandwidth limitations or extrpadding required, an output shift-register and contraittry.
area or timing due to 'external’ stages. The input data can be set to any sizeg, but for a represen-
While some very good attempts have been made to defingation of a real world communications system, we set it to
standard hardware interface for hash algorithms, suchos® th32-bits, a standard word size. The input shift-register reéads
by Chenet al. [10], Gaj [11] and Kobayshét al. [12], these and stores these-bit values to the size required;, which
concentrate on the communications aspect and assume insathe message block size of the hash function under test. If a
cases that the padding is done either externally or within thessage ends prior to this register being completely filled,
hash function itself. Using our method, the area and timingl _ _ _
meastrement of any particulr hash function implementatip Mot 1 e e 45 ceveioped s o e desr st
can be given inclusive of the hash function, Commumcat'orﬂécessary, i.e. for designs which require counter or sélegao be input as
and padding, or just the hash function as a stand-aloney.entgart of the message.



TABLE I

padding is added to the partial message to bring it to the HASH | NTERFACE
required size. The output shift-register performs a siméak, Signal [ 10 | Description
holding thg hasheq message digest of sﬁzwhlle 'Fhe output ok in 1 Global clock
bus reads it outv bits at a time. The control circuitry controls [ rst in | Global reseiictive HIGH
the shift register operation, padding, and all commurcati mesin in_| Data-in bus ,
signals dp_h_in in | Valid data onData-in bus
9 ’ Set whenbuffer-in shift-register is full
ack h_in out | Data present oata-in bus has been read
B. G . = I Ib_h_in in | Last block is present obata-in bus
- Communications Protoco Inclusive of padding where required
Table | defines the various communication signals between|_hashout | out | Data-out bus
the wrapper and the external world. It can be seen from[-2ckr-out | In_| Data present oibata-out bus has been read
pp : dp_h_out | out | Message digest is present Bata-out bus

Figure 1 that the communications protocol between the hash

function and wrapper, as well as between the wrapper and

the outside world is similar to that suggested by Gaj [11 )

It differs however in the fact that a user wishing to hash' Padding Protocol

a message does not need to do any preprocessing to theirhere are many different padding schemes utilised by the

plaintext before sending the message, such as adding neeséi@gigners of the hash functions, and in some cases varying

length data, but only needs to set an end of message (EOMAding schemes between the different sizes of the same hash

signal high, in this case defined as a last bl@itkin) signal function. Table Ill gives a brief outline of the various pauigl

either simultaneously with the last block of the messaget or ¢¢hemes used by the different round two candidates.

any time after transmission of the last message block. As can be seen from Table lll, similarities between most
While there is valid data on the line, a data preqeptin) Of the different padding schemes allow us to generate a

flag is set high. To avoid the need to transmit a count @Eneric block for variants of Merkle-Daragd strengthen-

the number of valid message bits in the input block, arifid [1] padding schemes, as well as paddings types of atiszer

thus needing to know the lengths of message sections pifgrone-and-trailing-zeros.

to transmission, the data present signal is set high when alfigure 2 shows the block diagram of the selection process

of the data on the input bus are valid message bits, i.e. ed@hsome of the different padding schemes. The input word

message blocks read in is of size When the wrapper readsis saved in a register, and is shiftedbits every subsequent

in the data on(d_in) it acknowledges that the data has beeiput until the register is full. In this way, the message is

read in by settingack_in) high. It is then ready to receive theféad into the hash block when it is the required size If

next block of data. Conversely, when the message digestti§ message ends prior to filling of the register, the refevan

ready to be read out on the output b(dp_out) is set high by Padding scheme is selected via multiplexer. For exampleen t

the function wrapper. This data will remain on the output bugse of Fugue, the register is filled twice more, firstly with

until a return acknowledgéack out) is received. The systemall zeros followed by ann-bit representation of number of

then returns to its initial state in preparation for the nexsh Message blocks. In the case of Shabal, append a one and zeros

message. to the s_ize of the registern. Using this method of filling up
the register from the bottom-up allows for easy concatenati
TABLE | of the padding to the end of the input message block.
WRAPPERINTERFACE
[Signal [ 10 [ Description ] D. Design Dependent Options
clk in g:oga: ClockA R —— Because of the different design methods and message sizes
rst n obal resetActive . Initialises the H H i
circuitry to begin hashing a new message thaF comprise all the d|fferen.t.hash functions, a numbersef u
din in | The input bus defined constants are specified at the top level of the VHDL
dp_in in_| Data present on thiaput bus and as such can be easily modified by the user to select the
ackin | out | Data present on thiaput bus has been read equivalent message size and padding scheme necessary to run
Ib_in in Data present on thmput bus is the icular hash f . h defined .
last block of the message to be hashed a particular hash function. These constants are defined as:
d_out out | The output bus o The hash function required.
dpout | out | Data present on theutput bus « The counter size required for message length addition
ack out | in Data present on theutput bus has been read duri ddi
Ib_out out | Data present on theutput bus is the last uring pa mg._ ) )
block of the hashed message o The message digest size required.

o The input message block size of the hash function.

Table Il defines the various communication signals betweenThe hash function for a given digest size is then synthesized
the hash function and the wrapper. These closely mirror thecording to these constants. Also, each of the hash funsctio
external signal lines, and in most cases perform equivalarid their variants have an initial vector (IV) as part of the
functions between the hash block and the interface as theut, but for the SHA-3 competition each of these IV's are
externals do between the interface and the outside worfiked to a specific value throughout, and as such we do not
However, there is ndb_ out equivalent as the hashed digestconsider them as part of the input but rather as stored aussta
d, is output to the output shift-register as one completelkbloowithin each hash function itself.
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Fig. 2. Padding Block
TABLE Il

PADDING SCHEMES PERSHA-3 TYPE

[ Hash Function [| Padding

BMW Append a 1’ followed by '0's, followed by the message length as @tbit integer such that
Hamsi the output is a multiple of the input block size.
Grgstl Append a '1’ followed by '0’s, followed by the number of messagecks as ar64-bit integer such
that the output is a multiple of the input block size.
CubeHash Append a 1’ followed by as many 0’s as required to get a multiple of the input block size.
Luffa
Shabal
Skein Pad with 0’s to get a multiple of the input block size.
SIMD Pad with 0’s to get a multiple of the block size. Add an extra block comtagy the message length.
Fugue

SHAvite-3 Append a 1’ followed by '0's, followed by the message length, followed by the digesgflersuch that
the output is a multiple of the input block size.

ECHO Append a 1’ followed by ’0’s, followed by al6-bit representation of the message digest size, followed
by a 128-bit representation of the message length such that the pistgumultiple of the input block size.
Blake-28 Append a 1’ followed by '0’s followed by a64-bit representation of the message length.
Blake-32 Append a 1’ followed by '0’s followed by a 1’. Then append #4-bit representation of the message length.
Blake-48 Append a 1’ followed by '0’s followed by a128-bit representation of the message length.
Blake-64 Append a 1’ followed by '0’s followed by a 1’. Then append d 28-bit representation of the message length.
JH Append a 1’ followed by '0’s followed by a128-bit representation of the message length.
Keccak Append a 1’ followed by '0’s to a multiple of 8’, followed by a digest specific constant, followed by a

1" and '0’s to a multiple of the input block size.

[1l. TESTRESULTS The compression function of JH combines a 1024-bit pre-
ious hash block H;_1) with a 512-bit message blodk\/;)

Here we give example results of two of the SHA-3 round ;
candidates, namely JH and Hamsi, and show how the area c[),]é)roduce a 1024-bit hash bogkl;). The output message

timing results vary dependent on whether the hash functi }gest is the truncation of the end of the last hash block o th

is used inside the interface or as a stand alone entity. ’rA\eSquwed SIz€.

mentioned previously, these particular hash functionsewer The hash function consists of four main stages:
chosen because of their contrasting input message bloeg.siz « Initialisation: The initial hash valueli, is set according
We implemented the hash algorithms in VHDL and testing was to the message digest size.
done using Xilinx ISE 9.2 and the test platform was a Xilinx « Message Padding: The message is padded with a '1’,
Virtex5 XC5VLX110. The results are taken from post-place- trailing zeros and a 128-bit vector equal to the message
and-route map and timing reports. length so that it's length is a multiple of 512-bits, with
at least 512-bits of padding.

i « Message Compression: The compression function is ap-

A. JH Overview plied to each message blocki;. This regiures an initial
Hongjun Wu designed the hash function family JH [13]. Its  xor between the lower 512-bits é&f; ; and M; followed

four variants{224,256,384 and 5}2are based on the same by a bijective function and an xor between the upper 512-
compression function. bits of the updated?; _; and M;.



o Truncation: The message digest is determined by a trunessage and one to hash the round. Fon €i2d-bit message,
cation of the final hash value according the messatfgere are32 blocks followed by three blocks &6-bit padding.

digest size. The entire process exclusive of the wrapper takgsclock
cycles andi3 clock cycles when in the wrapper.
B. Hams Overview Table IV gives the breakdown for the cycle count for JH

The hash function Hamsi [14] was submitted bidik from and Hamsi for a single message block. The table shows that
Katholieke Universiteit Leuven in Belgium both interfaces requirg clock cycles to output the224-
Hamsi-224 and Hamsi-256 are both .very similar usin it digest, on.the 32-bit busy, and the cher ve}riants .Wi"
the same state size and number of rounds. Likewise wi ﬁlturally requirat/w clock cycles, wherel is the digest size,
Hamsi-384 and Hamsi-512, which both use a larger sta transmit to the output. However, it can be seen that JHy wit
' larger message size, requitgsclock cycles to load the

size and more rounds than Hamsi-224 and Hamsi-256. The. . .
Hamsi hash function is based on Goncatenate-Permute- initial data to the required message size. As such, any hash
éunction requiring a large message size, will be subject

Truncate construction, influenced by both Grindahl [15] an X .
y [15] to this latency ofm/w clock cycles. This latency becomes

Sﬁ;pfonrfs[ég'of 4 main operations: especially apparen_t when hashing short messages whe_re the
. L data to be hashed is smaller than the message size required by
« Message E?‘p?”S'O”- Ir_nplem_er_1ted using linear (_:o_d_es'the hash. Fugue and the other hash functions which operate
« Concatenation: A256-l_)|t chaining value or an initial over smaller message sizes whete=w do not suffer from
value to form the512 bit st_ate. _ this latency.
¢ Severallrounds of a non-linear permutanon It is also interesting to note that while neither of these two
* Truncayon: Selects the relgvant bits for the qutput MERash functions are affected by a transmission bottleneck on
sage digest once the non-linear permutation is comple{ﬁe input, as in both cases the time taken to load a message is
the same or less than that required to process a message, othe
C. Hardware Results hash functions are susceptible to this latency. An example o
For the purposes of this examination, we concentrate esuch a SHA-3 hash function that does is Kec§ak4} [17].
clusively on the smallest variant of each, th24-bit hash. Keccak require24 clock cycles per hash round, but is of
In this variant, JH has an input message sizé1f-bits and block size 1152-bits, and therefore require¥ clock cycles
Hamsi has an input message size3@fbits. They both hash for message loading. This results in a delay 1a@f clock
an output digest of siz224-bits. We hashed a message of sizeycles every message round while the hash block waits for
1024-bits to enable each hash function to perform a numb#re message block to read in data.
of hashing rounds along with the finalisation round which
) : . ) TABLE IV
includes the padding. While the area results are given both SINGLE {224-4ASH} MESSAGEBLOCK CLOCK COUNT
with and without the padding, the clock cycle count for the

. . . . Design JH Hamsi
hash functlons_ neC(_essarlly pegds to include the time taken.t Message size S Y

hash the padding bits, as this is a fundamental part of hgshin Location Process Clks | Clks
the message correctly. It is assumed that the hash as a stand Wrapper | Message L(]gad 16 -
alone unit has access to some form of external padding for W;;‘;’;er Bgtﬁuar;?;nzr ; %
the purposes of timing analysis, which is passed as parteof th Hash | Message Block| 37 3
message block. We measure the area in slices and the time Hash Last Block 37 2
Wrapper Hash output 7 7

taken to hash th&024-bit block is calculated as follows:

1
Maximum Clock frequency

For our implementation of JH using the ideal cadé-bit

Time =

x Number of Clock Cycles TABLE V
HASH RESULTS

. - . Design Area | Max. Freq.| CIk Cycles | Time
input bus to maximise performance of the hash function, each ? slices (MHz)q g (ns)
message block requir@s clock cycles, one for each of ths JH 1,394 303.0 114 376
input blocks and two more for the initial xor and for reading i Interface | 1,558 188.8 138 731
the data. To hash thi€)24-bit message requireshash rounds; Hamsi | 1,704 70.5 73 1035

Interface | 1,890 69.8 83 1189

two for the input message and one for th&2-bit padding
block, thus giving114 clock cycles. When the hash block is
inserted in the wrapper, the same message requi&slock The area and throughput results are given in Table V. From
cycles. The latency is due to the initial reading in and out dfie area results, we can see that the interface had vegy littl
the message im-bit blocks. For subsequent message blocksnpact overall in relation to the hash function, with an eese
data is read in while the current data is being processed &y approximately170 slices when included. The maximum
the hash function, so the input latency only affects the firfequency in the case of Hamsi is the same both within
message block. and without the wrapper, with the slight variation due to the
Hamsi, which operates on a message siz&®bits, can synthesis software, as the critical path within the hasletion
process one message block in two clock cycles, one to readithédentical. For JH, the reduction in clock frequency while



embedded in the interface is caused by the critical pathgbein4] Ozgil Kugiik. The hash function Hamsi. Submission to NIST, 2009.
through thel28-bit counter required for the padding schemé,l5] Lars R. Knudsen, Christian Rechberger, and Sgren edtefhomsen.

and as such, can be considered a part of the hash funciigy

The Grindahl hash functions, 2007.
] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpemew

even though the padding is processed through the interface. block cipher proposal, 1998.
The time results for Hamsi show an increase for the interfadé’] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. aecc

This is due to the data loading between the outside world,
the interface and the wrapper. The increase in time for JH is

specifications. Submission to NIST (Round 2), 2009.

obviously due to the decrease in clock frequency because of

the critical path in addition to the data loading time.

IV. CONCLUSIONS

In this paper we have presented a hardware wrapper in-

terface to enable fair and accurate comparison testingef th
SHA-3 hash function competition entries, able to run across
any number of hardware platforms. This interface comprises

communication, padding, initialisation and finalisaticand

attempts to standardise the timing and area measurement

results between the different designs, in an attempt torad t
NIST competition body in their selection of an eventual venn
of the SHA-3 competition.
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