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Abstract. In this paper, we propose a new double-piped mode of operation for multi-
property-preserving domain extension of MACs (message authentication codes), PRFs (pseu-
dorandom functions) and PROs (pseudorandom oracles). Our mode of operation performs
twice as fast as the original double-piped mode of operation of Lucks [15] while providing
comparable security. Our construction, which uses a class of polynomial-based compression
functions proposed by Stam [22, 23], makes a single call to a 3n-bit to n-bit primitive at
each iteration and uses a finalization function f2 at the last iteration, producing an n-bit
hash function H[f1, f2] satisfying the following properties.

1. H[f1, f2] is unforgeable up to O(2n/n) query complexity as long as f1 and f2 are un-
forgeable.

2. H[f1, f2] is pseudorandom up to O(2n/n) query complexity as long as f1 is unforgeable
and f2 is pseudorandom.

3. H[f1, f2] is indifferentiable from a random oracle up to O(22n/3) query complexity as
long as f1 and f2 are public random functions.

To our knowledge, our result constitutes the first time O(2n/n) unforgeability has been
achieved using only an unforgeable primitive of n-bit output length. (Yasuda showed un-
forgeability of O(25n/6) for Lucks’ construction assuming an unforgeable primitive, but the
analysis is sub-optimal; in this paper, we show how Yasuda’s bound can be improved to
O(2n).)

In related work, we strengthen Stam’s collision resistance analysis of polynomial-based
compression functions (showing that unforgeability of the primitive suffices) and discuss
how to implement our mode by replacing f1 with a 2n-bit key blockcipher in Davies-Meyer
mode or by replacing f1 with the cascade of two 2n-bit to n-bit compression functions.

1 Introduction

The Merkle-Damg̊ard transform has been the most popular method to build a cryptographic hash
function from a fixed-size compression function. A major advantage of this construction is that it
preserves collision resistance with an appropriate padding algorithm, allowing one to focus on the
construction of secure compression functions. However, Joux showed that if computing collisions
becomes somehow feasible for the underlying compression function, then the hash function may
fail worse than expected: for a hash function based on a compression function of n-bit output,
one can find a t-multicollision only with O(2n/2 log t) complexity, which is much smaller than
O(2(t−1)n/t) required for an ideal random function. This observation led to several generic attacks
such as long-message second preimage attacks [13] and herding attacks [12]. Lucks observed that
these weaknesses can be mitigated by increasing the size of the internal state and claimed that
the internal state size should be seen as a security parameter of its own right [15]. Since a secure
compression function of a larger output size might be harder to construct than the hash function
itself, Lucks proposed to use a “narrow” compression function in a double-piped mode. In a subse-
quent paper [24], Yasuda rigorously analyzed the security of the double-piped mode of operation
as a multi-property-preserving domain extension. Specifically, he showed that Lucks’ double-piped
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mode of operation preserves unforgeability up to O(25n/6) query complexity, and indistinguisha-
bility and indifferentiability both up to O(2n) query complexity. Moreover it was later noticed by
several researchers that Yasuda’s unforgeability bound could be increased to O(2n) with a slightly
modified proof. (See Section 7.)

As such Lucks’ construction turned out to provide nearly optimal security. However, the fact
that Lucks’ compression function uses two applications of a (fairly strong) primitive remains a
drawback. Stam [22, 23] recently proposed a class of wide-pipe compression functions making a
single call to an equal primitive (we call these polynomial-based compression functions). In this
paper we analyze the security properties of double-piped modes using Stam’s polynomial-based
compression functions, focusing on MAC-preservation, PRF-preservation and PRO-preservation.
Except for PRO-preservation (where we only achieve O(22n/3) security), our bounds are compara-
ble to those found by Yasuda for Lucks’ original construction (and even better for unforgeability,
given the sub-optimality of Yasuda’s bound in that case, though the “corrected” unforgeability
bound exceeds ours by a factor of n) even though our construction has twice the rate.

Besides performance, a second concern that arises for Lucks’ double-pipe construction is the
rather strong primitive it assumes: a 3n-bit to n-bit function (note that careful consideration is
typically already given for the construction of 2n-bit to n-bit compression functions from smaller or
more available primitives). Here we also tackle this problem and show our double-piped polynomial-
based mode can be implemented with a blockcipher of 2n-bit key in Davies-Meyer mode, in either
the ideal-cipher model or the weaker “unpredictable cipher” model (see Section 5) without signif-
icant loss of security. We also prove MAC-preservation and PRF-preservation for a compression
function obtained by replacing the 3n-bit to n-bit primitive with the cascade of two 2n-bit to n-bit
primitives. This latter result potentially opens the door to implementing the compression function
with two calls to an n-bit key blockcipher in Davies-Meyer mode (which would be the first time,
to our knowledge, that a 3n-bit to 2n-bit compression function using two calls to an n-bit key
blockcipher is proved secure nearly up to the birthday bound).

Construction and Results. To keep our construction comparably general to Lucks’ [15] and
Yasuda’s [24], we discuss a hash function obtained by iterating a (2n+c)-bit to 2n-bit compression
function φ[f1] where the primitive f1 used by the compression function is a 2n + c-bit to n-bit
compression function (the “expected” setting of the parameters is c = n).

The compression function φ[f1] is illustrated in Fig. 1(a) for the case c = n of a 3n-bit to 2n-bit
compression function. Let u ∈ {0, 1}2n+c and let ud|| . . . ||u0 be the segmentation of u into n-bit
blocks u0, . . ., ud−1 and a block ud of no more than n bits (so d =

⌈
2n+c

n

⌉− 1). Then φ[f1](u) is
defined by

φ[f1](u) = x||y,

where

x = f1(u),
y = udx

d + ud−1x
d−1 + · · ·+ u1x + u0,

with all field operations taking place in F2n (and ud being viewed as embedded in {0, 1}n). We
call φ[f1] a polynomial-based compression function. This design is due to Stam [22,23].

Given an independent compression function f2 : {0, 1}2n+c → {0, 1}n, we define a hash function

H[f1, f2] : {0, 1}∗ −→ {0, 1}n

M 7−→ f2 (0c||v) ,

where v = MD[φ[f1]](M), the Merkle-Damg̊ard iteration of φ[f1] on message M (with the usual
“strengthened” padding for M that appends the length of the message—see Section 2 for details).
The scheme is pictured for c = n in Figure 1(b).

We comment at this point that our mode of operation uses two distinct primitives instead of
a single primitive f1 as do Lucks and Yasuda. As such, our construction explicitly follows the
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(a) The compression function φ[f1].
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(b) The hash function H[f1, f2].

Fig. 1. The polynomial-based mode of operation for c = n.

framework of An and Bellare [1] for proving unforgeability whereas Yasuda adopts it implicitly:
with some extra work, one can use f1 = f2 because the f2-queries are (with very high likelihood)
all independent from f1-queries, due to the presence of the 0c input segment. (This technique for
reducing key material was first used by Maurer and Sjödin [19].) We opt for using two primitives
because it simplifies the proofs and allows separation of the security properties required by f1 and
f2 (the security requirements for f1 being often much less than those for f2).

The following points summarize our results on φ[f1] and H[f1, f2]. For this summary we say
that fi is unforgeable to mean that a computationally bounded adversary with oracle access to fi

has low probability of predicting the output of fi on an unqueried value when fi is sampled from
a keyed function family (as low as for a random function of the same range). The query complexity
of an attack on a variable input length (VIL) function is the number of queries to the underlying
primitive necessary to compute the answers to the adversary’s queries.

1. We prove that φ[f1] is collision resistant up to O(2n/n) queries to f1 as long as f1 is unforge-
able. This result also implies the collision resistance of φ[f1] against an information-theoretic
adversary if f1 is a random function. It also implies H[f1, f2] is unforgeable up to O(2n/n)
query complexity as long as f1 and f2 are unforgeable, and that H[f1, f2] is weakly collision
resistant up to O(2n/n) query complexity as long as f1 is unforgeable and f2 is weakly collision
resistant.

2. We prove that H[f1, f2] is pseudorandom up to O(2n/n) query complexity as long as f1 and
f2 are pseudorandom. In the complexity-theoretic model, we can weaken the assumption so
that f1 is unforgeable.

3. We prove that φ[f1] is preimage aware1 up to O(22n/3) query complexity as long as f1 is a
public random function. By the results of [6], this implies H[f1, f2] is indifferentiable from
a random oracle up to O(22n/3) query complexity as long as f1 and f2 are public random
functions.

1 Preimage awareness is a security notion introduced by Dodis, Ristenpart and Shrimpton [6]. The Merkle-
Damg̊ard iteration of a preimage aware compression function composed with a random function results
in a construction that is indifferentiable from a random oracle, up to the preimage awareness security
of the compression function and the maximum message length queried to the iterated construction.
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(a) The quadratic blockcipher-based function.
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(b) The quadratic cascade function.

Fig. 2. Variants of the quadratic compression function.

Refinements. As mentioned, we also investigate two variants of the 3n-to-2n bit polynomial-
based compression function (a.k.a. the “quadratic” compression function) with a view towards
concrete implementations of the mode. These alternate constructions are shown in Figure 2. The
first variant replaces f1 by a blockcipher E of 2n-bit key in Davies-Meyer mode. We show this
compression function ψ[E] is collision resistant up to O(2n/n) queries as long as E is “unpre-
dictable”, a notion we discuss in Section 5. Similar corollaries follow on the security of the hash
function obtained by iterating ψ[E].

The second is obtained by replacing f1 with the cascade of two 2n-bit to n-bit compression
functions h1 and h2. We show this compression function, denoted τ [h1, h2], is collision resistant
up to O(2n/n3) queries as long as h1 and h2 are unforgeable. It follows that the hash function
G[h1, h2, f2] obtained by iterating τ [h1, h2] (defined like H[f1, f2] but substituting τ [h1, h2] for
φ[f1]) has unforgeability security up to O(2n/n3) query complexity when h1, h2 and f2 are un-
forgeable, has collision security up to O(2n/n3) query complexity when h1, h2 are unforgeable and
f2 is collision resistant, and is indistinguishable from a PRF up to O(2n/n3) query complexity
when h1, h2 are unforgeable and f2 is pseudorandom.

Related Work. All the compression functions discussed in this paper, including the cascaded
and blockcipher variants, were proposed by Stam [22, 23]. In [23] Stam proves the collision resis-
tance of polynomial-based compression functions of degrees two and three in the random function
model, and also proves the collision security of the quadratic blockcipher mode in the ideal ci-
pher model. Here our contribution is that we weaken the model by showing collision resistance
is already assured when f1 and E are unforgeable/unpredictable rather than random. (It is this
weakening of the model that allows us to prove MAC-preservation results for the resulting hash
functions.) Regarding the quadratic cascade compression function, Stam proves collision resistance
for a special class of non-adaptive adversaries assuming random primitives. Our analysis supports
fully adaptive adversaries and once again weakens the model to unforgeable primitives.

Lucks [16] recently proposed a double-pipe hash function iterating a 3n-bit to 2n-bit compres-
sion function which, like the quadratic blockcipher-based mode, uses a single call to a blockcipher
of 2n-bit key. However, by contrast to the quadratic blockcipher compression function, Lucks’ com-
pression function is neither collision resistant nor preimage resistant. As a consequence, collision
and preimage security can only be proved in the iteration (higher security notions like indifferen-
tiability are unaddressed). On the other hand, for n = 128 Lucks gives a better explicit collision
security bound than we do for the quadratic blockcipher compression function: 2122 versus 2119

queries, respectively.

This paper can be seen as an extension of Yasuda’s work [24] since our main achievement
is to double the rate of that construction while maintaining comparable MAC-preservation and
PRF-preservation properties. However, from a technical standpoint we owe most to Dodis and
Steinberger [7], whose “multicollision-to-forgery” (MTF) balls-in-bins games are used in nearly
all of our analyses (the sole exception being the preimage awareness bound for polynomial-based
compression functions). Indeed, the main “message” of this paper may well be the versatility and
power of MTF games.



2 Preliminaries

F2n denotes a finite field of order 2n. Throughout our work, we will identify F2n and {0, 1}n,
assuming a fixed mapping between the two sets. For u ∈ {0, 1}∗, |u| is the length in bits of u. For
two bitstrings u and v, u||v denotes the concatenation of u and v. For a set U , we write u

$← U to
denote uniform sampling from U and assignment to u.

Let M ∈ {0, 1}∗ and let c ≥ 1 be message block length (as c will denote throughout the paper).
Then pad(M) := M ||10b||〈l〉 where b is the least integer such that |M ||10b| is a multiple of c and
where l is the number of c-bit blocks in M ||10b. (This representation is possible as long as l < 2c,
but this is not a restriction for most applications.) The main property of pad(·) is that it gives a
suffix-free encoding of messages.

The (strengthened) Merkle-Damg̊ard transform produces a VIL-function MD[F ] : {0, 1}∗ →
{0, 1}n from a FIL-function F : {0, 1}n+c → {0, 1}n. Given a predetermined constant IV ∈ {0, 1}n,
the function MD[F ] is defined as follows.

Function MD[F ](M)

z[0] ← IV
Break pad(M) into c-bit blocks, pad(M) = M [1]|| . . . ||M [l + 1]
for i ← 1 to l + 1 do

z[i] ← F (z[i− 1]||M [i])
return z[l + 1]

3 Security Definitions

Unforgeability and Weak Collision Resistance. A function family is a map f : {0, 1}κ ×
Dom(f) → {0, 1}n where Dom(f) ⊂ {0, 1}∗. The bitstrings in {0, 1}κ are the keys of f and we
write fk(M) for f(k,M) for k ∈ {0, 1}κ and M ∈ Dom(f). The function fk is called a member
of f . The unforgeability of f as a secure message authentication code (MAC) is estimated by the
experiment Expmac

A described in Figure 3(a). In the experiment, an adversary A has oracle access
to fk(·) and tries to produce a valid tag z for a new message M . Here we call a message M “new”
if it has not been queried to oracle fk(·). The forgery advantage of A is defined by

Advmac
f (A) = Pr [Expmac

A = 1] . (1)

The probability is taken over the random choice of k andA’s coins (if any). We define Advmac
f (t, q, µ)

as the maximum of Advmac
f (A) over all adversaries A making at most q queries whose total com-

bined length is at most µ bits (including the forgery produced by A) and of “running time” at
most t. The “running time” is defined to be the total running time of the experiment, including the
time required to compute the answers to A’s queries. We write Advmac

f (t, q) for Advmac
f (t, q, µ) if

f is a family of fixed input length functions, as in this case µ is automatically determined by q.
The weak collision resistance (WCR) of f is estimated by the experiment Expwcr

A described
in Figure 3(b). In contrast to the definition of collision resistance (in the dedicated-key setting)
where A is provided key k, A is allowed only oracle access to fk(·). Let

Advwcr
f (A) = Pr [Expwcr

A = 1] . (2)

Then the weak collision resistance of f , denoted Advwcr
f (t, q, µ), is defined to be the maximum

of Advwcr
f (A) over all adversaries A making at most q queries whose total combined length is at

most µ bits and of running time at most t. When f is a family of fixed input length functions we
likewise write Advwcr

f (t, q) instead of Advwcr
f (t, q, µ).

Our security proof for unforgeability will follow the approach developed by An and Bellare [1].
One of their results is that f2 ◦MD[f1] is a VIL-MAC if f1 is a FIL-WCR and f2 is a FIL-MAC.
With a slight modification, we summarize Lemma 4.2 and Lemma 4.3 in [1] as the following lemma.



Lemma 1. Let f1 : {0, 1}κ×{0, 1}n+c → {0, 1}n and f2 : {0, 1}κ′×{0, 1}n → {0, 1}m be function
families. Then,

Advmac
f2◦MD[f1] (t, q̃, µ) ≤ Advmac

f2 (t, q̃) + Advwcr
f1

(
t,

⌊µ

c

⌋
+ 2q̃

)
.

Remark 1.
⌊

µ
c

⌋
+2q̃ is the maximum number of queries to f1 required to compute MD[f1](xi) for

x1, . . . , xq̃ such that |x1|+ . . . + |xq̃| ≤ µ.

Experiment Expmac
A

k
$← {0, 1}κ

(M, z) ← Afk(·)

if M is new and fk(M) = z then
output 1

else
output 0

(a) Quantification of unforgeability

Experiment Expwcr
A

k
$← {0, 1}κ

(M, M ′) ← Afk(·)

if fk(M) = fk(M ′) then
output 1

else
output 0

(b) Quantification of weak collision resistance

Fig. 3. Experiments for quantification of unforgeability and weak collision resistance

Indifferentiability and Indistinguishability. In the indifferentiability framework, a distin-
guisher is given two systems (F [P],P) and (H,S[H]). Here P is an ideal primitive used as a
building block for the construction of F [P]. An ideal primitive H and a probabilistic Turing ma-
chine S[H] with oracle access to H have the same interfaces as F [P] and P, respectively. The
simulator S[H] tries to emulate the ideal primitive P so that no distinguisher can tell apart the
two systems (H,S[H]) and (F [P],P) with non-negligible probability, based on their responses to
queries that the distinguisher may send. We say that the construction F [P] is indifferentiable from
H if the existence of such a simulator is proved. The indifferentiability implies the absence of a
generic attack against F [P] that regards P merely as a black-box. Now we give a formal definition
of indifferentiability in the information-theoretic model. For a more comprehensive introduction
of the indifferentiability framework, we refer to [3, 18].

Definition 1. A Turing machine F with oracle access to an ideal primitive P is said to be (q, ε, t)-
indifferentiable from an ideal primitive H if there exists a simulator S of running time at most t
with oracle access to H such that for any distinguisher A making at most q queries, it holds that

∣∣∣Pr
[
AF [P],P = 1

]
−Pr

[
AH,S[H] = 1

]∣∣∣ < ε.

If H is a public random function, then F [P] is called a (q, ε, t)-pseudorandom oracle (PRO).

If A is not allowed to make queries for the underlying primitive, we obtain the definition of
indistinguishability.

Definition 2. A Turing machine F with oracle access to an ideal primitive P is said to be (q, ε)-
indistinguishable from an ideal primitive H if for any distinguisher A making at most q queries,
it holds that ∣∣∣Pr

[
AF [P] = 1

]
−Pr

[AH = 1
]∣∣∣ < ε.

If H is a public random function, then F [P] is called a (q, ε)-pseudorandom function (PRF).



Collision Resistance and Adaptive Preimage Resistance. First, we review the definition
of collision resistance in the information-theoretic model. Given a function F = F [P] and an
information-theoretic adversary A both with oracle access to an ideal primitive P, the collision
resistance of F against A is estimated by the experiment Expcoll

A described in Figure 4(a). The
experiment records every query-response pair that A obtains by oracle queries into a query history
Q. We write z = FQ(u) if Q contains all the query-response pairs required to compute z = F (u).
At the end of the experiment, A would like to find two distinct evaluations yielding a collision.
The collision-finding advantage of A is defined to be

Advcoll
F (A) = Pr

[
Expcoll

A = 1
]
. (3)

The probability is taken over the random choice of P and A’s coins (if any). For q > 0, we define
Advcoll

F (q) as the maximum of Advcoll
F (A) over all adversaries A making at most q queries.

In this section, we also present a new notion of security, called adaptive preimage resistance.
This notion will be useful for the proof of preimage awareness. Given a function F = F [P]
and an information-theoretic adversary A both with oracle access to an ideal primitive P, the
adaptive preimage resistance of F against A is estimated by the experiment Expadpr

A described
in Figure 4(b). At any point during the experiment, the adversary A is allowed to choose a
commitment element z in the range of F such that the query history Q has not determined any
preimage of z. The experiment Expadpr

A records the element z into a commitment list L. Queries
and commitments are made in an arbitrarily interleaved order. At the end of the experiment, A
would like to succeed in finding a preimage of some element in the commitment list. The adaptive
preimage-finding advantage of A is defined to be

Advadpr
F (A) = Pr

[
Expadpr

A = 1
]
. (4)

For qp, qe > 0, we define Advadpr
F (qp, qe) as the maximum of Advadpr

F (A) over all adversaries A
that make at most qp queries and at most qe commitments.

Experiment Expcoll
A

AP updates Q
if ∃ u 6= u′, z s.t. z = FQ(u) = FQ(u′) then

output 1
else

output 0

(a) Quantification of collision resistance

Experiment Expadpr
A

AP updates Q and L
if ∃ u s.t. z = FQ(u) for some z ∈ L then

output 1
else

output 0

(b) Quantification of adaptive preimage resistance

Fig. 4. Experiments for quantification of collision resistance and adaptive preimage resistance

Preimage Awareness. The notion of preimage awareness was first introduced by Dodis, Risten-
part and Shrimpton [6]. This notion is useful for the proof of indifferentiability of “NMAC” type
constructions. Let F = F [P] be a function with oracle access to an ideal primitive P. In order
to estimate the preimage awareness of F , we use the experiment described in Figure 5. Here an
adversary A is provided two oracles P and Ex. The oracle P provides access to the ideal primitive
P and records a query history Q. Note that this oracle is implicitly used in the experiments for
collision resistance and adaptive preimage resistance. The extraction oracle Ex provides an inter-
face to an extractor E , which is a deterministic algorithm that takes as input an element z in the
range of F and the query history Q, and returns either ⊥ or an element in the domain of F . With
respect to the extractor E , we define the advantage of A to be

Advpra
F (A, E) = Pr

[
Exppra

A,E = 1
]
. (5)



Experiment Exppra
A,E

u ← AP,Ex

z ← F [P](u)
output 1 if u 6= V[z] and L[z] = 1

Oracle P(x)

y ← P(x)
Q ← Q∪ {(x, y)}
return y

Oracle Ex(z)

L[z] ← 1
V[z] ← E(z,Q)
return V[z]

Fig. 5. Experiments for quantification of preimage awareness. Arrays L and V are global, and respectively
initialized empty and ⊥ everywhere

Let E∗ be an algorithm that on input (z,Q) returns an element u if there exists u such that
FQ(u) = z and ⊥ otherwise. Let

Advpra
F (A, E∗) = P1 + P2,

where P1 is the probability that u 6= V[z] 6= ⊥ and L[z] = 1 at the end of the experiment and
P2 is the probability that u 6= V[z] = ⊥ and L[z] = 1 at the end of the experiment. Then A can
be regarded as a collision-finding adversary such that Advcoll

F (A) = P1. Furthermore, A can be
transformed into an adaptive preimage-finding adversary B such that Advadpr

F (B) = P2: B runs
A as a subroutine, asks the same primitive queries as A, and makes commitments z if A makes
a query for Ex(z) and Q has not determined any preimage of z. If A makes at most qp primitive
queries and qe extraction queries, then it follows that P1 ≤ Advcoll

F (qp) and P2 ≤ Advadpr
F (qp, qe).

We record this observation as the following lemma.

Lemma 2. Let F = F [P] be a function with oracle access to an ideal primitive P. Then there
exists an extractor E∗ such that for any adversary A it holds that

Advpra
F (A, E∗) ≤ Advcoll

F (qp) + Advadpr
F (qp, qe).

The main application of preimage awareness lies in the construction of pseudorandom oracles.
In the following lemma which is a combination of Theorem 4.1 and Theorem 4.2 in [6], unpad is
an algorithm such that unpad(y) = x if y = pad(x) is a valid output of pad and unpad(y) = ⊥
otherwise. For any algorithm F , we write Time(F , l) for the maximum time required to compute
F(x) for any input x such that |x| ≤ l. If F is an algorithm with oracle access to an ideal primitive
P, then NQ(F, l) is the maximum number of queries to P required to compute F (x) for any input x
such that |x| ≤ l. Without any constraint on the input length, we just write Time(F) and NQ(F ).

Lemma 3. Let F : {0, 1}n+c → {0, 1}n be a function with oracle access to an ideal primitive P
and let g : {0, 1}n → {0, 1}m and H : {0, 1}∗ → {0, 1}m be public random functions for m ≤ n. For
an arbitrary extractor E with respect to F , there exists a simulator S such that for any distinguisher
A making at most (q0, q1, q2) queries to the three oracle interfaces associated with (H,P, g), there
exists an adversary B such that

∣∣∣Pr
[
Ag◦MD[F [P]],(P,g) = 1

]
−Pr

[
AH,S[H] = 1

]∣∣∣ ≤ Advpra
F (B, E).

Let lmax be the length in bits of the longest query made by A to its first oracle, and let L =⌈
lmax+1

c + 1
⌉
. Then, simulator S runs in time O (q1 + Lq2Time(E) + Lq2Time(unpad)). Adversary

B runs in time O (Time(A) + q0Time(MD[F ], lmax) + q1 + (L + 1)q2), makes at most LNQ(F )(q0+
1) + q1 primitive queries, and makes at most Lq2 extraction queries.

4 Security of the Polynomial-based Mode of Operation

For this section and the rest of the paper, φ[f1] and H[f1, f2] refer to the compression function and
hash function defined in Section 1. We use “log” to denote the logarithm base 2. For simplicity of
notation, we assume that log q is an integer for the number of queries q.



4.1 Weak Collision Resistance and Unforgeability

We begin with the proof of weak collision resistance for φ[f1] such that f1 is randomly chosen from
a function family f .

Theorem 1. Let φ be a function family defined by f : {0, 1}κ × {0, 1}2n+c → {0, 1}n. Then,

Advwcr
φ (t, q) ≤ 2q max(d + log q, d2d+2)Advmac

f

(
t + O(d2n2qd+2) + Timed, q

)
,

where d =
⌈

2n+c
n

⌉− 1 and Timed is the time required to solve a univariate polynomial equation of
degree d over F2n .

Remark 2. For a univariate polynomial of degree d over F2n , there is a deterministic algorithm to
find zeros using O(d3/2n) field operations (ignoring log factors). See [8, 9].

In order to prove Theorem 1, we use a generalization of the multicollision-to-forgery (MTF) balls-
in-bins game first introduced in [7].

MTF game. This game is played by two players A and B according to the following rules.
Parameters are integers q > 0 and m2 > m1 ≥ 0.

1. The game consists of q rounds.
2. At each round, A publicly places a set of balls into a set of bins such that

(a) balls placed at the same round go into distinct bins,
(b) the number of balls that are placed into bins already containing m1 balls at the moment

of placement is finite,
(c) some bin eventually contains more than m2 balls.

3. Before each round, B can secretly “pass” or “guess” a bin that will receive a ball in the next
round. B makes exactly one guess throughout the game.

4. If B makes a correct guess, then B wins. Otherwise, B loses.

Note there is no constraint on the total number of balls or bins.

Lemma 4. Irrespective of A’s strategy, there exists a strategy for B to win the above game with
probability at least 1/q · 1/(cm1)

1/(m2−m1), where cm1 is the number of balls that are placed into
bins already containing m1 balls at the moment of placement.

Proof. B’s strategy is simple, as follows:

1. Choose a round i ∈ {1, . . . , q} and a level j ∈ {m1 + 1, . . . , m2} uniformly at random.
2. Before the i-th round of the game, guess a bin uniformly at random from all bins containing

at least j balls already.

Let cj be the total number of balls that are placed into bins that already have at least j balls in
them right before the round when the ball is placed. For a given value of j, each ball placed into a
bin with at least j balls in it already gives B chance at least 1/(qcj−1) of winning since cj−1 is an
upper bound for the number of bins that have j balls in them at the end of the game. Therefore
B’s chance of winning is at least cj/(qcj−1) for a given value of j, and hence B’s overall chance of
winning is at least

1
m2 −m1

m2∑

j=m1+1

cj

qcj−1
=

1
q
ArithmeticMean

(
cm1+1

cm1

, . . . ,
cm2

cm2−1

)

≥ 1
q
GeometricMean

(
cm1+1

cm1

, . . . ,
cm2

cm2−1

)

≥ 1
q

(
1

cm1

)1/(m2−m1)

.

ut



Note that Lemma 4 asserts nothing about B’s efficiency—in fact, if a huge number of balls are
thrown, it may be difficult to keep track of all bins that have received at least j balls already
(which is necessary for sampling uniformly among the bins). In our case, bins will often be curves
defined by polynomials of degree ≤ d over F2n and balls points in F2n × F2n , where a ball (x, y)
goes into bin C if (x, y) ∈ C (a ball is thus “cloned” into many different bins). In this setting, it
becomes easier to keep track of which bins have at least j balls in them when j ≥ d + 1, as d + 1
points uniquely determine a polynomial of degree ≤ d. Thus for such a game it may be helpful to
set m1 = d, in order to keep the complexity of sampling under control. (Dodis and Steinberger do
not have games in which the number of bins containing balls is so large that sampling for small
values of j is an issue, and always use MTF games with m1 = 0.) The value of m2 is then set large
enough to make the term (1/cm1)

1/(m2−m1) small.
We typically upper bound cm1 by qM where M is an upper bound on the total number of bins

with at least m1 + 1 balls at the end of the game. Indeed, because balls are thrown into distinct
bins at each round, this definition of M implies that at each round at most M balls are thrown
into bins with m1 balls in them already. We thus have the following corollary:

Corollary 1. If the number of bins that contain at least m1 +1 balls at the end of the MTF game
is at most M , then B can win the MTF game with probability at least 1/q · 1/(qM)1/(m2−m1).

We note that Corollary 1 is a bit wasteful, in the sense that it is possible to give a better bound
for B’s chance of success as a function of m1,m2 and M from the relationship M = cm1 −
cm1+1 and the fact that B’s chance of success is also lower bounded by α

q(m2−m1)
where α =

max
( cm1+1

cm1
, . . . ,

cm2
cm2−1

)
. However this gain leads to a more complicated statement and is minor

enough for us to ignore 2.

Proof (Theorem 1). Let A be a weak collision-finding adversary such that

Advwcr
φ (A) = Advwcr

φ (t, q) = ε.

We write u[i] = ud[i]|| · · · ||u0[i] for the i-query that A makes to f1(·) and φ(u[i]) = (x[i], y[i]),
where x[i] = f1(u[i]) and y[i] = ud[i]x[i]d + · · ·+u1[i]x[i] +u0[i]. The i-th query is associated with
a curve

Ci = {(x, y) ∈ F2
2n : y = ud[i]xd + · · ·+ u1[i]x + u0[i]}.

Let Γi = {1 ≤ j ≤ i : (x[j], y[j]) ∈ Ci} and let γ = maxi |Γi|. By assumption that A succeeds to
find a collision with probability ε, one of the following two events occurs with probability at least
ε/2.

Case 1: A finds a collision and γ ≤ d + log q. For this case, we can construct a forger B1 for
f1 as follows.

1. B1 chooses i ∈ {1, . . . , q} and s ∈ {1, . . . , d + log q} uniformly at random.
2. B1 runs A as a subroutine and faithfully answers the queries made by A until the (i − 1)-th

query.
3. On the i-query u[i], B1 presents a forgery (u[i], x[js]) without making a query to f1(·), where

js is the s-th element of Γi. (If |Γi| < s, then B1 presents a random value.)

Note that if there exists a collision (x[j], y[j]) = (x[i], y[i]) for j < i, then (x[j], y[j]) ∈ Ci or
equivalently j ∈ Γi. With this observation, we obtain

Advmac
f (B1) ≥ ε

2q(d + log q)
. (6)

2 More precisely, we have M = cm1−cm1+1 ≥ cm1(1−α) or cm1 ≤ M/(1−α). Then B’s chance of success

is at least 1
q

max
(

α
m2−m1

,
(

1−α
M

)1/(m2−m1)
)

where we know 0 < α ≤ 1.



Case 2: A produces γ > d + log q. This is the case where we construct a forger B2 for f1

using the MTF game: The bins are (d + 1)-tuples (ud, . . . , u0) ∈ Fd+1
2n (regarded as a curve in the

plane F2
2n) and the balls are points (x, y) ∈ F2

2n . A query f1(ud|| · · · ||u0) results in a new ball
(x, y) = (f1(ud|| · · · ||u0), udx

d + · · · + u1x + u0) being placed into all bins (vd, . . . , v0) such that
vdx

d + · · ·+ v1x + v0 = y, namely all bins giving the coefficients of a polynomial curve fitting the
point (x, y), except the bin (ud, . . . , u0) itself. Thus one ball is replicated in 2dn − 1 different bins.
We assume that the i-th query u[i] is known to B2 before the i-th round of the game. Then, when
B2 correctly guesses a bin (vd, . . . , v0) that will receive the new ball (x[i], y[i]), B2 has a chance to
forge f1 with probability 1/d since the intersection of the curves associated with (ud, . . . , u0) and
(vd, . . . , v0) contains at most d elements. Here we assume the existence of an algorithm of running
time Timed to find zeros of a univariate polynomial of degree d. Let m1 = d, m2 = d + log q and
M =

(
q

d+1

)
. Since d + 1 points determine a unique polynomial of degree d fitting the points, we

can apply Corollary 1 to obtain a forger B2 of success probability

Advmac
f (B2) ≥ ε

2
· 1
d
· 1
q

(
1

qM

)1/(m2−m1)

≥ ε

2
· 1
d
· 1
q

(
1

qd+2

)1/ log q

=
ε

dq2d+3
, (7)

and of running time O(d2n2qd+2) + Timed. From (6) and (7), it follows that

Advwcr
φ (t, q) ≤ 2q max(d + log q, d2d+2)Advmac

f

(
t + O(d2n2qd+2) + Timed, q

)
.

ut
The following theorem is immediate from Lemma 1 and Theorem 1.

Theorem 2. Let H = H[f1, f2] be a function family where f1 and f2 are independently chosen
from two function families f1 and f2, respectively. Then for q = bµ/cc+ 2q̃,

Advmac
H (t, q̃, µ) ≤ ε,

where

ε = Advmac
f2 (t, q̃) + 2q max

(
d + log q, d2d+2

)
Advmac

f1

(
t + O(d2n2qd+2) + Timed, q

)
,

and Timed is the time required to solve a univariate polynomial equation of degree d over F2n . If
f1 = f2 are chosen from the same function family f , then

Advmac
H∗ (t, q̃, µ) ≤ ε + q2max{0,n−c}Advmac

f (t, q),

where ε is as above with f replacing f1 and f2.

In the single-key setting, we assume that IV1 6= 0n for two n-bit blocks IV1 and IV2 such that
IV = IV1||IV2. Then we can use the techniques employed in the CS construction [19]. The term
q2max{0,n−c}Advmac

f (t, q) comes from the case where f1(M [i]) = 0min{n,c}||∗ for some message
block M [i] during the Merkle-Damg̊ard iteration.

4.2 Collision Resistance and Indistinguishability

Let Φn
2n+c be the set of all functions from {0, 1}2n+c to {0, 1}n. Then Φn

2n+c can be regarded as a
function family f∗ : {0, 1}κ×{0, 1}2n+c → {0, 1}n by identifying Φn

2n+c and {0, 1}κ for κ = n22n+c.
The weak collision resistance of φ defined by f∗ against a computationally unbounded adversary
implies its collision resistance in the information-theoretic model (due to the equivalence of oracle
access to either φ or f∗). Since

Advmac
f∗ (t, q) =

1
2n

for any q and t, the following theorem is immediate from Theorem 1.



Theorem 3. If f1 : {0, 1}2n+c → {0, 1}n is a random function, then

Advcoll
φ[f1] (q) ≤

max
(
d + log q, d2d+2

)
q

2n−1
.

When we construct NMAC type pseudorandom oracles based on preimage aware functions,
adaptive preimage resistance is only needed for the case where a distinguisher makes a query to
the finalization function. If there is no interface to access the inner primitive, we do not need to
worry about adaptive preimage finding. The following lemma shows that any collision resistant
function can be combined with a random function producing a pseudorandom function.

Lemma 5. Let F : {0, 1}∗ → {0, 1}n be a function with oracle access to an ideal primitive P and
let g : {0, 1}n → {0, 1}m and H : {0, 1}∗ → {0, 1}m be random functions. Then the composite
function g ◦F is (q̃, ε)-indistinguishable from H, where ε = Advcoll

F (q), q = NQ(F, lmax)q̃ and lmax

is the length in bits of the longest query made by a distinguisher.

Proof. Let G0 and G1 be games with a single interface, as defined in Figure 6. Assume that a
distinguisher A makes no redundant query. Then whenever A makes a query to H(·) in game
G0, it will receive an independent random value in {0, 1}m. It means that the interface H(·)
faithfully implements a random function H : {0, 1}∗ → {0, 1}m in game G0. On the other hand,
the interface H(·) in game G1 faithfully implements g ◦ F [P] : {0, 1}∗ → {0, 1}m for a random
function g : {0, 1}n → {0, 1}m since Sample-g(v, w) only depends on the value v. Flag bad sets
to true only when A makes a collision in F [P]. Therefore, for any distinguisher A that makes at
most q̃ queries to H(·), we have

∣∣∣Pr
[
Ag◦F [P] = 1

]
−Pr

[AH = 1
]∣∣∣ ≤ Pr

(AG1 sets bad
) ≤ Advcoll

F (q),

where q = NQ(F, lmax)q̃ and lmax is the length in bits of the longest query made by a distinguisher.
ut

Games G0 Games G1

Interface H(v)

w ← F [Sample-P](v)
z ← Sample-g(v, w)
return z

Subroutine Sample-P(x)

return P(x)

Subroutine Sample-g(v, w)

g(v, w)
$← {0, 1}m

if g(v′, w) was previously queried for v′ 6= v then
bad ← true
g(v, w) ← g(v′, w)

return g(v, w)

Fig. 6. Games G0 and G1. G1 includes the boxed statement

Since the strengthened Merkle-Damg̊ard transform preserves collision resistance, we obtain the
following theorem.

Theorem 4. If f1, f2 : {0, 1}2n+c → {0, 1}n are random functions, then H[f1, f2] is (q̃, ε)-indis-
tinguishable from a random function H : {0, 1}∗ → {0, 1}n, where

ε =
max

(
d + log q, d2d+2

)
q

2n−1
,



and

q = NQ(MD[φ[f1]], lmax)q̃ =
⌈

lmax + 1
c

+ 1
⌉

q̃,

for the length in bits lmax of the longest query made by a distinguisher. In the single-key setting,
H[f1, f1] is (q̃, ε + q

2c )-indistinguishable from H.

Lemma 5 holds with ε = Advwcr
F (t, q̃, lmaxq̃) when F is a keyed function family (in the complexity-

theoretic model). This implies that H[f1, f2] is pseudorandom up to O(2n/n) query complexity as
long as f1 is unforgeable and f2 is pseudorandom.

4.3 Preimage Awareness and Indifferentiability

We begin with the proof of adaptive preimage resistance for φ[f1] where f1 is a public random func-
tion. Let A be an “optimal” adaptive preimage-finding adversary that makes at most qp queries
and at most qe commitments. That is, Advadpr

φ[f1]
(A) = Advadpr

φ[f1]
(qp, qe). During the experiment

Expadpr
A , A makes queries and commitments in an arbitrarily interleaved order based on a deter-

ministic strategy. Here we can assume that the strategy does not depend on the responses of oracle
f1(·) to queries that A sends since the probability distribution of the response to a certain query is
independent of the previous query-response pairs (as long as A does not make a redundant query).
Therefore, in order to estimate Advadpr

φ[f1]
(A), we can use the following game.

1. A makes qp queries {C1, . . . , Cqp} and qe commitments L = {(x1, y1), . . . , (xqe , yqe)} based on
the optimal strategy. (Here each query is represented by a curve in F2

2n as in the analysis of
unforgeability.)

2. One point (x∗i , y
∗
i ) is chosen from each curve Ci uniformly at random.

3. If (x∗i , y
∗
i ) ∈ L for some i = 1, . . . , qe, then A wins. Otherwise, A loses.

The winning probability of A for the above game is equal to the adaptive preimage-finding advan-
tage of A. Let Γi = Ci ∩ L for i = 1, . . . , qp, and let

∆θ = {1 ≤ i ≤ qp : |Γi| ≥ θ},

for a parameter θ. Then for ∆ ⊂ ∆θ and δ = |∆|, we have

qe ≥
∣∣∣∣∣
⋃

i∈∆

Γi

∣∣∣∣∣ ≥
∑

i∈∆

|Γi| −
∑

i6=j∈∆

|Γi ∩ Γj | ≥ δθ −
(

δ

2

)
· d.

Therefore we conclude that |∆θ∗ | < δ∗ for any (θ∗, δ∗) such that

δ∗θ∗ −
(

δ∗

2

)
· d > qe. (8)

This implies that the number of curves that intersect with L at ≥ θ∗ points is less than δ∗. Thus
the winning probability of A is upper-bounded by

Advadpr
φ[f1]

(A) ≤ δ∗
qe

2n
+ (qp − δ∗)

θ∗

2n
.

By Lemma 2 and Theorem 3, we obtain the following theorem.

Theorem 5. Let (θ∗, δ∗) satisfy inequality (8). Then for a random function f1, there exists an
extractor E∗ such that for any adversary A it holds that

Advpra
φ[f1]

(A, E∗) ≤ max
(
d + log qp, d2d+2

)
qp

2n−1
+ δ∗

qe

2n
+ (qp − δ∗)

θ∗

2n
.



We can use Lemma 3 and Theorem 5 with (θ∗, δ∗) = (dq
1/2
e , q

1/2
e ) to obtain the following theorem.

Theorem 6. Let f1, f2 : {0, 1}2n+c → {0, 1}n and H : {0, 1}∗ → {0, 1}n be public random func-
tions. Then there exists a simulator S such that for any distinguisher A making at most (q0, q1, q2)
queries to the three oracle interfaces associated with (H, f1, f2),

∣∣∣Pr
[
AH[f1,f2],(f1,f2) = 1

]
−Pr

[
AH,S[H] = 1

]∣∣∣ ≤ ε,

where

ε =
max

(
d + log (Lq0 + q1 + L) , d2d+2

)

2n−1
(Lq0 + q1 + L) +

L1/2q
1/2
2

2n
(dLq0 + dq1 + Lq2 + dL) ,

lmax is the length in bits of the longest query made by A to its first oracle and L =
⌈

lmax+1
c + 1

⌉
.

Simulator S runs in time O (q1 + Lq2Time(E∗) + Lq2Time(unpad)), where E∗ is the obvious ex-
tractor used in Lemma 2. In the single-key setting, we have

∣∣∣Pr
[
AH[f1,f1],f1 = 1

]
−Pr

[
AH,S′[H] = 1

]∣∣∣ ≤ ε +
Lq0

2c
,

where simulator S ′ is obtained by a slight modification of S: On input x, S ′ returns f2(x) if
x = 0c||∗ for some ∗ ∈ {0, 1}2n and returns f1(x) otherwise, by using the interfaces f1 and f2 of
S.

Tightness of Indifferentiability. The preservation of indifferentiability is guaranteed only up
to O(22n/3) query complexity which is beyond the birthday bound but still far from optimal.
This bound is dominated by the adaptive preimage resistance, depending on a configuration that
consists of q curves in F2

2n and q points on the curves (assuming q = qp = qe). If there exists a
subfield F′ of F2n such that |F′| = √

q, then we have a configuration that provides tight adaptive
preimage resistance: The set of points is F′×F′ ⊂ F2

2n and the set of curves consists of q polynomials
of degree d with coefficients in F′. However, for the case where F2n admits no proper subfield (e.g.
with prime n), there remains a question whether a similar construction exists or the bound can
be qualitatively improved. We pose this as an open problem.

5 The Quadratic Blockcipher-based Compression Function

In this section and the next, we discuss how to instantiate φ[f1] for c = n (the “quadratic”
polynomial mode) by replacing the 3n-bit to n-bit compression function f1 with a smaller primitive.
First, we discuss a concrete instantiation of the quadratic compression function using a blockcipher
with 2n-bit keys. Given f1 : {0, 1}3n → {0, 1}n, the compression function φ[f1] : {0, 1}3n →
{0, 1}2n is defined by φ[f1](u2||u1||u0) = x||y, where x = f1(u2||u1||u0) and y = u2x

2 + u1x +
u0 ∈ F2n for u2, u1, u0 ∈ {0, 1}n. In the quadratic blockcipher-based compression function, f1 is
implemented using a blockcipher E : {0, 1}2n × {0, 1}n → {0, 1}n, E(k, x) = Ek(x) by letting
f1(u2||u1||u0) = Eu2||u1(u0) + u0 as described in Figure 2(a). We write ψ[E] for the resulting
compression function. Thus ψ[E] : {0, 1}3n → {0, 1}n and ψ[E](u2||u1||u0) = x||y where

x = Eu2||u1(u0) + u0,

y = u2x
2 + u1x + u0.

We can prove that ψ[E] provide similar security as the quadratic mode φ[f1] when instantiated
with an ideal cipher E, in terms of unforgeability, collision resistance and pseudorandomness.
In fact, our results do not actually necessitate an ideal cipher E (which is a set of independent
random permutations with one permutation per key) but only an “unpredictable” blockcipher E.
For the latter, all that is assumed is that it is difficult for an adversary to fully predict the output
of an unqueried value. We call this the unpredictability of the blockcipher (which is similar to



the unforgeability of a keyed function family, except no keys are involved) and we quantify it by
the advantage Advunp

E (t, q) which is the maximum over all adversaries A running in time t and
making at most q queries to E of the probability that A can output a tuple (u2||u1, v, w) such
that Eu2||u1(v) = w without making queries for Eu2||u1(v) or E−1

u2||u1
(w).

Implicitly Advunp
E (t, q) depends on a sampling procedure for E. In the ideal cipher model, E

is sampled uniformly at random among all n-bit blockciphers with 2n-bit keys. Here we allow any
sampling procedure for E. Note that Advunp

E (t, q) ≤ 1/(2n − q) if E is an ideal cipher, so we can
always revert to that bound by assuming an ideal cipher. Our use of unpredictable blockciphers is
somewhat similar to that of [7], with the significant difference that the blockciphers of [7] use fixed
keys, and that they are sampled by sampling the fixed keys. The unpredictability then corresponds
to the unforgeability of a keyed function family (which happens to be a family of permutations).

We show that the collision resistance of ψ[E] can be effectively bounded in terms of Advunp
E (t, q).

Let Advcoll
ψ[E](t, q) be the maximum probability that an adversary A of running time t with oracle

access to E and E−1 outputs a collision (M, M ′) for ψ[E] which it has verified (i.e. has made the
queries necessary to compute ψ[E](M) and ψ[E](M ′)).

Theorem 7. Let ψ[E] be the quadratic blockcipher-based compression function, where E is sam-
pled from the set of all n-bit blockciphers with 2n-bit keys according to an arbitrary fixed distribu-
tion. Then,

Advcoll
ψ[E](t, q) ≤ 2q(log q + 3)Advunp

E (t + O(n2q4) + Time2, q).

Furthermore, let G = G[E, f2] = f2 ◦MD [ψ[E]] be a function family where f2 is chosen from a
function family f : {0, 1}κ × {0, 1}2n → {0, 1}n. Then for q = bµ/cc+ 2q̃,

Advmac
G (t, q̃, µ) ≤ Advmac

f (t, q̃) + 2q(log q + 3)Advunp
E (t + O(n2q4) + Time2, q).

Remark 3. The term “Time2”, which represents the time necessary to select a root of a quadratic
polynomial over F2n , is mainly kept to facilitate comparison with Theorem 1.

Proof. Let A be a collision-finding adversary for ψ[E] of running time t, that makes q queries
and that achieves advantage ε = Advcoll

ψ[E](t, q). We make the standard assumption that A never
asks E a query to which it knows the answer. We say A “completes a query Eu2||u1(u0) = c” to
mean either that A made a forward query Eu2||u1(u0) resulting in the answer c or that A made an
inverse query E−1

u2||u1
(c) resulting in the answer u0. If A completes two queries Eu2||u1(u0) = c and

Eu′2||u′1(u
′
0) = c′ such that ψ[E](u2, u1, u0) = ψ[E](u′2, u

′
1, u

′
0) we say these queries are “colliding”.

A single query is “colliding” if it collides with some earlier query. We note that if Eu2||u1(u0) = c
then

ψ[E](u2, u1, u0) = u0 + c||u2(u0 + c)2 + u1(u0 + c) + u0

= u0 + c||u2(u0 + c)2 + (u1 + 1)(u0 + c) + c.

Thus we may view the second half of output either as polynomial in (u0 + c) with coefficients
determined by u2, u1, u0 or as a polynomial in (u0 + c) with coefficients determined by u2, u1, c.

For every triplet of values (u2, u1, u0), we define a curve

C(u2, u1, u0) = {(x, y) ∈ F2n × F2n : u2(u0 + x)2 + u1(u0 + x) + u0 = y},
and for every triplet of values (u2, u1, c), we define a curve

D(u2, u1, c) = {(x, y) ∈ F2n × F2n : u2(x + c)2 + (u1 + 1)(x + c) + c = y}.

We consider each curve C(u2, u1, u0) and D(u2, u1, c) as a distinct “bin”, into which we will place
balls as described below. (We emphasize that every C-curve is considered a distinct bin from every
D-curve, even though they may consist of the same set of points in F2n × F2n .)

Say the adversary completes a query Eu′2||u′1(u
′
0) = c′ and let t′ = u′2(u

′
0+c′)2+u′1(u

′
0+c′)+u′0.

Then for every tuple (u2, u1, u0, c) 6= (u′2, u
′
1, u

′
0, c

′) such that u0 +c = u′0 +c′, we place a ball (c, t′)



in the bin C(u2, u1, u0) if (c, t′) is actually a point on the curve C(u2, u1, u0), and we place a ball
(u0, t

′) in the bin D(u2, u1, c) if (u0, t
′) is a point on D(u2, u1, c). (Thus, the placement of balls in

bins may be viewed as “highlighting” or selecting points on the curves.) We never “duplicate” (i.e.,
add or “highlight” twice) a ball inside a bin once it has already been added. We note that a query
adds at most one ball to any bin, as c cannot be modified without changing u0 and vice-versa.

To make matters a little more complicated, we finally define certain balls to be phantom balls.
For a bin C(u2, u1, u0), the ball added by the inverse query E−1

u2||u1+1(u0) is called a phantom ball,
and for a bin D(u2, u1, c), the ball added by the forward query Eu2||u1+1(c) is called a phantom
ball. Therefore, at most one ball per bin is a phantom ball. Intuitively, phantom balls pose a
problem because forecasting the appearance of a phantom ball in a bin does not imply being able
to forecast the answer to a query. Thankfully, there are few phantom balls per bin.

We let γ be the maximum number of non-phantom balls in a bin at the end of the attack
(which differs at most by 1 from the maximum total number of balls in a bin). By assumption
that A finds a collision with probability ε, one of the following two events occurs with probability
at least ε/2.

Case 1: A finds a collision and γ ≤ log q + 2. For this case, we can construct a forger B for E
as follows.

1. B chooses i ∈ {1, . . . , q} uniformly at random.
2. B runs A as a subroutine and faithfully answers the queries made by A until the (i − 1)-th

query.
3. If the i-th query of A is a forward query Eu2||u1(u0), B chooses a random (potentially phantom)

ball (c, z) from the bin C(u2, u1, u0), and guesses Eu2||u1(u0) = c. (If the bin C(u2, u1, u0) is
empty, then B gives up.)

4. If the i-th query of A is an inverse query E−1
u2||u1

(c), B chooses a random (potentially phantom)
ball (u0, z) from the bin D(u2, u1, c), and guesses E−1

u2||u1
(c) = u0. (If the bin D(u2, u1, c) is

empty, then B gives up.)

To analyze the chance of success of this strategy, assume that A obtains a collision with an inverse
query E−1

u2||u1
(c) = u0. Then B has chance 1/q of correctly guessing the index i of this query.

Moreover, because A obtains a collision, A previously completed a query Eu′2||u′1(u
′
0) = c′ such

that u0 + c = u′0 + c′ and

u2(u0 + c)2 + (u1 + 1)(u0 + c) + c = u′2(u
′
0 + c′)2 + u′1(u

′
0 + c′) + u′0 = t′,

which is to say that the ball (u0, t
′) appears in the bin D(u2, u1, c). Since at most γ +1 ≤ log q +3

balls are in the bin D(u2, u1, c), B has advantage

Advunp
E (B) ≥ ε

2
· 1
q
· 1
log q + 3

(9)

A similar argument treats forward queries. Note that it takes B time O(n2q) to enumerate the
balls in a given bin D(u2, u1, c) or C(u2, u1, u0).

Case 2: A produces γ > log q+2. For this case, B attempts to forge the value of E by using the
MTF game played only with the non-phantom balls. We set m1 = 2 and m2 = log q + 2; we are
guaranteed that some bin contains more than m2 balls at the end since γ > log q+2 is the number
of non-phantom balls. To apply Corollary 1, we need to upper bound M , the number of bins that
have at least three balls at the end of the game. For this purpose, note that if a completed query
Eu′2||u′1(u

′
0) = c′ adds a ball (c, t′) where t′ = u′2(u

′
0 + c′)2 + u′1(u

′
0 + c′) + u′0 to a bin C(u2, u1, u0),

then (u′0 + c′, t′) is a point on the curve

E = {(x, y) ∈ F2n × F2n : u2x
2 + u1x + u0 = y}.



Thus three non-colliding queries that produce balls in the same bin C(u2, u1, u0) must each deter-
mine distinct values u′0 + c′ and, thus, uniquely determine the curve E and the bin C(u2, u1, u0).
Therefore the number of C-bins with three or more balls is at most

(
q
3

)
. As a similar argument

applies for D-bins, we have M ≤ 2
(

q
3

)
.

We also need to check that if B correctly guesses a bin for an oncoming ball then B can actually
use this guess to forge the value of E or E−1. Assume that the adversary has made a forward
query Eu′2||u′1(u

′
0) and that B has correctly guessed this query will result in a new ball (u0, t

′) being
placed in the bin D(u2, u1, c). The values which are unknown to B are u0 and c′ = Eu′2||u′1(u

′
0).

The constraints are u′0 + c′ = u0 + c and

u2(u0 + c)2 + (u1 + 1)(u0 + c) + c = u′2(u
′
0 + c′)2 + u′1(u

′
0 + c′) + u′0,

which is
(u2 + u′2)z

2 + (u1 + 1 + u′1)z + c + u′0 = 0,

where z = u′0 + c′ = u0 + c. As long as this polynomial in z is nonzero, B can guess the right root
z with probability 1

2 and solve for c′ using c′ = z + u′0. (If the polynomial is a nonzero constant, it
simply means that the original system is not solvable, and that B guessed the wrong bin.) But if
u2 + u′2 = u1 + 1 + u′1 = c + u′0 = 0, we precisely obtain (the second case of) a phantom ball, so B
could not guess this ball anyway. Similarly in the case where A makes an inverse query E−1

u′2||u′1(c
′)

and B correctly guesses the query will result in a new ball (c, t′) being added to a bin C(u2, u1, c),
B can always forge with probability 1

2 because of the exclusion of (the first type of) phantom balls.
Finally, in the remaining two combinations (forward query and C-bin guess or inverse query and D-
bin guess) B can also forge with probability 1

2 using the stipulation (u2, u1, u0, c) 6= (u′2, u
′
1, u

′
0, c

′),
as is not hard to see.

By Corollary 1, B has forgery advantage

Advunp
E (B) ≥ ε

2
· 1
2
· 1
q

(
1

qM

)1/(m2−m1)

≥ ε

4
· 1
q

(
1
q4

)1/ log q

=
ε

64q
. (10)

From (9) and (10), it follows that

Advcoll
ψ[E](t, q) ≤ 2q max (log q + 3, 32)Advunp

E

(
t + O(n2q4) + Time2, q

)

= 2q (log q + 3)Advunp
E

(
t + O(n2q4) + Time2, q

)
,

where O(n2q4) + Time2 is the overhead of the forger for the second case. Now the second part of
the theorem is immediate from Lemma 1. ut

If E is an ideal cipher, then

Advunp
E (t, q) ≤ 1

2n − q
,

for any q and t. Therefore, by Theorem 7 and Lemma 5, we obtain the following theorem.

Theorem 8. Let E : {0, 1}2n × {0, 1}n → {0, 1}n be an ideal blockcipher and let f2 : {0, 1}2n →
{0, 1}n be a random functions. Then, Advcoll

ψ[E] (q) ≤ ε(q) for

ε(q) =
2q(log q + 3)

2n − q
,

and G[E, f2] = f2 ◦MD [ψ[E]] is (q̃, ε(q̄))-indistinguishable from a random function H : {0, 1}∗ →
{0, 1}n, where

q̄ = NQ(MD[ψ[E]], lmax)q̃ =
⌈

lmax + 1
n

+ 1
⌉

q̃,

for the length in bits lmax of the longest query made by a distinguisher.



6 The Quadratic Cascade Compression Function

In this section, we discuss a concrete instantiation of the quadratic compression function (polynomial-
based compression function of degree d = 2) using the cascade of two 2n → n functions. In the
quadratic cascade compression function, the compression function f1 is implemented by the cas-
cade of two compression functions h1, h2 : {0, 1}2n × {0, 1}n → {0, 1}n by letting f1(x||y||z) =
h2(h1(x||y)||z) as described in Figure 7. We write τ [h1, h2] for the resulting compression function.
Thus τ [h1, h2] : {0, 1}3n → {0, 1}n and τ [h1, h2](x||y||z) = w||xw2 + yw + z, where v = h1(x||y)
and w = h2(v||z).

x v

h
1

h
2y z

x
y

w
xw2+yw+z

z

Fig. 7. The quadratic cascade compression function.

Theorem 9. Let τ = τ [h1, h2] be a function family where h1 and h2 are independently chosen
from a function family h, respectively. Then,

Advwcr
τ (t, q) ≤ 26q log q (log q + 1)2 Advmac

h

(
t + O(n2q4 log4 q) + Time2, q

)
.

Furthermore, let G = G[h1, h2, f2] = f2 ◦MD [τ [h1, h2]] be a function family where f2 is chosen
from a function family f . Then for q = bµ/cc+ 2q̃,

Advmac
G (t, q̃, µ) ≤ Advmac

f (t, q̃) + 26q log q (log q + 1)2 Advmac
h

(
t + O(n2q4 log4 q) + Time2, q

)
.

In order to prove Theorem 9, we slightly modify the MTF game described in Section 4 by allowing
a bin to receive a multiple number of balls at each round. By “collapsing” all balls introduced into
a bin at a given round into a single ball, we can prove the following lemma.

Lemma 6. If (i) each bin receives at most R balls at each round, (ii) the number of bins that
contain at least m1 + 1 balls at the end of the MTF game is at most M , and (iii) some bin
eventually contains more than Rm2 balls, then B can win the MTF game with probability at least
1/q · (1/qM)1/(m2−m1).

Proof (Theorem 9). Let A be a weak-collision finding adversary for τ = τ [h1, h2] such that

Advwcr
τ (A) = Advwcr

τ (t, q) = ε.

Without loss of generality, we give A direct oracle access to h1 and h2, allowing A at most q
queries to h1 and q queries to h2. Due to this assumption, the collision resistance of τ [h1, h2] in
the ideal primitive model is derived from this theorem. We also assume that A makes the queries
necessary to verify its collision.

We construct a forging adversary B for the function family h from A. The adversary B has
oracle access to a single member h0 of h. First, B flips a coin and samples a random key k ∈ {0, 1}κ.



If the coin is heads, B simulates A by answering A’s queries with h1 = h0 and h2 = hk, otherwise
B simulates A by answering A’s queries with h1 = hk and h2 = h0. Then B “forgets” which of
the two worlds it is in, treating both h1 and h2 as oracles and attempting to forge either one of
them—note that since the two worlds are indistinguishable once B “forgets” its choice, a successful
forgery in the new two-oracle model gives a successful forgery of h0 with probability 1/2.

We now define 13 events with respect to the final contents of A’s query history as follows.

Win1 ⇔ A finds a (log q + 1)-collision for h1.

Win2 ⇔ A finds a (log q + 1)-collision for h2.

Win3 ⇔ 0n is ever returned as a the answer to an h2 query.

Win4 ⇔ there exist a tuple (x, y, z, v) ∈ {0, 1}4n such that (x, y) 6= (0, 0), and k = log q+3 distinct
queries h2 (v, z′1) , . . . , h2 (v, z′k) such that xw2

i +ywi +z = z′i for i = 1, . . . , k, where wi = h2 (v, z′i).

Win5 ⇔ there exist a tuple (x, y, z) ∈ {0, 1}3n such that (x, y) 6= (0, 0), and a set of k = log q + 3
distinct pairs {(w1, z

′
1) , . . . , (wk, z′k)} such that w1 = h2 (v′1, z

′
1) , . . . , wk = h2 (v′k, z′k) for some

queries h2 (v′1, z
′
1) , . . . , h2 (v′k, z′k) and xw2

i + ywi + z = z′i for i = 1, . . . , k.

Win6 ⇔ there exist a tuple (x, y, z) ∈ {0, 1}3n and a set of k = (log q + 2)2 + 1 distinct values
w1, . . . , wk such that for each wi there exists a pair of queries (h1 (x′i, y

′
i) , h2 (v′i, z

′
i)) such that

(x′i, y
′
i) 6= (x, y) and xw2

i + ywi + z = x′iw
2
i + y′iwi + z′i, where v′i = h1 (x′i, y

′
i) and wi = h2 (v′i, z

′
i).

Win7 ⇔ there exist a pair (x, y) ∈ {0, 1}2n such that (x, y) 6= (0, 0), and k = log q + 2 distinct
values w1, . . . , wk such that for each wi there exists a pair of distinct queries (h2 (vi, zi) , h2 (v′i, z

′
i))

such that h2 (vi, zi) = h2 (v′i, z
′
i) = wi and xw2

i + ywi = zi + z′i.

Win8 ⇔ there exist a pair (x, y) ∈ {0, 1}2n and k = (log q + 1)2 + 1 distinct values w1, . . . , wk

such that for each i = 1, . . . , k there exists a triple of queries (h2 (vi, zi) , h1 (x′i, y
′
i) , h2 (v′i, z

′
i))

such that (x′i, y
′
i) 6= (x, y), v′i = h1 (x′i, y

′
i), (vi, zi) 6= (v′i, z

′
i), h2 (vi, zi) = h2 (v′i, z

′
i) = wi and

xw2
i + ywi + zi = x′iw

2
i + y′iwi + z′i.

Win9 ⇔ A makes a query h1 (x, y) = v such that the pre-existing query history contains a triple
of queries (h2 (v, z) , h1 (x′, y′) , h2 (v′, z′)) such that (v, z) 6= (v′, z′), h1 (x′, y′) = v′, h2 (v, z) =
h2 (v′, z′) and xw2 + yw + z = x′w2 + y′w + z′ where w = h2 (v′, z′) = h2 (v, z).

Win10 ⇔ A makes a query h2 (v, z) = w such that the pre-existing query history contains a triple
of queries (h1 (x, y) , h1 (x′, y′) , h2 (v′, z′)) such that (x, y) 6= (x′, y′), h1 (x, y) = v, h1 (x′, y′) = v′,
h2 (v′, z′) = w and xw2 + yw + z = x′w2 + y′w + z′ where w = h2 (v′, z′).

Win11 ⇔ A makes a query h2 (v, z) = w such that the pre-existing query history contains a pair of
distinct queries (h1 (x, y) , h1 (x′, y′)) such that h1 (x, y) = h1 (x′, y′) = v and xw + y = x′w + y′.

Win12 ⇔ there exists a pair (x, y) ∈ {0, 1}2n and k = log q + 2 distinct values w1, . . . , wk such
that for each wi there exists a pair of queries (h1 (x′i, y

′
i) , h2 (v′i, z

′
i)) such that h2 (v′i, z

′
i) = wi,

h1 (x′i, y
′
i) = v′i, (x′i, y

′
i) 6= (x, y) and xwi + y = x′iwi + y′i for i = 1, . . . , k.

Win13 ⇔ A makes a query h1 (x, y) = v′ such that the pre-existing query history contains a pair
of queries (h1 (x′, y′) , h2 (v′, z′)) such that (x, y) 6= (x′, y′), v′ = h1 (x′, y′) and xw + y = x′w + y′

where w = h2 (v′, z′).



Let Evi = Wini

∧¬
(∨

j<i Wini

)
for i = 1, . . . , 13. Since two distinct colliding inputs (x, y, z)

and (x′, y′, z′) must have (x, y) 6= (x′, y′), a collision either uses four distinct queries h1 (x, y),
h2 (v, z), h1 (x′, y′), h2 (v′, z′) or three distinct queries h1 (x, y), h2 (v, z), h1 (x′, y′). It is thus easy
to check that Coll ⇒ Win3 ∨Win9 ∨Win10 ∨Win11 ∨Win13, and therefore

Coll ⇒ Win1 ∨ · · · ∨Win13 ⇒ Ev1 ∨ . . . ∨ Ev13,

where Coll is the event that A finds a collision. By assumption that A succeeds to find a collision
with probability ε, one of the events Ev1, . . . , Ev13 occurs with probability at least ε/13. For each
event, we will construct a forger B of either h1 or h2, and analyze its success probability under
the condition of the event. Especially, eight of these events use MTF games. For these games,
each ball comes with a “label” which may be a query, a tuple of queries, or any other string. By
convention, balls with the same label are never added twice to a bin: replicates do not contribute.
We also stress that B does not need to or guess the labels of balls, but only to guess a bin that is
going to receive a ball as the result of the answer to A’s last query.

Ev1: B plays a balls-in-bins game where bins are values v ∈ {0, 1}n and balls are queries to
h1, where a query h1 (x, y) goes in bin v if h1 (x, y) = v. The parameters for the game are
m1 = 0, m2 = log q, M = q and R = 1. Here forgery follows obviously from the game:
guessing a bin for a ball is guessing h1. By Lemma 6, the success probability of B is at least
1/q · (1/qM)

1
m2−m1 = 1/q · (1/q2

) 1
log q = 1/ (4q).

Ev2: Similar to the first case, we can construct a forger B of h2 with success probability at least
1/ (4q).

Ev3: (Not a balls-in-bins game.) B uniformly selects an index i between 1 and q and at the i-th
query to h2, B guesses that the answer will be 0n. Then B has chance at least 1/q of forging h2.

Ev4: B plays a balls-in-bins game where bins are tuples (x, y, z, v) ∈ {0, 1}4n with (x, y) 6= (0, 0) and
balls are queries h2 (v′, z′). A ball h2 (v′, z′) goes into bin (x, y, z, v) if v = v′ and if xw2+yw+z = z′

where w = h2 (v′, z′). Obviously, the number of balls that enters a bin at any round is at most
R = 1.

Let m1 = 2 and m2 = log q + 2. If {h2 (v, z′1) , h2 (v, z′2) , h2 (v, z′3)} are any three balls in a bin
(x, y, z, v), then z′1, z′2, z′3 are distinct, and so {h2 (v, z′1) , h2 (v, z′2) , h2 (v, z′3)} uniquely determine
the bin (x, y, z, v) (from the equations xw2

i + ywi + z = z′i for i = 1, 2, 3 where wi = h2 (v, z′i)).
Therefore the number of bins with more than m1 balls is at most

(
q
3

) ≤ q3 = M . Since some bin
eventually contains more than Rm2 balls, the success probability of B for the balls-in-bins game
is at least

1
q

(
1

qM

) 1
log q

≥ 1
16q

.

Once B guesses that a query h2 (v′, z′) will go into bin (x, y, z, v), B selects at random one of
the two roots w of the quadratic equation xw2 + yw + z = z′ (using (x, y) 6= (0, 0)), and guesses
that this will be the output of h2 (v′, z′). Therefore, the overall probability of success is 1/ (32q),
since B has chance 1/2 of choosing the right root w if it guesses the right bin.

Ev5: B plays a balls-in-bins game where bins are tuples (x, y, z) ∈ {0, 1}3n with (x, y) 6= (0, 0) and
balls are pairs (w, z′) such that w = h2 (v′, z′) for each h2-query h2 (v′, z′). A ball (w, z′) goes into
bin (x, y, z) if xw2 + yw + z = z′. Since a query w = h2 (v′, z′) can only add at most one pair
(w, z′) to any bin, we have R = 1.

Let m1 = 2 and m2 = log q + 2. Since three distinct balls (w1, z
′
1), (w2, z

′
2), (w3, z

′
3) can

simultaneously appear in at most one bin, the number of bins with more than m1 balls at the
end of the game is at most M = q3. Since some bin eventually contains more than Rm2 balls, the
success probability of B for the balls-in-bins game is at least 1/ (16q).



Once B guesses that a query h2 (v′, z′) will go into bin (x, y, z), B selects at random one of
the two roots w of the quadratic equation xw2 + yw + z = z′ (using (x, y) 6= (0, 0)), and guesses
that this will be the output of h2 (v′, z′). Therefore, the overall success probability of B is at least
1/ (32q).

Ev6: B plays a balls-in-bins game where bins are tuples (x, y, z) ∈ {0, 1}3n and balls are values w ∈
{0, 1}n. A ball w goes into bin (x, y, z) if there exists a pair of queries (h1 (x′, y′) = v′, h2 (v′, z′) = w)
such that (x, y) 6= (x′, y′) and xw2 + yw + z = x′w2 + y′w + z′.

When A makes an h1-query h1 (x′, y′) = v′, the number of balls that can be placed in a bin
(x, y, z) ∈ {0, 1}3n, (x, y) 6= (x′, y′), is at most the number of pre-existing queries h2 (v′, z′) = w
such that xw2 + yw + z = x′w2 + y′w + z′, namely such that (x− x′)w2 + (y − y′)w + z = z′.
Since Ev6 ⇒ ¬Win4, and since (x− x′, y − y′) 6= (0, 0), there are at most log q + 2 such queries
h2 (v′, z′). Since when A makes a query h2 (v′, z′) at most one new ball can be placed in any bin,
the maximum number of balls that can be placed in a bin at any round is R = log q + 2.

Let m1 = 2 and m2 = log q +2. Say a bin (x, y, z) is associated to a query pair (h1 (x′, y′) = v′,
h2 (v′, z′) = w) if (x′, y′) 6= (x, y) and xw2 + yw + z = x′w2 + y′w + z′ (in particular this implies
that w is a ball in (x, y, z), but w may be associated to other query pairs as well). Thus for every
ball in a bin there is at least one associated query pair for the ball. Distinct balls always correspond
to distinct query pairs. For any three query pairs {(h1 (x′i, y

′
i) = v′i, h2 (v′i, z

′
i) = wi), i = 1, 2, 3}

such that w1, w2, w3 are distinct, there is at most one bin (x, y, z) containing the balls w1, w2,
w3 associated to these query pairs, as (x, y, z) must solve the three equations xw2

i + ywi + z =
x′iw

2
i + y′iwi + z′i, i = 1, 2, 3. Since there are at most q log q query pairs (h1 (x′, y′) , h2 (v′, z′)) such

that h1 (x′, y′) = v′ (using ¬Win1), there are at most q3 log3 q triples of query pairs, so at most
M = q3 log3 q bins that receive at least m1 + 1 = 3 balls. Since some bin eventually contains more
than Rm2 balls, the success probability of B for the balls-in-bins game is at least

1
q

(
1

q4 log3 q

) 1
log q

=
1

16q (log q)3/ log q
.

If B correctly guesses that an h2-query h2 (v′, z′) is going to result in a new ball appearing in a
bin (x, y, z), then because ¬Win1 there are at most log q candidates for the query h1 (x′, y′) such
that h1 (x′, y′) = v′ and (x′, y′) 6= (x, y), and for each of these chance 1/2 of guessing the correct
root w of (x− x′) w2 + (y − y′)w + (z − z′) = 0.

On the other hand if B correctly guesses that an h1-query h1 (x′, y′) is going to result in a new
ball appearing in a bin (x, y, z), then because ¬Win5 there are at most log q+2 points (wi, z

′
i) such

that xw2
i + ywi + z = x′w2

i + y′wi + z′i and such that wi = h2 (v′i, z
′
i) for some query h2 (v′i, z

′
i).

For each pair (wi, z
′
i), there are at most log q values v′i such that wi = h2 (v′i, z

′
i) for some query

h2 (v′i, z
′
i) (using ¬Win2). Therefore, each guess makes a total of log q (log q + 2) possibilities for

the value v′. Thus in this case B has chance at least 1/ (2 log q (log q + 2)) of forging. Overall, B’s
chance of forging is at least

1

32q log q (log q + 2) (log q)3/ log q
.

Ev7: B plays a balls-in-bins game where bins are pairs (x, y) ∈ {0, 1}2n with (x, y) 6= (0, 0) and
balls are values w ∈ {0, 1}n. A ball w goes into bin (x, y) if there exists a pair of distinct queries
(h2 (v, z) , h2 (v′, z′)) with h2 (v, z) = h2 (v′, z′) = w and xw2 + yw = z + z′. Since balls correspond
to outputs w of h2, at most R = 1 ball can go into a bin at any given round.

Let m1 = 1 and m2 = log q + 1. Because Ev7 ⇒ ¬Win2, there are at most q log q dis-
tinct pairs (h2 (v, z) , h2 (v′, z′)) in the query history such that h2 (v, z) = h2 (v′, z′). Thus there
are at most q2 log2 q 4-tuples of queries (h2 (v1, z1) , h2 (v′1, z

′
1) , h2 (v2, z2) , h2 (v′2, z

′
2)) such that

h2 (v1, z2) = h2 (v′1, z
′
2) = w1 6= w2 = h2 (v2, z2) = h2 (v′2, z

′
2). Since ¬Win3, each such 4-tuple



uniquely determines a bin (x, y) such that

xw2
1 + yw1 = z1 + z′1,

xw2
2 + yw2 = z2 + z′2.

(Note the determinant w2
1w2 + w1w

2
2 for this system is zero if and only if w1 = w2, as w1w2 6= 0.)

Conversely, there must exist such a 4-tuple for any bin (x, y) with at least m1 + 1 = 2 balls in
it, so the total number of bins with more than m1 balls is at most M = q2 log2 q. Since some bin
eventually contains more than Rm2 balls, the success probability of B for the balls-in-bins game
is at least

1
q

(
1

qM

) 1
log q

=
1
q

(
1

q3 log2 q

) 1
log q

=
1

8q (log q)
2

log q

.

If B correctly guesses that an h2-query h2 (v, z) is going to add a ball to bin (x, y), then
because Ev7 ⇒ ¬Win5, there are at most log q + 2 pairs (w, z) such that w = f (v′, z′) for some
pre-existing query h2 (v′, z′) and such that xw2 + yw + z = z′. Thus in this case B has chance at
least 1/ (log q + 2) of forging. Overall, B’s chance of forging is at least

1

8q (log q + 2) (log q)
2

log q

.

Ev8: B plays a balls-in-bins game where bins are pairs (x, y) ∈ {0, 1}2n and balls are values w ∈
{0, 1}n. A ball w goes into bin (x, y) if there exists a triple of queries (h2 (v, z) , h1 (x′, y′) , h2 (v′, z′))
such that (x′, y′) 6= (x, y), v′ = h1 (x′, y′), (v, z) 6= (v′, z′), h2 (v, z) = h2 (v′, z′) = w and xw2 +
yw + z = x′w2 + y′w + z′.

Because balls correspond to output values of h2, at most one ball can be added to any bin
when A makes an h2 query. On the other hand when A makes an h1-query h1 (x′, y′) = v′, the
number of balls that can be added to a bin (x, y) is at most log q + 1 because Ev8 ⇒ ¬Win7. Thus
the maximum number of balls added to a bin at any round is R = log q + 1.

Let m1 = 1 and m2 = log q + 1. For any two distinct balls w1 and w2, we can upper bound
the number of bins that can contain both w1 and w2: for i = 1, 2 there are at most log2 q pairs of
queries (h2 (vi, zi) , h2 (v′i, z

′
i)) such that h2 (vi, zi) = h2 (v′i, z

′
i) = wi, and for each value of v′i there

are at most log q queries h1 (x′i, y
′
i) such that h1 (x′i, y

′
i) = v′i. Moreover given values w1, z1, x′1, y′1,

z′1 and w2, z2, x′2, y′2, z′2, there is exactly one solution (x, y) to the system

xw2
1 + yw1 + z1 = x′1w

2
1 + y′1w1 + z′1

xw2
2 + yw2 + z2 = x′2w

2
2 + y′2w2 + z′2

since w1w2 6= 0 (as Ev7 ⇒ ¬Win3). Since there are at most q2 choices for w1, w2, there are at most
M = q2 log6 q bins containing at least m1 + 1 = 2 balls at the end of the game. Since some bin
eventually contains more than Rm2 balls, the success probability of B for the balls-in-bins game
is at least

1
q

(
1

qM

) 1
log q

=
1
q

(
1

q3 log6 q

) 1
log q

=
1

8q (log q)
6

log q

.

If B guesses that an h2-query is going to add a ball to a bin (x, y), then B flips a coin. If the coin
is heads, then B regards the h2-query as h2 (v, z). Because ¬Win6 there exist at most (log q + 2)2

values w for which there exists a pair of queries (h1 (x′, y′) = v′, h2 (v′, z′) = w), (x′, y′) 6= (x, y),
such that xw2+yw+z = x′w2+y′w+z′. If the coin is tails, B regards the query as h2 (v′, z′). Then
there are at most log q queries h1 (x′, y′) such that h1 (x′, y′) = v′, and for fixed values x, y, x′, y′, z′

there are at most log q + 2 pairs (w, z) such that h2 (v, z) = w for some query h2 (v, z) and such
that xw2 + yw + z = x′w2 + y′w + z′, using ¬Win5. Thus for an h2-query, B has chance of forging
at least

1
2

min

(
1

(log q + 2)2
,

1
log q (log q + 2)

)
=

1
2 (log q + 2)2

,



if it wins the balls-in-bins game.
If B correctly guesses that an h1-query h1 (x′, y′) is going to add a ball to a bin (x, y) (where

necessarily (x, y) 6= (x′, y′)), then because ¬Win7 there are at most log q + 1 choices for a value w
such that xw2 + yw + z = x′w2 + y′w + z′ where w = h2 (v, z) = h2 (v′, z′) and (v, z) 6= (v′, z′),
and hence at most log q choices for v′. Thus in this case B’s probability of forging is at least
1/ (log q (log q + 1)), greater than for h2 queries. Thus B’s overall chance of forging is at least

1

16q (log q + 2)2 (log q)
6

log q

.

Ev9: (Not a balls-in-bins game.) B randomly selects an index i between 1 and q. When A makes
its i-th query h1 (x, y), B selects uniformly at random among all the values w for which there
exists a triple of queries (h2 (v, z) , h1 (x′, y′) , h2 (v′, z′)) such that (v, z) 6= (v′, z′), h1 (x′, y′) = v′,
h2 (v, z) = h2 (v′, z′) = w and xw2 +yw + z = x′w2 +y′w + z′, selects uniformly at random among
all values v for which there exists a query h2 (v, z) = w, and guesses h1 (x, y) = v.

Suppose that A makes a query h1 (x, y) that triggers Win9, and that B happens to guess
the index i of this query right (with probability 1/q). Since Ev9 ⇒ ¬Win8, there are at most
(log q + 1)2 values w for which there exists a triple of queries (h2 (v, z) , h1 (x′, y′) , h2 (v′, z′)) such
that (v, z) 6= (v′, z′), h1 (x′, y′) = v′, h2 (v, z) = h2 (v′, z′) and xw2 + yw + z = x′w2 + y′w + z′

where w = h2 (v, z) = h2 (v′, z′). For each of these values w, there are at most log q possible queries
h2 (v, z) such that h2 (v, z) = w. Thus, B has chance of forging at least 1/ log q (log q + 1)2 when
it guesses i correctly, hence an overall chance of success of 1/

(
q log q (log q + 1)2

)
.

Ev10: (Not a balls-in-bins game.) B randomly selects an index i between 1 and q. When A makes
its i-th query h2 (v, z), B selects uniformly at random among all the values w for which there
exists a triple of queries (h1 (x, y) , h1 (x′, y′) , h2 (v′, z′)) such that (x, y) 6= (x′, y′), h1 (x′, y′) = v′,
h2 (v′, z′) = w and xw2 + yw + z = x′w2 + y′w + z′, and guesses h2 (v, z) = w = h2 (v′, z′).

Suppose that Amakes a query h2 (v, z) that triggers Win10. Then there are at most log q queries
h1 (x, y) such that h1 (x, y) = v. Moreover, since ¬Win6, for given values of (x, y, z) there are at
most (log q + 1)2 values w for which there exists a pair of queries (h1 (x′, y′) = v′, h2 (v′, z′) = w)
such that (x′, y′) 6= (x, y), and xw2 + yw + z = x′w2 + y′w + z′. Thus B’s chance of forging is
1/

(
q log q (log q + 1)2

)
since it has probability at least 1/q of choosing the right index i to makes

its query.

Ev11: (Not a balls-in-bins game.) B randomly selects an index i between 1 and q. When A makes
its i-th query h2 (v, z), B enumerates all pairs of distinct queries (h1 (x′, y′) , h1 (x, y)) such that
h1 (x, y) = h1 (x′, y′) = v, selects one such pair uniformly at random, and guesses h2 (v, z) = w
where w is the unique solution of xw + y = x′w + y′.

For any query h2 (v, z), there are at most log2 q pairs of queries (h1 (x, y) , h1 (x′, y′)) such that
(x, y) 6= (x′, y′) and h1 (x, y) = h1 (x′, y′) = v (using ¬Win1) and for each such pair there is a
unique solution w to xw + y = x′w + y′. Thus B has chance at least 1/q log2 q of choosing both
the right index i and the right value w.

Ev12: B plays a balls-in-bins game where bins are pairs (x, y) ∈ {0, 1}2n and balls are values
w ∈ {0, 1}n. A ball w goes into bin (x, y) if there exists a pair of queries (h1 (x′, y′) , h2 (v′, z′))
with h2 (v′, z′) = w, h1 (x′, y′) = v′, (x′, y′) 6= (x, y) and xw + y = x′w + y′.

When A makes a query h1 (x′, y′) = v′, the number of new balls that are added to a bin
(x, y) 6= (x′, y′) is at most the number of values w such that xw + y = x′w + y′, namely at most
one. When A makes a query h2 (v′, z′) = w, the only new ball that can enter any bin is w. Thus
in either case the maximum number of new balls that can enter a bin at any round is R = 1.

Let m1 = 1 and m2 = log q + 1. Since ¬Win3, it is easy to see that any two distinct pairs
of queries (h1 (x′1, y

′
1) , h2 (v′1, z

′
1)), (h1 (x′2, y

′
2) , h2 (v′2, z

′
2)) where h1 (x′i, y

′
i) = v′i and h2 (v′1, z

′
1) =



w1 6= w2 = h2 (v′2, z
′
2) uniquely determine one bin (x, y) such that xwi + y = x′iwi + y′i, (x, y) 6=

(x′i, y
′
i) for i = 1, 2, and conversely there exists such a pair of queries for any bin (x, y) with at

least 2 distinct balls in it. Since there are at most q2 log2 q such pairs of queries (as for every
query h2 (v′, z′) there are most log q queries h1 (x′, y′) such that h1 (x′, y′) = v′), there are at
most M = q2 log2 q bins with at least m1 + 1 = 2 balls in them. Thus the chance of winning the
balls-in-bins game is at least

1
q

(
1

qM

) 1
log q

=
1
q

(
1

q3 log2 q

) 1
log q

=
1

8q (log q)
2

log q

.

Suppose that B correctly guesses the answer to an h1-query h1 (x′, y′) is going to result in a
new ball being placed in a bin (x, y). Then there is at most one solution w to xw + y = x′w + y′

(by definition of the game (x, y) 6= (x′, y′)) and there are at most log q queries h2 (v′, z′) such that
h2 (v′, z′) = w, so B has chance at least 1/ log q of guessing the right value of v′.

If B correctly guesses that the answer to an h2-query h2 (v′, z′) is going to result in a new ball
being placed in a bin (x, y), then there are most log q queries h1 (x′, y′) such that h1 (x′, y′) = v′,
and for each value of (x′, y′) 6= (x, y) there is a unique solution w to xw + y = x′w + y′, so here
again B has chance at least 1/ log q of guessing the correct value w. Thus B’s overall chance of
forging is at least

1

8q log q (log q)
2

log q

.

Ev13: (Not a balls-in-bins game.) B randomly selects an index i between 1 and q. When A makes
its i-th query h1 (x, y), B selects uniformly at random among all the values w for which there
exists a pair of distinct queries (h1 (x′, y′) = v′, h2 (v′, z′) = w) such that xw +y = x′w +y, selects
uniformly at random among all values v′ for which there exists a query h2 (v′, z′) = w, and guesses
h1 (x, y) = v′.

Suppose that A makes a query h1 (x, y) that triggers Win13. Then because ¬Win12, there are
at most log q + 1 values w such that there exists a pair of queries (h1 (x′, y′) = v′, h2 (v′, z′) = w)
for which (x, y) 6= (x′, y′) and xw + y = x′w + y′. Moreover for each such w, there are at most
log q queries h2 (v′, z′) such that h2 (v′, z′) = w. Thus in total there are at most log q (log q + 1)
possibilities for v′, so that B has chance at least 1/ (log q (log q + 1)) of forging if it guesses the
right index i and overall chance of forging at least 1/ (q log q (log q + 1)).

To summarize, we have

Advwcr
τ (t, q) ≤ 26q log q (log q + 1)2 Advmac

h

(
t + O(n2q4 log4 q) + Time2, q

)
,

where the factor q log q (log q + 1)2 comes from events Ev9 and Ev10, and t+O(n2q4 log4 q)+Time2

is the running time of the forger for the case Ev6. The second part of the theorem is immediate
from Lemma 1. ut
By Theorem 9 and Lemma 5, we obtain the following theorem.

Theorem 10. If h1, h2, f2 : {0, 1}2n → {0, 1}n are random functions, then Advcoll
τ [h1,h2] (q) ≤ ε(q)

for

ε(q) =
26q log q (log q + 1)2

2n
,

and G[h1, h2, f2] = f2 ◦ MD [τ [h1, h2]] is (q̃, ε(q̄))-indistinguishable from a random function H :
{0, 1}∗ → {0, 1}n, where

q̄ = NQ(MD[τ [h1, h2]], lmax)q̃ = 2
⌈

lmax + 1
n

+ 1
⌉

q̃,

for the length in bits lmax of the longest query made by a distinguisher.



7 Improved Analysis of Lucks’ Double-piped Mode of Operation

We begin with the definition of Lucks’ double-piped mode of operation (with a slight modification).
First, two 2n+ c → n bit functions f1 and f2 are concatenated, yielding the following compression
function.

F : {0, 1}2n+c −→ {0, 1}2n

u 7−→ f1(u)||f2(u).

The pictorial description of F for c = n is shown in Figure 8. Given F = F [f1, f2] and an
independent compression function f3 : {0, 1}2n+c → {0, 1}n, the Lucks’ mode of operation defines
a hash function

G[f1, f2, f3] : {0, 1}∗ −→ {0, 1}n

M 7−→ f3(0c||v),

where v = MD[F ](M).

f
2

f
1

u

cnn

x

n
y

n

Fig. 8. Lucks’ double-piped compression function

Now we prove the weak collision resistance of F = F [f1, f2] where f1 and f2 are independently
chosen from a function family f .

Theorem 11. Let F be a function family defined by f : {0, 1}κ×{0, 1}2n+c → {0, 1}n as described
above. Then,

Advwcr
F (t, q) ≤

√
2qAdvmac

f (t, q) .

Proof. Let A be a weak collision-finding adversary such that

Advwcr
F (A) = Advwcr

F (t, q) = ε.

We write u[i] for the i-query that A makes to F and F (u[i]) = (x[i], y[i]), where x[i] = f1(u[i])
and y[i] = f2(u[i]). Let

Γ =
{
(j, i) ∈ {1, . . . , q}2 : j < i and x[j] = x[i]

}
,

and let γ = |Γ | be the number of “upper half-collisions”. Here we fix an ordering in Γ . By
assumption that A succeeds to find a collision with probability ε, at least one of the following two
events happens with probability ≥ ε/2, where θ is a parameter to be optimized later.

Case 1: A finds a collision and γ > θ. For this case, we can construct a forger B1 for f1 as
follows.

1. B1 chooses (j, i) ∈ {1, . . . , q}2 such that j < i uniformly at random.
2. B1 runs A as a subroutine and faithfully answers the queries made by A until the (i − 1)-th

query. Here B1 simulates f2 by choosing a key for f2 uniformly at random.



3. On the i-query u[i], B1 presents a forgery (u[i], y[j]) without making a query to f1(·).
Since the probability that (j, i) ∈ Γ is θ/

(
q
2

)
, we have

Advmac
f (B1) ≥ εθ

2
(
q
2

) ≥ εθ

q2
. (11)

Case 2: A finds a collision and γ ≤ θ. For this case, we can construct a forger B2 for f2 as
follows.

1. B2 chooses s ∈ {1, . . . , θ} uniformly at random.
2. B2 runs A as a subroutine: To each query made by A, B2 faithfully respond by simulating f1

and making queries to f2(·).
3. B2 counts the number of collisions in f1. At the s-th collision (j, i) ∈ Γ , B2 stops without

making a query to f2(·) and presents a forgery (u[i], y[j]).

If there exists a collision (x[j], y[j]) = (x[i], y[i]) for j < i, then obviously (j, i) ∈ Γ . Therefore we
have

Advmac
f (B2) ≥ ε

2θ
. (12)

From (11) and (12), it follows that

Advwcr
F (t, q) ≤ max

{
q2

θ
, 2θ

}
Advmac

f (t, q) .

By setting q2/θ = 2θ or θ = q/
√

2, we obtain

Advwcr
F (t, q) ≤

√
2qAdvmac

f (t, q) .

ut
By Lemma 1 and Theorem 11, we obtain the following theorem.

Theorem 12. Let G = G[f1, f2, f3] be a function family such that f1, f2 and f3 are independently
chosen from a function family f . Then for q = bµ/cc+ 2q̃,

Advmac
G (t, q̃, µ) ≤ Advmac

f (t, q̃) +
√

2qAdvmac
f (t, q) .

With a slight modification of the above argument, we can prove that the Lucks’ mode of operation
using a single key also preserves unforgeability up to O(2n) query complexity, improving the bound
O(25n/6) proved by Yasuda [24].
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