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Abstract In this paper, we propose a new method for constructing the public-key cryptosystems based on a class

of perfect error-correcting codes. The constructed PKC is referred to as K(IV)SE(1)PKC. In K(IV)SE(1)PKC, mem-

bers of the class of perfect error correcting codes such as (7,4,3) cyclic Hamming code and (3,1,3) code {(000), (111)}
is used, yielding a simple process of encryption and decryption. The K(IV)SE(1)PKC has a remarkable feature that

the coding rate can take on exactly 1.0 due to the use of perfect codes. Besides the size of the public key for K(I

V)SE(1)PKC can be made smaller than that of the McEliece PKC.
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1. Introduction

Most of the multivariate PKC are constructed by the si-

multaneous equations of degree larger than or equal to 2

[1]∼[6]. Recently the present author proposed a several

classes of multivariate PKC that is constructed by many sets

of linear equations[7]∼[10], in a sharp contrast with the con-

ventional multivariate PKC where a single set of simultane-

ous equations of degree more than or equal to 2 are used.

In this paper we present another new class of multivariate

PKC that is constructed by many sets of linear equations. In

the followings, we shall refer to the proposed linear multivari-

ate PKC constructed on the basis of perfect error correcting

codes as K(IV)SE(1)PKC. Throughout this paper (n, k, d)

code implies the code of the code-length n, the number of

the information symbols k and the minimum distance d.

In K(IV)SE(1)PKC, a small size but a perfect error cor-

recting code such as (7,4,3) cyclic Hamming code and (3,1,3)

code, {(000), (111)}, is used, yielding a simple process of en-

cryption and decryption. In the followings the code that has

one information symbol repeated 2µ+1 times will be denoted

by (2µ + 1, 1, 2µ + 1) code.

The K(IV)SE(1)PKC has a remarkable feature that the

coding rate can take on exactly 1.0, due to the use of perfect

codes. Besides the size of the public key for K(IV)SE(1)PKC

can be made smaller than that of the McEliece PKC[11].

Throughout this paper, when the variable vi takes on

a value ṽi, we shall denote the corresponding vector v =

(v1, v2, · · · , vn) as

ṽ = (ṽ1, ṽ2, · · · , ṽn) . (1)

The vector v = (v1, v2, · · · , vn) will be represented by the

polynomial as

v(x) = v1 + v2x + · · ·+ vnxn−1. (2)

The ũ, ũ(x) et al. will be defined in a similar manner.

2. K(IV)SE(1)PKC

Let the message vector M over F2 be represented by

M = (M1, M2, · · · , Mn). (3)

Throughout this paper we assume that the messages

M1, M2, · · · , Mn are mutually independent and equally

likely. Let M be transformed as

(M1, M2, · · · , Mn)AI = (m1, m2, · · · , mn), (4)

where AI is an n×n non-singular matrix over F2. Let us de-

scribe an outline of the principle of K(IV)SE(1)PKC referring

to the schematic diagram of it in Fig. 1.

Step 1: Let the message vector m = (m1,m2, · · · ,mn) be

partitioned into mE and mP . The mE is given by

mE = (m1,m2, · · · ,mL) (5)

where mi (1 <= i <= L) represents mi = (mi1, mi2, · · · , mik).

The mP is represented by

mP = (mkL+1, mkL+2, · · · , mkL+H) (6)

where kL + H = n.
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Fig. 1 Principle of K(IV)SE(1)PKC

Step 2: The message mP is publicized.

Step 3: The component of mE , mi, is encoded to a code

word of an error correcting code as

wi = (di1, di2, · · · , dig, mi1, mi2, · · · , mik) (i = 1, 2, · · · , L),

(7)

where di1, di2, · · · , dig are the check symbols.

Step 4: The message mP is transformed as

(mkL+1, mkL+2, · · · , mkL+H)AII = (–1,–2, · · · ,–L),

(8)

where –i is represented by –i = (λi1, λi2, · · · , λi,k+g)

(i = 1, 2, · · · , L).

Step 5: The word ui is constructed as

ui = wi + –i (i = 1, 2, · · · , L). (9)

Step 6: Errors e1, e2, · · · , eL are substituted by the addi-

tional messages Mn+1, Mn+2, · · · , Mn+A when an improve-

ment of the coding rate is required.

Remark 1: As we assume that the message M1, M2, · · · , Mn

are mutually independent and equally likely. In other words

we assume that the following relation holds on the condi-

tional entropy:

H(M1, M2, · · · , Mn|mkL+1, mkL+2, · · · , mkL+H)

= n−H (bits).
(10)

We shall see that in K(IV)SE(1)PKC, n−H takes on a suffi-

ciently large value. For instance, in Example 1, n−H takes

on an extremely large value of 288 bits. 2

Let us present the following problem:

Problem 1: Construct a new class of PKC based on K(I

V)SE(1)PKC under the following conditions:

(C1) Using of a code of small size perfect codes such as (3,1,3)

code, (7,4,3) cyclic Hamming code.

(C2) Coding rate of exactly 1.0.

(C3) Smaller size of the public key compared with that of

the McEliece PKC using Goppa codes presented in 1977. 2

3. Solution A to Problem 1

3. 1 Solution A based on (7,4,3) cyclic Hamming

code

Let the i-th component ofmE ,mi, be encoded to the code

word of (7,4,3) cyclic Hamming code as

mi(x)x3 = di1 + di2x + di3x
2 mod

(
1 + x + x3

)
. (11)

The code word wi can be represented by

wi = (di1, di2, di3, mi1, mi2, mi3, mi4). (12)

Letting AIII be an H × 7L matrix over F2, the message mP

is transformed as

(m4L+1, · · · , m4L+H)AIII = (–1,–2, · · · ,–L) (13)

where –i is

–i = (λi1, λi2, · · · , λi7), (i = 1, 2, · · · , L). (14)

Let ui be defined as

ui = wi + –i (i = 1, 2, · · · , L), (15)

where we let ui be represented by

ui = (ui1, ui2, · · · , ui7), (i = 1, 2, · · · , L). (16)

Public Key : {m4L+1, · · · , m4L+H}, {ui}.
Secret Key : AI , AIII , {–i}.

3. 2 Encryption

The ciphertext C is given by

C = (m̃P , ũ1 + ẽ1, ũ2 + ẽ2, · · · , ũL + ẽL), (17)

where ẽi is a single error randomly generated at the send-

ing end. Because the uij (i = 1, · · · , L; j = 1, · · · , k) and

mi (i = 4L + 1, · · · , 4L + H) are the linear equations of the

message variables M1, M2, · · · , Mn, the encryption can be

performed very fast.

3. 3 Decryption

The decryption can be performed as follows:

Step 1: Given the ciphertext:

C = (m̃P , ũ1, ũ2, · · · , ũL), (18)

–̃1, –̃2, · · · , –̃L can be derived from Eq.(13), as m̃P AIII =(
–̃1, –̃2, · · · , –̃L

)
.

Step 2: w̃i + ẽi is given by

ũi + –̃i = w̃i + ẽi (i = 1, 2, · · · , L). (19)
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Step 3: w̃i + ẽi is the received word of (7,4,3) cyclic Ham-

ming code. The single error ẽi can be decoded correctly,

yielding mE .

Step 4: The message M̃ is decoded as

(m̃E , m̃P )A−1
I =

(
M̃1, M̃2, · · · , M̃n

)
. (20)

The decryption can be performed by

(1) Linear transformations by AIII and A−1
I ,

(2) Single error correction for (7,4,3) cyclic Hamming code.

We see that the decryption is simple and can be performed

very fast.

3. 4 Example

In the followings let us present an example where no single

error is replaced by information symbols. Let us define the

several symbols.

NE : Total number of equations.

NV : Total number of variables.

SPK : Size of public key.

ρ : Coding rate.

Example 1: H = 80 and L = 72.

NE , NV , SPK and ρ are given as

NE = H + 7L = 584, (21)

NV = n = 4L + H = 368, (22)

SPK = NE ·NV = 215 Kbit (23)

and

ρ =
NV

NE
= 0.727, (24)

respectively. 2

We see that the size of the public key is smaller than 524

Kbit of the McEliece PKC and the coding rate is higher than

that of McEliece PKC. It should be noted here that, although

any error can be replaced by a message symbol without de-

terionating the security, no error symbol is replaced by the

message symbol, yielding the coding rate ρ of less than 1.0.

3. 5 Security considerations

From the given ciphertext, the components of (m̃4L+1, · · · ,
m̃4L+H) are given under the condition of Eq.(10). Thus the

most powerful attack on K(IV)SE(1)PKC would be the fol-

lowing attack:

Attack I: Given the ciphertext, Attack I estimates 4 error-

free symbols from the given ci, (i = 1, 2, · · · , L). 2

As in Example 1, let us assume that H and L are given by

H = 80 (25)

and

L = 72 (26)

respectively.

Let Pµ

(
CEST

)
be the probability that µ error-free sym-

bols are chosen correctly from the given ci. The probability

P4

(
CEST

)
is given by

P4

(
CEST

)
=

6C4

7C4
=

3

7
. (27)

The probability that the correct estimation can be performed

for all of the cis is given by

[
P4

(
CEST

)]L
=

(
3

7

)72

= 3.20× 10−27, (28)

sufficiently small value. We thus conclude that K(I

V)SE(1)PKC is secure against the Attack I.

Attack II: Given the ciphertext, Attack II discloses the mes-

sage m̃i using the decoding table of a very small size of

27(4 + 7) = 1408 bits. 2

The wi takes on only 24 values. However, as –i is added on

wi, ui = wi + –i takes on all the 27 values equally likely.

Consequently K(IV)SE(1)PKC is secure against the Attack

II. In other words, the components of –i are the random lin-

ear combination of M1, M2, · · · , Mn. Consequently ui takes

on one of the 27 values equally likely, although wi takes on

one of the only 24 values. We thus see that K(IV)SE(1)PKC

is invulnerable against Attack II.

3. 6 Realization of coding rate 1.0

Let us append an additional message sequence MA =

(Mn+1, Mn+2, · · · , Mn+3L) to the original message M . It

should be noted that when the message variables are mu-

tually independent and equally likely, any error symbol

ei can be substituted by an additional meesage MA
i =

(Mi1, Mi2, Mi3), yielding an improvement of the coding rate.

Let us define Substitution A in the following:

Substitution A: In Substitution A, MA
i is read as the natu-

ral binary number. For example, when MA
i = (011), MA

i is

read as
∣∣MA

i

∣∣ = 3. With this transformation MA
i is sub-

stituted by an error x

∣∣MA
i

∣∣−1
for 1 <=

∣∣MA
i

∣∣ <= 7. For∣∣MA
i

∣∣ = 0, ei takes on the value 0.

With this Substitution A, the coding rate of exactly 1.0 is

achieved. However in this case the probabilities Pµ

(
CEST

)

and
[
Pµ

(
CEST

)]L
take on larger values. Namely,

P4

(
CEST

)
=

1

2
(29)

and

[
P4

(
CEST

)]L
=

(
1

2

)72

= 2.11× 10−22, (30)

a little larger value than 3.2× 10−27 given by Eq.(28).
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4. Solution B to Problem 1, based on
(3,1,3) code

In this and the following sections, we assume that Substi-

tution A is applied, yielding the coding rate of 1.0.

In an exactly similar manner as in Solution A, a simpler

scheme can be constructed based on (3,1,3) code, the small-

est error correcting code over F2. Let the i-th component of

mE , mi, be encoded to the code word of (3,1,3) code as

mix
2 = di1 + di2x mod

(
1 + x + x2

)
. (31)

The code word wi is given by

wi = (di1, di2, mi). (32)

Letting AIV be an H × 3L matrix over F2, the message mP

is transformed as

(mL+1, mL+2, · · · , mL+H)AIV = (–1,–2, · · · ,–L), (33)

where –i is

–i = (λi1, λi2, λi3). (34)

Example 2: H = 80 and L = 210.

The probabilities P1

(
CEST

)
and

[
P1

(
CEST

)]L
are given

by

P1

(
CEST

)
=

2C1

3C1
· 2

3
+

1

4
=

3

4
(35)

and

[
P1

(
CEST

)]L
=

(
3

4

)210

= 5.79× 10−27 (36)

respectively.

The NE , NV , SPK and ρ are given by

NE = H + 3L = 710, (37)

NV = n = H + L = 290, (38)

SPK = NE ·NV = 205.9 K bit, (39)

respectively. 2

We see that the size of public key is shortened by a factor

of about 2.5 compared with that of McEliece PKC.

5. Solution C to Problem 1, based on
(23,12,7) Golay code

One of the most well known perfect codes would be the

(23,12,7) Golay code. We shall construct K(IV)SE(1)PKC

based on (23,12,7) Golay code.

Example 3: H = 80, L = 26. In a similar manner as in

Example 1, P12

(
CEST

)
and

[
P12

(
CEST

)]L
are given as

P12

(
CEST

)
=

20C12

23C12
· 212 − 1

212
+

1

212
= 0.093 (40)

and

[
P12

(
CEST

)]26
= 1.93× 10−27. (41)

The NE , NV and Spk are given by

NE = 678, (42)

NV = 392 (43)

and

Spk = 265.8K bit, (44)

respectively. 2

6. Solution D to Problem 1, based on
(11,5,5) Golay code over F3

In this section, we shall present (11,5,5) Golay code, the

perfect code over F3.

Example 4: H = 50, L = 48.

The probabilities P5

(
CEST

)
and

[
P5

(
CEST

)]L
are given

by

P5

(
CEST

)
=

9C5

11C5
· 35 − 1

35
+

1

35
= 0.276 (45)

and

[
P5

(
CEST

)]48
= (0.276)48 = 1.38× 10−27, (46)

respectively.

The NE , NV , and Spk are given by

NE = 578, (47)

NV = 290, (48)

and

Spk = 167.2K bit, (49)

respectively. 2

We see that the size of the public key is smaller than that

of the McEliece PKC by a factor of about 3.

7. Solution E to Problem 1, based on
(2µ + 1, 1, 2µ + 1) code

Example 5: µ = 3, H = 80, L = 210.

In a similar manner as in the previous sections, the

P1

(
CEST

)
,
[
P1

(
CEST

)]L
, NE , NV , and Spk are given by

P1

(
CEST

)
=

3

4
(50)

[
P1

(
CEST

)]210
= 5.79× 10−29 (51)
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NE = 1550 (52)

NV = 290 (53)

and

Spk = 449.5K bit (54)

respectively. 2

We see that 6 information symbols can be replaced by er-

rors on each ui as the relation 7C0 + 7C1 + 7C2 + 7C3 = 26

holds.

It is easy to see that the size of the public key increases as µ

increases under the condition that
[
P1

(
CEST

)]µ
is required

to take on approximately 10−28.

8. Conclusion

We have presented K(IV)SE(1)PKC based on the members

of the class of perfect codes. It would be remarkable that K(I

V)SE(1)PKC is able to achieve the coding rate of exactly 1.0

due to the use of perfect codes.

It would be easy to devise the digital signature scheme for

K(IV)SE(1)PKC as our scheme realizes the coding rate of

exactly 1.0.

It seems that the use of (3, 1, 3) code, {000, 111}, is most

desirable due to the following reason:

• The size of public key takes on the smallest value

among K(IV)SE(1)PKC constructed using perfect codes over

F2.

• Decryption can be made very simple as it is the most

simple error correcting code.

The author is thankful to the support of SCOPE.
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Appendix

1. Solution F to Problem 1, based on (7,4,3) cyclic

Hamming code

We present another type of solution, Solution D, to Prob-

lem 1. From mi = (mi1, mi2, mi3, mi4), we obtain m
(1)
i as

m
(1)
i = (mi4, mi3, mi2, mi1) (A·1)

Let m
(1)
i be encoded to the code word of (7,4,3) cyclic Ham-

ming code as

m
(1)
i x3 = d

(1)
i1 + d

(1)
i2 x + d

(1)
i3 x2 mod

(
1 + x + x3

)
.

(A·2)

Let di and d
(1)
i be

di = (di1, di2, di3) (A·3)

and

d
(1)
i =

(
d
(1)
i1 , d

(1)
i2 , d

(1)
i3

)
(A·4)

respectively.

Let wi and w
(1)
i be given by

wi = (di1, di2, di3, mi1, mi2, mi3, mi4) (A·5)

and

w
(1)
i =

(
d
(1)
i1 , d

(1)
i2 , d

(1)
i3 , mi1, mi2, mi3, mi4

)
, (A·6)

respectively. It should be noted that w
(1)
i is, in general, not

a code word. The vector ui and u
(1)
i are given by

ui = wi + –i (A·7)

and

u
(1)
i = w

(1)
i + –

(1)
i . (A·8)

respectively, where –i, λ
(1)
i are given in a similar manner as

in Solution A.
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Encryption:

When encrypting, one and only one of
{
ũi, ũ

(1)
i

}
is ran-

domly chosen and a single error ẽi is added on m̃i. We see

that the encryption can be performed very fast.

Decryption:

Decryption can be performed in a similar manner as in

subsection 3.3. When ũi with the error ẽi on m̃i is received,

the error correction can be successfully performed, yielding

m̃i. On the other hand when ũ
(1)
i with the error ẽi on m̃i

is received, the followings result:

R1: When the single error ẽi can be corrected, m
(1)
i is then

successfully decoded.

R2: When single error correction cannot be performed,

namely when error detection is made, the following trans-

formation is performed

(m1 + e1, m2 + e2, m3 + e3, m4 + e4)

→ (m4 + e4, m3 + e3, m2 + e2, m1 + e1),
(A·9)

where we assume that the Hamming weight of e =

(e1, e2, e3, e4) is 1.

Remark:

The reason why uncorrectable error is detected in R2 is due

to the symmetric structure existing between mi and m
(1)
i .

Although the details of doing so are ommitted, we can show

that under the condition that the same size of ciphertext and

coding rate, the probability
[
P4

(
CEST

)L
]

can be improved

compared with that of Eq.(28). Namely
[
P4

(
CEST

)]L
is

given by

[
P4

(
CEST

)]L
=

(
3C1

4C1

)L(
1

2

)L

=
(

3

8

)L

. (A·10)
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