
Small Scale Variants Of The Block Cipher
PRESENT

Gregor Leander

DTU Mathematics
Technical University of Denmark

1 Introduction

In this note we define small scale variants of the block cipher present [1]. The
main reason for this is that the running time of some recent attacks (e.g. [2, 3])
remain unclear as they are based on heuristics that are hard or even impossible
to verify in practice. Those attacks usually require the full code bock of present
to be available and they work only if some independence assumptions hold in
practice. While those assumptions are clearly wrong from a theoretical point of
view, the impact on the running times of the attacks in question is not clear.
With versions of present with smaller block size it might be possible to verify
how those attacks scale for those versions and hopefully learn something about
present itself. In the next section, all details of the toy ciphers are specified,
with test vectors given in the appendix.

2 The small scale variants SmallPresent-[n]

The toy ciphers SmallPresent-[n] are based on present-80 the 80 bit key
version of present. The design is as close to present as possible while the
block size is reduced to 4n bits. In particular, SmallPresent-[16] is actually
present-80. SmallPresent-[n] is an SP-network with a sBoxLayer consisting
of n copies of the original present Sbox and a simple bit permutation as the
linear pLayer. A key scheduling algorithm produces 4n bit round keys from an
80 bit master key. Thus the overall structure of the algorithm, as depicted in
Figure 1 is the same as for the original present. As the purpose of these toy
versions is to understand how the running time of certain attacks increases with
the number of rounds, we do not specify the number of rounds for any of those
toy versions. Moreover, we do not make any restrictions on the number of Sboxes
n, however we anticipate that n = 8 might be the most interesting case.

The details of the individual functions are described below. Throughout we
number bits from zero with bit zero on the right of a block or word.

addRoundKey. This step consists of a simple xor of the current state with
the round key. More precisely, given round key Ki = κi

4n−1 . . . κi
0 for round

generateRoundKeys()
for i = 1 to r do

addRoundKey(state,Ki)
sBoxLayer(state)
pLayer(state)

end for
addRoundKey(state,Kr+1)

plaintext

?
?

sBoxLayer

pLayer

?...
?

sBoxLayer

pLayer

?
?

ciphertext

key register

?
addRoundKey¾

...

update

?

?
update

addRoundKey¾

Fig. 1. A top-level algorithmic description of SmallPresent.

i and current state b4n−1 . . . b0, addRoundKey consists of the operation for
0 ≤ j ≤ 4n− 1,

bj → bj ⊕ κi
j .

sBoxlayer. The S-box used in SmallPresent is the 4- to 4-bit S-box S : F4
2 →

F4
2 already used in present. The action of this box in hexadecimal notation is

given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

For sBoxLayer the current state b4n−1 . . . b0 is considered as n 4-bit words
w15 . . . w0 where wi = b4∗i+3||b4∗i+2||b4∗i+1||b4∗i for 0 ≤ i ≤ n − 1 and the
output nibble S[wi] provides the updated state values in the obvious way.

pLayer. The bit permutation used in SmallPresent-[n] is given by the fol-
lowing function. Bit i of state is moved to bit position P (i) where

P (i) =
{

n× i mod (4n− 1) for 0 ≤ i < 4n− 1
4n− 1 for i = 4n− 1 .

As 4n = 1 mod 4n− 1 its inverse can be described as

P−1(i) =
{

4× i mod (4n− 1) for 0 ≤ i < 4n− 1
4n− 1 for i = 4n− 1 .

We note that for n = 16 this is exactly the linear transformation used in
present. Moreover, it is not hard to see that for any n the corresponding bit
permutation ensures an optimal diffusion, i.e. each bit of the state depends on
each input bit after dlog4(n)e+1 rounds. The action of the pLayer is also depicted
in Figure 2.

Fig. 2. The pLayer for n = 2 to n = 7.

The key schedule. The key scheduling of SmallPresent is identical with
the key scheduling of PRESENT with the only difference that the round key
consists only of the 4n rightmost bits of corresponding round key of present-
80 (the 64 leftmost bits of the current contents of the key register are used
in present). This is done to simplify implementing SmallPresent given an
existing implementations of present. For details of the key scheduling we refer
to [1].

References

1. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher. Lecture
Notes in Computer Science, 4727:450, 2007.

2. J.Y. Cho. Linear Cryptanalysis of Reduced-Round PRESENT. In Topics in
Cryptology-CT-RSA 2010, The Cryptographers’ Track at the RSA Conference 2010,
San Francisco, CA, USA, March 1-5, 2010. Springer, 2010.

3. B. Collard and F.X. Standaert. A statistical saturation attack against the block
cipher PRESENT. In proceedings of CT-RSA. Springer, 2009.

A Testvectors

Below we list test vectors for SmallPresent-[n] for n ∈ {2, 4, 8, 16}. For all
versions we used the all zero key and the all zero plain text.

Table 1. n = 2 (plaintext= 0 key=0)

round state key state xor key S(state xor key)

0 00 00 00 cc

1 f0 00 f0 2c

2 58 01 59 0e

3 54 01 55 00

4 00 62 62 a6

5 9c 2a b6 8a

6 c4 33 f7 2d

7 59 5b 02 c6

8 b4 4c f8 23

9 0d 84 89 3e

10 5e 55 0b

Table 2. n = 4 (plaintext= 0 key=0)

round state key state xor key S(state xor key)

0 0000 0000 0000 cccc

1 ff00 0000 ff00 22cc

2 33c0 0001 33c1 bb45

3 c3cd 0001 c3cc 4b44

4 4b44 0062 4b26 986a

5 d238 002a d212 7656

6 0fda 0033 0fe9 c21e

7 9952 005b 9909 eece

8 ffd0 064c f99c 2ee4

9 67e0 0284 6564 a0a9

10 b0a1 0355 b3f4

Table 3. n = 8 (plaintext= 0 key=0)

round state key state xor key S(state xor key)

0 00000000 00000000 00000000 cccccccc

1 ffff0000 00000000 ffff0000 2222cccc

2 0f0ff000 00000001 0f0ff001 c2c22cc5

3 a6a75801 03000001 a5a75800 f0fd03cc

4 b3b3a4b4 01400062 b2f3a4d6 862bf97a

5 9d4a7b1e 0180002a 9cca7b34 e44fd8b9

6 9ff8921b 02c00033 9d389228 e7b3e663

7 a8ceff71 3240005b 9a8eff2a ef31226f

8 c1c3ef71 1400064c d5c3e93d 704b1eb7

9 16a5979b 1a800284 0c25951f c460e052

10 88ea2902 2f400355 a7aa2a57

Table 4. n = 16 (plaintext= 0 key=0)

round state key state xor key S(state xor key)

0 0000000000000000 0000000000000000 0000000000000000 cccccccccccccccc

1 ffffffff00000000 c000000000000000 3fffffff00000000 b2222222cccccccc

2 80ff00ffff008000 5000180000000001 d0ff18ffff008001 7c22532222cc3cc5

3 4036c837b7c88c09 60000a0003000001 2036c237b4c88c08 6cba46bd894334c3

4 73c2cd26b6192359 b0000c0001400062 c3c2c126b759233b 4b46456a8d0e6bb8

5 41d7be58531e4446 900016000180002a d1d7a858529e446c 757df30306e199a4

6 182ef861ad62fd1c 0001920002c00033 182f6a61afa2fd2f 5362afa5f2f62762

7 0ea0a5b67effc5a4 a000a0003240005b aea005b64cbfc5ff f1fcc08a94824022

8 bba0b848a113e080 d000d4001400064c 6ba06c48b513e6cc a8fca493805b1a44

9 fa943423a9142338 30017a001a800284 ca954e23b39421bc 4fe0916b8be96584

10 69f2e22d63684d54 e01926002f400355 89ebc42d4c284e01

