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Abstract. In 2008 and 2009, Gaudry and Diem proposed an index calculus method for the resolution of
the discrete logarithm on the group of points of an elliptic curve defined over a small degree extension
field Fqn . In this paper, we study a variation of this index calculus method, improving the overall
asymptotic complexity when log q ≤ cn3. In particular, we are able to successfully obtain relations on
E(Fp5), whereas the more expensive computational complexity of Gaudry and Diem’s initial algorithm
makes it impractical in this case. An important ingredient of this result is a new variation of Faugère’s
Gröbner basis algorithm F4, which significantly speeds up the relation computation and might be of
independent interest. As an application, we show how this index calculus leads to a practical example
of an oracle-assisted resolution of the elliptic curve static Diffie-Hellman problem over a finite field on
130 bits, which is faster than birthday-based discrete logarithm computations on the same curve.
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1 Introduction

Given a finite group G and two elements g, h ∈ G, the discrete logarithm problem (DLP) consists in computing
– when it exists – an integer x such that h = gx. The difficulty of this problem is at the heart of many existing
cryptosystems, such that the Diffie Hellman key exchange protocol [11], the Elgamal encryption and signature
scheme [13], DSA, or more recently in pairing-based cryptography. Historically, the DLP was first studied
in the multiplicative group of finite fields. In such groups, now-standard index calculus methods allow to
solve the DLP with a subexponential complexity. Therefore, the key size necessary to achieve a given level
of security is rather large. For this reason, in 1985, Miller [26] and Koblitz [22] suggested using for G the
group of points of an algebraic curve, thus introducing elliptic curves to the cryptography community.

Up to now, very few algorithms exist that solve the DLP in the group of points of an elliptic curve
defined over a finite field (ECDLP). In most cases, only generic methods such as Baby-step Giant-step [33]
or Pollard’s rho and kangaroo algorithms [28, 29] are available. Their complexity is exponential in the size
of the largest prime factor of the group cardinality; more precisely, the running time is of the order of the
square root of this largest prime factor [27]. However, for some specific curves more powerful attacks can be
applied; they usually move the DLP to another, weaker group. The first approach is to lift the ECDLP to
a characteristic zero field, either global (i.e. Q) or local (i.e. p-adic numbers Qp): so far, this works only for
subgroups of E(Fpn) of order pi [30, 32, 35]. The second approach is to transfer via the Weil or Tate pairing
the DLP on E(Fq) to F∗qk : this includes the MOV [25] and FR [17] attacks for elliptic curves with small
embedding degree k. The last approach is to transfer via Weil descent the DLP on an elliptic curve defined
over an extension field Fqn to a second algebraic curve, defined over Fq but of greater genus g; this is efficient
when the resulting genus g is small, which occurs only with specific curves [8].
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In [31], Semaev proposed for the first time an index calculus method for the ECDLP, which unfortunately
turned out to be impracticable. However, combining Semaev’s ideas and Weil restriction tools, Gaudry and
Diem [10, 18] independently came up with an index calculus attack of subexponential complexity for elliptic
curves defined over small degree extension fields. More precisely, the complexity of their algorithm over
E(Fqn) for n fixed is in Õ(q2−2/n), but with a hidden constant in n that grows over-exponentially (in
O(n! 23n(n−1))). If one also allows n to go to infinity, then the complexity remains subexponential as long as
n is upper bounded by O(

√
log(q)).

In this article, we investigate a variant of Gaudry and Diem’s attack and obtain the following result,
which implies that this new approach is better than generic methods like Pollard’s rho when n ≤ c log q, and
better than Gaudry and Diem’s when n ≥ c′ 3

√
log q for some constants c and c′.

Theorem 1 Let E be an elliptic curve defined over Fqn and G a cyclic subgroup of its group of rational
points. Then there exists an algorithm to solve the DLP in G with asymptotic complexity

Õ
(

(n− 1)!
(

2(n−1)(n−2)en n−1/2
)ω

q2
)

where ω, 2 ≤ ω < 3, is the linear algebra constant of [2].
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Fig. 1. Comparison of three attacks on the ECDLP over Fqn , n ≥ 1.

The paper is organized as follows. First, we give a summary of Gaudry and Diem’s index calculus; the
main ideas are the use of the Weil restriction to obtain a convenient factor base and of Semaev’s summation
polynomials to test decomposition. More precisely, Gaudry and Diem check whether a given point can be
decomposed as a sum of n points of this factor base, where n is the degree of the extension field. This
amounts to solving a multivariate polynomial system of n equations in n variables of degree 2n−1, arising
from the (n+ 1)-th summation polynomial. Next, we introduce our variant: we check if a point decomposes
as a sum of n − 1 points instead of n. This reduces the likelihood of finding a relation, but greatly speeds
up the decomposition process; as mentioned above, this trade-off is favorable when n is bigger than some
multiple of 3

√
log q. We then give a detailed analysis of the complexity of our variant, enabling us to prove

Theorem 1, and show that our trade-off is better than the one provided by the hybrid approach of [4].

The following sections are devoted to several optimizations of the decomposition process. As already
noted by Gaudry, the polynomial system that has to be solved is inherently symmetrical, so it pays off to
reduce its total degree by writing down the equations in terms of the elementary symmetric functions before
the resolution. A convenient way to do so is to use (partially) symmetrized summation polynomials instead
of Semaev’s; in section 3, we sketch two different ways to directly compute these polynomials. More details
are given in appendix A. The second optimization concerns the resolution of the symmetrized system. The
fastest available method is to compute a Gröbner basis for an appropriate monomial order, using one of
Faugère’s algorithms [14, 15]. Since each relation search leads to a system with the same specific shape, we
propose an ad hoc variant of F4 which takes advantage of this particularity to remove all reductions to zero.
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Finally, in order to give a practical application of our idea on a problem of cryptographic interest, we
present a variation of our algorithm which solves the oracle-assisted static Diffie-Hellman problem (SDHP,
introduced in [6]) over E(Fqn). As in the case of finite fields presented in [21], solving the SDHP, after some
oracle queries, is faster than solving the corresponding discrete logarithm problem. More precisely, we show
that an attacker is able, after ' q/2 well-suited oracle queries, to compute an arbitrary SDHP instance
reasonably quickly. To give a concrete example, we show that such an attack is currently achievable for a
random elliptic curve defined over a finite field Fq5 of size 130 bits and requires much less computing power
than a discrete logarithm computation using generic methods on the same group.

2 Index calculus attacks for elliptic curve over an extension field

We begin by briefly recalling the principle of index calculus methods. We consider a finite group G (for
simplicity, we assume G has prime order r) and two elements h, g ∈ G such that h = [x]g (in additive
notation), where x is the secret to recover. The basic outline of Dixon’s “precomputation-and-descent”
approach consists in four main steps:
1. Choice of a factor base, i.e. a family F = {g1, . . . , gN} of elements of G
2. Relation search: for “random” integers ai, decompose – if possible – [ai]g into the factor base, i.e. write

[ai]g =
N∑

j=1

[ci,j ]gj (1)

3. Linear algebra: once k relations have been found where k is large enough, construct the vector A =(
ai

)
1≤i≤k

and the matrix M = (ci,j) 1≤i≤k
1≤j≤N

, and solve the linear system MX = A. It admits a unique
solution that can be computed with elementary linear algebra as soon as k is greater than N and the
relations are linearly independent. The resulting vector X contains the logarithms w.r.t. g of the factor
base elements.

4. Descent step: find an equation

[a]g + [b]h =
N∑

j=1

[cj ]gj , (2)

with b 6= 0 and deduce the logarithm of h.
For example, if G is the multiplicative group of Fp, p prime, we can take for F the set of equivalence

classes of prime integers smaller than a fixed bound B. An element is then decomposable in this factor base
if its representative in [1, p−1] is B-smooth. There is obviously a compromise to be found: if B is large, then
most elements are decomposable, but many relations are necessary and the matrices involved in the linear
algebra step are comparatively large. On the other hand, if the factor base is small, the required number
of relations is small and the linear algebra step is fast, but finding a relation is much less probable. In any
case, the matrix M is usually very sparse and appropriate techniques are used to compute its kernel quickly.
Note that for discrete logarithm computations on finite fields, the descent step becomes quite involved (for
example, see [21]), but in our setting it will be no different from a standard relation search. One major
obstruction to index calculus when G is a subgroup of rational points of an elliptic curve defined over Fq,
is that there exist no obvious factor bases. The second, related difficulty is that decomposing an element
as in (1) or (2) is really not straightforward. In [31], Semaev proposes the first efficient way to find such
decomposition, yet, his approach could not work for lack of an adequate factor base.

2.1 The versions of Gaudry and Diem

In [10, 18], Gaudry and Diem propose to apply an index calculus method in the group of rational points of
elliptic curves defined over small degree extension fields. To do so, they combine ideas from Semaev’s index
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calculus definition and Weil descent attack, to get a multivariate polynomial system that one can solve using
Gröbner basis techniques. More precisely, if E is an elliptic curve defined over Fqn , their choice of factor base
is the set of points whose x-coordinate lies in the base field: {P ∈ E(Fqn) : P = (xP , yP ), xP ∈ Fq, yP ∈ Fqn}.
Actually, since this set is invariant under negation, it is possible to consider only one half of it; more precisely,
if E is given in reduced Weierstrass form in characteristic different from 2 or 3, the factor base becomes:

F = {P ∈ E(Fqn) : P = (xP , yP ), xP ∈ Fq, yP ∈ S}

where S is a subset of Fqn such that Fqn = S ∪ (−S) and S ∩ (−S) = {0} (for example, assuming that −1
is not a square in Fqn , we can choose for S the set of quadratic residues together with 0). The same kind of
twofold reduction can also be done for a general equation of E.

To compute the discrete logarithm of Q ∈ 〈P 〉 with an index calculus algorithm, we first need to find
relations, i.e. to decompose combinations of the form R = [a]P or R = [a]P + [b]Q where a, b are random
integers, as sum of points in F . Following Semaev’s idea, Gaudry suggests to consider only relations of the
form:

R = ±P1 ± P2 ± . . .± Pn (3)

where n is the degree of the extension field and Pi ∈ F (1 ≤ i ≤ n). Getting such relations can be
done by using a Weil restriction process. One considers Fqn as Fq[t]/(f(t)) where f(t) is an irreducible
polynomial of degree n over Fq, in order to represent points P = (xP , yP ) ∈ E(Fqn) by 2n coordinates:
xP = x0,P + x1,P t + . . . + xn−1,P t

n−1 and yP = y0,P + y1,P t + . . . + yn−1,P t
n−1. Instead of writing down

an equation with (n + 1)n indeterminates from the decomposition (3), it is rather convenient to use the
Semaev’s summation polynomials to get rid of the yPi

variables. We recall here the definition and properties
of such polynomials.

Proposition 2 Let E be an elliptic curve defined over a field K. The m-th Semaev summation polynomial
is an irreducible symmetric polynomial fm ∈ K[X1, . . . , Xm], of degree 2m−2 in each variable, such that given
P1 = (xP1 , yP1), . . . , Pm = (xPm

, yPm
) ∈ E(K) \ {O}, we have

fm(xP1 , . . . , xPm) = 0⇔ ∃ε1, . . . , εm ∈ {1,−1}, ε1P1 + . . .+ εmPm = O.

These summation polynomials can be effectively computed by induction, see [31] or the appendix. At
this point, we replace (3) by the equivalent equation

fn+1(xP1 , . . . , xPn
, xR) = 0, (4)

using the (n+ 1)-th summation polynomial fn+1 ∈ Fqn [X1, . . . , Xn+1]. The unknowns xP1 , . . . , xPn
actually

lie in Fq, so if we sort (4) according to powers of t, we obtain
∑n−1

i=0 ϕi(xP1 , . . . , xPn
) ti = 0 where each

ϕi is a symmetric polynomial over Fq, of degree at most 2n−1 in each variable (and depending on xR, a
and b). This leads to a system of n symmetric polynomials. As advised by Gaudry, it can be written as a
system of polynomials of total degree 2n−1 in terms of the elementary symmetric functions e1, . . . , en of the
variables xP1 , . . . , xPn . Given the (n + 1)-th summation polynomial, writing down such a system is almost
immediate, but solving it is much more complicated. An efficient way to solve this multivariate polynomial
system is to compute a reduced Gröbner basis for the lexicographic order. This yields a univariate polynomial
whose degree is generically 2n(n−1) in this case. Unfortunately, even the best known algorithms [14–16] have
complexity at least polynomial in 2n(n−1), which renders this attack unfeasible for n ≥ 5 on current personal
computers.

Once we get enough equations like (3), we proceed to the linear algebra step. After collecting k > #F '
q/2 distinct (independent) relations of the form:

[ai]P =
N∑

j=1

[ci,j ]Pj , where N = #F , ci,j ∈ {0; 1;−1} and
N∑

j=1

|ci,j | = n,
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we get a vector A = (ai)1≤i≤k and a matrix M = (ci,j) whose right-kernel is trivial and which is very sparse
since it has only n entries per row. The equation MX = A has thus a unique solution in Z/ord(P )Z, which
yields the discrete logarithms of the factor base elements. A single decomposition of [a]P + [b]Q with b 6= 0
then suffices to obtain the logarithm of Q.

Complexity estimate of Gaudry and Diem’s algorithm

The first main step of the algorithm consists of collecting around #F ' q/2 relations of the form (3) to build
the matrix M . The (n+1)-th summation polynomial can be determined once for all using Poly(e(n+1)2 log q)
operations for a fixed elliptic curve [10]. The representation of this summation polynomial in terms of
elementary symmetric functions can be done by using Gröbner elimination techniques for example, we refer
to section 3 for improvements of this computation. The probability of finding one decomposition of a point
R ∈ E(Fqn) is approximately

#(F ∪ −F)n/Sn

#E(Fqn)
' qn

n!
1
qn

=
1
n!
,

and the cost of checking if the point R is actually decomposable in the factor base, noted c(n, q), is the cost
of the resolution of a multivariate polynomial system of n equations defined over Fq with n variables of total
degree 2n−1. As we need at least #F relations, the total complexity of the first step is about n! c(n, q) q/2.

The estimation of the cost c(n, q) is not straightforward as it thoroughly depends on the algorithm used.
Following Diem’s analysis [10], the polynomial system considered is generically of dimension 0 since it has a
finite number of solutions over Fq, and using resultant techniques we get an upper bound for c(n, q):

c(n, q) ≤ Poly(n! 2n(n−1) log q).

The sparse linear algebra step can then be done in a time of Õ(nq2) with Lanczos or Wiedemann’s
algorithm [8]. However, in order to improve the complexity of the algorithm, Gaudry suggests to rebalance
the matrix-building cost against the linear algebra cost using “large primes” techniques adapted from [19]
and [36] (see [18] for more details). By doing so, he needs to collect approximately q2−2/n relations instead
of q. The cost of the first main step becomes thus n! c(n, q) q2−2/n. By contrast, the cost of the linear algebra
step is reduced to Õ(n q2−2/n), which is negligible compared to the previous step. As a result, the elliptic
curve discrete logarithm problem over Fqn for fixed n can be solved in an expected time of Õ(q2−2/n), but
the hidden constant grows extremely fast with n. A complete complexity estimate using Diem’s bound is:

n!Poly(n! 2n(n−1) log q) q2−2/n.

2.2 Our version

The bad behaviour (over-exponential) in n occurring in the complexity of Gaudry and Diem’s algorithm
remains a serious drawback and makes their approach practical only for very small extension degrees, namely
n = 3 or 4. Since the cost of the multivariate system resolution heavily depends on the degree of the
summation polynomial, the complexity can be considerably improved by considering only decompositions
of combinations R = [a]P or R = [a]P + [b]Q as sum of (n − 1) points in F , instead of n points as in [10,
18]. Even though we are lowering the probability of getting such a decomposition when q grows, the gain is
sufficient to make this approach realistic for n = 5.

We can solve the equation:
[a]P + [b]Q = ±P1 ± . . .± Pn−1, (5)
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where a and b are random integers and the Pi belong to F , in the same way as explained in the previous sec-
tion. The differences are that only the n-th summation polynomial is involved, and that the resulting system
of n polynomials is in (n− 1) variables and of total degree only 2n−2. Since this system is overdetermined,
its resolution is greatly sped up, as compared to the previous case. The trade-off is that it is less probable to
find a decomposition. More precisely, the probability that a given point R decomposes into the factor base
is about

#(F ∪ −F)n−1/Sn−1

#E(Fqn)
= O

q→∞

(
1

q(n− 1)!

)
.

As mentioned, the cost of trying to find this decomposition, noted c̃(n, q), is reduced to the cost of the
resolution of an overdetermined multivariate polynomial system of n equations with (n−1) variables of total
degree 2n−2. Consequently, the complexity of the relation search step becomes (n− 1)! c̃(n, q) q2/2.

The value of c̃(n, q) has to be compared to the cost c(n − 1, q): clearly we have c̃(n, q) < c(n − 1, q).
Indeed, solving a system of n equations with (n− 1) variables of degree 2n−2 can be achieved by solving the
system consisting of the first (n − 1) equations, and by checking the compability of the solutions with the
last equation. With such an upper bound of c̃(n, q), we obtain the complexity for the first collecting step of

O
(

(n− 1)! q2Poly((n− 1)! 2(n−1)(n−2) log q)
)

(6)

The linear algebra step has a complexity of Õ(nq2), which is negligible compared to the first step. Hence
the total complexity of the algorithm is given by (6). We emphasize that because of the q2 factor in the
complexity, Pollard’s rho or other generic methods remain faster than our variant for n ≤ 4. Thus our
approach is actually relevant only for n ≥ 5. On the other hand, with estimate (6) it is asymptotically faster
than generic methods as soon as n ≤ c log q for some constant c.

However, the resultant method yielding (6) is not optimal. A much faster way of solving the overde-
termined polynomial system is to compute a Gröbner basis of the corresponding zero-dimensional ideal.
Generically, this ideal is the whole polynomial ring and the corresponding set of solutions is empty. Ex-
ceptionally, i.e. when the decomposition exists, the set of solutions contains a very small number of points
(a single point in most cases), and this can be found directly by using a degree-reverse-lexicographic order
Gröbner basis. This is in stark contrast with the situation in Gaudry and Diem’s algorithm, where the solu-
tion set generically contains 2n(n−1) points although most of them lie in an extension of Fq. In their setting,
the computation of a degrevlex Gröbner basis is not sufficient to solve the system; an elimination order basis
is needed instead, whose computation (using for instance FGLM [16]) has a rather important cost.

In order to derive effective upper bounds for the complexity of a Gröbner basis computation, it is necessary
to make some additional hypotheses on a zero-dimensional system {f1, . . . , fm}. For instance, one can assume
that the sequence {f1, . . . , fm} is semi-regular [2, 3] or that the set of solutions of the homogeneized system
has no positive dimension component at infinity [24]. These properties hold generically and have been verified
in all our experiments with systems arising from (5). They imply that the maximum degree of polynomials
occurring during the computation of the Gröbner basis is bounded by the degree of regularity dreg of the
homogeneized system, which is itself smaller than the Macaulay bound

∑m
i=1(deg fi − 1) + 1. Using the fact

that the system in our variant is composed of n polynomials of degree 2n−2 in n−1 variables, we obtain that
dreg ≤ n2n−2− n+ 1. The standard algorithms for Gröbner bases (e.g. Buchberger [7], Faugère’s F4 and F5
[14, 15]) can be reduced to the computation of the row echelon form of the dreg-Macaulay matrix (cf [24]),

which has in our case at most
(
n− 1 + dreg

dreg

)
columns and a smaller number of lines. Using fast reduction

techniques, we obtain the following bound:

c̃(n, q) = Õ

((
n− 1 + dreg

dreg

)ω)
= Õ

((
2(n−1)(n−2)en n−1/2

)ω)
,

where ω is the exponent in the complexity of matrix multiplication. This directly implies our main theorem:
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Theorem 1 With the above assumptions, the complexity of our algorithm is

Õ
(

(n− 1)!
(

2(n−1)(n−2)en n−1/2
)ω

q2
)

(7)

In the same spirit, we can also try to sharpen the estimate of the complexity of Gaudry and Diem’s
algorithm. However, since ω < 3, we find that the cost of the degrevlex Gröbner basis computation is
dominated by the cost of the ordering change, whose complexity is in O

(
(2n(n−1))3

)
. An easy computation

then shows that our approach is asymptotically faster, provided n ≥ c′ 3
√

log q for some constant c′.

2.3 Comparison with the hybrid approach

We have seen that the main difficulty in Gaudry and Diem’s algorithm is the resolution of the polynomial
system. Recently, Bettale et al. [4] have proposed a hybrid approach for solving such systems: the idea is
to find a solution by exhaustive search on some variables and Gröbner basis computations of the modified
systems where the selected variables have been specialized (i.e. evaluated). It is thus a trade-off between
exhaustive search and Gröbner basis techniques. A natural choice here would be to specialize (or guess) one
variable. The exhaustive search multiplies by q the number of polynomial systems, but these systems now
consist of n equations in n − 1 variables. At first sight, this seems quite similar to our version; however,
the total degree of the equations in this hybrid approach is 2n−1 whereas it is only 2n−2 in our case. The
following chart summarizes the number of multivariate systems to solve together with their parameters, in
order to find one relation in E(Fqn). It shows that our version provides a better trade-off between the number
of systems to solve and their complexity than the hybrid approach.

method average number
of systems

number of
equations

number of
variables total degree

Gaudry-Diem n! n n 2n−1

Gaudry-Diem with
hybrid approach n! q n n− 1 2n−1

this work (n− 1)! q n n− 1 2n−2

2.4 Application to Fq5

The approach of Gaudry and Diem, while theoretically interesting, turns out to be impracticable on Fqn

as soon as n ≥ 5. Not only is the computation of the 6-th summation polynomial problematic (cf. §3), but
also, the fact that the system arising from (4) has generically 25(5−1) ' 106 solutions in Fq5 renders its
resolution very cumbersome. Indeed, the complexity of the resolution (e.g. by using FGLM to obtain a lex
order Gröbner basis) depends of the degree of the ideal generated by the equations, which is generically
2n(n−1). A natural way of decreasing this degree would be to add the field equations eq

i − ei, but clearly this
is not practical for large values of q. In particular, we have not been able to successfully run one complete
relation search with their method, as the requested memory exceeded the capacity of our personal computer.

Nonetheless, using our algorithm and our own implementation of the F4 variant, we are able to check
and if necessary compute a decomposition over Fp5 with |p|2 = 32 bits in about 8.5 sec on a 2.6 GHz Intel
Core 2 Duo processor. Needless to say, this is still much too slow to yield in a reasonable time the solution
of the ECDLP over fields of size compatible with current levels of security. However, our approach provides
an efficient attack of non-standard problems such as the oracle-assisted static Diffie-Hellman problem, as
explained in section 5.
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3 Computing symmetrized summation polynomials

The main difficulty of the previously investigated algorithms is the construction of relations of the form (3) or
(5). Semaev’s summation polynomials were first proposed in [31] to solve, or at least, to palliate this difficulty,
allowing us to reduce this problem to the resolution of the polynomial equation fm(xP1 , . . . , xPm−1 , xR) = 0,
where xP1 , . . . , xPm−1 are the unknowns. The m-th polynomial fm is computed only once and is evaluated
in xR for each relation search. As mentioned above, it is more efficient to express this equation in terms of
the elementary symmetric functions of the unknowns before the resolution of the system. This symmetrizing
operation greatly reduces the total degree of the system, and improves a lot its resolution by e.g. Gröbner
techniques. It can be done once for all at the beginning of the relation search.

We propose two distinct improvements: both consider a direct computation of the symmetrized sum-
mation’s polynomials, instead of rewriting the equation fm(xP1 , . . . , xPm−1 , xR) = 0 in terms of elementary
symmetric polynomials after the computation of Semaev’s polynomials, as in [18]. These improvements re-
duce the computation time by a factor 10. Since these developments are not central to this article, the details
will be given in appendix A; we only sketch here the main ideas.

Recall that Semaev’s summation polynomials are defined recursively; each inductive step actually consists
of a resultant computation. Our first improvement is to partially symmetrize after each step: it has the double
benefit of reducing the size of the intermediate polynomials and the cost of the final symmetrization, by
distributing it between the different steps. In our second improvement, we show, using principal divisors and
Miller’s technique, that P1 +P2 + . . .+Pm = O if and only if the polynomial

∏
(X−xPi) has a specific shape.

This condition is algebraically equivalent to the vanishing of the m-th Semaev’s summation polynomial,
whose symmetrized expression can be directly recovered using elimination theory. Thus, the computation of
resultants and the symmetrization are replaced by an elimination order Gröbner basis computation.

4 An F4-like algorithm without reduction to zero

An efficient way to solve the multivariate polynomial system coming from (3) or (5) is to use Gröbner basis
tools. The best known algorithms for constructing Gröbner bases are Faugère’s F4 and F5 [14, 15], which
are improvements of the classical Buchberger’s algorithm. The second one, F5, is considered as the most
efficient, since it includes a criterion to eliminate a priori almost all critical pairs that eventually reduce
to zero. This criterion is based on the concept of “signature” of a polynomial; the main drawback is that
many reductions are forbidden because they do not respect signature compatibility conditions. Hence, the
polynomials considered in the course of the F5 algorithm are mostly “top-reduced” but their tails are left
almost unreduced; this increases significantly the complexity of the remaining pairs’ reduction. Furthermore,
F5 generates many “redundant” polynomials, i.e. which are not members of a minimal Gröbner basis, but
cannot be discarded for signature reasons [12]. The total number of computed critical pairs thus remains
relatively important, at least compared to what could be expected from the F4 algorithm if all critical pairs
reducing to zero were removed. These drawbacks are especially significant for overdetermined systems such
as those we are considering. As mentioned by Faugère in [15], this is a consequence of the incremental nature
of the F5 algorithm. Indeed, to determine a Gröbner basis of an ideal generated by m polynomials, F5 starts
by computing a basis of the ideal generated by the first m− 1 polynomials. Clearly, the additional equation
of the overdetermined system cannot provide any speed-up at this point. Moreover, in our case, since the
systems considered during the relation search always have the same shape, it is possible to extract from
a precomputation the knowledge of the relevant critical pairs and to remove the pairs that lead to zero
reductions. When such a precomputation is accessible, there is no reason to use F5 instead of F4.

Recall that during the course of F4 algorithm, a queue of yet untreated critical pairs is maintained.
At each iteration of the main loop, some pairs are selected from this queue (according to some predefined



Title Suppressed Due to Excessive Length 9

strategy, usually all pairs having the smallest lcm total degree) and treated, that is, their S-polynomials
are computed and reduced simultaneously using linear algebra tools and former computations. The queue is
then updated with the critical pairs involving the resulting new generators and satisfying the first and the
second Buchberger’s criteria [7, 20]. Here is a quick outline of the method we used for our computations:
1. For precomputation purposes, run a standard F4 algorithm on the first system, with the following

modifications:
– At each iteration, store the list of all selected critical pairs.
– Each time there is a reduction to zero, remove from the stored list the critical pair that leads to the

reduction.
2. For each subsequent system, run a F4 computation with the following modifications:

– Do not maintain nor update a queue of untreated pairs.
– At each iteration, instead of selecting pairs from the queue, pick directly from the previously stored

list the relevant pairs.
As an illustration of this approach we give some examples of the speed gain it provides on Fp5 , using the

equations generated from the fifth summation polynomial. The system to solve is composed of 5 equations
defined over Fp of total degree 8 in 4 variables. We run a degrevlex Gröbner basis computation of the
corresponding ideal over three prime fields of size 16, 25 and 32 bits. To be fair, we compare our variant F4’
with an implementation of F4 which uses the same primitives and structures (in language C), and also with
the proprietary software Magma (V2.15-15) whose implementation is probably the best publicly available
for the considered finite fields. All tests are performed on a 2.6 GHz Intel Core 2 Duo processor, the times
are given in seconds.

F4 (Magma) F4 F4’
|p|2 = 16 9.600 9.683 3.979
|p|2 = 25 119.1 17.01 5.002
|p|2 = 32 1046 24.43 8.496

The F4’ algorithm requires a single precomputation of 11.31 sec to generate the list of relevant pairs. The
above timings show that this overhead is largely compensated as soon as there are more than two subsequent
computations. We emphasize that this precomputed list of relevant pairs is the same for the three cases
|p|2 = 16, 25 or 32 bits. In truth, for increased efficiency, this list was generated using an even smaller
characteristic (|p|2 = 8). We have also solved this system with our own implementation of the F5 algorithm3.
The size of the Gröbner basis computed by F5 at the last step (before minimalization) is surprisingly large:
it contains 17249 labeled polynomials whereas both versions of F4 never build more than 2789 polynomials
at once, and construct bases containing at most 329 generators. Note that these figures do not depend on the
implementation’s details. The large number of polynomials that F5 computes has obvious consequences on
its performances; in particular, the timings of F5 that we have obtained for this system are much worse than
those of F4 or its variants. This shows that F5 as described in [15] is unsuitable for these specific systems.

5 Application to a practical oracle-assisted static Diffie-Hellman algorithm

Semaev’s idea of decomposing points of E(Fqn) into a well-suited factor base leads naturally to an oracle-
assisted resolution of the SDHP, similar to the finite field SDHP algorithm presented in [21]. We first recall
here the definition of oracle-assisted SDHP from [6]:

Definition 3 Let G be a finite group of order |G| and P,Q ∈ G such that Q = [d]P where d ∈ [1, |G| − 1] is
a secret integer. An algorithm A is said to solve the SDHP in G if, given P,Q, and a challenge X ∈ G, it
3 At the present time, we have found no public implementation of F5 which achieves the computation of the complete

Gröbner basis in a reasonable time.
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outputs [d]X ∈ G.
The SDHP-solving algorithm A is said to be oracle-assisted if, during a learning phase, it can make any
number of queries X1, . . . , Xl to an oracle that outputs [d]X1, . . . , [d]Xl, after which A is given a previously
unseen challenge X and outputs [d]X.

Generally, the ability to decompose points into a factor base F = {P1, . . . , Pl} gives the following oracle-
assisted algorithm:
– learning phase: ask the oracle to compute Qi = [d]Pi for 1 ≤ i ≤ l,
– decompose a challenge X as X =

∑
i[ci]Pi and answer Y =

∑
i[ci]Qi.

This methodology directly applies to the case G = E(Fqn) with the factor base F = {P ∈ E(Fqn) : P =
(xP , yP ), xP ∈ Fq, yP ∈ S}. The only minor difficulty is that a small fraction of points actually decompose
(1 in n! or q (n− 1)! depending of the details). However, we can use a simple variation of the descent step to
circumvent this difficulty:
1. learning phase: ask the oracle to compute Q = [d]P for each P ∈ F
2. modified descent: given a challenge X, pick a random integer r coprime to the order of G and compute
Xr = [r]X

3. check if Xr can be written as a sum of m points of F : Xr =
∑m

i=1 εiPi, with εi ∈ {−1; 1}
4. if Xr is not decomposable, go back to step 2; else output Y = [s] (

∑m
i=1 εiQi) where s = r−1 mod |G|.

It should be noted that the same techniques can also be used to solve other variants of SDHP, such
as the “Delayed Target” Discrete Logarithm or Diffie-Hellman problem (DTDLP and DTDHP) described
in [23]. In practice, we have seen that, on a personal computer, we can only decompose a chosen point into
at most four points of the factor base. If we are working with a finite field K whose size is approximately b
bits, then assuming K is a degree 4 extension field, we obtain a complexity of O(2b/4) oracle calls plus the
decomposition cost of 4!c(4, 2b/4). On the other hand, assuming K is a degree 5 extension field, the complexity
becomes O(2b/5) oracle calls plus the decomposition cost of 4!2b/5c̃(5, 2b/5). For practical applications, oracle
queries are usually the limiting factor. As a consequence, for a given field size, the oracle-assisted elliptic
curve SDHP is less secure over degree 5 than over degree 4 extension fields.

To our knowledge, the only other known method of solving the SDHP over a general elliptic curve consists
in solving the underlying discrete logarithm problem, i.e. computing d given P and Q = [d]P . A state-of-the-
art attack of the Certicom ECC2K-130 challenge is currently underway [1] and is expected to solve the DLP
on a Koblitz elliptic curve defined over F2131 in about one year with 3000 3GHz Core 2 CPUs. Since many
specific characteristic 2 speed-ups are not available for finite fields of the form Fq5 (with q a prime power),
generic discrete logarithm computations should be slightly slower on a random curve defined over Fq5 where
|q5|2 ≈ 130, but still several orders of magnitude faster than with our approach. However, by using index
calculus to directly solve the SDHP on such a curve, we estimate the computation to a single month using
the same 3000 3GHz Core 2 CPUs. This computation requires approximately 225 ' 3.3× 107 oracle queries.

6 Conclusion

In this article, we have shown that considering decomposition of points on E(Fqn) as sums of n − 1 points
improves the index calculus proposed by [10, 18], when n ≥ 5 and log q ≤ O(n3). The key point of our
approach is that such decompositions lead to overdetermined polynomial systems, which are easier to solve
than the systems arising from Gaudry and Diem’s original version. This resolution can be greatly sped up
by using our modified Gröbner basis computation algorithm, which takes advantage of the common shape
of the systems and is therefore faster than F4 and F5. Note that our “F4-like” algorithm may be applied to
many other problems, as soon as one has to compute Gröbner bases of several same-shape systems.
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The practicality of our algorithm is still too large to seriously threaten ECDLP-based cryptosystems with
the current cryptographic key sizes. However, we further illustrate the weakness of elliptic curves defined over
small degree extension fields by providing an efficient way of solving oracle-assisted Diffie-Hellman problems.
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A Symmetrized summation polynomials

In this appendix, we detail the two methods used to compute the symmetrized summation polynomials, as
mentioned in section 3. The goal is to write the Semaev’s summation polynomials in terms of the elementary
symmetric functions of the unknowns

e1 =
∑

i

xPi
, e2 =

∑
i<j

xPi
xPj

, . . . , em−1 =
∏

i

xPi
.

The first method consists of symmetrizing after each resultant computation and is summarized by the
following proposition:

Proposition 4 Let E be an elliptic curve defined over a field K of characteristic different from 2 or 3, with
reduced Weierstrass equation y2 = x3 + ax+ b. The symmetrized summation polynomials are determined by
the following induction. The initial value for n = 3 is given by

f̃3(e1,2 , e2,2 , X3) =
(
e21,2 − 4e2,2

)
X2

3 − 2 (e1,2(e2,2 + a) + 2b)X3 + (e2,2 − a)2 − 4b e1,2

and for m ≥ 3 by

f̃m+1(e1,m , . . . , em,m , Xm+1) = Symm

(
ResY

(
f̃m(e1,m−1, . . . , em−1,m−1, Y ), f3(e1,1, Xm+1, Y )

))
,

where
∗ er,n is the r-th elementary symmetric polynomial in variables X1, . . . , Xn,
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∗ f3(X1, X2, X3) = (X1 −X2)2X2
3 − 2 ((X1 +X2)(X1X2 + a) + 2b)X3 + (X1X2 − a)2 − 4b(X1 + X2) is

the third Semaev’s summation polynomial,
∗ Symm denotes the operation of rewriting a partially symmetrized polynomial in terms of elementary
symmetric functions 

e1,m = e1,1 + e1,m−1

e2,m = e1,1e1,m−1 + e2,m−1

...
em−1,m = e1,1em−2,m + em−1,m−1

em,m = e1,1em−1,m−1

Obviously it is also possible to define f̃m from resultants of f̃m−j and f̃j+2 for 1 ≤ j ≤ m− 3, as in [31].
This has the advantage of reducing the number of resultant computations, but increases the complexity of
the symmetrization step. In our context, since m is small (m ≤ 6), the approach of Proposition 4 is the
fastest.

We now detail the second method for the computation of the symmetrized summation polynomials.
Let E be an elliptic curve of equation y2 = x3 + ax + b defined over K of characteristic different from
2 or 3, and let P1, . . . , Pm ∈ E(K) be such that P1 + . . . + Pm = O. We consider the principal divisor
D = (P1) + . . . + (Pm) −m(O) ∈ Div0

K(E). Up to a constant, there exists a unique function gm ∈ K(E)
such that D = div(gm) (cf. [34] Corollary 3.5). Same techniques as the ones used in Miller’s algorithm [26]
enable us to compute recursively the function gm.

Let li(X,Y ) = 0 (1 ≤ i ≤ m − 1) be the equations of the lines passing through P1 + . . . + Pi and Pi+1

and vi(X,Y ) = 0 (1 ≤ i ≤ m − 2) the equations of the vertical lines passing through P1 + . . . + Pi+1, then
we have

gm(X,Y ) =
l1 . . . lm−1

v1 . . . vm−2
(X,Y ).

An easy induction shows that
gm(X,Y ) = gm,1(X) + Y gm,2(X) (8)

where gm,1 and gm,2 are two polynomials of degree lower than dm,1 and dm,2 respectively:

dm,1 =

{
m/2 if m is even
(m− 1)/2 if m is odd

and dm,2 =

{
(m− 4)/2 if m is even
(m− 3)/2 if m is odd

Note that the function gm is uniquely determined if the equations of li and vi are normalized at the point
at infinity. The intersection between the curve (gm = 0) and E is exactly the set of points Pi, 1 ≤ i ≤ m,
thus the following proposition is quite immediate:

Proposition 5 Let E be an elliptic curve of equation y2 = x3+ax+b defined over a field K of characteristic
different from 2 or 3. Let P1, . . . , Pm ∈ E(K) be such that P1 + . . . + Pm = O and gm,1 and gm,2 be the
polynomials given by equation (8). Then we have gm,1(x)2− gm,2(x)2(x3 + ax+ b) = 0 if and only if x is the
x-coordinate of one of the points Pi.
Conversely, if gm,1 and gm,2 are two arbitrary polynomials in K[X] with degree dm,1 and dm,2, then the roots
in K of Fm(X) = gm,1(X)2 − (X3 + aX + b) gm,2(X)2, counted with multiplicity, are the x-coordinates of
points Q1, . . . , Qm ∈ E(K) such that Q1 + . . .+Qm = O.

The second assertion comes from the fact that in K(E), we have Fm = (gm,1+Y gm,2)(gm,1−Y gm,2). Since
deg(Fm) = m, Fm has exactly m roots counted with multiplicity over K, each of which is the x-coordinate
of two opposite points ±Qi ∈ E(K). Up to a change of sign, we can assume that Qi is a zero of gm,1 +Y gm,2
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(and so −Qi is a zero of the second factor gm,1 − Y gm,2). Thus, the principal divisor Div(gm,1 + Y gm,2) is
equal to (Q1) + . . .+ (Qm)−m(O), which implies Q1 + . . .+Qm = O.

We can now use this proposition to construct the symmetrized summation polynomials. Let A =
K[α0, . . . , αdm,1 , β0, . . . , βdm,2 , xP1 , . . . , xPm

]. We define the following elements of A[X]:

hm,1(X) =
dm,1∑
i=0

αiX
i, hm,2(X) = Xdm,2 +

dm,2−1∑
i=0

βiX
i,

Fm(X) = hm,1(X)2 − (X3 + aX + b)hm,2(X)2

Finally, let I be the ideal of A generated by Fm(xP1), . . . , Fm(xPm
). We can easily find a different set of

generators of I by identifying the coefficients of Fm with the elementary symmetric functions e1, . . . , em of
the variables xP1 , . . . , xPm , and consider the result as an ideal J of K[α0, . . . , αdm,1 , β0, . . . , βdm,2 , e1, . . . , em].
Elimination theory (cf. [9]) allows to compute efficiently (e.g. with appropriate Gröbner bases) a set of gener-
ators of the ideal J ′ = J∩K[e1, . . . , em]. According to the second part of Proposition 5, a m-tuple (e1, . . . , em)
belongs to the algebraic set V(J ′) if and only if the roots of the polynomial Tm +

∑m
i=1(−1)ieiT

m−i are the
x-coordinates of points of E(K) whose sum is the point at infinity O. Actually, using Semaev’s results, this
elimination ideal J ′ is principal, generated by the m-th symmetrized summation polynomial. Hence, this
elimination computes the m-th summation polynomial directly in terms of e1, . . . , em. Note that with this
approach, it is also possible to compute directly the partially symmetrized polynomial f̃m.

A worked example

For m = 5, following the previous construction, we obtain

F5(X) = (α2X
2 + α1X + α0)2 − (X3 + aX + b)(X + β0)2

with a, b ∈ K. By identifying the coefficients of this polynomial with the elementary symmetric polynomials
e1, . . . , e5 of the variables xP1 , . . . , xP4 , xP5 , we deduce the polynomial system :

e1 = α2
2 − 2β0

e2 = β2
0 + a− 2α1α2

e3 = 2α0α2 + α2
1

e4 = aβ2
0 + 2bβ0 − 2α0α1

e5 = α2
0 − bβ2

0

and using a Gröbner basis computation with an elimination order, we obtain the fifth summation polynomial
f5 directly in terms of e1, . . . , e5.

Some comparisons

Here we give a comparison of computer times between the classical computation using resultants followed by
a final symmetrization and our two methods. In all cases, we have used the software Magma (V2.16-4) [5] on
a 3.6 GHz Intel Pentium D processor ; the symmetrizations have been done via an elimination order Gröbner
basis computation. In view of the applications we have in mind, we chose to compute the 5-th symmetrized
summation polynomial on an extension field Fp5 , p prime.
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log2(p) resultant + symmetrization 1rst method 2nd method
8 2.55 + 15.28 = 17.83 sec 1.64 sec 2.75 sec
16 2.61 + 15.45 = 18.06 sec 1.82 sec 2.86 sec
32 12.65 + 31.77 = 44.42 sec 5.09 sec 14.37 sec

We also tried to perform the same computations for the 6-th symmetrized summation polynomial. Unfor-
tunately, in this case, both resultant and Gröbner based computations exceeded the capacity of our personal
computer. However, note that we were able to obtain with our first method (partially symmetrized resul-
tants) the 6-th symmetrized summation polynomial over Fp6 (|p|2 = 8), for a fixed value of the last variable
x6, in less than 3 min, expressed in the variables e1,5, . . . , e5,5. This means that, when using a decomposition
into 5 points of the factor base, it would be possible to perform this computation, if we are willing to pay
the price of redoing it for each relation search instead of precomputing it at the beginning.


