
Identity-Based Encryption Secure Against Selective Opening Attack

Mihir Bellare1, Brent Waters2, and Scott Yilek3

1 University of California at San Diego
mihir@cs.ucsd.edu

2 University of Texas at Austin
bwaters@cs.utexas.edu

3 University of St. Thomas
syilek@stthomas.edu

Abstract. We present the first Identity-Based Encryption (IBE) schemes that are proven secure against
selective opening attack (SOA). This means that if an adversary, given a vector of ciphertexts, adaptively
corrupts some fraction of the senders, exposing not only their messages but also their coins, the privacy
of the unopened messages is guaranteed. Achieving security against such attacks is well-known to be
challenging and was only recently solved in the PKE case, but the techniques used there do not solve
the IBE case. Our solutions illustrate two techniques to achieving SOA-secure IBE, one based on the
Boyen-Waters anonymous IBE and the other based on Waters’ dual-system approach.

Keywords: Identity-based encryption, pairings.

1 Introduction

Security against selective-opening attack (SOA) is arguably the most paradoxical and vexing open
question in the theory of encryption. Recently (and 10 years after the problem was identified), we
have seen solutions [2]. These and followups [24, 22], however, have been for the case of Public-Key
Encryption (PKE). Another domain where the problem arises, and is important for applications, is
Identity-Based Encryption (IBE). The techniques used for PKE do not yield solutions here. (That
SOA-secure IBE remains open and challenging even with SOA-secure PKE achieved is not surprising
since even basic IBE required new approaches compared to PKE and took much longer to achieve [9,
19, 5, 6, 34].) This paper initiates a treatment of IBE secure under SOA, providing definitions of security
and the first solutions. Our solutions do not use random oracles.

Background. A selective-opening attack on a PKE scheme imagines n senders and receivers. Sender
i encrypts a message m[i] under fresh, random coins r[i] and the public key pk[i] of the i-th receiver to
get a ciphertext c[i]. An adversary given the vector c corrupts some subset of the senders and learns not
only their messages but also their coins. SOA-security requires that the remaining, unopened messages
retain their privacy. SOA-security is required when implementing the assumed secure channels in
an adaptively-secure multi-party computation protocol. More pragmatically, it would be required to
distribute shares in a distributed file-system that is using secret-sharing for privacy.

IND-CPA and IND-CCA, widely-accepted as the “right” notions of encryption privacy, are not
known to imply security under SOA. The difficulty of establishing SOA-security stems from the fact
that the adversary gets the coins and also that the messages m[1], . . . ,m[n] may be related. Construc-
tions of SOA secure schemes also remained elusive, the area colored by negative results for commitment
schemes [21, 2, 29]. Finally, Bellare, Hofheinz, and Yilek (BHY) [2] showed a large class of encryption
schemes, which they call lossy [2, 26, 31], are SOA secure. Schemes they show to be lossy include
variants of El Gamal [28], the IND-CPA scheme built from lossy trapdoor functions by Peikert and
Waters [32], and even the original Goldwasser-Micali encryption scheme [23]. Hemenway, Libert, Os-
trovsky and Vergnaud [24] showed that re-randomizable encryption and statistically hiding, two-round
oblivious transfer imply lossy encryption, yielding still more examples of SOA secure PKE schemes
via the lossy-implies-SOA-secure connection of BHY. Fehr, Hofheinz, Kiltz, and Wee (FHKW) [22]
use a deniable encryption [13] approach to achieve CC-SOA (Chosen-Ciphertext SOA) secure PKE.

SOA for IBE. We can adapt the SOA framework to IBE in a natural way. A vector id of adversarially-
chosen target receiver identities replaces the vector pk of public receiver keys. Sender i encrypts
message m[i] under coins r[i] for identity id[i] to get a ciphertext c[i]. As before the adversary, given
c, corrupts a subset of the senders and learns their messages and coins, and SOA-security requires that
the unopened messages are secure. At any time, the adversary can query Extract with any identity
not in the vector id and obtain its decryption key.

There are two elements here, new compared to PKE, that will be central to the technical challenges
in achieving the goal. The first is the Extract oracle, a feature of IBE security formalizations since
the pioneering work of Boneh and Franklin [9], that allows the adversary to obtain the decryption key
of any (non-target) receiver of its choice. The second is that the target identities are chosen by the
adversary. (We will achieve full, rather than selective-id security [15].)

IBE can conveniently replace PKE in applications such as those mentioned above, making its
SOA-security important. Beyond this, we feel that determining whether SOA-secure IBE is possible
is a question of both foundational and technical interest.

Contributions in brief. We provide a simulation-based, semantic security formalization of SOA-
secure IBE. (This means our results do not need to assume conditional re-sampleability of message
spaces, in contrast to some of the results of [2] for IND-style notions.) We provide a general paradigm to
achieve SOA-secure IBE based on IBE schemes that are IND-CPA and have a property we call 1-Sided

1

Scheme Pars Ctxt Keys Enc Dec F/S Assumption

LoR n+ 6 5 5 5 exp 5 pr F DLIN

BBoR 4 2 2 2 exp 2 pr F GSD

Fig. 1. Our 1SPO IND-CPA IBE schemes. These encrypt 1-bit messages. Bit-by-bit encryption yields
SOA-secure IBE schemes encrypting full messages. “Pars” is the size of the public parameters, “Ctxt”
of the ciphertext and “Keys” of the decryption keys, all in group elements, with n the length of
identities. (In practice n = 160 by hashing identities.) “Enc” and “Dec” are the encryption and
decryption costs with “exp” standing for an exponentiation or multi-exponentiation and “pr” for a
pairing. “F/S” indicates whether we get Full or Selective-id security. “GSD” stands for the General
Subgroup Decision assumption.

Public Openability (1SPO). We discuss why obtaining 1SPO IND-CPA IBE schemes without random
oracles is not immediate and then illustrate two ways to do it. The first, adapting the anonymous
IBE scheme of Boyen and Waters [12], yields a SOA-secure IBE scheme based on the DLIN (Decision
Linear) assumption of [7]. The second, using the dual-system approach of [33], yields a SOA-secure
IBE scheme in the Boneh-Boyen style [5] based on a subgroup decision assumption in composite order
groups. Attributes of the schemes are summarized in Figure 1. We now expand on these contributions.

1SPO IBE implies SOA-secure IBE. There are fundamental obstacles to extending BHY’s lossy-
implies-SOA-secure approach, that worked for SOA-secure PKE, to the IBE setting. (Briefly, we can-
not make the encryption undetectably lossy on all challenge identities because the adversary has an
Extract oracle and we wish to achieve full, not selective-id [15] security.) Instead, following FHKY [22],
we return to ideas from non-committing [14] and deniable [13] encryption. We define IBE schemes that
have a property we call one-sided public openability (1SPO) and is an IBE-analogue of a weak form
of deniable PKE [13]. In short, an IBE scheme for 1-bit messages is 1SPO if it is possible, given the
public parameters par, an identity id, and the encryption c of message 1 under par and id, to efficiently
open the encryption, meaning find correctly-distributed randomness r such that encrypting a 1 using
par, id, r results in the ciphertext c. We emphasize that this opening must be done without the aid of
any secret information. Bit-by-bit encryption then results in a scheme that can encrypt long messages.
We show in Theorem 1 that if the starting 1-bit 1SPO scheme is also IND-CPA secure then the con-
structed IBE scheme is SOA-secure. This reduces the task of obtaining SOA-secure IBE schemes to
obtaining IND-CPA secure 1SPO schemes.

Finding 1SPO IBE schemes. Known Random Oracle (RO) model IBE schemes [9, 19] can be
adapted to be 1SPO secure, yielding SOA-secure IBE in the RO model. Achieving it without ROs,
however, turns out not to be straightforward. The natural approach, extending that used for PKE [13,
22], is to build IBE schemes that are what we call 1SIS (1-sided invertibly sampleable). Here, encryp-
tions of 0 to a certain identity would have a certain structure. This structure should be detectable with
the secret key associated to the identity, but not without it, and thus not by an attacker. On the other
hand, encryptions of 1 would be random, but in a special way, namely there is a public procedure that
given an encryption c of a 1 can compute randomness (coins) under which the encryption algorithm
applied to 1 would produce c. Any such scheme is 1SPO. The challenge that emerges is to find 1SIS
IND-CPA IBE schemes. Existing IBE schemes do not have the property, and nor do direct adaptations
work. The Boneh-Boyen approach [5] is probably the most widely used in IBE design. (Waters’ IBE
scheme [34] is one instance.) However, ciphertexts in BB-schemes contain group elements that obey
relations an attacker can test and thus cannot be undetectably replaced with random group elements.

2

We will obtain our first solution by a different approach. Then, however, we will go back to show how
the dual-system approach can be used to make a BB-style scheme work if we use composite order
groups.

The linear scheme. In our “Linear or Random” (LoR) scheme, an encryption of 0 to a given identity,
id, is done using (a modification of) the Boyen-Waters (BW) encryption algorithm [12]. This output
of the encryption will be five group elements that share a certain structure that is only detectable to
a user with the private key for id. To encrypt a 1 we simply choose five random group elements. This,
however, must be done using what we call a publicly invertible process (see below). The main feature
of this encryption scheme is that an encryption of 0 can always be claimed as just five random group
elements, and thus as an encryption of 1. This reveals why we choose to build of the BW anonymous
IBE scheme as opposed to other simpler IBE systems without random oracles. The main feature of the
BW ciphertexts is that they have no detectable structure from an attacker that does not have a private
key for id. In contrast, in BB-style IBE systems [5, 34] the attacker can test for structure between two
group elements in well formed ciphertexts. Therefore we cannot create a secure encryption system
simply by replacing these with random group elements.

We prove LoR is 1SPO directly. We must also, however, prove it is IND-CPA. We adapt techniques
from [12, 3] to do this under the DLIN assumption. The proof technique of [3] allows us to avoid Waters’
artificial abort step [34] thereby resulting in a more efficient reduction.

The dual-system scheme. Waters’ introduced a new approach to IBE called the dual system ap-
proach in which both the challenge ciphertext and keys are replaced in the proof by “semi-functional”
versions [33]. We adapt this approach to get a 1SIS (and thus 1SPO) IND-CPA IBE scheme and
thus a SOA-secure IBE scheme. An interesting feature of the scheme is that ciphertexts have a BB-
form, showing that the dual-system approach can surmount the above-mentioned difficulties in making
BB-style systems 1SIS. We accordingly call the scheme BBoR (BB or Random). In addition this is
interesting because it illustrates a quite different technique and yields a scheme based on a different
assumption (subgroup decision in a composite group, not known to imply or be implied by DLIN in
a prime-order group). As Figure 1 shows, the main pragmatic difference compared to LoR is short
public parameters. (Those of LoR are long due to the Waters’ hash function [34] which is required to
get full security.) Others costs have dropped as well (from 5 to 2) but the group is larger so a closer
analysis would be needed to determine whether this translates to actual efficiency gains.

Our starting points are the dual-system based Lewko-Waters (LW) IBE scheme [27] and its anony-
mous extension by De Caro, Iovino and Persiano (DIP) [17]. We modify these to get a 1SIS scheme
where an encryption of a 0 is BB-ciphertext but in a subgroup while an encryption of a 1 is a pair of
random points in the full group. While extending these schemes we manage simultaneously to make
the assumptions simpler, more natural and fewer. Specifically, all these schemes rely on a pairing
e : G × G → GT where G,GT have composite order N . LW make three different assumptions (num-
bered 1,2,3), the first two being about subgroup decision in G and the third in GT . DIP also make
three assumptions, with the third being quite ad hoc and tailored to the scheme. We eliminate the
third assumption in both cases and unify the rest, formulating what we call the general subgroup
decision assumption, which is only in G, and basing the proof solely on this single assumption.

Publicly invertible sampling. We have said that encryptions of a 1 in our 1SIS schemes are
random group elements. This, however, is not enough. They have to be invertibly sampled. As we
explained above, this means there is a public procedure that given an encryption c of a 1 can compute
randomness (coins) under which the encryption algorithm applied to 1 would produce c. To illustrate
the subtleties of the notion, consider a scheme in which the encryption c of a 1 is computed by picking
an exponent x at random and returning gx where g is a generator of a group G. Although the ciphertext
is random, this is not invertibly sampleable since we cannot recover x from c. Instead, a ciphertext

3

must be sampled “directly” as c←$ G. The difficulty is that whether or not this is possible depends
on the group. In the PKE case, it is possible to stay within simple groups such as Z∗p for prime p,
where such sampling is easy. (Pick a a random integer in the range 1, . . . , p− 1.) In our case, however,
G is a complex group, namely a subgroup of the points on an elliptic curve. We show how to sample
invertibly nonetheless, relying on the structure of the elliptic curve groups in question. Specifically, we
modify some methods used to implement the hash function of the BLS signature scheme [11].

Extensions and remarks. After seeing a preliminary version of our work, Peikert [30] showed that
the lattice-based IBE schemes of [18, 1] adapt to yield 1SPO schemes, whence, by our results, SOA-
secure IBE. Furthermore our second scheme above, as well as some of these lattice schemes, can be
extended to SOA-secure HIBEs. Despite this we remark that we do not achieve CC-SOA (Chosen-
ciphertext SOA) secure IBE which remains an interesting open question. (The BCHK transform [8]
does not work in this setting.) Applying the results of [13] to our 1SPO IBE schemes gives us the first
deniable IBE schemes, which may be of independent interest.

Related work. Canetti, Feige, Goldreich and Naor [14] introduced non-committing encryption
(NCE) to achieve adaptively secure multi-party computation in the computational (as opposed to
secure channels) setting without erasures. In their treatment, NCE is an interactive protocol, and
their definition of security is in the MPC framework. The model allows corruption of both senders
and receivers. They show how to achieve NCE but, viewed as a public-key system, they would have
keys larger than the total number of message bits that may be securely encrypted. Damg̊ard and
Nielsen [20] introduced more efficient schemes but this restriction remained, and Nielsen [29] showed
it was necessary. With partial erasures, more efficient solutions were provided by Canetti, Halevi and
Katz [16].

Dwork, Naor, Reingold and Stockmeyer [21] extracted out a stand-alone notion of committment
secure against selective opening defined directly by a game rather than via the MPC framework.
Corruptions allow the adversary to obtain the committer’s coins along with its message. This was
adapted to public-key encryption in [2], who focused on sender (as opposed to receiver) corruptions
and were then able to obtain solutions based on lossy encryption.

Canetti, Dwork, Naor and Ostrovsky [13] introduced deniable encryption, where a sender may
open a ciphertext to an arbitrary message by providing coins produced by a faking algorithm. The
authors explain that this is stronger than NCE because in the latter only a simulator can open in this
way. A weak form of their requirement is that encryptions of 1 can be opened as encryptions of 0 even
if not vice versa. 1SPO IBE is an IBE analogue of this notion.

Sender versus receiver corruptions. We clarify that our model and results are for adaptive
sender corruptions, not adaptive receiver corruptions. (The latter would correspond to being allowed
to query to Extract identites in the challenge vector id.) Security against adaptive receiver corruptions
seems out of reach of current techniques for PKE let alone for IBE. (Without either erasures or keys
as long as the total number of messages bits ever encrypted.) We do allow receiver corruptions via
the Extract oracle but these are non-adaptive. We view this as retaining (meaning neither weakening
nor strengthening) the guarantees against receiver corruption already provided by the basic definition
of IND-CPA-secure IBE [9]. Our notion, security against adaptive sender and non-adaptive receiver
corruptions, is still very strong.

2 Preliminaries

Notation. We use boldface to denote vectors, i.e., m. For vector m, we let |m| denote the number of
components in the vector. When m[i] ∈ {0, 1}∗, we denote by m[i][j] the jth bit of the ith component
of m, i.e., the jth bit of m[i]. On the other hand, when c[i] is a sequence, we let c[i][j] denote the jth

4

value in the sequence c[i]. We sometimes abuse notation and treat vectors as sets. Specifically, if S is
a set we may write S ∪m to denote S ∪ {m[1]} ∪ {m[2]} If two adversaries A and B have access
to different oracles with the same name (e.g., NewMesg) we sometimes write NewMesgB to mean
B’s version of the oracle. For n ∈ N we denote by [n] the set {1, . . . , n}.

We fix pairing parameters GP = (G,GT , p, e) where G,GT are groups of order prime p and the
map e : G×G→ GT is an efficiently computable non-degenerate bilinear map. We let Texp(G) be the
time to compute an exponentiation in the group G. We let Top(G) be the time to compute a group
operation in G. For any group G, let G∗ denote the generators of G.

Code-Based Games. We use code based games [4] for our security definitions. A game consists of
numerous procedures including an Initialize procedure and a Finalize procedure. When an adversary
A executes with the game, the Initialize procedure is executed first and its outputs are the initial
inputs to adversary A. Then A executes and its oracle queries are answered by the corresponding
procedures of the game. When the adversary halts with some final output, this output is given as
input to the Finalize procedure. The output of the Finalize procedure is then considered the output
of the game. We let GA ⇒ y be the event that game G, when executed with adversary A, has output
y. We abbreviate “GA ⇒ true” by “GA”. We let BD(GA) denote the event that the execution of G
with A sets flag bad, and GD(GA) its complement. The running time of the adversary while playing
the game is considered to be the running time of the adversary while playing the game plus the time
to execute all of the game procedures during the execution.

Randomized Algorithms and Sampling from Groups. We have to model randomized algorithms
carefully and in a particular way to define invertible sampling. We assume that all algorithms have
access to a RNG Rand that is the only source of randomness in the system. On input a positive
integer n, function Rand returns a value uniformly distributed in Zn. We stress that Rand is not
viewed as having an underlying source of coins in the form of bits as in complexity-theoretic/Turing
machine models. Rather, its operation is atomic and its outputs are the coins.

When we write a←$ G we mean that we run i←$ Rand(p), where p = |G|, and let a = gi where g is
a generator of G. However, we also want to use publicly reversible sampling. A publicly reversible (PR)
sampler Sample takes no input and, via access to Rand, outputs a point in G or the failure symbol ⊥.
It has sampling failure probability ζ if the probability that it outputs ⊥ is at most ζ. We require that
Pr[a′ = a | a′ 6= ⊥] = 1/|G| for all a ∈ G, where the probability is over a′←$ Sample.

If (r1, . . . , rs) is a sequence of non-negative integers, we let Sample[r1, . . . , rs] be the result of
running Sample with Rand replaced by the subroutine that returns ri in response to the i-th query
made to it, for 1 ≤ i ≤ s. We require that there is an algorithm Sample−1 which on input a ∈ G outputs
a sequence (r1, . . . , rs) such that Sample[r1, . . . , rs] = a. (Sample−1, as with any other algorithm, has
access to Rand.) Sample−1 also might fail (and output ⊥). We call this the reverse sampling failure
probability and denote it with θ.

Identity-Based Encryption. An Identity-based encryption scheme (IBE) is a tuple of algorithms
Π = (Pg,Kg,Enc,Dec) with identity space IdSp, message space MsgSp, and the following properties.
The parameter generation algorithm Pg takes no input and outputs a public parameter string par
and a master secret key msk. The identity key generation algorithm Kg takes as input the public
parameter string par, the master secret key msk, and an identity id, and outputs a secret key sk for
identity id. The encryption algorithm Enc takes as input the public parameters par, an identity id, and
a message M , and outputs a ciphertext C. Lastly, the decryption algorithm Dec takes as input the
public parameters par, an identity secret key sk, and a ciphertext C, and outputs either a message
M or a failure symbol ⊥. We say that an IBE scheme has completeness error ε if the probability that
Dec(par, sk, id,Enc(par, id,M)) = M is ≥ 1 − ε for all id ∈ IdSp, all M ∈ MsgSp, all (par,msk) ∈ [Pg],
and all sk ∈ [Kg(par,msk, id)], where the probability is taken over the coins used in encryption.

5

proc. Initialize:
(par,msk)←$ Pg ; b←$ {0, 1}
Return par

proc. Extract(id):
Return Kg(par,msk, id)

proc. LR(id,M0,M1): INDCPAΠ

Return Enc(par, id,Mb)

proc. Finalize(b′):
Return (b = b′)

Fig. 2. The IBE IND-CPA Game

A one-bit IBE scheme Π = (Pg,Kg,Enc,Dec) is one with MsgSp = {0, 1}, while an `-bit IBE
scheme has MsgSp = {0, 1}`. We will build `-bit IBE schemes from one-bit IBE schemes as follows.
Given one-bit IBE scheme Π as above, let Π` = (Pg`,Kg`,Enc`,Dec`) be an `-bit IBE scheme defined
as follows: parameter and key generation are unchanged, i.e., Pg` = Pg and Kg` = Kg. The encryption
algorithm Enc`, on input par, id, M ∈ {0, 1}`, outputs Enc(par, id,M [1])‖ . . . ‖Enc(par, id,M [`]), where
M [i] is the ith bit of M . In other words, encryption encrypts each bit separately and concatenates
the resulting ciphertexts. Decryption works in the obvious way: decrypt each ciphertext component
separately to learn individual bits. It is easy to see that if Π has ε completeness error, then the resulting
`-bit scheme has completeness error at most ` · ε.

The standard notion of security for IBE schemes is indistinguishability under chosen plaintext
attack (IND-CPA) [9]. We define the IND-CPA advantage of an IND-CPA adversary A against IBE
scheme Π to be

Advind-cpa
Π (A) = 2 · Pr

[
INDCPAA

Π ⇒ true
]
− 1 ,

where game INDCPA can be found in Figure 2. An IND-CPA adversary interacts with game INDCPA,
querying LR only once and on an identity id∗ ∈ IdSp that is never queried to Extract and on equal
length messages M0,M1 ∈ MsgSp. We note that adversaries may query the same identity id to Extract
multiple times, since key generation is randomized.

We associate to encryption algorithm Enc the set Coins(par,m). This is the set from which Enc
draws its coins when encrypting message m using parameters par. Similarly, we let Coins(par, id, c, 1)
be the set of coins {r | c = Enc(par, id, 1; r)}.

3 Security against Selective Opening Attacks

In this section we formalize SOA security for IBE, closely following the formalizations from [2]. Before
proceeding, we need two definitions. A (k, `)-message sampler is a randomized algorithm M that on
input string α ∈ {0, 1}∗ outputs a vector of messages m such that |m| = k and each m[i] ∈ {0, 1}`. A
relation R is any randomized algorithm that outputs a single bit.

An soa-adversary is one that runs with game IBESOAREAL making one query to NewMesg
before making one query to Corrupt; it may make one or more queries to Extract at any time
during the game. An soa-simulator is an adversary that runs with game IBESOASIM, makes one
query to NewMesg and later makes one query to Corrupt. It makes no Extract queries. We define
the soa-advantage of soa-adversary A against an IBE scheme Π with respect to a (k, `)-message
sampler M, relation R, and soa-simulator S as

Advsoa
Π,k,S,M,R(A) = Pr

[
IBESOAREALAΠ,k,M,R ⇒ 1

]
− Pr

[
IBESOASIMSΠ,k,M,R ⇒ 1

]
.

Discussion. In game IBESOAREAL (shown in Figure 3), the Initialize procedure runs the parameter
generation algorithm and returns the scheme parameters to the adversary. The adversary then runs
with oracles NewMesg, Corrupt, and Extract. The adversary may never query an identity to
Extract that appears in a query to NewMesg.

6

proc. Initialize:
(par,msk)←$ Pg

Return par

proc. Extract(id):
If id ∈ ChID then return ⊥
ExID← ExID ∪ {id}
sk←$ Kg(par,msk, id)
Return sk

proc. NewMesg(id, α):
If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id
m←$M(α)
For i in 1 to k

r[i]←$ Coins(par,m[i])
c[i]← Enc(par, id[i],m[i]; r[i])

Return c

proc. Corrupt(I):
Return r[I], m[I]

proc. Finalize(out):
Return R(m,ChID, I, out)

Fig. 3. Game IBESOAREALΠ,k,M,R.

proc. Initialize:
Return ⊥

proc. NewMesg(id, α):
ChID← ChID ∪ id ; m←$M(α)
Return ⊥

proc. Corrupt(I):
Return m[I]

proc. Finalize(out):
Return R(m,ChID, I, out)

Fig. 4. Game IBESOASIMΠ,k,M,R.

The adversary may query the NewMesg oracle once with a vector of identities id and a string α
that is meant to capture state to pass on to the message sampler. Procedure NewMesg, on input id
and α, samples a vector of messages from the message sampling algorithmM and encrypts the entire
vector using independent coins to the identities specified in id. This means that the ith component of
the resulting ciphertext vector c is Enc(par, id[i],m[i]; r[i]), the encryption of the ith message to the
ith identity with the ith coins.

After querying the NewMesg oracle, the adversary may make one query to Corrupt with a set
of indices I ⊆ [k]. These indices specify which ciphertexts from the vector c returned by NewMesg
the adversary would like opened. The Corrupt procedure returns the messages and randomness used
in NewMesg corresponding to indices in I. Additionally, at any time the adversary may query the
Extract oracle on an identity of its choice and learn a secret key for that identity. We do not allow
the adversary to query Extract on any identity appearing in the vector id queried to NewMesg.

Finally, the adversary halts with output out and the output of the game is the relation R applied
to the message vector m, the set of challenge IDs ChID, the corrupt set I, and the output out.

In game IBESOASIM (shown in Figure 4), the Initialize procedure does nothing and returns
⊥ to the simulator. The simulator then runs with two oracles, NewMesg and Corrupt. On input
an identity vector id and a string α, oracle NewMesg samples a vector m of messages using the
message sampling algorithm M applied to the state string α. Nothing is returned to the simulator.
The simulator is only allowed one NewMesg query. At a later time, the simulator may then make a
single query to oracle Corrupt with a set of indices I and as a result will learn the messages in m
corresponding to I. Finally, the simulator halts with output out and the output of the game is the
relation R applied to the message vector m, the set of challenge IDs ChID, the corrupt set I, and the
output out.

As noted at the end of Section 1, we model adaptive sender corruptions while retaining stan-
dard IBE security against non-adaptive receiver corruptions. (Adaptive receiver corruptions would
correspond to removing the restriction that Extract return ⊥ when queried on a challenge identity.)
Security against adaptive receiver corruptions seems out of reach of current techniques for PKE let
alone IBE.

7

4 Selective Opening Security from One-Sided Publicly Openable IBE

We first formalize the key property we will need to prove SOA security. A perfect one-sided public
(1SP) opener for one-bit IBE scheme Π = (Pg,Kg,Enc,Dec) is an algorithm OpenToOne that takes
input parameters par, identity id, and ciphertext c, and has the following property: for all par ∈ [Pg],
all id ∈ IdSp, every c ∈ [Enc(par, id, 1)], and every r̄ ∈ Coins(par, id, c, 1),

Pr [r←$ OpenToOne(par, id, c) : r = r̄] =
1

|Coins(par, id, c, 1)|
.

We can weaken this definition slightly by considering opening algorithms that can fail with some
probability δ, but in the case of success their output distribution is identical to the actual coin dis-
tribution. This is reflected as for all par ∈ [Pg], all id ∈ IdSp, every c ∈ [Enc(par, id, 1)], and every
r̄ ∈ Coins(par, id, c, 1),

Pr [r←$ OpenToOne(par, id, c) : r = r̄ | r 6= ⊥] =
1

|Coins(par, id, c, 1)|
.

Notice that the probability is only over the coins used by OpenToOne. We call such an OpenToOne
algorithm a δ-1SP opener and we also call an IBE scheme with a δ-1SP opener δ-one-sided publicly
openable (δ-1SPO).

The idea of constructing encryption schemes with such one-sided opening is originally due to
Canetti, Dwork, Naor, and Ostrovsky [13]. They used PKE schemes with this property to build
deniable public-key encryption schemes. To achieve what we call the 1SPO property, they built PKE
schemes from translucent sets with the property that an encryption of a 1 was pseudorandom, while the
encryption of a 0 was perfectly random; it was then always possible to simply claim the encryption of a
1 was random to open to a 0. The secret key allowed one to tell the difference between pseudorandom
and random values, allowing correct decryption. More recently, in independent work, Fehr, Hofheinz,
Kiltz, and Wee [22] used PKE schemes with a 1SPO property as a building block to achieve CCA
SOA public-key encryption security. Of course, both of these works focus on PKE. Our focus, on the
other hand, is on building secure IBE schemes. In the next section we will show how to achieve the
1SPO property in the IBE setting.

From 1SPO to SOA. We now state our main result: IND-CPA 1SPO one-bit IBE schemes lead
to many-bit SOA-secure IBE schemes. Let Π = (Pg,Kg,Enc,Dec) denote a one-bit IBE scheme that
is δ-one sided openable and let Π` = (Pg`,Kg`,Enc`,Dec`) the `-bit IBE scheme built from Π as
described in Section 2.

Theorem 1. Let Π be a one-bit IBE scheme with a δ one-sided opener OpenToOne, and let Π` be
the `-bit scheme built from it. Let k be an integer, A an soa-adversary making at most q queries to
Extract, R a relation, and M a (k, `)-message sampler. Then there exists an soa-simulator S and an
IND-CPA adversary B such that

Advsoa
Π`,k,M,R,S(A) ≤ k` ·Advind-cpa

Π (B) + k` · δ ,

where T(S) = O(T(A) +k` ·T(OpenToOne) + q ·T(Kg`) +k ·T(Enc`) + T(Pg`)) and T(B) = O(T(A) +
T(M) + k` · T(Enc) + k` · T(OpenToOne) + T(R)). ut

We prove the theorem in Appendix B. We briefly sketch the proof. Recall that to show SOA security
we need to be able to create an efficient simulator. Given an soa-adversary A, we can construct a
simulator S that runs A and gives it encryptions of all 0s. At some point A will ask for some of the
ciphertexts to be opened. When this happens, the simulator queries its own Corrupt oracle, learns
the messages it needs to open the ciphertexts to, and proceeds to open bit-by-bit. If it needs to open a
ciphertext component to a 0, it simply gives A the coins it used when originally creating the ciphertext.
If, however, S needs to open a ciphertex to a 1, it uses the scheme’s OpenToOne algorithm to find

8

proc. Initialize:
g, g1, g2←$ G∗ ; a1, a2←$ Zp ; d←$ {0, 1} ; h1 ← ga1

1 ; h2 ← ga2
2

If d = 1 then W = ga1+a2 Else W ←$ G
Return (g, g1, g2, h1, h2,W)

DLING

proc. Finalize(d′):
Return (d = d′)

Fig. 5. The DLIN game for the decisional linear assumption.

the coins. The simulator then outputs the same output as A. In short, the IND-CPA security of the
scheme will allow us to argue that the simulator is successful. To prove this, we need to do a hybrid
over the ` individual components of the k messages sampled from M, where in the ith hybrid game
the first i bits sampled from M are ignored and 0s are encrypted in their place. Thus, in the first
hybrid game all bits sampled fromM are accurately encrypted, while in the last hybrid game only 0s
are encrypted. This hybrid causes the loss of a factor k · ` in the theorem.

5 A First Attempt

As a first attempt at constructing a 1SPO IBE scheme, we try to adapt techniques from deniable
PKE [13], in particular the idea that an encryption of a 0 should be “pseudorandom” while the
encryption of a 1 is “random”. The decryption algorithm should then be able to use secret information
to distinguish between the cases.

A typical IBE scheme has ciphertexts consisting of a tuple of group elements with some structure.
To make such a scheme 1SPO, a natural idea is to make the honestly-generated ciphertext tuple the
encryption of a 0, and a tuple of random group elements an encryption of a 1. The secret key for an
identity then contains information which helps test for this structure. Since a tuple of random group
elements is unlikely to give the same structure as an honestly-generated ciphertext, decryption should
be possible. Let us see what happens if we apply this idea to the IBE scheme of Boneh and Boyen
(BB) [5], which has been the basis for many other IBE schemes (e.g., the Waters (W) IBE [34]).

Recall in the BB scheme (and its variants) a ciphertext has the form (C1, C2, C3) = (e(g1, g2)s ·M,
gs, H(u, id)s), where different variants define the hash function H differently, g, g1, g2,u are part of the
parameters, and s is chosen randomly by the encryptor. Now, if we follow the ideas described above
for making the scheme 1SPO, encryptions of 0 would be (C,C ′) = (gs, H(u, id)s), while encryptions
of 1 would be a pair of group elements chosen uniformly at random from G×G.

Syntactically the scheme works, but it is unfortunately not IND-CPA secure. The reason is that
distinguishing an encryption of a 0 from an encryption of a 1 is exactly the DDH problem in G. In
the 0 case, the tuple (g,H(u, id), gs, H(u, id)s) is a Diffie-Hellman tuple; in the 1 case, the tuple is just
four random group elements. Since the DDH problem is easy in groups with an efficiently-computable
pairing, this gives us a simple test for whether a ciphertext is the encryption of a 0 or a 1: take (C,C ′)
and output 0 if e(g, C ′) = e(C,H(u, id)) and 1 otherwise.

The fundamental issue is that in the BB scheme, the structure of the ciphertexts can be detected
given only public parameters. The key idea in our two schemes is to destroy any structure that is
publicly detectable.

6 A 1SPO IBE Scheme Based on the Decisional Linear Assumption

The security of our first scheme will rely on the Decisional Linear Assumption [7]. The decisional linear
game DLIN is found in Figure 5. We say the DLIN-advantage of an adversary A against GP is

Advdlin
GP (A) = 2 · Pr

[
DLINA

GP ⇒ true
]
− 1 .

9

Algorithm Pg:
g←$ G∗ ; u←$ Gn+1

t1, t2, t3, t4←$ Z∗p
v1 ← gt1 ; v2 ← gt2 ; v3 ← gt3 ; v4 ← gt4

par← (g,u, v1, v2, v3, v4)
msk← (t1, t2, t3, t4)
Return (par,msk)

Algorithm Kg(par,msk, id):
(g,u, v1, v2, v3, v4)← par
(t1, t2, t3, t4)← msk
r1, r2←$ Zp
d0 ← gr1t1t2+r2t3t4

d1 ← H(u, id)−r1t2 ; d2 ← H(u, id)−r1t1
d3 ← H(u, id)−r2t4 ; d4 ← H(u, id)−r2t3
Return (d0, d1, d2, d3, d4)

Algorithm Enc(par, id,M):
(g,u, v1, v2, v3, v4)← par
If M = 0 then
s, s1, s2←$ Zp ; C0 ← H(u, id)s

C1 ← vs−s11 ; C2 ← vs12 ; C3 ← vs−s23 ; C4 ← vs24

Else
For i = 0 to 4 do Ci←$ SampleG()

Return (C0, C1, C2, C3, C4)

Algorithm Dec(par, sk, C):
(g,u, v1, v2, v3, v4)← par
(d0, d1, d2, d3, d4)← sk
(C0, C1, C2, C3, C4)← C
If
∏4
i=0 e(Ci, di) = 1GT then

Return 0
Else return 1

Fig. 6. Scheme LoR based on Boyen-Waters IBE.

Scheme Description. We now describe the details of our IBE scheme LoR = (Pg,Kg,Enc,Dec).
We call it LoR, which is short for “Linear or Random” to represent the fact that in our scheme the
encryption of a 0 consists of five group elements whose relationship is similar to that of the group
elements in the decisional linear assumption, while an encryption of a 1 consists of five random group
elements. Our scheme is a one-bit version of the anonymous IBE scheme from Boyen and Waters [12]
and using the Waters’ hash function [34] for adaptive security. The scheme will use a cyclic group G
of prime order p with an efficiently computable pairing e : G × G → GT . We also require the group
has a PR sampler Sample with failure probability ζ and corresponding inverse sampler Sample−1 with
reverse failure probability θ. (Appendix A gives details on how to instantiate such groups.) Let G∗
denote the generators of G. Let 1GT be the identity element of the target group GT . Define hash
function H : Gn+1 × {0, 1}n → G as H(u, id) = u[0]

∏n
i=1 u[i]id[i], where id[i] is the ith bit of string id.

This is the Waters’ hash function [34]. The scheme LoR, shown in Figure 6, has message space {0, 1}
and identity space {0, 1}n. The scheme has completeness error 1/p2.

We claim the scheme is δ-1SPO where δ ≤ 5θ. The algorithm OpenToOne simply runs Sample−1

on each of the five ciphertext components with independent failure probabilities θ.
It remains to show LoR is IND-CPA. The following theorem establishes this based on the Decisional

Linear Assumption.

Theorem 2. Fix pairing parameters GP = (G,GT , p, e) and an integer n ≥ 1, and let LoR =
(Pg,Kg,Enc,Dec) be the one-bit IBE scheme associated to GP and IdSp = {0, 1}n. Assume G is PR-
samplable with sampling failure probability ζ. Let A be an IND-CPA adversary against LoR which has
advantage ε = Advind-cpa

LoR (A) > 2n+1/p+ 5ζ and makes at most q ∈ [1 .. pε/9n] queries to its Extract
oracle. Let

δ =
1
2

(
ε

2
− 2n

p
− 5ζ

)
.

Then there is a DLIN-adversary B such that

Advdlin
GP (B) ≥ δ2

9qn+ 3δ
and T(B) = T(A) + Tsim(n, q) (1)

10

proc. Initialize:
(π, π̄)←$ Gen ; b←$ {0, 1}
(〈G〉, 〈GT 〉, 〈e〉, N)← π

(p1, . . . , pn)← π̄

Return π

proc. Gen(S):
If (S ∩ S0 = ∅) ∧ (S ∩ S1 6= ∅)

then return ⊥
If (S ∩ S0 6= ∅) ∧ (S ∩ S1 = ∅)

then return ⊥
g←$ G(S)
Return g

proc. Ch(S0, S1):
If (S0 = ∅ or S1 = ∅)

then return ⊥
T ←$ G(Sb)
Return T

proc. Finalize(b′):
Return (b = b′)

Fig. 7. Game GSDGen

where Tsim(n, q) = O(qn+ (n+ q)Texp(G)) . ut

The proof of the theorem combines techniques from [12, 34, 3] and can be found in Appendix C.

7 A Scheme based on Dual System IBE

General Subgroup Decision. An order-n group generator with security parameter k is an algorithm
Gen that returns a pair (π, π̄), where π = (〈G〉, 〈GT 〉, 〈e〉, N) and π̄ = (p1, . . . , pn) with p1 < . . . < pn
primes; G,GT groups and e : G×G→ GT a non-degenerate bilinear map; pi ∈ {2k−1, . . . , 2k − 1} for
1 ≤ i ≤ n; N = p1 · · · pn = |G| = |GT |. For S ⊆ [n] we let G(S) denote the unique subgroup of G of
order

∏
i∈S pi. By H∗ we denote the set of generators of a cyclic group H.

The orthogonality property is that if S1, S2 ⊆ [n] are disjoint and gi ∈ G(Si) (i = 1, 2), then
e(g1, g2) = 1GT . Now suppose S0, S1 ⊆ [n] and given T ∈ G(Sb) we wish to determine b ∈ {0, 1}.
Orthogonality makes this easy if we possess g ∈ G(S) where one of S ∩ S0, S ∩ S1 is empty and the
other is not. The general subgroup decision assumption is that it is hard without such a g, even if
we possess elements of any G(S) for which S ∩ S0, S ∩ S1 are both empty or both not empty. Our
formalization uses game GSDGen of Figure 7. Adversary A must make exactly one Ch query, consisting
of a pair S0, S1 ⊆ [n], and this must be its first oracle query. Subsequently it can query Gen(S) on
any S ⊆ [n] and is allowed multiple queries to this oracle. It terminates by outputting a bit b′ and its
advantage is

Advgsd
Gen(A) = 2 · Pr

[
GSDAGen ⇒ true

]
− 1 .

Discussion. Lewko and Waters [27] make several different subgroup decision assumptions about
order-n group generators with n = 3, and [17] do the same with n = 4. Each of these corresponds to
a particular choice of S0, S1 queried to Ch, and particular queries to Gen, in our game. (And hence
can be formulated without these oracles. We note these papers also make other assumptions, some
pertaining to GT , that we will not need or consider.) Although the authors make only a few specific
assumptions, it is apparent that they would be willing to make any “allowed” one in the family, where
“allowed” means that the adversary can get elements of G(S) only as long as S ∩ S0, S ∩ S1 are both
empty or both not empty. Our aim in formulating GSD has been to make this more transparent, namely,
to make the full family of potential choices explicit, thereby generalizing, unifying and explaining
subgroup decisions assumptions from [10, 27, 17].

GSD may at first glance look like an “interactive” assumption. It isn’t. The value n will be a fixed
constant, eg. n = 3 for [27] and n = 4 for us. The GSD assumption is then just a compact way of
stating a constant number —one for each subset {S0, S1} of 2[n] with S0, S1 6= ∅— of non-interactive
assumptions. (By non-interactive we mean the game has only Initialize and Finalize procedures, no
oracles.)

11

Algorithm Pg:
(π, π̄)←$ Gen
(〈G〉, 〈GT 〉, 〈e〉, N)← π ; (p1, p2, p3, p4)← π̄
g1←$ G({1})∗ ; g3←$ G({3})∗ ; g4←$ G({4})∗
u1←$ ZN ; U1 ← gu1

1 ; u4←$ ZN ; U4 ← gu4
4

x1←$ ZN ; X1 ← gx1
1 ; x4←$ ZN ; X4 ← gx4

4

w4←$ ZN ; W4 ← gw4
4 ; U14 ← U1U4

W14 ← g1W4 ; X14 ← X1X4

par← (π, U14, X14,W14, g4)
msk← (g1, U1, X1, g3)

Algorithm Kg(par,msk, id): // id ∈ Z24k−4 ⊆ ZN
((〈G〉, 〈GT 〉, 〈e〉, N), U14, X14,W14, g4)← par
(g1, U1, X1, g3)← msk

r, r3, r
′
3←$ ZN ; K ← gr1g

r3
3 ; K ′ ← (U id

1 X1)rgr
′
3

3

Return (K,K ′)

Algorithm Enc(par, id,M):
((〈G〉, 〈GT 〉, 〈e〉, N), U14, X14,W14, g4)← par
If M = 0 then
s←$ ZN ; t4, t′4←$ ZN
C ← (U id

14X14)sgt44 ; C ′ ←W s
14g

t′4
4

Else C,C ′←$ SampleG()
Return (C,C ′)

Algorithm Dec(par, (K,K ′), (C,C ′)):
((〈G〉, 〈GT 〉, 〈e〉, N), U14, X14,W14, g4)← par
If e(C,K) = e(C ′,K ′) then return 0
Else return 1

Fig. 8. Scheme BBoR based on composite order pairing groups.

We don’t really need the full strength of GSD. As in previous works, we only need a few special
cases, namely a few particular choices of queries S0, S1 to Ch and queries S to Gen. But we feel
that stating GSD better elucidates the source of the assumptions, and it will allow more compact
assumption and theorem statements.

Scheme Description. For our scheme we require a 4 group generator Gen with the property that
the group G described by the first output of Gen has a PR sampler Sample with failure probability ζ
and corresponding inverse sampler Sample−1 with reverse failure probability θ. (Appendix A describes
how we can instantiate such groups.) The scheme BBoR = (Pg,Kg,Enc,Dec) associated to a order 4
group generator Gen is shown in Figure 8, where IdSp = Z24k−4 and MsgSp = {0, 1}. (We use identity
space Z24k−4 since N will vary but will always be at least 24k−4.) If (C,C ′) ∈ [Enc(par, id, 0)] and
(K,K ′) ∈ [Kg(par,msk, id)], then e(C,K) equals

e((U id
14X14)sgt44 , g

r
1g
r3
3) = e((U id

1 X1)s, gr1) = e((U id
1 X1)r, gs1) = e((U id

1 X1)rgr
′
3

3 ,W
s
14g

t′4
4) = e(C ′,K ′)

so decryption always succeeds. On the other hand, if (C,C ′)←$ Enc(par, id, 1) and (K,K ′)←$ Kg(par,
msk, id) then Pr [e(C,K) = e(C ′,K ′)] ≤ 8

22k where k is the security parameter associated to Gen.

We claim the scheme is δ-1SPO with δ ≤ 2θ. The algorithm OpenToOne runs Sample−1 on each
of the two ciphertext components. Each component will give independent reverse sample failure prob-
ability of θ. The IND-CPA security of the scheme is captured by the following theorem, proven in
Appendix D.

Theorem 3. Let Gen be an order 4 group generator and let the resulting group G be PR-samplable
with sampling failure probability ζ. Let BBoR = (Pg,Kg,Enc,Dec) the associated IBE scheme defined
above. For all adversaries A′ making q Extract queries there exists an adversary B such that

Advind-cpa
BBoR (A′) ≤ (9 + 2q) ·Advgsd

Gen(B) + 4 ·ζ .
Adversary B makes at most 5 queries to Gen and runs in time at most T(B) = T(A′)+O(q·Texp(G)+
q ·T(gcd)). ut

12

References

1. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In Advances in
Cryptology – EUROCRYPT 2010. Springer, 2010.

2. Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryption and commitment
secure under selective opening. In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479
of Lecture Notes in Computer Science, pages 1–35, Cologne, Germany, April 26–30, 2009. Springer, Berlin, Germany.

3. Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete
security for Waters’ IBE scheme. In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume
5479 of Lecture Notes in Computer Science, pages 407–424, Cologne, Germany, April 26–30, 2009. Springer, Berlin,
Germany.

4. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Berlin, Germany.

5. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without random oracles. In
Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 223–238, Interlaken, Switzerland, May 2–6, 2004. Springer, Berlin, Germany.

6. Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Matthew Franklin, editor,
Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 443–459, Santa
Barbara, CA, USA, August 15–19, 2004. Springer, Berlin, Germany.

7. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor, Advances in
Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 41–55, Santa Barbara, CA,
USA, August 15–19, 2004. Springer, Berlin, Germany.

8. Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. SIAM Journal on Computing, 36(5):915–942, 2006.

9. Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil pairing. SIAM Journal on Computing,
32(3):586–615, 2003.

10. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe Kilian, editor,
TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of Lecture Notes in Computer Science, pages
325–341, Cambridge, MA, USA, February 10–12, 2005. Springer, Berlin, Germany.

11. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of Cryptology,
17(4):297–319, September 2004.

12. Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random oracles). In
Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science,
pages 290–307, Santa Barbara, CA, USA, August 20–24, 2006. Springer, Berlin, Germany.

13. Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In Burton S. Kaliski Jr.,
editor, Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages 90–104,
Santa Barbara, CA, USA, August 17–21, 1997. Springer, Berlin, Germany.

14. Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation. In 28th
Annual ACM Symposium on Theory of Computing, pages 639–648, Philadephia, Pennsylvania, USA, May 22–24,
1996. ACM Press.

15. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In Eli Biham, editor,
Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 255–271,
Warsaw, Poland, May 4–8, 2003. Springer, Berlin, Germany.

16. Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive public-key encryption. In Joe
Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of Lecture Notes in Computer
Science, pages 150–168, Cambridge, MA, USA, February 10–12, 2005. Springer, Berlin, Germany.

17. Angelo De Caro, Vincenzo Iovino, and Giuseppe Persiano. Fully secure anonymous HIBE with short ciphertexts.
IACR ePrint Archive Report 2010/197.

18. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice basis. In
Advances in Crytpology – EUROCRYPT 2010. Springer, 2010.

19. Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Bahram Honary, editor, 8th
IMA International Conference on Cryptography and Coding, volume 2260 of Lecture Notes in Computer Science,
pages 360–363, Cirencester, UK, December 17–19, 2001. Springer, Berlin, Germany.

20. Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption schemes based on a general complexity
assumption. In Mihir Bellare, editor, Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in
Computer Science, pages 432–450, Santa Barbara, CA, USA, August 20–24, 2000. Springer, Berlin, Germany.

21. Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic functions. Journal of the ACM, 50(6):852–
921, 2003.

22. Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Encryption schemes secure against chosen-ciphertext
selective opening attacks. In Advances in Cryptology – EUROCRYPT 2010. Springer, 2010. To Appear.

13

23. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–
299, 1984.

24. Brett Hemenway, Benoit Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption: Constructions from
general assumptions and efficient selective opening chosen ciphertext security. IACR ePrint Archive Report 2009/088.

25. Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 303–316, Santa Barbara, CA, USA, August 16–20, 2009.
Springer, Berlin, Germany.

26. Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols for exchanging information. In
Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of Lecture Notes in Computer
Science, pages 320–339, San Francisco, CA, USA, March 19–21, 2008. Springer, Berlin, Germany.

27. Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE with short
ciphertexts. In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture
Notes in Computer Science, pages 455–479, Zurich, Switzerland, February 9–11, 2010. Springer, Berlin, Germany.

28. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 448–457, Washington, DC, USA, January 7–9, 2001. ACM-SIAM.

29. Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing en-
cryption case. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 111–126, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Berlin, Germany.

30. C. Peikert. Private Communication. May 2010.
31. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer.

In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in Computer
Science, pages 554–571, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Berlin, Germany.

32. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E. Ladner and Cynthia
Dwork, editors, 40th Annual ACM Symposium on Theory of Computing, pages 187–196, Victoria, British Columbia,
Canada, May 17–20, 2008. ACM Press.

33. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In Shai
Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
619–636, Santa Barbara, CA, USA, August 16–20, 2009. Springer, Berlin, Germany.

34. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor, Advances
in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 114–127, Aarhus,
Denmark, May 22–26, 2005. Springer, Berlin, Germany.

A Pairing Groups and PR Sampling

The missing piece in our two constructions is which groups to use and how to efficiently instantiate
a corresponding PR sampler Sample (and, for our proofs, its inverse Sample−1). Recall that we want
to sample random points from a group G in a publicly-reversible way. In other words, given a group
element g ∈ G, it should be possible with access to only public information to efficiently find coins that
explain how g was sampled. This rules out sampling group elements by simply exponentiating with a
generator, since explaining such a group element would entail computing a discrete logarithm. Further
complicating matters, our schemes require that we use groups with efficiently computable pairings.

To solve these issues, we rely on the techniques for hashing into elliptic curve groups, specifically
the techniques from Boneh, Lynn, and Shacham (BLS) [11]. Hashing techniques from [9] and [25] could
also potentially be used.

The BLS Hash Function. The BLS hash function has two stages. The first stage hashes into Zq×Z2

and the second stage maps a value in Zq × Z2 into a group element. We will only need the second
stage. This second stage can then be further broken into two parts. In the first part, choose a random
x value and find a corresponding y value on the curve (if such a y exists4), resulting in a random point
g̃ in the order-m group H = E(Fq) of points on the curve. The second part maps g̃ into the order-n
subgroup G of H by computing g̃(m/n), where n divides m, and n and m/n are relatively prime.

Consider an elliptic curve with points in Fq, where Fq is a field with characteristic greater than 2.
Let the curve be defined by equation y2 = f(x) such that the group E(Fq) is cyclic and has order m
and let n be such that m = n` for integer ` and gcd(n, `) = 1. (The supersingular curves used in [9, 10]
4 Because of the Hasse-Weil bound such a y will exist with probability very close to 1/2.

14

are one example of curves that would work.) We note that in [11] n is a prime p such that p divides
m but p2 does not divide m, making gcd(p,m/p) = 1. We, however, need to hash into composite
order subgroups for the BBoR scheme. As long as n and ` are relatively-prime the BLS procedures we
describe below still work as required.

Now, to build a hash function that hashes into the subgroup of E(Fq) of order n (call it G), BLS
first hash onto Fq×{0, 1} and then apply a procedure (which we slightly modify and call FqBitToGroup)
to that value to try and get a point in G. They then use G to construct their signature scheme5. We
now define FqBitToGroup and an inverse procedure.

FqBitToGroup(x, b)
If x = q + 1 return h← O
If f(x) is not a quadratic residue in Fq then Return ⊥
Compute square roots y0, y1 ∈ Fq of f(x) such that y0 < y1 by some fixed ordering.
g̃ ← (x, yb) ; h← (g̃)`

Return h

The algorithm has approximately a 1/2 probability of failure. Note that we slightly deviate from BLS
in that we do not fail when h = 1G, since we do not need h to be a generator. In fact, we draw
values from Zq+1 instead of Zq to make sure FqBitToGroup outputs the identity group element with
the correct probability. BLS also describe an inverse procedure that, given a group element h ∈ 〈g〉,
finds a random (x, b) such that FqBitToGroup(x, b) = h. In the procedure, let z = (`)−1 mod n, which
exists since gcd(n, `) = 1. We will describe the procedure as taking input an element h ∈ G and an
element u ∈ E(Fq) (think of u as the randomness used by the procedure).

FqBitToGroup−1(h, u)
(x, y) = h̃← un · hz
If (x, y) = O then b←$ {0, 1} ; return (q + 1, b)
Compute square roots y0, y1 of f(x), where y0 < y1

If y = y0 then return (x, 0) else return (x, 1)

If u is a uniform point in E(Gq) then the output (x, b) of FqBitToGroup−1(h, u) is such that x is
uniformly distributed in Zq+1 and b is uniform in {0, 1}, conditioned on FqBitToGroup(x, b) resulting
in h.

Our PR Sampler. We can use the above two algorithms to create our PR sampler Sample and its
inverse Sample−1. We note that this PR sampler and inverse procedure work for both of our 1SPO
schemes, though the underlying groups might be different (and thus the exact values used in subroutine
FqBitToGroup).

5 Actually, they explicitly use asymmetric pairings in their paper and mention symmetric pairings (which we are using
in this paper) could be used instead.

15

Sample
h← ⊥
For i = 1 to ρ do

(xi ‖ bi)←$ Zq+1 × Z2

h′ ← FqBitToGroup(xi, bi)
If (h′ 6= ⊥ ∧ h = ⊥) then
h← h′

Continue
Return h

Sample−1(h)
j ← ⊥
For i = 1 to ρ do

(xi ‖ bi)←$ Zq+1 × Z2

If j = ⊥ ∧ FqBitToGroup(xi, bi) 6= ⊥ then j ← i
If j = ⊥ then Return ⊥
Else

Compute square roots yj,0, yj,1 of f(xj).
u← (xj , yj,bj)
(xj , bj)←$ FqBitToGroup−1(h, u)

Return (x1, b1), . . . , (xρ, bρ)

The Sample algorithm has failure probability ζ ≈ 1/2ρ. Notice the set of coins used by Sample is
(Zq+1×Z2)ρ. The inverse operation Sample−1 is similar to the way random oracle queries are answered
in the BLS proof [11]. Algorithm Sample−1 on input h generates a random sequence of values in
Zq+1 ×Z2, finds the first such value that does not make FqBitToGroup fail, and replaces that value in
the sequence with one that maps to h. It has failure probability θ ≈ 1/2ρ. Note that we cannot simply
invert the point h but also need to simulate all ρ attempts Sample makes, including any failed attempts
that precede finding h. If Sample−1 does not fail on input h ∈ G it outputs correctly-distributed
randomness for Sample.

B Proof of Theorem 1

Let A be an arbitrary soa-adversary against Π`. We describe a simulator S for A in Figure 9. The
simulator runs Pg to generate par and msk. It will run A on input par, answering oracle queries as
follows. On oracle query NewMesg(id, α) from A, S forwards the query to its own NewMesg oracle,
receiving nothing in response. S then generates a vector of ciphertexts, where each ciphertext is an
encryption of the all-zero message {0, 1}`, and returns it to the adversary as the output of NewMesg.
Later, on query Corrupt(I) from A, S queries its own Corrupt oracle on I and learns m[I]. For
each index i ∈ I and each j ∈ [`], if m[i][j] (the jth bit of the ith message) is 0 then S will return
the actual randomness it used to generate c[i] (in answering the previous NewMesg oracle query).
If m[i][j] = 1, however, S will run OpenToOne on the jth component of the ciphertext c[i] to find
coins that can open that component to a 1. In addition to the randomness, of course, S also returns
the messages m[I]. On extract queries from A, S simply uses msk to answer correctly. Lastly, when
A halts with output out, S halts with the same output.

We prove the theorem through a series of game transitions. Their precise code can be found in
Figures 9,10, and 11. The transitions are summarized as follows.

– G0: The IBESOAREAL game.
– G1: Change Corrupt procedure to resample coins before opening.
– G2: Replace resampling from G1 with call to OpenToOne. If OpenToOne fails, set bad flag and

resample as in G1.
– G3: Same as above except if OpenToOne fails do not do any other resampling.
– Hv: The first v bits sampled from M (possibly across many messages) are ignored by NewMesg

and replaced by 0s. However, Corrupt still uses OpenToOne to open ciphertexts to 1 depending
on M.

– Hk`: all messages from M are completely ignored by NewMesg and only all-0 messages are
encrypted.

– G4: Since NewMesg ignores the messages sampled from M, the message sampling is moved to
the Corrupt procedure.

16

alg.S() :

(par,msk)←$ Pg`

Run A(par).

On query NewMesg(id, α):

⊥ ← NewMesgS(id, α)
For i in 1 to k

r[i]← Coins(par, 0`)
c[i]← Enc`(par, id[i], 0`; r[i])

Return c

On query Corrupt(I):

m[I]← CorruptS(I)
For i ∈ I

For j in 1 to `
if m[i][j] = 1 then
r[i][j]←$ OpenToOne(par, id[i], c[i][j])

Return (r[I],m[I])

On query Extract(id):

Return Kg`(par,msk, id)

When A halts with output out, halt and output out.

proc. Initialize: All Games

(par,msk)←$ Pg`

Return par

proc. NewMesg(id, α): G0, G1, G2, G3

If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id
m←$M(α)
For i in 1 to k

For j in 1 to `
r[i][j]←$ Coins(par,m[i][j])
c[i][j]← Enc(par, id[i],m[i][j]; r[i][j])

Return c

proc. Corrupt(I): G0

Return r[I], m[I]

proc. Extract(id): All Games

Return Kg`(par,msk, id)

proc. Finalize(out): All Games
Return R(m,ChID, I, out)

Fig. 9. Simulator S and the start of the game sequence.

More formally, we first claim that

Pr
[

IBESOAREALA ⇒ true
]

= Pr
[
GA0 ⇒ true

]
.

Next, we claim

Pr
[
GA0 ⇒ true

]
= Pr

[
GA1 ⇒ true

]
,

since from the coins returned in Corrupt are identically distributed given the view of A. Next, we can
see that

Pr
[
GA1 ⇒ true

]
= Pr

[
GA2 ⇒ true

]
,

since by definition when OpenToOne does not fail its output is identically distributed to as in G1, and
when it does fail G1 ignores its output and resamples as in G1. Now, the Fundamental Lemma of game
playing justifies

Pr
[
GA2 ⇒ true

]
− Pr

[
GA3 ⇒ true

]
≤ Pr

[
BD(GA2)

]
,

and since the probability that any execution of OpenToOne fails is at most δ (over just the coins of
OpenToOne) and there are at most ` · k bits that have to be opened by Corrupt, we see that

Pr
[
BD(GA2)

]
≤ k`δ .

Next, H0 is just a rewriting of G3. Next, we claim that

Pr
[
HA0 ⇒ true

]
− Pr

[
HAk` ⇒ true

]
≤ k` ·Advind-cpa

Π (B) , (2)

where adversary B is described in Figure 12. To justify this claim, let M0v+1(HAv′) be the event that
in the execution of HAv′ the v + 1st bit sampled by M in NewMesg is a 0. The complement event is
denoted by M1. Notice that in the case that the event that the v + 1st bit sampled in Hv is a 0, the
games Hv and Hv+1 are identical, since Hv will encrypt the actual v + 1st bit (which is a 0 since the
event is true) and Hv+1 will ignore the actual bit and encrypt a 0. In both cases, 0 is encrypted. Also
notice that in both Hv and Hv+1 the message sampled is independent of whether it is game v or v+ 1

17

proc. Corrupt(I): G1

For i in I
For j in 1 to `

If m[i][j] = 1 then
r[i][j]←$ Coins(par, id[i], c[i][j], 1)

Return r[I], m[I]

proc. NewMesg(id, α): Hv
If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id ; m←$M(α)
For i in 1 to k

For j in 1 to `
if ((i− 1) · `+ j) ≤ v then

r[i][j]←$ Coins(par, 0)
c[i][j]← Enc(par, id[i], 0; r[i][j])

Else
r[i][j]←$ Coins(par,m[i][j])
c[i][j]← Enc(par, id[i],m[i][j]; r[i][j])

Return c

proc. Corrupt(I): Hv
For i in I

For j in 1 to `
If m[i][j] = 1 then

r[i][j]←$ OpenToOne(par, id[i], c[i][j])
Return r[I], m[I]

proc. Corrupt(I): G2 , G3

For i in I
For j in 1 to `

If m[i][j] = 1 then
r[i][j]←$ OpenToOne(par, id[i], c[i][j])
If r[i][j] = ⊥ then

bad← true
r[i][j]←$ Coins(par, id[i], c[i][j], 1)

Return r[I], m[I]

proc. NewMesg(id, α): Hk`
If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id ; m←$M(α)
For i in 1 to k

For j in 1 to `
r[i][j]←$ Coins(par, 0)
c[i][j]← Enc(par, id[i], 0; r[i][j])

Return c

proc. Corrupt(I): Hk`
For i in I

For j in 1 to `
If m[i][j] = 1 then

r[i][j]←$ OpenToOne(par, id[i], c[i][j])
Return r[I], m[I]

Fig. 10. Games for the proof of Theorem 1.

proc. NewMesg(id, α):
If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id
For i in 1 to k

For j in 1 to `
r[i][j]←$ Coins(par, 0)
c[i][j]← Enc(par, id[i], 0; r[i][j])

Return c

proc. Corrupt(I): G4

m←$M(α)
For i in I

For j in 1 to `
If m[i][j] = 1 then

r[i][j]←$ OpenToOne(par, id[i], c[i][j])
Return r[I], m[I]

Fig. 11. The last game G4.

since v is not used until after the message has been sampled. Thus, M0v+1(HAv+1) = M0v+1(HAv).

Pr
[
HAv

]
− Pr

[
HAv+1

]
=
(
Pr
[
HAv ∧M0v+1(HAv)

]
+ Pr

[
HAv ∧M1v+1(HAv)

])
−(

Pr
[
HAv+1 ∧M0v+1(HAv+1)

]
+ Pr

[
HAv+1 ∧M1v+1(HAv+1)

])
= Pr

[
M0v+1(HAv)

]
·
(
Pr
[
HAv | M0v+1(HAv)

]
− Pr

[
HAv+1 | M0v+1(HAv+1)

])
+

Pr
[
M1v+1(HAv)

]
·
(
Pr
[
HAv | M1v+1(HAv)

]
− Pr

[
HAv+1 | M1v+1(HAv+1)

])
. (3)

Now as we said above, in the event M0v+1 both Hv+1 and Hv are identical, thus the first term in (3)
becomes zero. This means that,

Pr
[
HAv

]
− Pr

[
HAv+1

]
= Pr

[
M1v+1(HAv)

]
·
(
Pr
[
HAv | M1v+1(HAv)

]
− Pr

[
HAv+1 | M1v+1(HAv+1)

])
, (4)

18

alg.B(par) :

v←$ {0, . . . , k`− 1}
Run A(par).

On query NewMesg(id, α):

m←$M(α)
For i in 1 to k

For j in 1 to `
if ((i− 1) · `+ j) ≤ v then

r[i][j]←$ Coins(par, 0) ; c[i][j]← Enc(par, id[i], 0; r[i][j])
Else if ((i− 1) · `+ j) = v + 1 then

If m[i][j] = 1 then c[i][j]← LRB(id[i], 0, 1)
Else

r[i][j]←$ Coins(par,m[i][j]) ; c[i][j]← Enc(par, id[i],m[i][j]; r[i][j])
Else

r[i][j]←$ Coins(par,m[i][j]) ; c[i][j]← Enc(par, id[i],m[i][j]; r[i][j])
Return c

On query Corrupt(I):

m[I]← CorruptS(I)
For i ∈ I

For j in 1 to `
if m[i][j] = 1 then r[i][j]←$ OpenToOne(par, id[i], c[i][j])

Return (r[I],m[I])

On query Extract(id):

Return ExtractB(id)

When A halts with output out, halt and output R(m,ChID, I, out).

Fig. 12. IND-CPA adversary B

and thus

Pr
[
HA0

]
− Pr

[
HAk`

]
=

k`−1∑
v=0

Pr
[
HAv

]
− Pr

[
HAv+1

]
=

k`−1∑
v=0

Pr
[
M1v+1(HAv)

]
·
(
Pr
[
HAv | M1v+1(HAv)

]
− Pr

[
HAv+1 | M1v+1(HAv+1)

])
, (5)

Consider again IND-CPA adversary B in Figure 12. The adversary picks a random integer v and
runs A while simulating its environment as in either Hv or Hv−1, depending on whether its LR oracle
encrypts the left or right message, respectively. Notice that B only uses its LR oracle in the event
M1v+1, and thus all of its advantage comes from this case. It is thus easy to see that

Advind-cpa
Π (B) =

1
k`

k`−1∑
v=0

Pr
[
M1v+1(HAv)

]
·
(
Pr
[
HAv | M1v+1(HAv)

]
− Pr

[
HAv+1 | M1v+1(HAv+1)

])
,

which combined with (5) justifies (2).
Next, we see that

Pr
[
HAk` ⇒ true

]
= Pr

[
GA4 ⇒ true

]
,

which is true since G4 is identical to Hk` except the message sampling is moved to Corrupt. This
can be done since the messages sampled in NewMesg are completely ignored in Hk` (only 0s are
encrypted).

19

Finally, the simulator S described in Figure 9 can run identically to G4 (where it learns m[I]
through a Corrupt query instead of sampling as in G4), so we have that

Pr
[
GA4 ⇒ true

]
= Pr

[
IBESOASIMS ⇒ true

]
.

Combining all of the above equations we get that

Pr
[

IBESOAREALA ⇒ true
]
− Pr

[
IBESOASIMS ⇒ true

]
≤ k` ·Advind-cpa

Π (B) + k`δ ,

which proves the theorem. ut

C Proof of Theorem 2

In this section, we prove Theorem 2, establishing the IND-CPA security of our scheme LoR based on
the decisional linear assumption. We will closely follow the proof of security from [3] which gave an
alternative proof to Waters’ IBE scheme [34]. Consider the games in Figures 13,14, and 15. We have

Pr
[
GA2

]
− Pr

[
GA3

]
≤ Pr

[
BAD(GA3)

]
(6)

≤ 2n

p
(7)

Games G2, G3 are identical until bad so (6) is by the Fundamental Lemma of game playing [4]. To
justify (7) first note H(u, id) = gt1F(x,id)+G(y,id). Thus, the event BD(GA3) happens when t1F(x, id) +
G(y, id) ≡ 0 (mod p). Fix t1 and x. For any particular id, the probability over y that G(y, id) +
F(x, id)t1 ≡ 0 (mod p) is 1/p. But the number of choices of id is 2n so we conclude by the union
bound. Now we have

ε = Advind-cpa
LoR (A) ≤ 2

(
Pr
[
GA0

]
+ 5ζ

)
− 1

= 2
(

Pr
[
GA0

]
− 1

2

)
+ 10ζ

= 2
(

Pr
[
GA0

]
− Pr

[
GA1

]
+ Pr

[
GA1

]
− Pr

[
GA2

]
+ Pr

[
GA2

]
− Pr

[
GA3

]
+ Pr

[
GA3

]
− 1

2

)
+ 10ζ

However Pr
[
GA3

]
= 1

2 . Using this and (7) we have

ε = Advind-cpa
Π (A) ≤ 2ε1 + 2ε2 +

2n+1

p
+ 10ζ

where

ε1 = Pr
[
GA0

]
− Pr

[
GA1

]
and ε2 = Pr

[
GA1

]
− Pr

[
GA2

]
We consider two cases. The first is when

ε1 ≥
1
2

(
ε

2
− 2n

p
− 5ζ

)
and the second is when

ε2 ≥
1
2

(
ε

2
− 2n

p
− 5ζ

)
.

In the first case we design B1 so that

Advdlin
GP (B1) ≥ ε21

9qn+ 3ε1
(8)

and in the second case we design B2 so that

Advdlin
GP (B2) ≥ ε22

9qn+ 3ε2
.

20

proc. Initialize: Games G0, G1, G2, G3

c←$ {0, 1} ; u←$ Gn+1

t1, t2, t3, t4←$ Z∗p
For i = 1, 2, 3, 4 do vi ← gti

par← (u, v1, v2, v3, v4) ; msk← (t1, t2, t3, t4)
Return par

proc. Extract(id): Games G0, G1, G2, G3

r1, r2←$ Zp
d0 ← gr1t1t2+r2t3t4

d1 ← H(u, id)−r1t2 ; d2 ← H(u, id)−r1t1

d3 ← H(u, id)−r2t4 ; d4 ← H(u, id)−r2t3

Return (d0, d1, d2, d3, d4)

proc. LR(id,M0,M1): Game G0

If Mc = 0 then
s, s1, s2←$ Zp
C0 ← H(u, id)s

C1 ← vs−s11 ; C2 ← vs12

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C1, C2, C3, C4←$ G

Return (C0, C1, C2, C3, C4)

proc. Finalize(c′): Games G0, G1, G2, G3

Return (c = c′)

proc. LR(id,M0,M1): Game G1

If Mc = 0 then
s, s1, s2←$ Zp
C0 ← H(u, id)s

C1←$ G ; C2 ← vs12

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C1, C2, C3, C4←$ G

Return (C0, C1, C2, C3, C4)

proc. LR(id,M0,M1): Games G2, G3

If Mc = 0 then
s, s1, s2←$ Zp
C0 ← H(u, id)s

If (H(u, id) = 1G) then

bad← true ; C0←$ G
C1←$ G ; C2 ← vs12

C3←$ G ; C4 ← vs24

Else
C0, C1, C2, C3, C4←$ G

Return (C0, C1, C2, C3, C4)

Fig. 13. Game transitions

The adversary B of the theorem statement is either B1 or B2 depending which case is true. In the
sequel we describe B1 and sketch the proof of (8) based on [12, 3]. The design and analysis of B2 is
similar and omitted.

Simulation subroutines. Towards the proof we begin with some definitions from [3]. Let m =
d3q/ε1e and let X = [−n(m − 1) .. 0] × [0 ..m − 1] × · · · × [0 ..m − 1] where the number of copies of
[0 ..m− 1] is n. For x ∈ X, y ∈ Zn+1

p and id ∈ {0, 1}n we let

F(x, id) = x[0] +
n∑
i=1

x[i]id[i] and G(y, id) = y[0] +
n∑
i=1

y[i]id[i] mod p . (9)

In the above, the computation of G is over Zp, while the computation of F is over Z. Adversary B1 is
shown in Figure 14. We now describe the subroutines it utilizes to answer Extract and LR queries.
We define the following procedures:

21

Adversary B1(g, v1, v2, C1, C2,W):
c←$ {0, 1}
t3, t4←$ Z∗p ; v3 ← gt3 ; v4 ← gt4

For j = 0, . . . , n do
y[j]←$ Zp
If j = 0 then x[j]←$ [−n(m− 1) .. 0]
Else x[j]←$ [0 ..m− 1]

u[j]← v
x[j]
1 gy[j]

par← (g,u, v1, v2, v3, v4)
Run A(par), answering queries by

On query Extract(id):
sk(id)← ⊥
If F(x, id) = 0 then bad← true
Else sk(id)←$ KgS(g, v1, v2, t3, t4,u,x,y, id)
Return sk(id)

On query LR(id,M0,M1):
C ← ⊥
If F(x, id) 6= 0 then bad← true
Else
C←$ EncS(g, C1, C2, v3, v4, t3,W,y, id,Mc)

Return C

A finishes, returning bit c′

If bad = true then c′←$ {0, 1}
If c = c′ then return 1 else return 0

proc. Initialize: Games G4, G5, G6

c, d←$ {0, 1} ; t1, t2, t3, t4←$ Z∗p ; s, s1, s2←$ Zp
v1 ← gt1 ; v2 ← gt2 ; v3 ← gt3 ; v4 ← gt4

C1 ← vs−s11 ; C2 ← vs12

If d = 1 then W ← gs else W ←$ G
For j = 0, . . . , n do

y[j]←$ Zp
If j = 0 then x[j]←$ [−n(m− 1) .. 0]
Else x[j]←$ [0 ..m− 1]

u[j]← v
x[j]
1 gy[j]

par← (g,u, v1, v2, v3, v4) ; msk← (t1, t2, t3, t4)
Return par

proc. Extract(id): Games G4, G5

sk(id)← ⊥
If F(x, id) = 0 then

bad← true ; sk(id)←$ Kg(par,msk, id)

Else sk(id)←$ KgS(g, v1, v2, t3, t4,u,x,y, id)
Return sk(id)

proc. LR(id,M0,M1): Games G4, G5

C ← ⊥
If F(x, id) 6= 0 then

bad← true

If Mc = 0 then
t←$ Zp ; If d = 1 then t← s
C0 ← H(u, id)t

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C3, C4←$ G

C ← (C0, C1, C2, C3, C4)

Else C←$ EncS(g, C1, C2, v3, v4, t3,W,y, id,Mc)
Return C

proc. Finalize(c′): Games G4, G5

c′′ ← c′

If bad = true then c′′←$ {0, 1} ; c′′ ← c′

If (c = c′′) then return 1 else return 0

Fig. 14. Adversary B and the continuation of the game sequence.

proc. KgS(g, v1, v2, t3, t4,u,x,y, id):

r1, r2←$ Zp
d0 ← gr2t3t4vr12

If H(u, id) 6= 1G then
d1 ← v

−r1·F(x,id)
2

d2 ← v
−r1·F(x,id)
1

d3 ← H(u, id)−r2t4v−r1·G(y,id)/t3
2

d4 ← H(u, id)r2t3v−r1·G(y,id)/t4
2

Else
d1, d2, d3, d4 ← 1G

Ret (d0, d1, d2, d3, d4)

proc. EncS(g, C1, C2, v3, v4, t3,W,y, id,M):

If M = 0 then
s2←$ Zp
C0 ←WG(y,id)

C3 ←W t3v−s23

C4 ← vs24

Else
C0, C3, C4←$ G

Return (C0, C1, C2, C3, C4)

22

proc. Extract(id): Game G6

If F(x, id) = 0 then bad← true
sk(id)←$ Kg(par,msk, id)
Return sk(id)

proc. LR(id,M0,M1): Game G6

If F(x, id) 6= 0 then bad← true
If Mc = 0 then
t←$ Zp ; If d = 1 then t← s
C0 ← H(u, id)t

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C3, C4←$ G

C ← (C0, C1, C2, C3, C4)
Return (C0, C1, C2, C3, C4)

proc. Finalize(c′): Game G6

If (c = c′) then return 1 else return 0

proc. Initialize: Game G7

c, d←$ {0, 1} ; cnt← 0
t1, t2, t3, t4←$ Z∗p ; s, s1, s2←$ Zp
v1 ← gt1 ; v2 ← gt2 ; v3 ← gt3 ; v4 ← gt4

C1 ← vs−s11 ; C2 ← vs12

If d = 1 then W ← gs else W ←$ G
For j = 0, . . . , n do

z[j]←$ Zp ; u[j]← gz[j]

If j = 0 then x[j]←$ [−n(m− 1) .. 0]
Else x[j]←$ [0 ..m− 1]
y[j]← z[j]− t1 · x[j] mod p

par← (g,u, v1, v2, v3, v4)
msk← (t1, t2, t3, t4)
Return par

proc. Finalize(c′): Game G7

For j = 0 to cnt do
If F(x, idj) = 0 then bad← true

If F(x, id0) 6= 0 then bad← true
If (c = c′) then return 1 else return 0

proc. Initialize: Game G8

c, d←$ {0, 1} ; cnt← 0
t1, t2, t3, t4←$ Z∗p ; s, s1, s2←$ Zp
v1 ← gt1 ; v2 ← gt2 ; v3 ← gt3 ; v4 ← gt4

C1 ← vs−s11 ; C2 ← vs12

If d = 1 then W ← gs else W ←$ G
For j = 0, . . . , n do

z[j]←$ Zp ; u[j]← gz[j]

par← (g,u, v1, v2, v3, v4)
msk← (t1, t2, t3, t4)
Return par

proc. Extract(id): Games G7, G8

cnt← cnt+ 1 ; idcnt ← id
sk(id)←$ Kg(par,msk, id)
Return sk(id)

proc. LR(id,M0,M1): Game G7, G8

id0 ← id
If Mc = 0 then
t←$ Zp ; If d = 1 then t← s
C0 ← H(u, id)t

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C3, C4←$ G

C ← (C0, C1, C2, C3, C4)
Return (C0, C1, C2, C3, C4)

proc. Finalize(c′): Game G8

For j = 0 to cnt do
For j = 0, . . . , n do

If j = 0 then x[j]←$ [−n(m− 1) .. 0]
Else x[j]←$ [0 ..m− 1]
If F(x, idj) = 0 then bad← true

If F(x, id0) 6= 0 then bad← true
If (c = c′) then return 1 else return 0

Fig. 15. Game transitions

The next lemma captures a fact about the simulation subroutine KgS, which we will use in our analysis.
It is obtained by adapting a lemma in [12] for use with the Waters’ hash.

Lemma 1. Suppose g, v1, v2, v3, v4 ∈ G∗, id ∈ {0, 1}n, W ∈ GT , x ∈ X, y ∈ Zn+1
p , u[j] = v

x[j]
1 gy[j]

for 0 ≤ j ≤ n. Further, suppose F(x, id) 6= 0 and let ti = logg(vi) for 1 ≤ i ≤ 4. Let par =
(g,u, v1, v2, v3, v4) and msk = (t1, t2, t3, t4). Then the outputs of KgS(g, v1, v2, t3, t4,u,x,y, id) and
Kg(par,msk, id) are identically distributed. ut

Proof. First assume t1F(x, id) + G(y, id) 6= 0 (mod p). Define f1, f2 : Zp → Zp by

f1(r1) =
r1 · F(x, id)

t1F(x, id) + G(y, id)
and

f2(r2) = r2 +
r1t2G(y, id)

(t3t4)(t1F(x, id) + G(y, id))
.

23

These are well defined because t1F(x, id) + G(y, id) was assumed 6= 0 (mod p) and also we know
t3, t4 6= 0 (mod p). Then letting r′1 = f(r1) and r′2 = f(r2), a computation shows that

gr2t3t4vr12 = gr
′
1t1t2+r′2t3t4 , v

−r1F(x,id)
2 = H(u, id)−r

′
1t2 , v

−r1F(x,id)
1 = H(u, id)−r

′
1t1

H(u, id)−r2t4v−r1G(u,id)/t3
2 = H(u, id)−r

′
2t4 , H(u, id)−r2t3v−r1G(y,id)/t4

2 = H(u, id)−r
′
2t3

Given that F(x, id) 6= 0, the functions f1, f2 are permutations so from above we are done. Now, in the
case

t1F(x, id) + G(y, id) ≡ 0 (mod p)

we have H(u, id) = 1G. We let

f1(r1) =

{
r1/t1 If t1 6= 0

r1 otherwise

and f2(r2) = r2. Again, f1, f2 are permutations and we are done. ut

Analysis. Consider games G4–G8 of Figures 14 and 15. We have

Pr
[

DLINB1
GP ⇒ true

]
= Pr

[
GA4 ⇒ d

]
= Pr

[
GA4 ⇒ d | BD(GA4)

]
· Pr

[
BD(GA4)

]
+ Pr

[
GA4 ⇒ d ∧ GD(GA4)

]
=

1
2

Pr
[
BD(GA4)

]
+ Pr

[
GA4 ⇒ d ∧ GD(GA4)

]
=

1
2

Pr
[
BD(GA5)

]
+ Pr

[
GA5 ⇒ d ∧ GD(GA5)

]
,

the last because G4, G5 are identical until bad. We now claim

Pr
[
BD(GA5)

]
= Pr

[
BD(GA6)

]
and Pr

[
GA5 ⇒ d ∧ GD(GA5)

]
= Pr

[
GA6 ⇒ d ∧ GD(GA6)

]
.

Lemma 1 implies that the Extract procedures in G5, G6 are equivalent. We now claim the LR
procedures are as well. To see this consider separately the cases d = 0 and d = 1. (In the former, if
w = gt is random then EncS is equivalent to the boxed code.) Additionally c′′ = c′ in Finalize of G5

hence the Finalize procedures of G5, G6 are equivalent. Standard game manipulations following [3]
now give us

Pr
[
BD(GA6)

]
= Pr

[
BD(GA7)

]
= Pr

[
BD(GA8)

]
Pr
[

GA6 ⇒ d ∧ GD(GA6)
]

= Pr
[
GA6 ⇒ d ∧ GD(GA7)

]
= Pr

[
GA8 ⇒ d ∧ GD(GA8)

]
.

Putting the above together we have

Advdlin
GP (B1) = 2 · Pr

[
DLINB1

GP

]
− 1 = 2 · Pr

[
GA8 ⇒ d ∧ GD(GA8)

]
− Pr

[
GD(GA8)

]
.

Next

Pr
[
GA8 ⇒ d

]
=

1
2

Pr
[
GA8 ⇒ 1 | d = 1

]
− 1

2
Pr
[
GA8 ⇒ 1 | d = 0

]
+

1
2

=
1
2

Pr
[
GA0

]
− 1

2
Pr
[
GA1

]
=

1
2

+
ε1
2

24

Now use [3, Lemmas 3.4,3.5], and define γmin, γmax as there. Then, using the fact that m = d3q/ε1e,
calculation (omitted) shows

Advdlin
GP (B1) ≥ γminε1 + (γmin − γmax)

≥ ε21
9qn+ 3ε1

.

ut

D Proof of Theorem 3

Let A be an adversary that has access to oracles LR, Extract, and makes only 1 query to LR. Let
id∗ denote the identity in this query. We say A is good if for all Extract(id) queries it makes we have
id 6≡ id∗ (mod p2), with probability 1 regardless of how oracle queries are answered.

Our first step is to convert A′ to a good A without significant resource increase. A runs A′. When
A′ makes LR query id∗,M0,M1, adversary A checks if A′ previously made a query Extract(id) such
that gcd(id− id∗, N) 6= 1. If so A aborts and guesses a bit. Otherwise it makes the same LR query and
returns the response to A′. When A′ makes query Extract(id) after already querying LR on identity
id∗, adversary A checks if gcd(id − id∗, N) = 1. If so it forwards the query and returns the answer
to A′, else it does not forward the query, instead halting with a random bit output. If A′ terminates
without abortion, A adopts its output. Clearly A is good. We claim its advantage is almost that of A′.

Claim 1. Let A be constructed from A′ as above. Then there exists a B1 such that

Advind-cpa
BBoR (A′) ≤ Advind-cpa

BBoR (A) + 3 ·Advgsd
Gen(B1) ,

and B1 makes 3 Gen queries and runs in time T(B1) = T(A′) +O(q ·Texp(G) + q ·T(gcd)). ut

Proof (Claim 1). B1 picks i←$ {1, 3, 4} and makes query T ←$ Ch({i}, {i, 2}). It then makes queries
gj ←$ Gen({j}) for all j ∈ {1, 3, 4}. Given g1, g3, g4, it can create par,msk and thus run A′, answering
all its queries. Whenever A′ queries Extract(id), adversary B1 tests if r = gcd(id− id∗, N) 6= 1 and if
so has a factor of N . We want to use r to generate a point in G(S) where 2 ∈ S but i 6∈ S and then
test T with orthogonality. The key point that makes this possible is that i is random and not known
to A′. Let us look at the possibilities: Let R ⊆ [n] be such that r =

∏
i∈R pi. In the table below we

enumerate the possiblities for R, [n] \ R, and the resulting i and S that give us what we want and
allow us to win the GSD game.

25

R [n] \R i S

1 2 3 4 1 2 3 4

2 1 3 4 1 3 4 2

3 1 2 4 3 1 2 4

4 1 2 3 4 1 2 3

1 2 3 4 3 4 1 2

1 3 2 4 1 3 2 4

1 4 2 3 1 4 2 3

2 3 1 4 1 4 2 3

2 4 1 3 1 3 2 4

1 2 3 4 4 1 2 3

1 2 4 3 3 1 2 4

1 3 4 2 1 3 4 2

2 3 4 1 1 2 3 4

We can see from the above table that no matter what the value of R, there is at least one choice of
i that allows us to use r or N/r to construct a point in G(S) where 2 ∈ S but i 6∈ S (and immediately
win game GSD). Since the choice of i is independent of anything A′ sees, B1 has at least a 1/3 chance
of picking an i that will work. The claim follows. ut

Now we bound Advind-cpa
BBoR (A). Consider the games of Figure 16. Game H is the real game while game

G0 replaces the challenge encryption of a 0 by a semi-functional one, meaning its components are
multiplied by points in G({2}). The following says this makes little difference.

Claim 2 (H ≈ G0). There exists B2 such that

Pr
[
HA

]
− Pr

[
GA0

]
≤ Advgsd

Gen(B2) ,

and B2 makes 3 Gen queries and runs in time T(B2) = T(A) +O(q ·Texp(G)). ut

Proof (Claim 2). B2(π) begins with T ←$ Ch({1, 2, 4}, {1, 4}). It then queries gj ←$ Gen({j}) for
k ∈ {1, 3, 4}. Next it performs initialization.

u1, u4, x1, x4, w4←$ ZN ; β←$ {0, 1}
U1 ← gu1

1 ; U4 ← gu4
4 ; X1 ← gx1

1 ; X4 ← gx4
4 ; W4 ← gw4

4

U14 ← U1U4 ; X14 ← X1X4 ; W14 ← g1W4

par← (π, U14, X14,W14, g4)

It runs A(par) answering queries as follows:

On query LR(id,M0,M1):
id∗ ← id
If Mβ = 0 then
C ← T u1id+x1 ; C ′ ← T

Else
C,C ′←$ G

Return (C,C ′)

26

proc. Initialize: Games H,G` (0 ≤ ` ≤ q)
(π, π̄)←$ Gen
(〈G〉, 〈GT 〉, 〈e〉, N)← π
(p1, p2, p3, p4)← π̄
g1←$ G({1})∗ ; g2←$ G({2})∗
g3←$ G({3})∗ ; g4←$ G({4})∗
u1, u4, x1, x4, w4←$ ZN
U1 ← gu1

1 ; U4 ← gu4
4

X1 ← gx1
1 ; X4 ← gx4

4 ; W4 ← gw4
4

U14 ← U1U4 ; W14 ← g1W4 ; X14 ← X1X4

par← (π, U14, X14,W14, g4)
β←$ {0, 1} ; i← 0
Return par

proc. Extract(id): Games H

r, r3, r
′
3←$ ZN

K ← gr1g
r3
3 ; K′ ← (U id

1 X1)rg
r′3
3

Return (K,K′)

proc. LR(id,M0,M1): Game H
id∗ ← id
If Mβ = 0 then
s, t4, t

′
4←$ ZN

C ← (U id
14X14)sgt44

C′ ←W s
14g

t′4
4

Else
C,C′←$ G

Return (C,C′)

proc. Finalize(β′): Games H,G` (0 ≤ ` ≤ q)
Return (β = β′)

proc. Extract(id): Games G` (0 ≤ ` ≤ q)
i← i+ 1
r, r3, r

′
3, t2, t

′
2←$ ZN

If (i ≤ `) then

K ← gr1g
r3
3 gt22 ; K′ ← (U id

1 X1)rg
r′3
3 g

t′2
2

Else
K ← gr1g

r3
3 ; K′ ← (U id

1 X1)rg
r′3
3

Return (K,K′)

proc. LR(id,M0,M1): Game G` (0 ≤ ` ≤ q)
id∗ ← id
If Mβ = 0 then
s, t4, t

′
4, x2, x

′
2←$ ZN

C ← (U id
14X14)sgt44 g

x2x
′
2

2

C′ ←W s
14g

t′4
4 g

x2
2

Else
C,C′←$ G

Return (C,C′)

proc. Extract(id): Games H1, H2

r, r3, r
′
3, t2, t

′
2←$ ZN

K ← gr1g
r3
3 gt22 ; K′ ← (U id

1 X1)rg
r′3
3 g

t′2
2

Return (K,K′)

proc. LR(id,M0,M1): Game H1

If Mβ = 0 then
C,C′←$ G({1, 2, 4})

Else
C,C′←$ G

Return (C,C′)

proc. LR(id,M0,M1): Game H2

C,C′←$ G
Return (C,C′)

Fig. 16. Games for the proof of Theorem 3.

On query Extract(id) it can answer as in game H since it knows msk and also H,G0 have the same
Extract oracle. When A halts with output β′, adversary B2 returns 1 if (β = β′) and 0 otherwise.

We have

1
2
Advind-cpa

BBoR (A) +
1
2

= Pr
[
HA ⇒ true

]
= Pr

[
GA0 ⇒ true

]
+ (Pr

[
HA ⇒ true

]
− Pr

[
GA0 ⇒ true

]
We can write T = (g1W4)sgt

′
4

4 g
x2
2 where x2 = 0 if challenge bit b = 1 and otherwise x2←$ ZN , and

s, t′4 are random in ZN in either case. Thus, C ′ has the right form. Also,

C = T u1id+x1 = (g1gw4
4)s(u1id+x1)g

t′4(u1id+x1)
4 g

x2(u1id+x1)
2

= (U id
1 X1)sg(sw4+t′4)(u1id+x1)

4 g
x2(u1id+x1)
2

= (U id
14X14)sg(sw4+t′4)(u1id+x1)−u4ids−x4s

4 g
x2(u1id+x1)
2

27

This has the form (U id
14X14)sgt44 g

x2x′2
2 with

t4 = (sw4 + t′4)(u1id + x1)− u4ids− x4s mod p4

x′2 = x2(u1id + x1) mod p2

The key is that u1id + x1 mod p1, u1id + x1 mod p2, u1id + x1 mod p4 are random and independent
by the chinese remainder theorem (CRT) so t4 is random over given par, T . If b = 1 then x′2 = 0 and
if b = 0 then x′2 is random and independent of par, T, t4.

ut

To bound Pr
[
GA0

]
we use a hybrid argument. Games G0, . . . , Gq replace the keys provided by Extract

by semi-functional ones, one at a time. Now we want to bound

Pr
[
GA0

]
= (Pr

[
GA0

]
− Pr

[
GAq

]
) + Pr

[
GAq

]
.

This is the step that uses the assumption that A is good.

Claim 3. There exists B3 such that

Pr
[
GA0

]
− Pr

[
GAq

]
≤ q ·Advgsd

Gen(B3) ,

and B3 makes 5 Gen queries and runs in time T(B3) = T(A) +O(q ·Texp(G)). ut

Proof (Claim 3). B3(π) begins with T ←$ Ch({1, 2, 3}, {1, 3}). It then queries gj ←$ Gen({j}) for
j ∈ {1, 3, 4} and also D23←$ Gen({2, 3}) and A12←$ Gen({1, 2}). It performs the same initialization
as B2 and sets i← 0 and `←$ {1, . . . , q}. It then runs A(par) answering queries as follows:

On query LR(id,M0,M1):
id∗ ← id
If Mβ = 0 then
s4, s

′
4←$ ZN

c← Au1id+x1
12 gs44 ; C ′ ← A12g

s′4
4

Else
C,C ′←$ G

Return (C,C ′)

On query Extract(id):
i← i+ 1
If i < ` then
r, z, z′←$ ZN
K ← gr1D

z
23 ; K ′ ← (U id

1 X1)rDz′
23

Else if (i = `) then
K ← T ; K ′ ← T u1id+x1

Else // i > `
r1, r3, r

′
3←$ ZN

K ← gr1g
r3
3 ; K ′ ← (U id

1 X1)rgr
′
3

3

Return (K,K ′)

When A halts with output β′ adversary B3 returns 1 if β = β′ and 0 otherwise.

28

Let b be B3’s challenge bit. We need to show its responses are distributed as in G`−1 when b = 1
and G` when b = 0 so that

Advgsd
Gen(B3) =

1
q

q∑
`=1

Pr
[
GA`−1

]
− Pr

[
GA`

]
=

1
q

(
Pr
[
GA0

]
− Pr

[
GAq

])
.

First we show the ciphertext is correctly distributed regardless of b, `. We can write A12 = gs1g
x2
2

for random s, x3 ∈ ZN . Then

C ′ = A12g
s′4
4 = gs1g

s′4
4 g

x2
2

= (g1gw4
4)sgs

′
4−w4s

4 gx2
2

This has the form (g1W4)sgt
′
4

4 g
x2
2 with t′4 = s′4 − w4s mod p4. Now

C = Au1id+x1
12 gs44 = (gs1g

x2
2)u1id+x1gs44

= (U id
1 X1)sgs44 g

x2(u1id+x1)
2

= ((U1U4)idX1X4)sgs4−u4ids−x4s
4 g

x2(u1id+x1)
2

This has the form

((U1U4)idX1X4)sgt44 g
x2x′2
2

with

t4 = s4 − u4ids− x4s mod p4

x′2 = u1id + x1 mod p2

The first is random due to s4 and the second by the usual CRT argument.
Next we have to show the keys are correctly distributed. They certainly are when i > ` so we look

at i < ` and i = `. For the first case say D23 = gy22 g
y3
3 . Then

K = gr1D
z
23 = gr1g

zy2
2 gzy33

which has the form gr1g
r3
3 g

t2
2 with r3 = zy3 mod p3 and t2 = zy2 mod p2. Also

K ′ = (U id
1 X1)rDz′

23 = (U id
1 X1)rgzy21 gz

′y3
3

which has the form (U id
1 X1)rgr

′
3

3 g
t′2
2 with r′3 = z′y3 mod p3 and t′2 = z′y2 mod p2. Now if i = ` we can

write T = gr1g
t2
2 g

r3
3 where t2 = 0 if b = 1. So K = T has the right form. Now

K ′ = T u1id+x1 = g
r(u1id+x1)
1 g

t2(u1id+x1)
2 g

r3(u1id+x1)
3 = (U id

1 X1)rgt
′
2

2 g
r′3
3

with

t′2 = t2(u1id + x1) mod p2

r′3 = r3(u1id + x1) mod p3

Taken by itself this is OK by CRT but we also gave out u1id
∗ + x1 mod p2 in the ciphertext. But

u1id
∗+x1 mod p2 and u1id+x1 mod p2 are independent as long as id 6≡ id∗ (mod p2) which is where

we use the assumption that A is good. ut

29

We now need to bound

Pr
[
GAq

]
= Pr

[
HA1

]
+ (Pr

[
GAq

]
− Pr

[
HA1

]
) .

In game H1, the challenge encryption of a 0 is a pair of random, independent points in G({1, 2, 4}),
meaning the structure from game Gq is broken. (The keys remain all semi-functional.) The following
says this change makes little difference.

Claim 4. There exists B4 such that

Pr
[
GAq

]
− Pr

[
HA1

]
≤ Advgsd

Gen(B4) ,

and B4 makes 5 Gen queries and runs in time T(B4) = T(A) +O(q ·Texp(G)). ut
Proof (Claim 4). B4(π) begins with T ←$ Ch({2, 4}, {1, 2, 4}). It then queries W14←$ Gen({1, 4}),
E12←$ Gen({1, 2}), gj ←$ Gen({j}) for j ∈ {2, 3, 4}. Next it performs initialization

u1, x1←$ ZN ; U14 ←W u1
14 ; X14 ←W x1

14

par← (π, U14, X14,W14, g4)

It runs A(par) answering oracle queries as follows:

On query LR(id,M0,M1):
s, x′2←$ ZN
C ← (U id

14X14)sT x
′
2 ; C ′ ←W s

14T
Return (C,C ′)

On query Extract(id):
t, y, y′, r3, r

′
3←$ ZN

K ← Et12g
y
2g
x3
3 ; K ′ ← E

t(u1id+x1)
12 gy

′

2 g
r′3
3

Return (K,K ′)

When A halts with output β′, adversary B4 returns 1 if β = β′ and 0 otherwise.
If B4’s challenge bit is b = 1 then T is random in G({1, 2, 4}) and hence, due to this and x′2, both

C,C ′ are random in G({1, 2, 4}), as in game H1. On the other hand if b = 0 then T = g
t′4
4 g

x2
2 and

C ′ = W s
14g

t′4
4 g

x2
2 has the right form for game Gq. Also

C = (U id
14X14)sgx

′
2t
′
4

4 g
x′2x2

2

= (U id
14X14)sgt44 g

x2x′2
2

where

t4 = t′4x
′
2 mod p4

which is random and independent of x2x
′
2 mod p2 by CRT so C has form of game Gq as well.

Next we look at responses to Extract(id) queries. Say E12 = ge11 g
e2
2 . Then

K = Et12g
y
2g
r3
3

= gte11 gte2+y
2 gr33

= gr1g
r3
3 g

t2
2

with r = te1, t2 = te2 + y. Also

K ′ = E
t(u1id+x1)
12 gy

′

2 g
r′3
3

= g
u1id+x1)te1
1 g

(u1id+x1)te2+y′

2 g
r′3
3

= (U id
1 X1)te1g(u1id+x1)te2+y′

2 g
r′3
3

= (U id
1 X1)rgr

′
3

3 g
t′2
2

30

with

t′2 = (u1id + x1)te2 + y′

which is random due to y′. ut

Now we need to bound

Pr
[
HA1

]
= Pr

[
HA2

]
+ (Pr

[
HA1

]
− Pr

[
HA2

]
) .

Game H2 replaces the challenge encryption of 0 by a pair of random points in the full group. A subtle
point is that we needed two steps (games H1, H2) because the challenge queries made by adversaries
B4,B5 are different, meaning subgroup decision hardness for two different pairs of subgroups is being
used.

Claim 5. There exists B5 such that

Pr
[
HA1

]
− Pr

[
HA2

]
≤ Advgsd

Gen(B5) ,

and B5 makes 3 Gen queries and runs in time T(B5) = T(A) +O(q ·Texp(G)). ut

Proof (Claim 5). Adversary B5(π) begins with T ←$ Ch({1, 2, 3, 4}, {1, 2, 4}). It then queries g1←$ Gen({1}),
D23←$ Gen({2, 3}), g4←$ Gen({4}). It performs the same initialization as B2. It runs A(par) answer-
ing queries as follows:

On query LR(id,M0,M1):
z←$ ZN ; C ← T ; C ′ ← T z ; return (C,C ′)

On query Extract(id):
r, d, d′←$ ZN
K ← gr1D

d
23 ; K ′ ← (U id

1 X1)rDd′
23

B5 outputs whatever A outputs. The challenge ciphertext components are random in G if b = 0
and in G({1, 2, 4}) if b = 1. The keys are as in games H1, H2. ut

The following is clear since the challenge ciphertext in game H2 does not depend on the challenge bit
β.

Claim 6. Pr
[
HA2

]
= 1

2 . ut

Combining the claims gives

1
2
·Advind-cpa

BBoR (A) +
1
2

= Pr
[
HA

]
≤Advgsd

Gen(B2) + Pr
[
GA0

]
≤Advgsd

Gen(B2) + q ·Advgsd
Gen(B3) + Pr

[
GAq

]
≤Advgsd

Gen(B2) + q ·Advgsd
Gen(B3) + Advgsd

Gen(B4) + Pr
[
HA1

]
≤Advgsd

Gen(B2) + q ·Advgsd
Gen(B3) + Advgsd

Gen(B4) + Advgsd
Gen(B5) + Pr

[
HA2

]
≤Advgsd

Gen(B2) + q ·Advgsd
Gen(B3) + Advgsd

Gen(B4) + Advgsd
Gen(B5) +

1
2
.

31

Combined with our claim regarding adversary A′ and good adversary A, this gives

Advind-cpa
BBoR (A′) ≤ 3 ·Advgsd

Gen(B1)+2 ·Advgsd
Gen(B2)+2q ·Advgsd

Gen(B3)+2 ·Advgsd
Gen(B4)+2 ·Advgsd

Gen(B5)

Let v1 = 3, v2 = 2, v3 = 2q, v4 = 2, v5 = 2 and let v = v1 + v2 + v3 + v4 + v5 = (9 + 2q). Now, let
B(π) choose d ∈ {1, 2, 3, 4, 5} such that d = i with probability vi/v for 1 ≤ i ≤ 5. Then, B runs Bd(π).
Clearly

Advgsd
Gen(B)

=
1

9 + 2q
·
(

3 ·Advgsd
Gen(B1) + 2 ·Advgsd

Gen(B2) + 2q ·Advgsd
Gen(B3) + 2 ·Advgsd

Gen(B4) + 2 ·Advgsd
Gen(B5)

)
Thus, we end up with

Advind-cpa
BBoR (A′) ≤ (9 + 2q) ·Advgsd

Gen(B) ,

and the resources used by B are at most those used by any of the Bis. Thus, B makes at most 5 Gen
queries and runs in time at most T(B) = T(A′) +O(q ·Texp(G) + q ·T(gcd)).

32

