
Chosen Ciphertext Secure Encryption over Semi-smooth

Subgroup

Qixiang Mei1,2, Bao Li1, Xianhui Lu1, Dingding Jia 1

1: State Key Laboratory of Information Security, Beijing, 100049, China
2: Guangdong Ocean University, Zhanjiang, 524088, China

Abstract. In this paper, we propose two public key encryption schemes over the semi-smooth subgroup
introduced by Groth (TCC 2005). Both schemes are proved secure against chosen ciphertext attacks
under the factoring assumption. Since the domain of exponents is much smaller, both our schemes are
significantly more efficient than the scheme presented by Hofheiz and Kiltz in Eurocrypt 2009.

Keywords: public key encryption, chosen ciphertext secure, semi-smooth subgroup, factoring assump-
tion

1 Introduction

Chosen ciphertext security is now widely accepted as the standard security notion for the public key
encryption. The first practical CCA secure public key encryption scheme without random oracle was
proposed by Cramer and Shoup [7]. Their construction was later generalized to hash proof system
[8]. However, the Cramer-Shoup encryption scheme and all its variants [21, 17] inherently rely on the
decisional assumption, e.g., the Decisional Diffie-Hellman (DDH) assumption, Decisional Composite
Residuosity (DCR) assumption, and Decisional Quadratic Residuosity (DQR) assumption. In [25],
Peirk and Brent Waters proposed a general framework of constructing CCA secure encryption from
the lossy trapdoor function. In [28], Rosen and Segev proposed a general way under the correlated
inputs function. However, all the concrete constructions of lossy trapdoor function and correlated
inputs function are also based on the Decisional assumption.

Canetti, Halevi and Katz [4] proposed the first practical public key encryption under a com-
putational assumption, namely the Bilinear Diffie-Hellman assumption. Cash, Kiltz and Shoup
[6] proposed a practical CCA secure scheme under the Computational Diffie-Hellman assumption.
Hanaoka and Karosawa proposed a more efficient CCA secure scheme under the CDH assumption
[16]. Very recently, Haralambiev et al., further improved the result of CKS08 and HK08 under CDH
assumption. Notably, Hofheiz and Kiltz proposed a practical CCA secure PKE under the factoring
assumption in 2009 [18]. In [5], Cramer, Hofheiz and Kiltz proposed a framework based on the
computational assumption, which yields practical CCA secure scheme under the CDH assumption
and the RSA type assumption.

The Hofheiz-Kiltz 2009 scheme (HK09) [18] is constructed from the Blum-Goldwasser encryp-
tion [2], which itself is based on the Rabin encryption [26] and Blum-Blum-Shub (BBS) pseudo-
randomness generator[1]. The noticeable property of HK09 is that it only add a group element in
Z∗

N to BG scheme and can be proved in the standard factoring assumption (instead of the related
decisional assumption). The encryption is about two full exponentiation in Z∗

N , the decryption is
about one full exponentiation in Z∗

N plus some other multiplications.

Though very elegant, in the original HK09, the exponent is chosen from [(N − 1)/4], which
means it has almost the same bits length as N . For the secure lever of 80, the bits length of N ,
ℓN , needs to be chosen at least as 1024. So the exponentiation operation of HK09 is fairly time
consuming.



A nature question is to ask how to construct more efficient CCA secure public key encryption
scheme(s) under the factoring assumption.

In this paper, we present two efficient schemes over some special subgroup called semi-smooth
subgroup of Z∗

N . Both the schemes are proved secure against chosen ciphertext attacks under
the factoring assumption. Since the domain of exponents is much smaller, both the schemes are
significantly more efficient than HK09.

The semi-smooth subgroup is introduced by Groth in TCC 2005 [14]. This subgroup is defined
for some special modulus N that is called semi-smooth. More precisely, this type N = PQ is
chosen such that P = 2p′p1p2 · · · ptp + 1, Q = 2q′q1q2 · · · qtq + 1, where p1, p2, · · · , ptp ,q1, p2, · · · , qtq

are distinct odd primes smaller than some small bound B. The only subgroup, G, of Z∗

N of order
p′q′ is called the semi-smooth subgroup. The element of this subgroup can be efficiently sampled
without the factors of the modulus.

One of the schemes we constructed is a variant of HK09 over semi-smooth subgroup, which we
would like to refer it as the HK09 instantiation. The domain of exponent in this variant is replaced
with [2ℓp′+ℓq′+λ]. For secure lever of 80, we can choose the parameters as ℓp′ = ℓq′ = 160, ℓN = 1024,
and B = 215. So the bits length of the exponent is 400. Here, we describe the idea in a high level.
Recall that, the HK09 proof can be classed in two steps: first, they proved the BBS generator is
pseudorandom; then, they black box reduced the CCA security of the encryption to the security of
the BBS generator. The BBS generator can be proved pseudorandom if the Quadratic Residuosity
assumption in Z∗

N holds by using the the hybrid argument to the hard-core predictor. But the
Quadratic Residuosity assumption can be reduced to the factoring assumption in Z∗

N . In original
HK09, one of the public key, g, is chosen uniformly from QRN . We observe that the security proof
of the second step in HK09 goes through if the domain of the randomizing encryption exponent, µ,
satisfies two conditions: the first one is that the domain should be easily sampled without knowing
the order of g or the factors of N ; the second one is that if µ is uniformly chosen from this domain,
then the distribution of µ mod ord(g) is statistically close to the uniform distribution of [ord(g)].
But for the general Blum integer, since g is chosen randomly from QRN . Different g may have
different orders, even the bits size of ord(g) is not necessarily fixed. So we have to use a common
large domain, [(N − 1)/4]. If we instead choose g as the generator of a fixed subgroup of QRN ,
we can choose the domain as [2ℓord(g)+λ]. It is not difficulty to verify that this domain does satisfy
the above two conditions if ℓord(g) is given. If the Quadratic Residuosity is hard to compute in
this subgroup, the resulting scheme is indeed CCA secure. The problem is that, for the general
Blum integer, this subgroup is not efficiently sampled without the factors of the modulus. But if
the subgroup is not efficiently sampled, we find it difficulty to reduce the Quadratic Residuosity
assumption to the more standard factoring assumption. Now, we turn to the case the modulus N
is semi-smooth such that Z∗

N has a unique semi-smooth subgroup G. We find that the Quadratic
Residuosity assumption does can be reduced to the standard factoring assumption by using the
fact that this subgroup can be efficiently sampled without knowing the factors of the modulus N .
In particular, in this variant, we choose g uniformly from the semi-smooth subgroup G instead of
QRN , set the domain as [2ℓp′+ℓq′+λ]. With overwhelming probability, g will be a random generator
of G. So the order of g is equal to p′q′ and is fixed when N is given. And it is not difficult to prove
that this domain is easily sampled and satisfies the second condition, ie., if µ is chosen from this
domain, then the distribution of µ mod p′q′ is close to the uniform distribution of [p′q′]. Similarly,
we can replace the domain of the private decryption exponent ρ with [2ℓp′+ℓq′+λ].

Another scheme we construct is actually based on the ElGamal encryption over semi-smooth
group [12]. Compared to the HK09 instantiation, the decryption is more efficient, though the
encryption is less efficient. It is well known that the one-wayness of ElGamal encryption over the
Composite can be reduced to the factoring assumption [23]. Using the same idea as mentioned
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above, one-wayness of ElGamal encryption over semi-smooth group can also be reduced to the
factoring assumption. We observe that by using the proof technique of [24] it can be proved that
BBSr(g

xy) is pseudo-random even gx, gy are given. So we can turn the one-wayness secure ElGamal
encryption over the semi-smooth subgroup into a indistinguishability secure scheme. Surprisingly,
we prove that we only need add a group element in G as the check ciphertext to make the scheme
CCA secure. The resulting scheme is very related to the HK09 instantiation, though has obvious
difference. In the actually proof, we do not black box reduce CCA security of this scheme to the
pseudo-random of BBSr(g

xy). Instead, we prove the CCA security of this scheme and the pseudo-
randomness of BBSr(g

xy) simultaneously.

For easy of presentation, next, we focus on the CCA secure key encapsulation mechanism.
Combining it with the CCA secure data encapsulation mechanism, it is easy to obtain the full
CCA secure public key encryption [30].

2 Preliminaries

2.1 Key Encapsulation Mechanism

A key encapsulation mechanism consists of three algorithms: Key generation Gen(1λ), Encapsula-
tion Enc(PK), Decapsulation Dec(SK,C).

Gen(1λ): A probabilistic polynomial-time key generation algorithm takes as input a security
parameter λ and outputs a public-key PK and secret key SK.

Enc(PK): A probabilistic polynomial-time encryption algorithm takes public-key PK as input,
and outputs a pair (K,C), where K is the key and C is a ciphertext.

Dec(SK,C): A decryption algorithm takes a ciphertext C and the secret key SK as input. It
returns a key K.

We require that for all (PK,SK) output by Gen(1λ), all (K,C) output by Enc(PK), we have
Dec(SK,C) = K.

Definition 1. (CCA Secure KEM) A key encapsulation mechanism is indistinguishability against
chosen ciphertext attacks if any PPT adversary M has negligible advantage in the game defined
between the adversary M and the challenger D as follows:

1. When M queries a key generation oracle, D invokes Gen(1λ) to obtain (PK,SK), responds
with PK.

2. When M queries the challenge oracle. D invokes Enc(PK) to obtain C∗,K0, and chooses a
random bits string K1 with the same length as K0, chooses a random bit b, set K∗ = Kb,
responds with (C∗,K∗).

3. When M makes a sequence of calls to the decryption oracle. For each decryption oracle query,
M submits a ciphertext C, and C invokes Dec(SK,C) to obtain K, responds with the K. The
only restriction is that the adversary M can not request the decryption of C∗.

4. Finally, the adversary outputs a guess b′.

The adversary’s advantage in the above game is

AdvCCA
KEM,M(λ) = |Pr[M(K0) = 1]− Pr[M(K1) = 1]|
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2.2 Target collision resistant hash function

Informally, we say that a function H : X → Y is a target-collision resistant (TCR) hash function,
if, given a random pre-image x ∈ X, it is hard to find x′ 6= x with H(x′) = H(x).

Definition 2. Let H : X → Y be a function. For an adversary M , define

AdvTCR
H,M (λ) = Pr[x← X,x′ ←M(x) : x′ 6= x ∧H(x′) = H(x)]

We say that H is target-collision resistant if for any PPT adversary M , AdvTCR
H,M (λ) is negligible.

3 Semi-smooth Subgroup

In Groth 05 [14], the author introduces the definition of semi-smooth subgroup .
Let IGen(1λ) be a probability polynomial-time algorithm such that on input security parameter

λ, randomly chooses two m(λ)-bit primes P and Q satisfying P = 2p′p + 1, Q = 2q′q + 1, outputs
N = PQ, where p′ and q′ are m′(λ)-bit primes, both p and q are product of some distinct odd
primes smaller than a low bound B. We call such integer N as semi-smooth integer.

Definition 3. Let N = (2p′p + 1)(2q′q + 1) be a random output of IGen(1λ), the unique subgroup
G of order p′q′ is called the semi-smooth subgroup of Z∗

N .

Factoring Assumption about Semi-smooth Integer We assume that there exists no prob-
ability polynomial-time algorithm such that given only N , the random output of IGen(1λ), can
factoring N with non-negligible probability.

In [14], at secure level of 80, parameters are suggest to be ℓp′ = ℓq′ = 160, ℓN = 1024, and
B = 215.

Here, we describe some properties and lemmas that will be used in the proof of the CCA scheme
in section 4 and 5.

Property 1. Element of semi-smooth subgroup can be uniformly and efficiently sampled with-
out the factors of modulus.

Proof. One can choose h uniformly from Z∗

N , set PB =
∏

1<p<B, p is prime p, and g = hPB . Notice
that order of h is one of the factors of 2pqp′q′, and 2pq|PB , gcd(p′q′, PB) = 1. Then the order of
g must be one of the factors of p′q′. Thus g lies in the unique subgroup of order p′q′, G. On the
other hand, for every element g of G , there must exists an element h belongs to Z∗

N , such that
g = hPB (Reason: since gcd(p′q′, PB) = 1, then there exists a, b ∈ Z such that aPB + bp′q′ = 1.
Then g = gaPB+bp′q′ = (ga)PB ). Therefore, G = {g|g = hPB , h ∈ Z∗

N}. Observe that the mapping
f(x) = xPB is a 4pq to 1 mapping from Z∗

N to G, that is, for every z in G, there exists exactly 4pq
solutions in Z∗

N such that z = xPB(Reason: We firstly consider the set XI = {x|x ∈ Z∗

N , xPB = 1}.
Let the number of XI ,|XI |, be m. Let y′ be an element of G, x′ be an element of Z∗

N such that
y′ = (x′)PB . For every element x of XI , it must be that y′ = (x′x)PB . For every x does not belong
to XI , it must be that y′ 6= (x′x)PB . So it must be that for every z of G, the equation z = xPB has
exactly m solutions in Z∗

N . Since the number of G ,|G|, equals to p′q′. So it must be mp′q′ = 4pqp′q′.
So m equals to 4p′q′). When x is chosen uniformly from Z∗

N , z = xPB is uniformly distributed in
G. So g is a uniformly random element of G.

Property 2. With overwhelming probability, a randomly sampled element is a generator of G.
Proof. The order of G is p′q′, there are (p′−1)(q′−1) elements of order p′q′. So with probability

1− (p′ − 1)(q′ − 1)/p′q′ = 1−O(2−m′(λ)), a randomly sampled element is a generator of G.

4



Property 3. Any element v of G is a quadratic residue, the unique quadratic residue u such
that u2 = v lies in G.

Proof. From property 1 and 2, with overwhelming probability, g = hPB = (hP ′

B )2 is a generator
of G, where P ′

B =
∏

2<p<B, p is prime p . Obviously, g is a quadratic residue. So any element of
G =< g > is a quadratic residue. Since N is a Blum integer, then the equation u2 = v has unique
solution in QRN . Furthermore, the order of G, p′q′, is odd, then gcd(2, p′q′) = 1, so 2−1mod p′q′ ex-
ists. Since v lies in G, then v2−1mod p′q′ lies in G. Finally, since (v2−1mod p′q′)2 = v, then v2−1mod p′q′

which lies in G is the unique solution of the equation u2 = v.

Property 4. For any element z of G, then the unique quadratic residue u such that z = u2k

lies in G for any k ∈ Z+.

Proof: Since gcd(2, p′q′) = 1 and so gcd(2k , p′q′) = 1, then 2−kmod p′q′ exists, thus z2−kmod p′q′

lies in G and is a quadratic residue. Since N is a Blum integer, then squaring in quadratic residue
group, QRN , is a permutation. Then u2 = z has unique solution in QRN . By induction, z = u2k

has
unique solution in QRN . Since (z2−kmod p′q′)2

k
= z, then u = z2−kmod p′q′ is the unique quadratic

residue satisfies z = u2k
and lies in G.

Lemma 1. Let g be a generator of G, µ is chosen uniformly from [2ℓp′+ℓq′+λ], k is any integer,
then both µ modp′q′ and (µ+k)modp′q′ are statistically close to the uniformly distribution of [p′q′],
both gµ and gµ+k are statistically close to the uniformly distribution of G.

Proof. Write 2ℓp′+ℓq′+λ as k1p
′q′ + k2 over Z, where 0 < k2 < p′q′. If µ is uniformly chosen from

[k1p
′q′], then both µ mod p′q′ and (µ + k)mod p′q′ are uniform in [p′q′], and then both gµ and

gµ+k are uniform in G. But a uniformly chosen element from 2ℓp′+ℓq′+λ belongs to [k1p
′q′] with

probability k1p
′q′/2ℓp′+ℓq′+λ = 1− k2/2

ℓp′+ℓq′+λ ≥ 1−O(2−λ).

The following lemma states computing the square root residue of random element in semi-
smooth subgroup can be reduced to factoring the modulus N .

Lemma 2. Let G be the semi-smooth subgroup of Z∗

N , v is a uniformly chosen element of G, if
there exists an adversary A can compute the unique quadratic residue u such that u2 = v with non-
negligible probability, then there exists an adversary C can factor N with non-negligible probability.

Proof. Given N , C chooses h uniformly from Z∗

N , set P ′

B =
∏

2<p<B, p is prime p, and h′ = h2,

v = h′P ′

B (= hPB ). So v is a uniform element of G. If A can compute u such that u2 = v, then
C can compute h̃ such that h̃2 = h2: compute a, b over Z such that aPB + 2b = gcd(P ′

B , 2) = 1,

set h̃ = uah′b. If h̃ 6= ±h, then C outputs gcd(h̃ − h,N). With probability 1/2, h̃ 6= ±h, and so
gcd(h̃− h,N) is a non-trivial factor of N .

From lemma 2 and the Goldreich-Levin lemma[13], it is easy to see that given v = u2 over G,
the Goldreich-Levin predicate, Br(u), is a hard-core. Using the hybrid argument,we have:

Lemma 3. Let G be the semi-smooth subgroup of Z∗

N , given a uniform element z of G, then
BBSr(u) is indistinguishable from the uniform bits string U from [2ℓK ] under the assumption

factoring N is hard, where u is the unique quadratic residue such that z = u2ℓK , BBSr(u) =

(Br(u), Br(u
2), · · · , Br(u

2ℓK−1
)), r is a random element with bits-size ℓN .
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4 The Instantiation of HK09 over Semi-smooth Subgroup

4.1 Scheme description

Gen(1λ) : Run IGen(1λ) to get the modulus N . Then, Gen chooses a target-collision resistant hash
function H : ZN → [2ℓH − 1]. Next, Gen randomly chooses an element g of G, a bit string r of
length ℓN , and ρ from [2ℓp′+ℓq′+λ]. Finally, Gen sets X = gρ2ν

(ν = ℓH + ℓK). The public key is
PK = (N, g,X, r,H), and the private key is SK = ρ.

Enc(PK) : Enc randomly chooses µ ∈ [2ℓp′+ℓq′+λ], and computes

R = gµ2ν

, t = H(R), S = |(gtX)µ|.

Set the ciphertext as C = (R,S). Compute the encapsulation key as K = BBSr(g
µ2ℓH ).

Dec(SK,C) : Dec writes C as C = (R,S), verifies both R,S belong to Z∗

N × (Z∗

N

⋂
[(N − 1)/2])

and rejects it if not. Then Dec computes t = H(R), verifies:

(S2)2
ν

= (R2)t+ρ2ν

.

Reject it if it not. If it holds, then Dec computes a, b, c ∈ Z such that

2c = gcd(t, 2ν) = at + b2ν .

Then Dec computes

T = ((S2)a · (R2)b−aρ)2
ℓH−c−1

and K = BBSr(T ), outputs K.

Correctness: the correctness proof can be referred to HK09.

Efficiency The encapsulation and decapsulation need 3ℓexp+ℓK +2.5ℓH and 1.5ℓexp +4ℓK +6.5ℓH

multiplications respectively, where ℓexp equals to ℓp′ + ℓq′ + λ. For typical parameter, ℓN = 1024,
ℓp′ = ℓq′ = 160, λ = 80. So, the encapsulation requires 1480 multiplications, the decapsulation
requires 1440 multiplications.

Remark N,H, r, g can be set as global system parameters that can be shared by many par-
ties. Instead, if N and g are not the global system parameters, then the decapsulation exponent ρ
can be chosen from the even smaller domain [p′q′], and the decapsulation efficiency can be further
improved by using then Chinese Remainder Theorem.

4.2 Security proof

Theorem 1. If factoring the modulus N is hard and H is target-collision resistant, then the above
key encapsulation mechanism is chosen ciphertext secure.

Proof. To prove this theorem, from lemma 3, it is enough reducing the CCA security of this scheme
to the pseudo-randomness of the BBS generator over the semi-smooth subgroup.

Assume there exists an adversary A on KEM’s IND-CCA security. We define an adversary D
on the pseudo-randomness of the BBS generator. On input (N, z, V ), the goal of D is to distinguish
whether V is BBSr(u) or a uniform bits string with equal length, where u is the unique quadratic

residue in G such that z = u2ℓK , z is a uniform element in G.
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Prepare the public key. D chooses a target-collision resistant hash function H : ZN → [2ℓH−1],
a bits string r of length ℓN , a random element g ∈ G, as well as β ∈ [2ℓp′+ℓq′+λ], sets

R∗ = z, t∗ = H(R∗), X = gβ2ν
−t∗ .

The public key is set as PK = (N, g,X, r,H). The private key is implicitly defined as ρ =
β − t∗/2ν mod p′q′.

Prepare the challenge cipertext and key. Next, we assume g is a generator of G. So we
can write R∗ = gµ∗2ν

, though µ∗ is unknown to D. D defines

S∗ = |R∗β| (= |gµ∗β2ν

| = |(gt∗X)µ
∗

|).

The real corresponding key K∗ is defined as

K∗ = BBSr(g
µ∗2ℓH ) = BBSr(R

∗
1

2ℓK ) = BBSr(z
1

2ℓK ) = BBSr(u)

The challenge ciphertext is C∗ = (R∗, S∗), the challenge key is V . Note that, as in the IND-CCA2
game, if V is BBSr(u), then V is a real key , else V is a uniform string.

We claim that the distribution of the public key and the challenge ciphertext C∗ is almost identical
in simulation and IND-CCA game. Firstly, in public key, g,N, r and H are perfectly simulated.
From Property 2, with overwhelming probability, g is a generator of G. From Lemma 1, we know
that if g is a generator of G, then X in the real game and in simulation are both statistically close
to the uniform element in G. So X is simulated perfectly with overwhelming probability. Similarly,
with overwhelming, R∗ is also perfectly simulated. Conditioned on X, R∗, g, r, N are simulated
perfectly, from the simulation, we know that S∗ and K∗ are also perfectly simulated. As required.

Answer the decryption queries. When A submit a ciphertext (R,S), D does as following.

Check (R,S) ∈ Z∗

N × (Z∗

N

⋂
[(N − 1)/2]), reject if not. Compute t = H(R).

For the case t 6= t∗. Verify:

(S2)2
ν

= (R2)t−t∗+β2ν

.

Reject it if it not. If it holds, then compute a′, b′, c′ ∈ Z such that

2c′ = gcd(t − t∗, 2ν) = a′(t− t∗) + b′2ν .

Then compute

T = ((S2)a
′

· (R2)b
′
−a′β)2

ℓH−c−1

and K = BBSr(T ), output K.

The correctness of the decryption simulation for t 6= t∗ can be referred to the proof of original
HK09.

For the case t = t∗. If R = R∗ and the ciphertext is valid , it will satisfy

(S2)2
ν

= (R2)β2ν

= (R∗2)β2ν

= S∗2.

Therefore, S2 = S∗2. Furthermore, (R,S) 6= (R∗, S∗) implies that |S| = S 6= S∗ = |S∗|, so that
S 6= ±S∗ and (S + S∗)(S − S∗) = S2 − S∗2 = 0 mod N yields a non-trivial factor of N .
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If t = t∗ and R 6= R∗, then it will contradict the target-collision resistance of H, so D can safely
give up this type ciphertext.

So with overwhelming probability, D perfectly simulates the IND-CCA game.

D outputs what A outputs.

D can use A as a oracle to distinguish whether V is BBSr(u) or a uniform bits string.

5 Another Scheme over Semi-smooth Subgroup Secure under Factoring

Assumption

In this section, we will construct another efficient KEM over semi-smooth subgroup and prove it
is chosen ciphertext secure under the factoring assumption. This scheme is implicitly instantiated
over the signed quadratic residues group [19].

5.1 Signed quadratic residues

The signed quadratic residues, QR+
N , are defined as the group QR+

N = {|x| : x ∈ QRN}, where |x|
is the absolute value when representing elements of Z∗

N as the set {−(N − 1)/2, · · · , (N − 1)/2}, N
is a Blum integer. The group operation ◦ is defined by a ◦ b = |ab mod N |. For simplification, we
denote |ab| instead of |ab mod N |. An attractive property is that the membership in QR+

N can be
efficiently verified since QR+

N = J+
N = JN

⋂
[(N − 1)/2], where J+

N denotes {|x| : x ∈ JN}, and JN

denotes the group of elements with Jacobi symbol 1.

The following lemmas will be used in the security and correctness proof for the KEM in next
subsection.

Lemma 4. If A,B ∈ QR+
N , then A2 = B2 mod N ⇔ A = B. More generally, A2k

= B2k

mod N
(k ∈ Z+) ⇔ A = B.

Proof. The necessity is obvious. We only prove the sufficiency.

Since A ∈ QR+
N , then there exists u ∈ Z∗

N such that A = u2 if 0 ≤ u2 < N/2 or else A = −u2.
Similarly, there exists v ∈ Z∗

N such that B = v2 if 0 ≤ v2 < N/2 or else B = −v2. Now

A2 = B2 mod N ⇒ u4 = v4 mod N

From the uniqueness of square quadratic root (recall that N is a Blum integer), we have u2 =
v2 mod N .

So if 0 ≤ u2 < N/2 then A = u2 = v2 = B; else if −N/2 < u2 < 0 then A = −u2 = −v2 = B.

The general case can be proved by induction.

Lemma 5. If A,B ∈ QRN ∪QR+
N , then |AB| = ||A||B||.

Proof. If A ∈ QRN ∪ QR+
N , then exists u such that A = u2 or A = −u2. Similarly, if B ∈

QRN ∪ QR+
N , then exists v such that B = v2 or B = −v2. On one hand, we have |AB| = |u2v2|

or |AB| = | − u2v2|. So, we have |AB| = | ± u2v2| = |u2v2|. On the other hand, we also have
||A||B|| = |±u2v2| = |u2v2| since |A| equals to u2 or −u2 and |B| equals to v2 or −v2. The Lemma
follows since both |AB| and ||A||B|| equal to |u2v2|.
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5.2 Scheme description

Gen(1λ) : Run IGen(1λ) to get the modulus N . Then, choose a target-collision resistant hash
function H : ZN → [2ℓH − 1]. Next, randomly choose an element g of the semi-smooth subgroup
G, a bit string r of length ℓ(N−1)/2, and ρ, ρ′ ∈ [2ℓp′+ℓq′+λ]. Finally, set X = gρ2ν

(ν = ℓH − 1) and

X ′ = gρ′ . The public key is PK = (N, g,X,X ′, r,H), and the private key is SK = (ρ, ρ′).

Enc(PK) : Enc randomly chooses µ ∈ [2ℓp′+ℓq′+λ], and computes

R = |gµ2ν

|, t = H(R), S = |(X ′tX)µ|, T = |X ′µ2ν

|,

K = BBSr(T )
def
= (Br(|T |), Br(|T

2|), · · · , Br(|T
2ℓK−1

|)).

Set the ciphertext as C = (R,S) and the encapsulation key as K.

Dec(SK,C) : Dec writes C as C = (R,S), verifies both R and S belong to QR+
N = JN

⋂
[(N −

1)/2]. If it holds, then Dec computes t = H(R), verifies:

|S2ν

| = |Rρ′t+ρ2ν

|

If it holds, then Dec computes

T = |Rρ′ |, K = BBSr(T ).

The difference between HK09 instantiation and this scheme: in HK09 instantiation pre-
sented in section 4, the first ciphertext is gu2ℓH+ℓK , but in this scheme, the first ciphertext is

|gu2ℓH−1
|. The encapsulated key of the former is BBSr(R

1

2ℓK ), whereas that of the latter is BBSr(|R
ρ′ |).

The verification part in HK09 instantiation is S = |(gtX)µ|, whereas it is S = |(X ′tX)µ| in this
scheme. The decapsulation for key in this scheme is simpler than in HK09 instantiation.

Correctness: If R and S is computed according to the encapsulation, then both R and S be-
long to G+. Since G+ ⊆ QR+

N , so R,S ∈ QR+
N . From lemma 5, we know that |AB| = ||A||B|| as

long as A,B ∈ QRN ∪QR+
N , then

|S2ν

| = ||(X ′tX)µ|
2ν

| = |g(ρ′t+ρ2ν )µ2ν

| = |Rρ′t+ρ2ν

|.

The fact that |Rρ′ | equals to |X
′µ2ν

| follows from :

|X
′µ2ν

| = |gρ′µ2ν

| = ||gµ2ν

|ρ
′

| = |Rρ′ |

Efficiency: If we choose ℓq1 = ℓp1 = 160, λ = 80, then ℓρ = ℓρ′ = ℓexp = 400. We assume ℓH = 80.
The encapsulation requires 4.5ℓexp + 2.5ℓH = 2000 multiplications. The decapsulation requires
1.5× 1.2ℓexp + 2.5ℓH = 920 multiplications (Notice that gρ′ and gρ use the same base g and can be
computed with about 1.2 exponentiations).

5.3 Security proof

Theorem 2. If factoring the modulus N is hard and H is target-collision resistant, then the above
key encapsulation mechanism is chosen ciphertext secure.
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High level of the proof : In HK09 instantiation (and the original HK09), firstly, the pseudo-
randomness of the BBS generator BBSr(u) is reduced to the factoring assumption, then, the CCA
security is black box reduced to the pseudo-randomness of the BBS generator BBSr(u). But,
in this scheme, if we directly reduce the CCA security to the pseudo-randomness of BBSr(g

µρ′)
(even gµ and gρ′ is given), then the simulator could not answer DDH oracle that needed for the
verification and could not compute the inversion modulo the unknown order p′q′ which is needed to
compute the encapsulated key. Instead, we prove the CCA security of this scheme and the pseudo-
randomness of BBSr(g

µρ′ ) simultaneously. Adapting the proof idea of [24], we firstly reduce the
security (both the CCA security of this scheme and the pseudo-randomness of BBSr(g

µρ′)) to a
hardcore distinguisher; next, we reduce the hardcore distinguisher to a hardcore predictor; finally,
we reduce the hardcore predictor to a factoring algorithm. In the first step, the distinguisher could
compute ρ′2ℓK mod p′q′, so he could compute |Rρ′2ℓK |. The distinguisher does not directly verify the

equation |S2ν
| = |Rρ′t+ρ2ν

|, instead, he verify a equivalent equation |S2ν+ℓK | = |Rρ′2ℓK t+ρ2ν+ℓK |,
which is why we implicitly use the signed group. Then, by using the technique of HK09, the

distinguisher is able to efficiently compute |(Rρ′2ℓK )
1

2ℓK |, which equals to the encapsulated key
|Rρ′ |.

Proof. The theorem is the consequence of the following three lemmas.

Reduce to the hard-core distinguisher D(v2, N, r, α)
As in [24], w below is actually determined by v2 and ξ1, ξ2, where ξ1, ξ2 is actually chosen by a
factoring algorithm. So w is fixed in advance and not determined by D’s internal coin tosses. But
for the moment, we assume

−→
ξ is chosen by D, so w depends on the D’s internal coin.

Lemma 6. If there exists a PPT adversary M such that AdvCCA
KEM,M(λ) equals to ε(λ), then there

exists a PPT adversary D(v2, N, r, α) that distinguishes whether α is equal to Br(|uw|) or a random
bit b with advantage ε′(λ), where v2 is a uniformly chosen element of G, u is the unique square root

residue of v2, w is determined by v2 and D’s internal coin tosses, and ε′(λ) =
ε(λ)−O(2−λ)−AdvTCR

H,M (λ)

ℓK
.

Proof. On input (v2, N, r, α), D works as follows.

Prepare the public key: Choose a target-collision resistant hash function H : ZN → [2ℓH − 1].
Randomly choose J = k from {0, 1, · · · ℓK − 1}. Select at random bits string (b0, b1, · · · , bk−1). Ran-
domly and independently select 2 elements ξi(i = 1, 2) from [2ℓp′+ℓq′+λ], denote

−→
ξ = (ξ1, ξ2). Set s =

2ℓK −k, g = v2s

mod N , and ai = (ξi +2−ℓK ) mod p′q′ (i = 1, 2). Set X ′ = ga1 = gξ1+2−ℓK mod p′q′

(implicitly define ρ′ = (ξ1 + 2−ℓK ) mod p′q′). Set B = ga2 = gξ2+2−ℓK mod p′q′ (implicitly define

B = gµ∗2ν

). Set t∗ = H(|B|). Randomly choose β ∈ [2ℓp′+ℓq′+λ], and set X = gβ2ν

X ′−t∗ ( implicitly
define ρ = (β − ρ′t∗/2ν) mod p′q′). The public key is set as (N, g,X ′,X, r,H).

( D is able to efficiently compute X ′ = ga1 = gξ1+2−ℓK mod p′q′(= (v2)
ℓK−k

(v2)
ξ1(2ℓK−k)

) since
ℓK > k and v2 is given. Similar, B can be efficiently computed too. It is easy to see that other
elements of the public key can be efficiently simulated by D)

Prepare the challenge ciphertext and key: The challenge ciphertext is set as:

R∗ = |B| (= |gµ∗2ν

|); S∗ = |R∗β| (= |(X ′t
∗

X)µ
∗

|)

And the challenge key is set as

K∗ = (b0, b1, · · · , bk−1, α,Br(|g
2k+1a1a2 |), · · · , Br(|g

2ℓK−1a1a2 |))
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Define w: We define w = (v22ℓK )ξ1ξ2(v2ℓK )ξ1+ξ2. Given the values of ξ1, ξ2 and v2, D is able to
efficiently compute w. It is easy to see that, w is a quadratic residue in G (recall that v2 ∈ G)and
is determined by v2 and D’s internal coin tosses.

Claim 1. Let a1, a2, g, u, w be defined as above, then g2ka1a2 = uw.

Proof.

g2ka1a2 = g2k(ξ1+2−ℓK )(ξ2+2−ℓK ) = g2k(ξ1ξ2+(ξ1+ξ2)2−ℓK +2−2ℓK )

= v22ℓK (ξ1ξ2+(ξ1+ξ2)2−ℓK +2−2ℓK ) = uw.

Claim 2. D is able to compute g2k+ja1a2 for j = 1, . . . ℓK − k − 1.

Proof. From Claim 1, we have g2ka1a2 = uw, so each g2k+ja1a2 equals to (uw)2
j

for j = 1, . . . ℓK−k−
1. Furthermore, since D knows v2 and w2, so he is able to compute (uw)2

j
for j = 1, . . . ℓK − k− 1,

as required.

From claim 1 and 2, we it is easy to see that, D is able to efficiently prepare the challenge
ciphertext and key.

Answer the decryption queries: For the query ciphetext (R,S), D verifies both R and S
belong to QR+

N . If it holds, D computes t = H(R). If t 6= t∗, D verifies if

(S2ℓK )2
ν

= (R(2ℓK ξ1+1))t−t∗(R2ℓK )β2ν

(Note that the right side equals to

(R(2ℓK ρ′))t−t∗(R2ℓK )β2ν

= (R2ℓK )ρ
′t−ρ′t∗+β2ν

= (R2ℓK )ρ
′t+ρ2ν

From Lemma 4, we know that verifying |S2ν
| = |Rρ′t+ρ2ν

| is equivalent to verifying (S2ℓK )2
ν

=

(R2ℓK )ρ
′t+ρ2ν

, as required.)

If it holds, D computes a′, b′, c′ ∈ Z such that:

2c′ = gcd(t− t∗, 2ν+ℓK ) = a′(t− t∗) + b′2ν+ℓK

(Note that since both t and t∗ are smaller than 2ℓH , then c′ ≤ ℓH − 1 = ν)
Then D computes

T = |((SR−β)a
′

Rb′(2ℓK ξ1+1))2
ν−c′

|

(T = |{((SR−β)a
′

Rb′(2ℓK ξ1+1))2
ν+ℓK }2

−ℓK−c′

| = |{(SR−β)a
′2ν+ℓK (R(2ℓK ξ1+1))b

′2ν+ℓK }2
−ℓK−c′

|

= |{(R(2ℓK ξ1+1))a
′(t−t∗)+b′2ν+ℓK }2

−ℓK−c′

| = |{(R(2ℓK ξ1+1))}2
−ℓK | = |Rρ′ |)

(The third step follows from (SR−β)2
ν+ℓK = (R(2ℓK ξ1+1))t−t∗ , the fourth step follows from 2c′ =

a′(t− t∗) + b′2ℓ+ℓK , the last step follows from ρ′ = (ξ1 + 2−ℓK ) mod p′q′. Correctness follows.)

If t = t∗, D rejects the query ciphetext (R,S). ( If H(R) = t = t∗ = H(R∗) and R 6= R∗, then
M has broken the target-collision resistance of H. If t = t∗ and R = R∗, and the ciphertext is valid,
then we have

S = |S| = |((R(2ℓK ξ1+1))t−t∗(R2ℓK )β2ν

)1/(2ν+ℓK )| = |Rβ | = |(R∗)β| = S∗
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which means that (R,S) = (R∗, S∗), so this query will be rejected, as required. )
When M outputs a bit, D outputs the same bit.

The running time of D: It is easy to see that D can run in polynomial time.

The success-probability of D. To find the success probability of D, we prove that the distribu-
tion of the public key, challenge ciphetext, and the decryption in the simulated game is statistically
close to that in the real game.

Since v2 is a uniformly element of G, and squaring is permutation, so the above defined g is
a uniformly distributed element in G. Thus, g is perfectly simulated. Obviously, N , r and H are
perfectly simulated. From property 2, we know that with probability 1−O(2−m′(λ)) ≥ 1−O(2−λ),
g is a generator. From Lemma 1, we know that with probability 1−O(2−λ), X ′ in simulation and in
real game are both statistically close to the uniformly distributed element in G. So, with probability
1−O(2−λ), X ′ is perfectly simulated. With the same analysis, with probability 1−O(2−λ), X and
R∗ are perfectly simulated.

Therefore, the statistical distance between distribution of the public key in the simulated game
and that in the real game is O(2−λ).

Note that, conditioned on the public key is simulated perfectly, the challenge ciphertext is
perfectly simulated, and the decryption oracle is simulated perfectly except the case that M finds
a target collision, which occurs with negligible probability AdvTCR

H,M (λ).

For convenience, we denote some hybrid experiments HJ(J = 0, · · · , ℓK) the same as the real
game except the way the challenge key is responded with: the first J bits are chosen randomly,
while the other ℓK − J bits are computed as in K0. So in the experiment H0, the distribution of
the key that the adversary sees is the same as K0, whereas in the experiment HℓK , the distribution
of the key is the same as K1.

From Claim 1, we know that, if α = Br(|uw|), then the distribution that M sees is the simulated
HJ , while if α is a random bit b, then the distribution that M sees is the simulated HJ+1. We
denote the simulated Hk as Hk

S for each k ∈ {0, 1, · · · , ℓK}, and still denote real Hk as Hk. So the
advantage of D is :

|Pr[D(Br(|uw|)) = 1]− Pr[D(b) = 1]| = 1
ℓK
|
∑ℓK−1

j=0 {Pr[D(Br(|uw|)) = 1|J = j]− Pr[D(b) = 1|J = j]}|

= 1
ℓK
|
∑ℓK−1

j=0 {Pr[M(Hj
S) = 1]− Pr[M(Hj+1

S ) = 1]}| = 1
ℓK
|Pr[M(H0

S) = 1]− Pr[M(HℓK

S ) = 1]|

≥ 1
ℓK
{|Pr[M(H0) = 1]− Pr[M(HℓK ) = 1]| −O(2−λ)−AdvTCR

H,M (λ)} =
ε(λ)−O(2−λ)−AdvTCR

H,M (λ)

ℓK

This completes Lemma 6.

Reduce to the hard-core predictor D′

N,ξ1,ξ2,v2

Since D defined in Lemma 6 chooses ξ1, ξ2 itself and w depends on v2 and ξ1, ξ2 , then the value
of w potentially changes each time D is invoked. Furthermore, D is not a predictor for Br(|uw|)
but rather a distinguisher. So D is not suitable to be used as an oracle for the Goldreich-Levin
reconstruction algorithm [13]. The first problem can be solved by fixing the value ξ1, ξ2 in advance.
The second problem can be addressed by reducing the hard-core distinguisher to a suitable hard-
core predictor. On input < r >, the hard-core predictor D′

N,ξ1,ξ2,v2 is defined as follows:

1. Uniformly choose random bits α and β .
2. Invoke D on input < v2, N, r, α >, and feed it with ξ1, ξ2 .
3. If D outputs 1, then output α, else if D outputs 0, then output β.

Note that now, the value of w does not change with the invoking of D′

N,ξ1,ξ2,v2 . So it is possible to

use D′

N,ξ1,ξ2,v2 as an oracle to reconstruct |uw|.
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Lemma 7. If there exists a PPT adversary M such that AdvCCA
KEM,M(λ) equals to ε(λ), then there

exists a PPT hard-core predictor, D′

N,ξ1,ξ2,v2 , with the probability ε′(λ)/2 ( over the choice of N, v2,

and ξ1, ξ2), can predict the value of Br(|uw|) with advantage ε′(λ)/4, where u is the unique square

root residue of v2, w is determined by v2 and ξ1, ξ2, and ε′(λ) =
ε(λ)−O(2−λ)−AdvTCR

H,M (λ)

ℓK
.

Proof. By Lemma 6, M has ε′(λ)-advantage in distinguishing Br(|uw|) from a random bit b. Then
for at least ε′(λ)/2 fraction of the choices of N, v2, and ξ1, ξ2, M has ε′(λ)/2-advantage in distin-
guishing Br(|uw|) from the random bit b . So it is straightforward that D′

N,ξ1,ξ2,v2 can predict the

value of Br(|uw|) with advantage ε′(λ)/4.

Reduce to the factoring algorithm A(N)

Lemma 8. If there exists a PPT adversary M such that AdvCCA
KEM,M(λ) equals to ε(λ), then there

exists a PPT algorithm A factoring N with success probability Ω(ε′(λ)2), where ε′(λ) equals to

ε′(λ) =
ε(λ)−O(2−λ)−AdvTCR

H,M (λ)

ℓK
.

Proof. On input < N >, A is defined as follows:

1. (a) Choose h uniformly at random from Z∗

N , set P ′

B =
∏

2<p<B, p is prime p, and h′ = h2,v = hP ′

B ,
and compute v2 mod N (So v2 is a uniformly random element of G).

(b) Choose each ξ1, ξ2 uniformly from [2ℓp′+ℓq′+λ].

2. Compute w = (v22ℓK )ξ1ξ2(v2ℓK )ξ1+ξ2.

3. Invoke the Goldreich-Levin reconstruction algorithm, R(1λ):

(a) Whenever asked for Bri
(z), invoke D′

N,ξ1,ξ2,v2 on input < ri >, and give its output as an

answer. (recall that D′

N,ξ1,ξ1,v2 invokes M and answers its queries).

(b) Denote by z the output of R.

4. Compute |u| = |z|w−1||. Given that R outputs the correct value (i.e., z = |uw|) then |u2| =
|v2| mod N . Compute a, b over Z such that aP ′

B + 2b = gcd(P ′

B , 2) = 1, set h̃ = |uah′b|(=

||u|ah′b|). If h̃ 6= ±h, then A outputs gcd(h̃− h,N).

The successful probability of A: Since with probability ε′(λ)/2, D′

N,ξ1,ξ2,v2 predicts the value

of Br(|uw|) with advantage ε′(λ)/4, then by Goldreich-Levin theorem [13], we have that R retrives
the value of |uw| with probability at least Ω(ε′(n)2). Note that both |uw| and |w| belong to G+,
therefore |u| must also belongs to G+. If |u2| = |v2| mod N , then |u2| = |h′P ′

B | mod N . Thus
h̃ = |uah′b| belongs to QR+

N and satisfies |h̃2| = |h′| = |h2|. So h̃2 = h2 or h̃2 = −h2. But since N is
a Blum integer, then −1 is not quadratic residue. It easy to see that −h2 is not quadratic residue.
So it must be that h̃2 = h2. But with probability 1/2, h̃ 6= ±h, thus gcd(h̃ − h,N) is a non-trivial
factor of N . Therefore, A factors N with probability Ω(ε′(n)2), as required.
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