
A Reflection on the Security of Two-Party Key

Establishment Protocols

Qiang Tang

DIES, Faculty of EEMCS
University of Twente, the Netherlands

q.tang@utwente.nl

Abstract. Two-party key establishment has been a very fruitful research area
in cryptography, with many security models and numerous protocols proposed.
In this paper, we take another look at the YAK protocol and the HMQV proto-
cols and present some extended analysis. Motivated by our analysis, we reflect
on the security properties that are desired by two-party key establishment
protocols, and their formalizations. In particular, we take into account the in-
terface between a key establishment protocol and the applications which may
invoke it, and emphasize the concept of session and the usage of session identi-
fier. Moreover, we show how to design a two-party key establishment protocol
to achieve both key authentication and entity authentication properties in our
security model.

Keywords: key establishment, key authentication, entity authentication

1 Introduction

The history of two-party key establishment goes back a long way, although the modern
study of key establishment protocols can be traced back to the seminal work of Need-
ham and Schroeder [24]. Particularly, since the seminal work of Diffie and Hellman
[11], key establishment has been a very fruitful area in cryptography. So far, numerous
protocols have been proposed, as surveyed in Chapter 3 of Tang’s PhD thesis [27] and
the book by Boyd and Mathuria [5]. The standardization bodies, such as ISO and
IEEE, have also created a number of key establishment standards [15,16,17,18,19].
Among these protocols, a large proportion are based on the concept of Diffie-Hellman
key exchange [11].

Before the pioneering work by Bellare and Rogaway [3], who first analysed key
establishment protocols using complexity-theoretic methods, the security of key es-
tablishment protocols was typically evaluated using only heuristic techniques. As a
result, many protocols have been proposed which contain subtle vulnerabilities, only
discovered after the schemes were published. The Bellare-Rogaway model [3] was de-
signed to enable the analysis of entity authentication and two-party key establishment
in the shared secret key setting. Subsequently, a number of variants of this model have
been proposed. Blake-Wilson, Johnson, and Menezes [4] extended the model to the
public key setting. Bellare, Canetti, and Krawczyk [2] provided a modular approach

for the construction of authenticated key establishment protocols. They also proposed
the first simulatability-based security model for key establishment. Shoup [25] refined
the simulatability-based security model and proposed a model which works under
three different corruption assumptions. Later, Bellare, Canetti, and Krawczyk [2,6]
further extended the concept, and proposed another security model for two-party
key establishment protocols in the universally composable security framework. Hitch-
cock, Boyd, and Nieto [14] optimised the Bellare-Canetti-Krawczyk model. A number
of papers have been devoted to discussing the validation of, and relationships between,
these various security models, e.g. [7,8,9].

1.1 Motivation and Contribution

In the literature, there have been a lot attacks on two-party key establishment pro-
tocols. Some of them are feasible because the target protocols lack rigorous security
analysis, while others are feasible because they fall beyond the security model or
are carried out in some unperceived execution scenarios. Motivated by some recent
attacks against the provably secure HMQV protocols [13], we consider it to be an
interesting task to reflect on the security of two-party key establishment protocols.

In this paper, we revisit two-party key establishment protocols, which exploit
asymmetric key cryptography for security guarantees. This category of two-party
protocols is of interest to us, because it provides better scalability than the category
of protocols using symmetric key cryptography for security guarantees while provides
stronger security than the category of protocols using passwords for security guaran-
tees. Specifically, our contribution can be summarized as follows.

1. First, we take another look at the YAK protocol proposed by Feng [13] and
HMQV protocols [20,21] and present some extended analysis. In particularly, we
show that, contradicting Feng’s claim, the YAK protocol does not achieve forward
secrecy. The YAK protocol and the HMQV protocols do not achieve unknown key
share resilience in some execution scenarios. In addition, we show that the 3-pass
HMQV protocol is vulnerable to a key compromise impersonation attack, when
the adversary has access to a user’s long-term and short-term private keys.

2. Second, we re-examine two-party key establishment protocols from a number of
aspects: the workflow, the involved secrets, the interface with invoking applica-
tions. In particular, we emphasize that the invoking application should provide
application identifier to the key establishment protocol, which should return a
(session identifier, session key) pair. To our knowledge, such extended examina-
tion has not been done in the literature of two-party key establishment protocols.

3. Third, we categorize the security properties into two categories, namely key au-
thentication and entity authentication, and formalize them accordingly. The key
authentication property guarantees that only the intended user is capable of com-
puting a session key, while the entity authentication property guarantees that the
intended user has actually involved in a session. Both properties are crucial for
enabling a security service by running a key establishment protocol. Most existing
attack scenarios have been covered in our security model.

4. Last, we present a two-party key establishment protocol which achieves both key
authentication and entity authentication properties in our security model.

Arguably, by requiring the underlying applications to adopt some extra security
mechanisms, a protocol proven secure in any existing security model could possibly
achieve the same level of security in practice as a protocol proven secure in our security
model. However, we believe it is important to use a comprehensive security model
without relying on the underlying applications.

1.2 Organization

The rest of the paper is organised as follows. In Section 2, we analyse the YAK protocol
and the HMQV protocols. In Section 3, we look at different aspects of two-party
key establishment protocols. In Section 4, we categorize the security properties for
two-party key establishment protocols and formalize them. In Section 5, we present a
two-party key establishment protocol which is secure in our security model. In Section
6, we conclude the paper.

2 Review of YAK and HMQV

Throughout the paper, we use x ∈R X to denote that x is chosen from the set X

uniformly at random, and use x||y to denote the concatenation of x and y.

2.1 Review of the YAK Protocol

The YAK protocol, proposed by Feng [13], is a two-party key establishment protocol.
Note that this protocol has not been rigorously analysed in a security model. Let
Alice and Bob be two users who trust TTP in common. The algorithms are defined
as follows.

1. System Setup: Alice and Bob agree on a group G of prime order q, a generator g

of G, and a hash function H. Alice selects a ∈R Zq as her private key. Alice sends
ga to the TTP with a proof about her knowledge on a, and receives a certificate
on her public key ga from the TTP if the proof is valid. The proof of knowledge
is a non-interactive protocol described in [23], defined as follows.

(a) Alice sends X = ga and {Alice, OtherInfo, V = gv, r = v − a · h} to the TTP,
where v ∈R Zq, h = H(g, V, X, “Alice”, OtherInfo), and OtherInfo includes
some auxiliary information.

(b) The TTP checks X has the prime order q and V = grXh.

In a similar way, Bob generates his private key b ∈R Zq and obtains a certificate
on his public key gb from the TTP.

2. Key establishment: The key establishment protocol is as follows.

(a) Alice selects x ∈R Zq, and sends gx and prf1 to Bob. The prf1 is a proof of
knowledge of x, where

prf1 = {“Alice”, OtherInfo1, V1 = gv1 , r1 = v1 − x · h1},

v1 ∈R Zq, h1 = H(g, V1, g
x, “Alice”, OtherInfo1).

In the meantime, Bob selects y ∈R Zq, and sends gy and prf2 to Alice. The
prf2 is a proof of knowledge of y, where

prf2 = {“Bob”, OtherInfo2, V2 = gv2 , r2 = v2 − y · h2},

v2 ∈R Zq, h2 = H(g, V2, g
y, “Bob”, OtherInfo2).

OtherInfo1 and OtherInfo2 include some auxiliary information.
(b) If Alice accepts Bob’s proof, she computes the session key as H((gy · gb)a+x).

Similarly, if Bob accepts Alice’s proof, he computes the session key as H((gx ·
ga)b+y).

Vulnerability against forward secrecy. From the description, we note that the
key establishment protocol is one round and the proof of knowledge of ephemeral
private key is non-interactive. In addition, Bob is not required by Alice to prove his
knowledge of the long-term private key b. This results in the fact that, in a session,
an adversary can select r ∈R Zq, and send gr and prf2 to Alice. The prf2 is a proof
of knowledge of r, where

prf2 = {“Bob”, OtherInfo, V2 = gv2 , r2 = v2 − r · h2},

v2 ∈R Zq, h2 = H(g, V2, g
r, “Bob”, OtherInfo2).

Clearly, Alice will accept the adversary’s message and generate a session key K =
H((gr · gb)a+x). Consequently, we have the following attack scenario.

Suppose Alice has initiated the key agreement process to generate a session key
to send Bob some data M . Then, after the key establishment process success-
fully finishes, Alice may just send Encrypt(M, K) to Bob and end the session
afterwards, where Encrypt is a symmetric key encryption algorithm. Later on,
at any time, if the adversary can corrupt Bob’s long-term private key, it can
generate the same session key K and recover M .

In the above attack scenario, Alice has infact established a session key with the
adversary, instead of with Bob who has actually not been involved at all in the key
establishment process. Moreover, Bob is not able to compute K since he has no knowl-
edge about the ephemeral secret r. This attack violates the forward secrecy property,
as defined in Section 4. In fact, this attack coincides with Krawcyzk’s statement [20,21]
that 2-pass key establishment protocol authenticated via public keys and with no secure
shared state previously established between the parties will be vulnerable to the attacks
against forward secrecy.

Vulnerability against unknown key share resilience. Suppose Alice has two
devices, say Laptop and Workstation, and two applications which result in communi-
cations between these two devices. Consider a scenario where the applications run the
YAK protocol to establish session keys to protect the communications simultaneously.
In the absence of attacks, the protocol executions will perform as in Fig. 1.

Session 1 Session 2
(application I) (application II)

Laptop Workstation Laptop Workstation

x′ ∈R Zq, prf′1 x′′ ∈R Zq, prf′′1

gx′ , prf′1
→

gx′′ , prf′′1
→

y′ ∈R Zq, prf′2 y′′ ∈R Zq, prf′′2

gy′ , prf′2
←

gy′′ , prf′′2
←

Fig. 1. Concurrent Sessions of YAK

In more details, the four knowledge proofs, namely prf ′
i (1 ≤ i ≤ 2) and prf ′′

i

(1 ≤ i ≤ 2) are defined as follows.

– prf ′
1 = {Laptop, OtherInfo′1, V

′
1 = gv′1 , r′1 = v′1 − x′ · h′

1}, where v′1 ∈R Zq, h′
1 =

H(g, V ′
1 , gx′ , Laptop, OtherInfo′1).

– prf ′
2 = {Workstation, OtherInfo′2, V

′
2 = gv′2 , r′2 = v′2 − y′ · h′

2}, where v′2 ∈R

Zq, h′
2 = H(g, V ′

2 , gy′, Workstation, OtherInfo′2).

– prf ′′
1 = {Laptop, OtherInfo′′1 , V ′′

1 = gv′′1 , r′′1 = v′′1 −x′′ ·h′′
1}, where v′′1 ∈R Zq, h′′

1 =

H(g, V ′′
1 , gx′′ , Laptop, OtherInfo′′1).

– prf ′′
2 = {Workstation, OtherInfo′′2 , V ′′

2 = gv′′2 , r′′2 = v′′2 − y′′ · h′′
2}, where v′′2 ∈R

Zq, h′′
2 = H(g, V ′′

2 , gy′′ , Workstation, OtherInfo′′2).

With respect to the above descriptions, we note that Laptop’s proofs, namely prf ′
1

and prf ′′
1 , are generated based on the same identity Laptop. Similarly, we note that

Workstation’s proofs, namely prf ′
2 and prf ′′

2 , are generated based on the same identity
Workstation. Therefore, an adversary can swap messages in the two concurrent sessions
and mount an unknown key share attack. The attack is shown in Fig. 2.

It is straightforward to verify that Laptop’s session 1 and Workstation’s session 2
will compute the same session key, namely H((gx′ ·ga)b+y′′). While, Laptop’s session 2
and Workstation’s session 1 will compute the same session key, namely H((gx′′ ·ga)b+y′).

The consequence of the attack is that the adversary can swap messages in the
two applications without being noticed. For example, if in application I, Laptop sends
Encrypt(M, K) to Workstation where Encrypt is a symmetric key encryption algo-
rithm, then the adversary can forward it to Workstation in application II which will
successfully decrypt the ciphertext. As a result, messages have been delivered to the
unintended recipient applications, and this may cause subtle attacks depending on
the applications.

Session 1 Session 2
(application I) (application II)

Laptop Workstation Laptop Workstation

x′ ∈R Zq, prf′1 x′′ ∈R Zq, prf′′1

gx
′′

, prf′′1
→

gx
′
, prf′1
→

y′ ∈R Zq, prf′2 y′′ ∈R Zq, prf′′2

gy
′′

, prf′′2
←

gy
′
, prf′2
←

Fig. 2. unknown key share attack against YAK

2.2 Review of the HMQV Protocols

The HMQV family consists of a number of protocols, and we describe the 2-pass and
3-pass protocols below. Let Alice and Bob be two users who trust TTP in common.
Alice and Bob agree on a group G of prime order q, a generator g of G, and a hash
function H. Alice selects her long-term private key a ∈R Zq and lets the TTP certify
the public key ga, and Bob selects his long-term private key b ∈R Zq and lets the
TTP certify the public key gb. The protocols are shown in Fig. 3.

2-pass HMQV 3-pass HMQV

Alice (a, ga) Bob (b, gb) Alice (a, ga) Bob (b, gb)
x ∈R Zq x ∈R Zq

X = gx X = gx

X
→

X
→

y ∈R Zq, Y = gy y ∈R Zq, Y = gy

km = H(σb||0)

Z = MAC(“1”, km)

Y
←

Y,Z
←

sk = H(σa) sk = H(σb) km = H(σa||0)
W = MAC(“0”, km)

W
→

sk = H(σa||1) sk = H(σb||1)

Fig. 3. The HMQV Protocols

The value σa and σb are defined as follows.

d = H̄(X ||“Bob”), e = H̄(Y ||“Alice”), σa = (Y gbe)x+da, σb = (Xgad)y+eb,

where H̄ outputs the first ` bit of the input of the hash function H given that the
security parameter is `. It is straightforward to verify that

σa = σb = g(x+ad)(y+be).

Menezes [22] showed that both protocols might be vulnerable to so called “small
subgroup attacks” and “lattice attacks”, through which Alice, if being malicious,

could obtain Bob’s long-term private key b. These attacks have exploited the fact
that, in the protocol specification, it is not mandatory for Alice and Bob to verify
that both long-term and short-term keys are generated from the right subgroup. Feng
[13] showed that the 2-pass protocol is vulnerable to unknown share attacks if the
same user executes the protocol between different devices. Furthermore, we have the
following observations.

1. We show a key compromise impersonation attack in which, if the adversary knows
Alice’s long-term and ephemeral private keys a and x, it can impersonate Bob to
Alice. We skip the details since it is straightforward to verify that the attack
works.

Alice (a, ga) Adversary (a, ga, gb, x)
x ∈R Zq

X = gx

X
→

y ∈R Zq, Y = gy

σb = g(x+ad)y · (gb)(x+ad)e

km = H(σb||0)
Z = MAC(“1”, km)

Y,Z
←

km = H(σa||0)
W = MAC(“0”, km)

W
→

sk = H(σa||1) sk = H(σb||1)

Fig. 4. Attack against the 3-pass HMQV Protocol

2. Both protocols are vulnerable to the type of unknown key share attacks shown
in the case of the YAK protocol. Nonetheless, we note that this kind of attack is
beyond the security model used in [20,21].

3. Feng [13] presented a so called ”invalid public key attack”. To mount the attack,
Bob lets the TTP certify a long-term public key without generating any private
key. Due to the deliberate selection of his public key, Bob can still successfully
establish a session key with Alice. Since the public key is weak, any entity can
impersonate Bob to Alice so that it causes authentication and repudiation “prob-
lems”. However, this kinds of problems apply to all protocols, if a user does not
follow the protocol specification and chooses weak keys on purpose.

4. An execution of the 3-pass protocol requires 3 sequential message exchanges: Bob
can only send his first message after he receives Alice’s first message, Alice can
only send her second message after she receives Bob’s first message, and Bob can
only end the execution after he receives Alice’s second message. The process can
be improved by turning it into a 4-pass protocol which requires only 2 sequential
message exchanges. To achieve this, Alice and Bob first simultaneously send X

and Y to each other, then simultaneously send Z and W to each other.

3 Overview of Two-Party Key Establishment

3.1 The workflow

A two-party key establishment protocol generally involves two types of entities.

– One type is users, any two of which may run the key establishment protocol to
establish a session key with each other. Throughout the paper, we assume that the
users that may run a key establishment protocol are denoted as Ui (1 ≤ i ≤ N),
where N is the maximum of user population. Furthermore, we assume that Ui

possesses the identity IDi. If i 6= j, Ui and Uj are different users.

– The other type of entity is a Trusted Third Party (TTP) which help users vali-
date their long-term public keys, usually of some public-key encryption or digital
signature schemes.

Generally, we consider the following execution scenarios for a two-party key es-
tablishment protocol.

1. Two users, say Ui and Uj (i 6= j), may use the same protocol and the same long-
term key to negotiate session keys for many applications. The applications may
reside in different devices of Ui and Uj . For example, they may run the protocol to
between their laptops to protect their chatting contents and between their work
PCs to protect their work documents.

2. The same user, say Ui, may have multiple devices, any two of which use the same
protocol and the same long-term key to negotiate session keys for for many appli-
cations. For example, Alice may have separate applications to remotely transfer
medical files and sensitive work documents from her laptop to her PC in her
company.

3. For each application, the protocol may be executed multiple times to establish
cryptographic keys. We denote each execution of the protocol to be a session. We
further assume that multiple sessions can be initiated simultaneously.

We use S to denote the application identifier set which contains the application iden-
tifiers of all users.

In our setting, a session denotes an execution of the key establishment protocol,
invoked by an application of two users. Informally, a session is associated with a
set {IDi, IDj , appid} and some execution-specific information (such as the message
exchange transcript) which distinguish different protocol executions invoked by the
same application of the two users. Formally, we use a session identifier to identify a
session, and formally define its property under Definition 1 in Section 4. This concept
is important not only for theoretically formalizing the security of a key establishment
protocol, but also for applications to appropriately use the session keys.

Remark 1. In fact, the concept of session has been used in the existing models, e.g.
[3,6]. However, it has not been advocated that a session identifier should be out-
putted to the invoking application, together with the session key, e.g. in [3]. In [6], it
assumed that a session identifier should be supplied by the invoking application as an
input, however, this will require the two participants of an application to negotiate
an identifier in advance securely. Arguably, this is an undesirable assumption.

Ui (PKi, SKi; IDj , PKj , appid) Uj (PKj , SKj ; IDi, PKi, appid)

m1−→
m2←−
· · ·

mx−1
−→
mx←−

(sid, sk) (sid, sk)

Fig. 5. Workflow of a Two-party Key Establishment Protocol

The workflow of a two-party key establishment protocol follows the style shown
in Fig. 5. The inclusion of identifiers IDi and IDj in the input to the key establish-
ment protocol states that the users know their intended partners, and this is always
implicitly assumed in other works. Here, we have two new features.

1. One is that the key establishment protocol takes an application identifier appid

as input. This reflects our consideration that the protocol can be invoked by
multiple applications from the same user. We require that, for a user, its different
applications hold different identifiers. Furthermore, if an application is between
Ui and Uj (say, transfering friles between these users), then these two users hold
the same identifier for the application.

2. The key establishment protocol returns a (session identifier, session key) pair,
instead of a session key only as in most existing protocols.

These features are used to distinguish the key establishment sessions invoked by
different applications, and subsequently they enable us to avoid the type of unknown
key share attacks shown in Section 2.

Remark 2. About the protocol execution, we also make the following assumptions.
Both Ui and Uj know how to validate the public keys of each other. At the beginning
of a session, it may be required that Ui sends m1 to Uj first before Uj sends m2 back,
namely there is an order of message exchange. In such case, we say Ui is the initiator

while Ui is the responder. If there is no such order requirement, we simply say both
users are initiator.

3.2 The long-term and ephemeral private keys

In a session of a two-party key establishment protocol, each participant makes use of
two types of secrets.

1. One is its long-term private key1, which guarantees the integrity and/or confiden-
tiality of messages sent to the other participant. In some protocols, the long-term
private key is also used to derive the session key. Without using a long-term private
key, a two-party key establishment protocol will suffer from a man-in-the-middle
attack, for example in the case of Diffie-Hellman [11].

2. The other is the ephemeral private key, which is the randomness locally gener-
ated by a random number generator or a pseudo-random number generator. The
ephemeral private key is mainly used to derive a fresh session key, and it makes
the session keys unique.

In practice, both types of private keys could be compromised. For the long-term
private key, the user must store it somewhere and may also make some backups.
Therefore, an adversary may obtain the long-term private key if it gains access to
any one of the storage devices. With respect to the ephemeral private key, since it is
generated locally by a computing device (normally a computer), an adversary may
gain access to it by a number of means. For example, the adversary could install some
trojan horse in the participant’s computing device to steal the secrets, or it could
make use of the imperfectness of the pseudo-random number generator in use.

In practice, a user may attempt to use its long-term private key for other purposes.
For example, a user may use the signature key pair (assuming such a key pair is
used in the key establishment protocol) to authenticate itself to a website. This kind
of extended usage of the same private key is extremely risky. To demonstrate our
point, we present a toy example of a key establishment protocol in Fig. 6 and a toy
authentication protocol in Fig. 7, where r is a random string, (pk2, sk2) is a sign/verify
key pair of U2.

U1 U2

r
−→

Sign(r,sk2)
←−
· · ·

Fig. 6. Key Establishment Protocol

U2 Server

r
←−

Sign(r,sk2)
−→

Fig. 7. Authentication Protocol

Since U1 can make U2 sign a nonce in the key establishment protocol, so that
U1 can impersonate U2 in the authentication protocol trivially. We emphasize that

1 The same long-term private key is used in all executions of the protocol.

extended usage of the same private key should be avoided in practice. To formulate
the security properties, we assume the user’s long-term private key is only used in
executing a two-party key establishment protocol.

4 Formalization of Security Properties

In this section, we formalize the security properties desired by a two-party key estab-
lishment protocol. Further remarks are provided in the Appendix A.

4.1 The threat model

With respect to the relevant trust relationships in a two-party key establishment
protocol, we make the following assumptions.

1. If a TTP is required, it is semi-trusted in the following sense. The TTP will
honestly follow the protocol specification. For example, it will honestly certify
users’ public keys, but will not generate a forged certificate for either an existing
identity or a new identity (which is different from IDi (1 ≤ i ≤ N)).

2. Any user, say Ui, is semi-trusted by any other user Uj (j 6= i) in the following
sense.

(a) Suppose Uj is engaged in a session with Ui, it may be possible that Ui will
deviate from the protocol specification in order to obtain more information
about Uj ’s long-term and short-term private keys. For example, Ui may try
to impersonate Uj to another user in another session, by taking advantage of
the harvested information.

(b) Suppose Uj is engaged in a session with Ui, besides the possible malicious
activities described in (a), Ui will do nothing else malicious. For example, Ui

will not disclose the shared session key with Uj to any other entity.
(c) Suppose Uj is engaged in a session with Uk, Ui is treated as a malicious

adversary.

Since a key establishment protocol is normally used in a distributed environment,
namely the two participants communicate through an open network. Therefore, it is
essential to assume the adversary to be an active one. In other words, the adversary
can not only eavesdrop on the communication network but also manipulate (delete,
insert, replace, delay, etc) the messages at its will.

As a basic requirement, a two-party key establishment protocol should always be
sound. Formally the soundness property is defined as follows.

Definition 1. A two-party key agreement protocol is sound if the following require-
ments are satisfied.

1. In the absence of an adversary, the two users obtain the same (session identifier,
session key) pair at end of a session.

2. For any two sessions of Ui, carried out with Uj for an application appid, the
probability that the session identifiers are identical is negligible, regardless of the
coin flips of Uj.

3. Suppose that Ui successfully ended a session with Ui for the application appid and
Uk successfully ended a session with Ul for the application app′id. Given that the
sets {IDi, IDj , appid} and {IDk, IDl, app′id} are not identical, the probability that the
session identifier of IDi and the session identifier of IDk are identical is negligible,
regardless of the coin flips of all users.

In the literature, many properties have been identified for key agreement proto-
cols, and a summary of them can be found in the work by Menezes, Oorschot, and
Vanstone [23], Boyd and Mathuria [5], and Tang [27]. In this paper, we categarize the
desirable properties for a key establishment protocol into two categories, namely key
authentication and entity authentication.

4.2 The Key Authentication Property

The Key authentication property2 states that a user Ui has completed a successful
protocol execution in one session (let it be denoted with session identifier sid∗) with
Uj , it can be assured that only Uj is capable of compute the same session key. It is
worth noting that this property does not guarantee that Uj actually possess the same
session key. In fact, it does not even guarantee that Uj actually knows there is such
a key establishment session.

When analysing the key authentication property, in the above threat model, we
need to assume an active adversary which can access to the long-term private keys of
all users except Ui and Uj . In fact, we often need to assume a more powerful adversary
in the following attack scenarios.

1. known session key attack : In this case, the adversary is assumed to be able to
compromise the session keys in all sessions except that identified by sid∗. The
concept was first mentioned by Denning and Sacco [10] in a limited way, in which
the adversary can compromise all past session keys.

2. forward secrecy attack : In this case, the adversary is assumed to be able to com-
promise the long-term private keys of Ui or Uj after the session with identifier
sid∗ has ended. If both private keys are compromised by the adversary, it is said
to be a perfect forward secrecy attack.

3. known master key attack : In this case, the adversary is assumed to be able to
compromise TTP and obtain its long-term private keys. In addition, if the TTP
stores also other secret information then the adversary can obtain it as well.

4. unknown key-share attack : The notion of unknown key-share attacks were first
discussed by Diffie, van Oorschot and Wiener [12]. It is defined to be the property
that an honest user Ui never ends up believing it shares a key with user Uj ,

2 It is also referred to as the key secrecy property in the literature.

although it actually shares the session key with another user Uu (u 6= j). We
further require that one application should not share the same the session key
with another application when the protocol is run by the two applications of the
same pair of users.

5. key-compromise impersonation attack : This attack makes sense only when i 6= j,
namely the two users in the session are different. In this case, the adversary is
assumed to be able to compromise the long-term private key of Ui. Note that this
attack scenario is also considered in evaluating the entity authentication property.

Formally, the key authentication property is evaluated by the attack game between
a challenger and an adversary, as shown in Fig. 8, where the adversary’s advantage is
defined to be |Pr[b = b′] − 1

2 |. For the simplicity of description, we use the notations
Ui for some 1 ≤ i ≤ N in a few places, although the challenger will actually simulate
all these activities.

Definition 2. A two-party key establishment protocol achieves the key authentication
property, if any polynomial-time adversary has only negligible advantage in the key
authentication game.

4.3 The Entity Authentication Property

The entity authentication property states that, if from the view of a user Uj it has
successfully completed a key establishment session (identified by the session identifier
sid∗) with Uj , then Uj should have actually engaged in a key establishment session
(identified by the session identifier sid∗) with Ui. Typically, we need to assume an
active adversary which can access to the long-term private keys of all users except
Ui and Uj . Similar to the situation in analysing the key authentication property, we
often also consider some extended attack scenarios.

1. key-compromise impersonation attack : This attack makes sense only when i 6= j,
namely the two users in the session are different. In this case, the adversary is
assumed to be able to compromise the long-term private key of Ui. In addition,
we also allow the adversary to compromise all the ephemeral secrets of Ui.

2. key confirmation: In this case, if, from the view of a user Ui, it has successfully
completed a key establishment session (identified by the session identifier sid∗)
with Uj , then Uj should have engaged in a key establishment session (identified
by the session identifier sid∗) with Ui and has computed the same session key as
that of Ui.

Formally, the entity authentication property is evaluated by the attack game be-
tween a challenger and an adversary, as shown in Fig. 9, where the advantage is defined
to be the probability that the user Uv does not have a session with the identifier sid∗

and session key sk∗. For the simplicity of description, we use the notations Ui for
some 1 ≤ i ≤ N in a few places, although the challenger will actually simulate all
these activities.

1. Setup: the challenger generates the parameters for the TTP and publishes the public parameter.

2. Phase 1: Besides delivering messages for all sessions, the adversary is allowed to issue the following
types of queries for any 1 ≤ i, j ≤ N .

(a) Registerh(Ui): The user Ui selects its identity IDi, generates a key pair (PKi, SKi), and let the
challenger certify PKi.

(b) Registerm(Ui): The adversary selects an identity IDi, generates a key pair (PKi, SKi), and let
the challenger certify PKi.

(c) Invoke(Ui, Uj , appid, role): The user Ui initiates a new session with Uj for an application identified
by appid ∈ S. We require that both users have registered their public keys. The session is locally
indexed by

(Li, IDi, IDj , appid),

where the value Li means that it is U′is Li-th session. In addition, Ui does the following

– If role = initiator, Ui starts sending a message to Uj by following the protocol specification.

– If role = responder, Ui waits for Uj ’s message by following the protocol specification.

(d) Corrupte(Li, IDi): The user Ui sends the ephemeral secrets of its Li-th session to the adversary.

(e) Corruptl(IDi): The user Ui sends its long-term private key SKi to the adversary.

(f) Corruptk(Li, IDi): If the U′is Li-th session has successfully ended, which means a (sid, sk) pair
should have been generated, the user Ui sends sk to the adversary. Otherwise, Ui returns nothing.

(g) Corruptt(TTP): The challenger returns the private information of the TTP to the adversary.

At some point, the adversary chooses 1 ≤ u ≤ N and challenges Uu’s L∗u-th session, which has
successfully ended with (sid∗, sk∗). Suppose the session has been initiated to negotiate a session key
with Uv for an application identified by app∗id ∈ S. This is subjected to the following restrictions.

– The public keys PKu and PKv have been certified through Registerh queries.

– There has been no Corruptl(IDv) query and no Corruptl(IDu) query if u = v. There has been no
Corruptt query before Ui and Uj register their public keys.

– There has been neither Corrupte(L
∗
u, IDu) nor Corruptk(L

∗
u, IDu) queries.

– There has been neither Corrupte(L
∗
v, IDv) nor Corruptk(L

∗
v, IDv) query, where Uv ’s L∗v-th session

possesses the session identifier sid∗.

3. Challenge: Select b ∈R {0, 1}. If b = 0, send sk∗ to the adversary, otherwise send r ∈R K to the
adversary where K is the session key domain.

4. Phase 2: The adversary is allowed to issue the same types of queries as in Phase 1, with the following
restrictions.

– There has been neither Corrupte(L
∗
u, IDu) nor Corruptk(L

∗
u, IDu) queries.

– There has been neither Corrupte(L
∗
v, IDv) nor Corruptk(L

∗
v, IDv) query, where Uv ’s L∗v-th session

possesses the session identifier sid∗.

At some point, the adversary terminates by outputting a guess bit b′.

Fig. 8. The Key Authentication Game

1. Setup: the challenger generates the parameters for the TTP and publishes the public parameter.

2. Challenge: The adversary is allowed to issue the following type of queries: Registerh, Registerm, Invoke,
Corrupte, Corruptl, and Corruptk. The queries are answered in the same way as in the key authentication
game, as shown in Fig. 8. At some point, the adversary chooses 1 ≤ u ≤ N and challenges Uu’s
L∗u-th session, which has successfully ended with (sid∗, sk∗). Suppose the session has been initiated
to negotiate a session key with Uv for an application identified by app∗id ∈ S. This is subjected to the
following restrictions.

– The public keys PKu and PKv have been certified through Registerh queries.

– There has been no Corruptl(IDv) query and no Corruptl(IDu) query if u = v. There has been no
Corruptt query before Ui and Uj register their public keys.

Fig. 9. The Entity Authentication Game

Definition 3. A two-party key establishment protocol achieves the entity authentica-
tion property, if any polynomial-time adversary has only negligible advantage in the
entity authentication game.

5 A Secure Two-Party Key Establishment Protocol

5.1 The Proposed Protocol

We assume the users Ui (1 ≤ i ≤ N) agree on a group G of prime order q, a generator
g of G, and a hash function H : {0, 1}∗ → {0, 1}L where L is a polynomial in the
security parameter `. We assume K = {0, 1}L is the session key domain. Every user Ui

generates a key pair (PKi, SKi) for a digital signature scheme (KeyGen, Sign, Verify)
which is existentially unforgeable under an adaptive chosen message attack [22], and
lets the TTP certify PKi. The application identifier set is S = {0, 1}∗. If Ui and Uj

want to establish a session key, they follow the protocol shown in Fig. 10.

Ui (PKi, SKi, IDj , PKj , appid) Uj (PKj , SKj , IDi, PKi, appid)

x ∈R Zq , X = gx y ∈R Zq, Y = gy

X
−→

Y
←−

W = PKi||IDi||PKj ||IDj ||appid||X||Y

σ1 = Sign(0||W ||H(Y x), SKi) σ2 = Sign(1||W ||H(Xy), SKj)
σ1−→

σ2←−
sid = H(W), sk = H(W ||Y x) sid = H(W), sk = H(W ||Xy)

Fig. 10. The Proposed Key Establishment Protocol

In the protocol execution, Ui validates PKj and σ2 and aborts if any of the
validations fails, and Uj validates PKi and σ1 similarly.

The proposed protocol achieves all properties defined in our security model, namely
soundness, key authentication, and entity authentication. The prrofs appear in Ap-
pendix B.

Theorem 1. The proposed protocol is sound if the hash function H is collision resis-
tant.

Theorem 2. The proposed protocol achieves entity authentication property, given
that the digital signature scheme (KeyGen, Sign, Verify) is existentially unforgeable un-
der an adaptive chosen message attack.

Corollary 1. Suppose that the digital signature scheme (KeyGen, Sign, Verify) is ex-
istentially unforgeable under an adaptive chosen message attack. In the entity authen-

tication game, the probability that the Diffie-Hellman parameter Y is not generated
by Uv is negligible.

Recall that the computational Diffie-Hellman (CDH) assumption holds for the
group G if given gx, gy where x, y ∈R Zq an adversary can only output gxy with a
negligible probability.

Theorem 3. The proposed protocol achieves key authentication property based on the
CDH assumption in the random oracle model, given that the digital signature scheme
(KeyGen, Sign, Verify) is existentially unforgeable under an adaptive chosen message
attack.

5.2 A Further Remark

In Section 3.1, we state a special case of executing a two-party key establishment
protocol, i.e. a user, say Ui, runs the protocol between its devices while using the
same long-term key pair for security guarantee. Though the proposed protocol in
Section 5.1 is secure in this case, there is a higher probability that the long-term
private key could be compromised since it needs to be deployed in many devices. To
mitigate such risks, we can apply the following trick. Suppose that Ui has two devices
Laptop and Workstation, it can use the long-term key pair to certify two signature key
pairs for (PK ′

i, SK ′
i) and (PK ′′

i , SK ′′
i) for the devices, respectively. Then Laptop and

Workstation can use these key pairs to run the key establishment protocol.

6 Conclusion

In this paper, we have revisited the YAK protocol and the HMQV protocols and
shown their potential weaknesses. We have presented a comprehensive model for key
establishment protocols, which has taken into account the interface between a key es-
tablishment protocol and the applications which may invoke it. We have emphasized
the concept of session and the usage of session identifier. Moreover, we have shown
how to design a two-party key establishment protocol to achieve both key authen-
tication and entity authentication properties in our security model. We foresee the
following interesting future works. The security model can be made even stronger by
allowing the adversary to access more ephemeral secrets. For example, in the key au-
thentication game, the adversary is allowed to obtain the ephemeral secrets in section
sid∗. The security model can be extended in other ways. For example, similar privi-
leges can be given to the adversary as in the key-leakage resilient key establishment
protocols [1]. Instead of using digital signature for authentication purpose, it is worth
trying to explore public key encryption techniques. By doing so, the efficiency could
be improved.

References

1. J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the
bounded-retrieval model. In S. Halevi, editor, Advances in Cryptology — CRYPTO
2009, volume 5677 of Lecture Notes in Computer Science, pages 36–54. Springer, 2009.

2. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis
of authentication and key exchange protocols (extended abstract). In Proceedings of the
thirtieth annual ACM symposium on Theory of computing, pages 419–428, 1998.

3. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R.
Stinson, editor, Advances in Cryptology — CRYPTO 1993, volume 773 of Lecture Notes
in Computer Science, pages 110–125. Springer, 1993.

4. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. In M. Darnell, editor, Proceedings of Cryptography and Coding, 6th
IMA International Conference, volume 1355 of Lecture Notes in Computer Science, pages
30–45. Springer, 1997.

5. C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment. Springer,
2004.

6. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for build-
ing secure channels. In B. Pfitzmann, editor, Advances in Cryptology — EUROCRYPT
2001, volume 2045 of Lecture Notes in Computer Science, pages 453–474. Springer, 2001.

7. K. R. Choo, C. Boyd, and Y. Hitchcock. Errors in computational complexity proofs
for protocols. In B. Roy, editor, Advances in Cryptology — ASIACRYPT 2005, volume
3788 of Lecture Notes in Computer Science, pages 624–643. Springer, 2005.

8. K. R. Choo, C. Boyd, and Y. Hitchcock. Examining indistinguishability-based proof
models for key establishment protocols. In B. Roy, editor, Advances in Cryptology —
ASIACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages 585–604.
Springer, 2005.

9. K. R. Choo and Y. Hitchcock. Security requirements for key establishment proof models:
Revisiting bellare-rogaway and Jeong-Katz-Lee protocols. In C. Boyd and J. Nieto,
editors, Information Security and Privacy, 10th Australasian Conference, Proceedings,
volume 3574 of Lecture Notes in Computer Science, pages 429–442. Springer, 2005.

10. D. Denning and G. Sacco. Timestamps in key distribution protocols. Commun. ACM,
24(8):533–536, 1981.

11. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, 1976.

12. W. Diffie, P. Oorschot, and M. Wiener. Authentication and authenticated key exchanges.
Des. Codes Cryptography, 2(2):107–125, 1992.

13. H. Feng. On robust key agreement based on public key authentication (short paper).
In Proceedings of 14th International Conference on Financial Cryptography and Data
Security, FC 2010, 2010.

14. Y. Hitchcock, C. Boyd, and J. Manuel González Nieto. Modular proofs for key exchange:
rigorous optimizations in the canetti-krawczyk model. Appl. Algebra Eng. Commun.
Comput., 16(6):405–438, 2006.

15. Institute of Electrical and Electronics Engineers, Inc. IEEE P1363 Standard Specifica-
tions for Public-Key Cryptography, 2000.

16. Institute of Electrical and Electronics Engineers, Inc. IEEE P1363.2 draft D20, Standard
Specifications for Password-Based Public-Key Cryptographic Techniques, March 2005.

17. International Organization for Standardization. ISO/IEC FCD 11770–2, Information
technology — Security techniques — Key management — Part 2: Mechanisms Using
Symmetric Techniques, 1996.

18. International Organization for Standardization. ISO/IEC FCD 11770–3, Information
technology — Security techniques — Key management — Part 2: Mechanisms Using
Asymmetric Techniques, 1999.

19. International Organization for Standardization. ISO/IEC 11770–4, Information tech-
nology — Security techniques — Key management — Part 4: Mechanisms based on weak
secrets, 2006.

20. H. Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In Victor
Shoup, editor, Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 546–566. Springer, 2005.

21. H. Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. Cryptology
ePrint Archive: Report 2005/176, 2005.

22. A. Menezes. Another look at HMQV. Journal of Mathematical Cryptology, 1:47–64,
2005.

23. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1997.

24. R. Needham and M. Schroeder. Using encryption for authentication in large networks
of computers. Commun. ACM, 21(12):993–999, 1978.

25. V. Shoup. On formal models for secure key exchange. Technical report, IBM Research
Report RZ 3120, 1998.

26. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
http://shoup.net/papers/, 2006.

27. Q. Tang. Key establishment protocols and timed-release encryption schemes. Royal
Holloway, University of London, Mathematics Department Technical Report RHUL-
MA-2007-9, 2007. PhD Thesis.

Appendix A. Remarks on the Security Model

The key authentication game, shown in Fig. 8, covers the extended attack scenarios
listed in Section 4.2.

1. A known session key attack is covered because the adversary is allowed to ob-
tain the available session keys (except that in the session sid∗) through Corruptk
queries.

2. A perfect forward secrecy attack is covered because the adversary is allowed to
obtain both SKi and SKj through Corruptl queries in Phrase 2.

3. A known master key attack is covered because the adversary is allowed to obtain
the TTP’s private information through a Corruptt query.

4. An unknown key-share attack is covered because the adversary is allowed to ob-
tain the available session keys (except that in the session sid∗) through Corruptk
queries.

5. A key-compromise impersonation attack is covered because the adversary is al-
lowed to obtain both SKi through Corruptl queries in Phrase 1.

In addition, the possibility of ephemeral secret leakage has been covered since the
adversary is allowed to issue Corrupte queries

The key authentication game, shown in Fig. 9, covers the extended attack scenarios
listed in Section 4.3.

1. A key-compromise impersonation attack is covered because the adversary is al-
lowed to obtain both SKi through Corruptl queries and the ephemeral secret
through a Corrupte query.

2. A attack against key confirmation is covered because the adversary wins if the
two users do not have the same session identifier and share the same session key.

Appendix B. Proof of Theorems

Proof sketch of Theorem 1. Briefly, we show that the three requirements in Defi-
nition 1 are satisfied.

1. It is straightforward to verify that, at the end of a session, the two users obtain
the same (sid, sk) pair.

2. For Ui, the session identifier is computed partially with the input gx, where x

is randomly chosen in every session. Clearly, given that the hash function H is
collision resistant, two sessions of Ui, carried out with Uj for an application appid,
the probability that the session identifiers are identical is negligible.

3. For a session between Ui and Uj for the application appid, the session identifier is
computed partially with the input

PKi||IDi||PKj ||IDj ||appid.

For a session between Uk and Ul for the application app′id, the session identifier
is computed partially with the input

PKk||IDk||PKl||IDl||app′id.

Clearly, given that the sets {IDi, IDj , appid} and {IDk, IDl, app′id} are not identical
and the hash function H is collision resistant, the probability that the session iden-
tifier of IDi and the session identifier of IDk are identical is negligible, regardless
of the coin flips of all users.

The theorem now follows. ut

Proof sketch Theorem 2. Suppose that Uu successfully ended with a session with
with Uv for the application app∗id. Suppose also that Uu obtains (sid∗, sk∗) at the end
of the session. Based on the protocol specification, Uu has received a valid signature
of the form

σ2 = Sign(1||W ||H(Y logX
g), SKv), where

sid∗ = H(W) and W = PKu||IDu||PKv||IDv||appid||X ||Y.

Now, suppose the user Uv does not have a session with the session identifier sid∗

and session key sk∗ = H(W ||X logY
g), then the probability that Uv has generated a

signature equalling to σ2 is 0. Note that the adversary is not allowed to compromise
SKv in the game. As a result, the adversary has forged the signature σ2, which has
a negligible probability since the digital signature scheme (KeyGen, Sign, Verify) is

existentially unforgeable under an adaptive chosen message attack. The theorem now
follows. ut

Proof sketch Theorem 3. Suppose that there are at most T Invoke oracle queries
in Phase 1 of the key authentication game. Since we only consider a polynomial-
time adversary, T is a polynomial in the security parameter `. Let’s the adversary’s
advantage be ε in the key authentication game, shown in Fig. 8. The rest of the
security proof is done through a sequence of games [26].

Game0: At the beginning of this game, the challenger makes a prediction on the
session that the adversary would challenge in the game. The guess is correct im-
plies that it is a Uu’s L∗

u-th session with Uv for an application app∗id. If the guess
is incorrect, the challenger aborts. Otherwise, the challenger faithfully simulates the
protocol execution and answers the oracle queries from the adversary A. Let ε1 be
the probability that the challenger does not abort and the adversary wins the game.
Clearly, the probability that the challenger does not abort is 1

T
, in which case the

adversary’s advantage is ε (in this case, Game0 is equivalently the key authentication
game). Therefore, ε1 = ε

T
.

Game1: In this game, the challenger perform in the same way as in Game0 except
the session key is computed as

sid∗ = H(W), sk∗ = R, R ∈ {0, 1}L, W = PKu||IDu||PKv||IDv||app∗id||X ||Y.

Let ε2 be the probability that the challenger does not abort the game and the ad-
versary wins the game. Clearly, the probability that the challenger does not abort is
1
T

, in which case the adversary’s advantage is exactly 0 since the challenger returns a
random message, regardless the coin flip b. Therefore, ε2 = 0

T
.

If the hash function is modeled as a random oracle, then Game1 is identical to

Game0 unless the adversary has queries the random oracle H with the input W ||Y logX
g ,

which has a negligible probability based on Corollary 1 and the CDH assumption. We
have |ε2 − ε1|, namely ε

T
, is negligible from the Difference Lemma in [26]. Since T is

a polynomial in the security parameter `, the value ε is negligible. The theorem now
follows. ut

	A Reflection on the Security of Two-Party Key Establishment Protocols
	Qiang Tang

