
Cryptographic Role-based Security Mechanisms Based on
Role-Key Hierarchy ∗

Yan Zhu†‡ Gail-Joon Ahn§ Hongxin Hu§ Huaixi Wang♭

†Institute of Computer Science and Technology, Peking University, Beijing 100871, China
‡Key Laboratory of Network and Software Security Assurance (Peking University), Ministry of Education, China

§Laboratory of Security Engineering for Future Computing (SEFCOM),
Arizona State University, Tempe, AZ 85287, USA

♭School of Mathematical Sciences, Peking University, Beijing 100871, China
{yan.zhu,wanghuaixi}@pku.edu.cn; {gahn,hxhu}@asu.edu

ABSTRACT
Even though role-based access control (RBAC) can tremen-
dously help us minimize the complexity in administering
users, it is still needed to realize the notion of roles at the
resource level. In this paper, we propose a practical cryp-
tographic RBAC model, called role-key hierarchy model, to
support various security features including signature, iden-
tification and encryption based on role-key hierarchy. With
the help of rich algebraic structure of elliptic curve, we intro-
duce a role-based cryptosystem construction to verify the ra-
tionality and validity of our proposed model. Also, a proof-
of-concept prototype implementation and performance eval-
uation are discussed to demonstrate the feasibility and effi-
ciency of our mechanisms.

Keywords
Access Control, Role-based Cryptosystem, Role-Key Hier-
archy, Pairing-based Cryptosystem

1. BACKGROUND AND MOTIVATION
Role-based access control (RBAC), as a proven alternative

to traditional access control including discretionary access
control (DAC) and mandatory access control (MAC), has
been widely adopted for various information systems over
the past few years [14]. Even though RBAC can tremen-
dously help us minimize the complexity in administering
users, it is still needed to realize the notion of roles at
the resource level. In other words, RBAC systems need
to control a user’s access to resources as well as resource-
level management based on roles. Consequently, in order

∗Supported by 863 Project of China (No.2006AA01Z434)
and NSF of China (No. 10990011). An extended abstract of
this paper appears in ACM ASIACCS 2010, pages 314-319,
ACM, 2010. Online as IACR ePrint Report 2010/188

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

to provide effective resource management, it is inevitable
to adopt various cryptographic capabilities for managing re-
sources in RBAC systems. However, the existing crypto-
graphic schemes based on common asymmetric cryptosys-
tem have several limitations to address above-mentioned fea-
tures since those schemes cannot accommodate access con-
trol features of RBAC and have a lack of scalability and
interoperability due to inconsistent parameters among cryp-
tographic mechanisms.

In distributed environments, we can leverage RBAC mod-
els to enforce fine-grained policies for sharing resources [10].
However, the current cryptosystems do not support such
shared modes because the encryption/decryption keys can-
not be recognized between RBAC systems. As a conse-
quence, the resources should be re-encrypted when they are
transferred into another domain. Obviously, it is necessary
to design an efficient cryptographic mechanism compatible
with corresponding access control systems.

In fact, the research for cryptographic hierarchical struc-
ture has a long history since hierarchical structure is a nature
way to organize and manage a large number of users. Several
approaches on cryptographic partial order relation support-
ing hierarchical structure have been proposed. Akl and Tay-
lor introduced a simple scheme to solve multilevel security
problem [1, 2]. Since then, several efficient methods have
been studied. The concept of Logical Key Hierarchy (LKH)
was proposed by Wallner et al. [16] and Wong et al. [17]. In
this paradigm, common encryption key was organized into
a tree structure to achieve secure group communication in
a multicast environment. Additionally, public-key hierarchy
cryptosystems have been recently proposed. For instance,
hierarchical identity-based encryption (HIBE) mirrors an or-
ganizational hierarchy [8]. Although the public key can be
an arbitrary multi-level string, the HIBE schemes support
tree structures and provide an efficient method to assign a
subset of users to encrypt the message. Another important
area is hierarchy key management (HKM) that also orga-
nizes the key into a hierarchy. For example, time-bound
hierarchical key assignment (THKA) [15] can assign time-
dependent encryption keys to a set of classes in a partially
ordered hierarchy. This scheme is especially suited for the
realtime broadcast system with time control. Unfortunately,
these existing schemes cannot manage each user’s key and
thus all users with same identity (or security level) share
the same key. In other words, all users are indiscriminate
for various operations in systems. Therefore, the existing

1

schemes are hard to realize some advanced security func-
tions such as revocation, digital forensics, undeniability and
traceability.

Some new technologies, such as identity-based encryp-
tion (IBE) [5], attribute-based encryption (ABE) [11], and
public-key broadcast encryption (PBE) [7], lay out a solid
foundation for designing an efficient cryptosystem. Inspired
by these techniques, in this paper, we propose a practi-
cal cryptographic RBAC model, called role-key hierarchy
model, to support a variety of security features including
signature, identification and encryption based on role-key
hierarchy. With the help of rich algebraic structure of ellip-
tic curve, we introduce a role-based cryptosystem construc-
tion to verify the rationality and validity of our proposed
model. This constructions can provide more efficient and
flexible control than other hierarchical key assignments [3].
More importantly, some unique security mechanisms, such
as role-based signature & authentication and role-based en-
cryption are supported by our construction.

The rest of the paper is organized as follows. Section 2
overviews the role hierarchy in RBAC and Section 3 articu-
lates our role-key hierarchy structure along with the usabil-
ity of this structure in Section 4. In Section 5, we address
our RBC construction and application schemes in depth. In
Section 6, we evaluate the security and performance of our
schemes. Finally, we conclude this paper with our future
work.

2. PRELIMINARIES

2.1 Partial Orders
Let Ψ = 〈P,�〉 be a (finite) partially ordered set with

partial order relation � on a (finite) set P . A partial order
is a reflexive, transitive and anti-symmetric binary relation.
Inheritance is reflexive because a role inherits its own per-
missions, transitivity is a natural requirement in this con-
text, and anti-symmetry rules out roles that inherit from
one another and would therefore be redundant.

Two distinct elements x and y in Ψ are said to be compa-
rable if x � y or y � x. Otherwise, they are incomparable,
denoted by x‖y. An order relation � on P gives rise to a
relation ≺ of strict inequality: x ≺ y in P if and only if
(or iff) x � y and x 6= y. Also, if x is dominated by y, we
denote the domination relation as x ≺d y. In addition, if
x ≺ y and x � z ≺ y, it then implies z = x. The latter
condition demands that there be no element z of P satisfy-
ing x ≺ z ≺ y. We define the predecessors and successors of
elements in Ψ = 〈P,�〉 as follows: For an element x in P ,
↑ x = {y ∈ P |x � y} denotes the set of predecessors of x,
↓ x = {y ∈ P |y � x} denotes the set of successors.

2.2 Role Hierarchy
In an information system, a hierarchy is used to denote

the relationships and arrangements of the objects, users, ele-
ments, values, and so on. Especially, in many access control
systems the users are organized in a hierarchy constructed
with a number of classes, called security classes or roles,
according to their competencies and responsibilities. This
hierarchy arises from the fact that some users have more
access rights than others.

In order to manage large-scale systems, the hierarchy in
RBAC becomes more complex than other systems. Espe-
cially, role hierarchy (RH) is a natural means for structur-

ing roles to reflect an organization’s lines of authority and
responsibility. We adopt the definitions from RBAC models
proposed by Sandu et al. [13]:

Definition 1. [Hierarchical RBAC model]: The RBAC
model has the following components:

• U , R, P , and S, users, roles, permissions and sessions
respectively,

• PA ⊆ P × R, a many-to-many permission to role as-
signment relation.

• UA ⊆ U×R, a many-to-many user to role assignment
relation.

• RH ⊆ R × R is a partial order on R called the role
hierarchy or role dominance relation, written as �,

• user : S → U , a function mapping each session si to
the single user user(si), and

• roles : S → 2R, a function mapping each session si

to a set of roles: roles(si) ⊆ {r ∈ R|∃r′ ∈ R, r �
r′ : (user(si), r

′) ∈ UA} and si has the permissions:
⋃

r∈roles(si)
{p ∈ P |∃r′′ ∈ R, r′′ � r : (p, r′′) ∈ PA}.

A hierarchy in RBAC is mathematically a partial order
that defines an inheritance (or seniority) relation between
roles, whereby senior roles acquire the permissions of their
juniors. An example of role hierarchy is shown in Figure 1,
in which more powerful (senior) roles are shown toward the
top of the diagram and less powerful (junior) roles toward
the bottom.

Figure 1: Example of role hierarchy with tree,
inverted-tree, and general hierarchies.

Based on the specific features of resource management, we
divide role hierarchy into three categories:

1. Tree hierarchy : It is useful to support the sharing of
resources, in which resources make available to junior
roles are also available to senior roles.

2. Inverted-tree hierarchy : It allows the aggregation of
resources from more than one role, in which the senior
can access resources in all subordinate roles.

3. General hierarchy : It can compose various different
structures into a role hierarchy. Thus it facilitates both
the sharing and aggregation of resources.

3. ROLE KEY HIERARCHY

2

3.1 Role-Key Hierarchy Structure
In order to incorporate cryptographic schemes with RBAC,

we propose a new hierarchy structure called Role-Key Hi-
erarchy (RKH). Based on the hierarchical RBAC model,
we define RKH as follows:

Definition 2. [Role-Key Hierarchy]: Given a role hier-
archy 〈R,�〉 in RBAC, role-key hierarchy is a cryptographic
partial order relation for the sets of users, keys, and roles,
denoted by H = 〈U, K, R,�〉, satisfying the following condi-
tions:

1. K = PK ∪SK, the key set K includes the role-key set
PK and the user-key set SK;

2. UKA ⊆ U ×SK, a one-to-one user to key assignment
relation, i.e., each user ui,j ∈ U is assigned to an ex-
clusive user-key ski,j ∈ SK;

3. RKA ⊆ R×PK, a one-to-one role to key assignment
relation, i.e., each role ri ∈ R corresponds to a unique
role-key pki ∈ PK;

4. KH ⊆ PK × PK, is a partial order on PK called the
key hierarchy or key dominance relation, also written
as �; and

5. Each user ui,j can access the resources associated with
rl if and only if rl � ri ∈ RH and (ui,j , ri) ∈ UA.

where, 〈K,�〉 is the smallest partially ordered set satisfying
the above conditions. The user holds multiple user keys if he
is member of multiple roles in role hierarchy.

In RBAC systems, various access control functions are
designated by permissions P . In the same way, the RBAC
permissions can be designated by some cryptographical al-
gorithms, such as Encrypt and Decrypt, which can realize
various access control functions by using role keys and user
keys in role-key hierarchy. These algorithms can also be
used independently to protect files from unauthorized ac-
cess while these resources break away from the scope of this
RBAC systems or an attacker gains physical access to the
computer.

Figure 2: Example of role-key hierarchy

Our main objective is to map the role hierarchy in RBAC
into a key management system. According to the condition 3
and 4, the role key set PK should have the same structure as
the role hierarchy structure. Moreover, each user key ski,j ∈
SK also needs to contain necessary information about role

hierarchy for dealing with access functions independently
by itself. Figure 2 shows an example of role-key hierarchy,
in which the circle denotes the role key and the triangle
denotes the user key, respectively. Note that this is a general
hierarchy.

3.2 Role-based Cryptosystem
For ease of use, we expect that a system manager assigns

the user key ski,j = (labi,j , dki,j) to a user, where labi,j is
a public label and dki,j is a private key. This label labi,j

can be used to realize special functions such as designation,
revocation, and tracing.

Given a role hierarchy Ψ = 〈R,�〉 and a security pa-
rameter s, Role-based Cryptosystem (RBC) is a key
management system that can construct a role-key hierar-
chy H = 〈U, K, R,�〉 on Ψ and generate all keys on H,
which is specified by three randomized algorithms, Setup,
KeyRGen, and AddUser, described as follows:

• Setup(s, Ψ): Takes a security parameter s and a role
hierarchy Ψ as an input. It produces a manager key mk
and an initial parameter params, that is, Setup(s,Ψ)→
{H, mk, params}.

• GenRKey(params, ri): Takes the parameter params
and a role index ri. It generates a role key pki in ri,
that is, KeyRGen(params, ri)→ pki.

• AddUser(mk, ID, ui,j): Takes a user identity ID, a
user index ui,j , and the manager key mk. It out-
puts a user secret key, which involves a user label
labi,j and a private key dki,j , for the user ui,j , that is,
AddUser(mk, ID, ui,j) → ski,j = (labi,j , dki,j). The
user label labi,j is added to the public encryption key:
params = params

⋃

{labi,j}.

In public-key settings, a user does not hold any private
information and the permission process is performed only
with the help of the public role key {pki} containing the
user’s labels {labi,j}, which is also called as ID-based RBC
because the user’s public labels can be used to support the
various functions.

3.3 Security Goal of RKH
Obviously, security requirements in general cryptosystem

are not sufficient enough to reflect the requirements of role-
key hierarchy. It is important to consider typical attacks
when we try to design key hierarchy and its schemes. In
contrast with existing key hierarchy, RKH has several unique
features:

1. Each user ui,j is assigned to an exclusive user key ski,j ,
by which certain users can be chosen or identified in
the processes of encryption, revocation, and tracing;

2. Public-key cryptography can be introduced to ensure
the security of a user’s private key even if the role key
makes public in some systems. Therefore the role keys
can be stored anywhere by RBAC systems; and

3. The derivation function of a user’s private key is for-
bidden even for the cases of partial order relations,

Pr[Delegate(ski,j, cl) = skl,j′] ≤ ǫ,∀cl � ci. (1)

where, ǫ is small enough. Hence a user cannot use this
capability to obtain new keys or identities.

3

In order to ensure system security, RKH also needs to
satisfy following properties:

• Each user in a role cannot get permissions to access
another role’s objects except for its subordinates, Also,
a user cannot forge other’s secret keys;

• The role key can be modified to satisfy the require-
ments of constraint policy, but it should not interfere
with the issued keys of others; and

• To support the capability of audit capability, there ex-
ists an efficient tracing algorithm to identify the cor-
rupted users or gain the corresponding evidence.

The RKH is a group-oriented cryptography with “1:n”
character, where one role key corresponds to many user keys.
Hence, in addition to passive cryptanalysis, the collusion at-
tack is a major attack, which focuses on changing the priv-
ilege of the granted users or getting the other users’ keys.
This kind of attack involves the following cases:

• Collusion attack for framing users, in which the cor-
rupted users in R = {uik,jk

}tk=1 wish to forge a new or
unused key in U \ R (called as honest user). The aim
of this attack is to avoid tracing and frame innocent
users.

• Collusion attack for role’s privilege, in which the cor-
rupted users in R = {uik,jk

}tk=1 wish to forge a new or
unused key in R\{ri1 , · · · , rit}. The aim of this attack
is to change the privilege in partial order hierarchy.

We also present a formal security model for two cases of
collusion attacks in Appendix A. It is a challenging task to
avoid collusion attack since the traitors (corrupted users)
have been granted users before they are detected. Traitor
tracing is an efficient method to tackle this attack. However,
we must ensure that the traitors cannot forge an ‘unused’ key
to avoid tracing but leave some ‘foregone’ clue of evidence
to discover them.

The number of colluders |R| = t is an important param-
eter. A RBC scheme is to be (t, n, m)-collusion secure if for
any subset of t inR with |U | = n and |R| = m, the adversary
can gain the advantage from R to break this scheme. It is
said to be fully collusion secure when it is (n, n, m)-collusion
secure.

4. CRYPTOGRAPHIC SECURITY MECH-
ANISMS BASED ON RKH

4.1 Role-based Signature
The signature is a mathematical scheme for demonstrating

the authenticity of a digital message or document. In RBAC
model, the roles assigned to a user can be considered as one
kind of identities of the user. Hence, a user could use his
own roles to sign a resource. In other words, such a signature
scheme provides a method to allow a user to anonymously
sign a message on behalf of his roles. We call it Role-based
Signature (RBS). The formal definition of RBS is provided
as follows:

Definition 3 (Role-based Signature). A role-based
signature scheme is a digital signature consisted of the fol-
lowing four procedures:

Initial: Takes role hierarchy 〈R,�〉, and returns the role-
key hierarchy H = 〈U,K, R,�〉 according to Setup and
GenRKey algorithms in RBC model;

Sign: Takes the role-key pki for ri, a user key ski,j, and
a message M ∈ {0, 1}∗, and returns a signature σ:
Sign(pki, ski,j , M)→ σ;

Verify: Takes the role-key pki and a purported signature σ
on a message M . It returns the validation result which
would be either valid or invalid. The latter response
can mean either that σ is not a valid signature, or that
the user who generated has been revoked (in a set of re-
voked users, RL): V erify(pki, σ, M)→ valid/invalid;

Trace: Takes a user key ski,j then this algorithm can trace
a signature σ to at least one role member ui,j who gen-
erated it: Trace(ski,j, σ)→ valid/invalid.

The trace algorithm allows a third party to undo the sig-
nature anonymity using a special trapdoor and recognize the
original signer. A secure role-based signature scheme must
satisfy following properties:

• Correctness: This requires that, for all K = (PK, SK)
generated by role-key hierarchy, valid signatures by
role members can always be verified correctly, and in-
valid signatures should fail in the verification phase:

V erify(pki, Sign(pki, ski,j , M), M) = valid. (2)

• Unforgeability: Only members of a role can create
valid signatures with the role.

• Anonymity: Given a message and its signature, the
identity of the individual signer cannot be determined
without the manager key mk.

• Traceability: Given any valid signature, the manager
or trusted third party should be able to trace who is-
sued the signature by the user’s secret key.

• Unlinkability: Given two messages and their signa-
tures, we cannot determine whether the signatures were
from the same signer or not.

In autonomous systems, role-based signature is used to
verify the legality of the source of input data transmitted
from other hosts or devices. This is more important for
information sharing systems to prevent harmful information
flows.

4.2 Role-based Authentication
Authentication allows access control systems to gain suf-

ficient assurance that the identity of certain entity is le-
gitimate as claimed. Cryptography-based authentication
is widely adopted in current systems because it provides a
higher level of security than password-based authentication.
In addition, a real-time authentication for high-risk opera-
tions is necessary to prevent a user from changing roles after
logging in. The authentication on RBAC should support two
qualitative classes of identifications:

• User-based authentication, which is used to validate a
user’s identity, but the systems need to store the user’s
role information; and

4

Figure 3: Authentication protocol based on RBC.

• Role-based authentication, which can provide identi-
fiable evidences that a given user possesses the at-
tributes of a given role.

Obviously, role-based authentication is a useful way for
anonymous accesses, sharing systems, or off-line devices while
the user information (including the user’s public key in PKI)
is not maintained by themselves. Furthermore, this ap-
proach can help achieve the interoperability as well. Hence,
we propose a common framework of Role-based Authen-
tication (RBA) based on a challenge-response protocol as
shown in Figure 3.

Definition 4 (Role-based Authentication). A role-
based authentication scheme is a challenge-response identifi-
cation protocol between prover (P) and verifier (V), consist-
ing of following four procedures:

Initial: Takes role hierarchy 〈R,�〉, and returns the role-
key hierarchy H = 〈U, K, R,�〉 according to Setup and
GenRKey algorithms in RBC model;

Interact: the prover and the verifier execute the protocol:

1. Login: The prover sends the label of identity (in-
cluding rolename and username) to the verifier,
then the verifier checks the availability by search-
ing user-label database or role hierarchy: P → V :
ri ∨ labi,j;

2. Witness: If the check succeeds, the verifier requires
the prover to return the witness of the verifier’s
private key on a random number r: P → V : S =
Oneway(ski,j , r);

3. Challenge: The verifier selects a challenge (ran-
dom number) and sends it to the prover: P ←
V : c = Random();

4. Response: After receiving the challenge c, the prover
computes the response in terms of his private key
ski,j and the random numbers r in the witness,
and sends it back to the verifier: P → V : s =
Respose(ski,j, r, c).

Verify: The verifier verifies whether the response is consis-
tent with the commitment, the challenge, and the role
key: V erify(pki, S, c, s) → valid/invalid. In the case
of user-based authentication, he can also check the va-
lidity of the prover’s label: V erify(pki, S, c, s, labi,j)→
valid/invalid.

Trace: Takes a prover key ski,j then it can analyze an ex-
isting record re = 〈S, c, s, ri〉 to verify whether or not
this prover generated this record: Trace(ski,j, re) →
valid/invalid.

Similarly to role-based signature, role-based authentica-
tion protocols must satisfy the following properties: correct-
ness, anonymity, traceability, and unlinkability. Moreover,
the following attacks should be avoided:

• Impersonation: a deception whereby one entity pur-
ports to be another;

• Replay attack: an impersonation or other deception
involving information from a previous protocol execu-
tion on the same or a different verifier;

• Interleaving attack: an impersonation or other decep-
tion involving selective combination of information from
one or more previous or ongoing protocol executions;
and

• Chosen-text attack: an adversary strategically chooses
challenges in an attempt to extract information about
the manager key.

4.3 Role-based Encryption
Encryption systems allow users to encrypt resources (files

or data) on disk, or synchronously transfer messages among
multiple systems. Many encryption file systems have been
developed in Windows and Linux environments, e.g., Win-
dows Encrypting File System (EFS), SiRiUS [9] and Plu-
tus [12]. However, these systems implement some trivial
schemes where the number of ciphertexts in the file header
grows linearly with the increased number of users who have
permissions to access the file. To overcome such a limitation,
we introduce a new scheme called Role-based Encryption
(RBE), which can be used to improve the performance of ex-
isting encryption file systems.

Definition 5 (Role-based Encryption). A role-based
encryption scheme is an encryption system consisting of the
following three procedures:

Initial: Takes role hierarchy 〈R,�〉, and returns the role-
key hierarchy H = 〈U,K, R,�〉 according to Setup and
GenKey algorithms in RHC model;

Encrypt: Takes the encryption key pki and a plaintext M .
It produces a ciphertext C: Encrypt(pki, M)→ Ci.

Decrypt: Takes the user key ski,j and the ciphertext C. It
generates the plaintext M : Decrypt(ski,j, Cl) → M ,
where rl � ri.

The relationship between encryption and decryption can
be described as follows:

Decrypt(ski,j, Encrypt(pkl, M)) = M (3)

where rl � ri and (ui,j , ri) ∈ UA.

5

In order to improve the performance, we assume the fol-
lowing encrypted file structure: A file M is stored in the
form 〈Hdrpkl

(S, ek), Eek(M)〉, where ek is a session key for
encrypting M via a symmetric encryption method E, and
S denotes the subset of the authorized users or the access
control policy of this file. A user in S can use his private
keys to decrypt the session key ek from Hdrpkl

(S, ek) and
then decrypt the file M from Eek(M). The file system based
on this structure is also called as role-based encryption file
system (R-EFS) with revocation.

Figure 4: Role-based encryption file system.

Figure 4 illustrates a role-based encryption file system
constructed based on role-key hierarchy, where each role ri

is assigned to an encryption key pki and each user has a few
decryption keys {ski,j}. An administrator only needs to
keep the manager key mk, but the pki could be saved in the
public directory of the system. When a user ui,j in ri wants
to create an encrypted file, the RBAC systems encrypt the
file with a session key ek, then encrypt ek by using the user’s
pki. The result is placed in the file header Hdr after the user
gets the permissions from the RBAC systems. The user can
also allow an arbitrary subset of the authorized users to de-
crypt the file by performing proper assignments or making
the access control policy into S if necessary. When a user
ui,j wants to access an encrypted file, the session key ek is
recovered by ski,j , and the RBAC systems check whether
ui,j ∈ S or the access control policy in S is valid. The file
is decrypted by ek after the user gets the permissions from
the RBAC systems.

This scheme can provide following security features for file
systems:

1. Protection against data leakage on the physical de-
vice, possibly caused by an untrusted administrator, a
stolen laptop or a compromised server;

2. Detection and prevention of unauthorized data modifi-
cations using a syncretic security mechanism based on
policy-based access control and dynamic cryptographic
technology;

3. Changing users’ access privileges by dynamically con-
verging the information of users’ decryption keys to
generate one-time role-based encryption keys; and

4. Enabling better scalability because all users are orga-
nized into a uniformed role-based cryptographic frame-
work. Most of cryptographic operations are performed
at role level rather than at user level.

5. PROPOSED SCHEMES
In this section, we present our role-based cryptosystem

scheme with role-key hierarchy based on pairing-based cryp-
tosystem. Meanwhile, role-based signature & authentication
and role-based encryption mechanisms are addressed based
on the proposed role-based cryptosystem construction.

5.1 Bilinear Pairings
We set up our systems using bilinear pairings proposed

by Boneh and Franklin [4, 6]. Let G1, G2 and GT be three
cyclic groups of large prime order p. G1 and G2 are two
additive group and GT is a multiplicative group using elliptic
curve conventions. Let ê be a computable bilinear map e :
G1 × G2 → GT

1 with the following properties: For any
G ∈ G1, H ∈ G2 and all a, b ∈ Zp, we have

1. Bilinearity: e([a]G, [b]H) = e(G,H)ab.

2. Non-degeneracy: e(G, H) 6= 1 unless G or H = 1.

3. Computability: e(G, H) is efficiently computable.

Where, [a]P denotes the multiplication of a point P in ellip-
tic curve by a scalar a ∈ Zp. A bilinear map group system S

is a tuple S = 〈p,G1, G2, GT , e〉 composed of the objects as
described above. S may also include group generators in its
description.

5.2 Role-based Cryptosystem Scheme
Let H = {U, K, R,�} is a role-key hierarchy with partial-

order �. Without loss of generality, we assume that the
total number of roles is m in H, i.e., R = {r1, r2, · · · , rm}.
We construct a RBC scheme as follows:

• Setup(s,Ψ): Let S = (p,G1, G2, GT , e) be a bilinear
map group system with randomly selected generators
G ∈ G1 and H ∈ G2, where G1 and G2 be bilinear
group of prime order p. This algorithm first picks a
random integer τi ∈ Z

∗
p for each role ri in role-key

hierarchy graph.2 We define
{

Ui = [τi]G ∈ G1 ∀ri ∈ R,
V = e(G,H) ∈ GT .

(4)

Each τi is called as the secret of a role and Ui is the
identity of a role. Further, it defines U0 = [τ0]G by
using a random τ0 ∈ Z

∗
p. Thus, public parameter is

params = 〈H,V, U0, U1, · · · , Uc〉 (5)

and we keep mk = 〈G, τ0, τ1, · · · , τm〉 secret.

• GenRKey(params,ri): This is an assignment algo-
rithm for role encryption key from the setup parame-
ter pp. For a role ri, the role key pki can be computed
as follows:

{

pki = 〈H, V, Wi, {Uk}rk∈↑ri
〉

Wi = U0 +
∑

ri 6�rk
Uk,

(6)

1We require that no efficient isomorphism G2 → G1 or G1 →
G2 is known, or G2 → G1 is known but its inverted G1 → G2

is unknown.
2Since the total number of roles is far less than the size of
space of keys, we can use an efficient method to avoid the
collision of value of role keys, e.g., the fast sort algorithm
can be use to search the collision.

6

where, {Uk}rk∈↑ri
is the set of all roles in ↑ ri, which

denotes the control domain for the role ri. It is clear

that Wi =
[

τ0 +
∑

ri 6�rk
τk

]

G. For sake of simplicity,

let ζi = τ0 +
∑

ri 6�rk
τk, so that we have Wi = [ζi]G.

• AddUser(mk, ID, ui,j): Given mk = 〈G, {τi}
m
i=0〉 and

a user index ui,j in the role ri, the manager gener-
ates a unique decryption key by randomly selecting a
fresh xi,j = Hash(ID,ui,j) ∈ Z

∗
p and defining dki,j =

〈Ai,j , Bi,j〉 where

labi,j = xi,j ∈ Z
∗
p

Ai,j =
[

xi,j

ζi+xi,j

]

G ∈ G1,

Bi,j =
[

1
ζi+xi,j

]

H ∈ G2.

(7)

Note that, the total number of users is unlimited in
each role.

Finally, the above process outputs the set of role keys
{pki} and the set of user keys {ski,j}. More importantly,
the security of user keys is not compromised even though
role keys are available in public.

Let us now turn to the problem of validity. We know
that two arbitrary roles have one of three relations: ri � rj ,
rj � ri, and ri||rj , so that partial order relation in role keys
can be defined as

∑

ri 6�rk

Uk =
∑

rk∈Ind(ri)

Uk +
∑

rk∈Succ(ri)

Uk, (8)

where, Ind(ri) and Succ(ri) denote the set of incomparable
roles and successors for ri, respectively. This is illustrated
in Figure 5 (the top is senior-most roles and the bottom is
junior-most roles), with the key representation of Wi on the
left of the node and Ui on the right. We first prove that this
assignment works as required:

1
U

0
U

2
U

3
U

0 2 4 5

6 7 8

U U U U

U U U

5
U

0 2 4

6 7 8

U U U

U U U

6
U

0 5 7 8
U U U U

0 2 3 4

5 6 7 8

U U U U

U U U U

8
U

4
U0 3 5

6 7 8

U U U

U U U

7
U0 3 5

6 8

U U U

U U

0 1 3 4

5 6 7 8

U U U U

U U U U

Figure 5: Example of role-key relationship on RBC.

Theorem 1. Under the above assignment, ∪rj 6�rk
{τk} ⊂

∪ri 6�rk
{τk} if and only if rj ≺ ri.

Proof. The proof is immediate. First if rj ≺ ri, then we
have ri ∈ ∪rj�rk

{rk}, so that ∪ri�rk
{rk} ⊂ ∪rj�rk

{rk}. It
is easy to see that ∪rj 6�rk

{rk} ⊂ ∪ri 6�rk
{rk} still holds. In

terms of the corresponding relation between ri and τi, we
have ∪rj 6�rk

{τk} ⊂ ∪ri 6�rk
{τk}. Conversely, if ∪rj 6�rk

{τk} ⊂
∪ri 6�rk

{τk}, then we know ∪rj 6�rk
{rk} ⊂ ∪ri 6�rk

{rk}. This
relation can become ∪ri�rk

{rk} ⊂ ∪rj�rk
{rk}. Since ri ∈

∪ri�rk
{rk}, we have rj ≺ ri. Hence, the theorem holds.

Due to Ui is chosen at random, this scheme do not per-
mit the collision among the role keys, i.e., pki = pkj for
i 6= j. The following theorem tells us that this collision is
neglectable only if the security parameter s is large enough,
moreover, the fast sort algorithm can help us to find the
collision.

Theorem 2. The collision probability among n integers,
which are chosen from p integers at random, is less than
(n+1)2

4p
.

Proof. Firstly, the collision probability between t ran-
dom integers {ai}

t
i=1 and r random integers {bi}

r
i=1,

∑t
i=1 ai =

∑r
i=1 bi, is 1

p
, where a1, · · · , at ∈R Z

∗
p and b1, · · · , br ∈ Z

∗
p.

Secondly, the number of all possible cases of t+r = k is ⌊k
2
⌋

for 1 ≤ t, r < n, such that the number of all possible cases

of 3 ≤ t + r ≤ n is
∑n

k=3⌊
k
2
⌋ <

∑n
k=1

k
2

= n(n+1)
4

< (n+1)2

4
.

Hence, in terms of Bernoulli’s inequality, the collision prob-

ability is 1− (1− 1
p
)

(n+1)2

4 ≤ (n+1)2

4
1
p

= (n+1)2

4p
. Note that

we do not assume that ai and bj are different for 1 ≤ i ≤ t
and 1 ≤ j ≤ r.

Since the total number of roles is far less than the size of
space of keys, this theorem means that the collision prob-
ability is neglectable for n ≪ p, e.g., given n = 1000 and

p = 2s = 2160, the collision probability is less than 220

2162 =

2−142. Note that the security of RKH is not related to the
combination of the role-keys, but rely heavily on the hard-
ness of forging [1

ξ+x
]G under the bilinear map group system.

The following theorem indicates that the role hierarchy in
RBAC is hidden into role-key hierarchy:

Theorem 3. Under the above assignment, role hierarchy
is in one-to-one correspondence with key hierarchy.

Proof. We show that role hierarchy can be uniquely rep-
resented by key hierarchy: Assume two different roles ri

and rj have the same key representation, i.e., ∪ri 6�rk
{rk} =

∪rj 6�rk
{rk}, such that ∪ri�rk

{rk} = ∪rj�rk
{rk}. This im-

plies that two roles have the same seniors. But we know
ri ∈ ∪ri�rk

{rk} and rj ∈ ∪rj�rk
{rk}. Since ri 6= rj , we

have ∪ri�rk
{rk} 6= ∪rj�rk

{rk}, which is a contradiction.
Conversely, we show that key hierarchy may also recover

role hierarchy by the following algorithm:

1. For each role ri, it gets the set of roles ∪rj 6�rk
{rk}

from
∑

ri 6�rk
Uk, then compute Ri = ∪rj�rk

{rk} =

R \∪rj 6�rk
{rk}. Finally, it inserts the Ri into a record

in the search table T .

2. While T is not empty, it does the following steps:

(a) It finds the records Ri’s, which include only one
element, as the set of current roles C, then deletes
these records from the table T ;

(b) For each record Ri ∈ T , if Ri \ C = {ri}, then it
outputs ri ≺d rj for all rj ∈ Ri ∩C, else it erases
the elements in C, i.e., Ri = Ri \ C;

Let h is the height of role hierarchy. The algorithm recurs h
times and the outputs of recurrence are all edges of one layer
in role hierarchy. This means that this algorithm can recover
the original role hierarchy in polynomial-time. Therefore,
the theorem holds.

7

e(Wi, Bi,j) · e(Ai,j , H) = e

τ0 +
∑

rl 6�ri

τl

G,

1

τ0 +
∑

rl 6�ri

τl + xi,j

H

· e

xi,j

τ0 +
∑

rl 6�ri

τl + xi,j

G, H

= e(G, H) (9)

R′ =

(

e (Wi, C2) · e (C1, H)

e(G, H)

)−c

· e(Wi, H)s

=

(

e(Wi, Bi,j + [β]H) · e(Ai,j + [α]Wi, H)

e(G, H)

)−c

· e(Wi, H)s

=

(

e(Wi, Bi,j) · e(Wi, [β]H) · e(Ai,j , H) · e([α]Wi, H)

e(G, H)

)−c

· e(Wi, H)s

= (e(Wi, [β]H) · e([α]Wi, H))−c · e(Wi, H)s

= e(Wi, H)−c(α+β) · e(Wi, H)s = e(Wi, H)r. (10)

Figure 6: Example of extracting role hierarchy from
key hierarchy.

Based on the algorithm in Theorem 3, Figure 6 describes
an example of extracting role hierarchy from key hierarchy
in Figure 5. It shows that the algorithm is effective.

We show that our scheme is secure against collusion, where
two or more users, belonging to different roles, cooperate to
discover a user key to which they are not entitled. To dis-
cuss the security against collusion, we make use of a hard
problem, which is called Strong Diffie-Hellman (SDH) prob-
lem:

Definition 6. [k-SDH problem]: Given 〈G, [x]G, [x2]G,

· · · , [xk]G〉 to compute 〈c,
[

1
x+c

]

G〉 where c ∈ Z
∗
p and G be

a generator chosen from G1 (or G2).

The standard collusion security is based on static collud-
ers. Since we consider dynamic user management, we extend
the security definition to the one that is a bit more general
than in [7]. More specifically, we allow the adversary to see
the role key before choosing the corrupted users. Based on
this definition, we have the following theorem:

Theorem 4. Under the above assignment, the role-based
cryptosystem (RBC) scheme is fully collusion secure. Given
a role-key hierarchy H = {U, K, R,�} with |U | = n and
|R| = m, it is (n, n, m)-collusion secure against framing
user attack and role’s privilege attack under Strong Diffie-
Hellman (SDH) assumption.

We present a proof of this theorem in Appendix B, where
the whole proof for framing attack is given and the proof for
role’s privilege attack is stated briefly because it can be ob-
tained from the former. The proof of this theorem indicates
that the security is held even if G makes public. Moreover,
this theorem clarifies that the security of this scheme is inde-
pendent of the number of colluders, k. That is, the scheme
can support the infinity users (at most 2s users, where s is
the security parameter) in theory. When k = 1, the proof
of this theorem indicates that the security of the scheme
against passive adversary (without collusion) is based on
the hard problem (G, [ξ]G)→ (c, [1

ξ+c
]G) for c ∈R Z

∗
p.

5.3 Role-based Signature/Authencation Scheme
The above construction can be applied to derive a role-

based authentication (RBA) and signature (RBS) scheme.
We propose a lightweigh signature scheme to realize the
anonymity and traceability. Further, this scheme can eas-
ily turn into a zero-knowledge RBA scheme. Given H =
{U, K, R,�}, a user carries out the following process to sign
a message M :

• Sign(pki, ski,j , M): The signing algorithm takes a group
public key pki = (H, Wi, {Uk}rk∈↑ri

), a user private
key ski,j = (labi,j , Ai,j , Bi,j), and a message M ∈
{0, 1}∗, and proceeds as follows:

1. Picks a random nonce α, β ← Z
∗
p and computes

C1 = Ai,j + [α]Wi

C2 = Bi,j + [β]H
T = [β]Wi

; (11)

2. Picks blinding values r ← Z
∗
p and compute helper

values S:

S = e(Wi, H)r; (12)

3. Computes a challenge value c ∈ Z
∗
p using Hash:

c = Hash(pk,M, C1, C2, T, S); (13)

4. Computes s = r + c(α + β):

Finally, the signature is σ ← (C1, C2, T, c, s).

8

• V erify(pki, σ, M): The verification algorithm takes a
role key pki, a purported signature σ = (C1, C2, T, c, s),
and a message M ∈ {0, 1}∗, and proceeds the following
steps:

1. Re-derive S as:

S′ =

(

e (Wi, C2) · e (C1, H)

V

)c

· e(Wi, H)s; (14)

2. Computes c′ = Hash(pk,M, C1, C2, T, S′);

3. Check that the challenge c is correct if and only
if c = c′. If matched, accept and reject otherwise.

The correctness of the verification procedure is guar-
anteed by using Equation (9) and (10).

• Trace(ski,j, σ): The tracing algorithm takes a set of
suspicious users RL = {(labi,j , Bi,j)}. For each el-
ement (labi,j , Bi,j) ∈ RL, it checks whether Bi,j is
encoded in (T, C2) by evaluating if

e(Wi, C2 −Bi,j) = e(T, H). (15)

The algorithm outputs are valid if this verification is
accepted.

The security of the system is guaranteed by the fact that
Ai,j and Bi,j are kept private. The different witnesses are
generated to ensure the unlinkability as a result of the ran-
dom parameters α and β. The Wi in Equation (14) and (15)
determines that the role of a user cannot be modified.

The tracing algorithm may be used to realize the check
of revoked users: Given a set of revoked users RL, it first
verifies that the signature σ is valid by using V erify algo-
rithm; then it ensures that σ is not generated by a revoked
user in terms of Trace algorithm. It accepts only if both
conditions are held. We reiterate the user’s secret key ski,j

is also secure after (labi,j , Bi,j) ∈ RL. The reason is that
the tracing or revocation check is based on Bi,j , as Ai,j still
keeps secret. Hence, the adversary cannot obtain the user’s
secret keys from a set of suspicious users RL.

5.4 Role-based Encryption Scheme
We can also adopt the RBC framework to build a lightweight

role-based encryption (RBE) scheme, as follows:

• Encrypt(pki, M): To encrypt the message M ∈ {0, 1}∗,
given any pki = 〈H, V, Wi, {Uk}∇k∈⊥ri

〉 and an empty
set of revoked users R = ∅, the algorithm randomly
picks t ∈ Z

∗
p and then computes

C1 = [t] Wi ∈ G1

C2 = [t] H ∈ G2

C3 = M · V t ∈ GT

U ′
k = [t] Uk ∈ G1 ∃rk ∈↑ ri

. (16)

Finally, it outputs Ci = 〈C1, C2, C3, {U
′
k}rk∈↑ri

〉.

• Decrypt(skj,k, Ci): Given a ciphertext Ci from the role
ri, the k-th user in the role rj can utilize the fol-
lowing equation to recover M from Ci with dkj,k =
〈Aj,k, Bj,k〉, where ri � rj :

V t
i,j = e

C1 +
∑

rl∈Γ(rj,ri)

U ′
l , Bj,k

 · e (Aj,k, C2) ,

(17)

Access

Control

Module

RBC

Module

Encryption

Service

Authentication

Service

Key-label

Management

Application Module

Figure 7: Cryptographic access control system
based on role-key hierarchy.

where Γ(rj , ri) denotes ∪ri�rk≺rj
{rk}, and we have

Γ(rj , ri) = ∪rj 6�rk
{rk} \ ∪ri 6�rk

{rk}

= ∪ri�rk
{rk} \ ∪rj�rk

{rk}

= ∪ri�rk≺rj
{rk} (18)

in terms of Theorem 1. The algorithm outputs the
session key M = C3/V t

i,j .

The validity of this algorithm is guaranteed by Equa-
tion (19). Given a fixed role-key hierarchy, this algorithm
achieves the constant length of ciphertexts and the optimal
length of the user’s secret keys, where the hidden constant
relates to a couple of elements of a pairing-friendly group.

6. PERFORMANCE EVALUATION
An experimental role-based cryptosystem was implemented

to test the feasibility of our schemes. This system was
developed with a standard C++ language in QT environ-
ment, which supports cross-platform deployment. As shown
in Figure 7, this system consists of three modules: RBC
module, access control module and application module. In
RBC module, we adopted GNU multiple precision arith-
metic library (GMP) to handle integers of arbitrary preci-
sion. Then, a finite fields arithmetic library was constructed
to realize the run-time environment of elliptic curve and
pairing-based cryptosystems. In addition, a cryptographic
access control library was developed based on the finite fields
arithmetic library to realize various proposed RBC algo-
rithms. Finally, the RBE/RBA/RBS algorithms worked
with a lightweight access control module to provide encryp-
tion, authentication and key-label management services for
the application module.

Scalability. The experimental results show our construc-
tions are able to provide better scalability, which is an im-
portant requirement for RBAC [13]. The notion of scala-
bility is multi-dimensional. In our schemes we can achieve
scalability with respect to the number of roles, the size of
role hierarchy, cardinality on user-role assignments, and so

9

V t
i,j = e

C1 +
∑

rl∈Γ(rj,ri)

U ′
l , Bj,k

 · e (Aj,k, C2)

= e

τ0 +
∑

rl 6�ri

τl

 t

G,

1

τ0 +
∑

rl 6�ri

τl + xi,j

H

· e

xi,j

τ0 +
∑

rl 6≺ri

τl + xi,j

G, [t]H

= e(G, H)

(τ0+
∑

rl 6�rj
τl)·t

τ0+
∑

rl 6�rj
τl+xj,k · e(G, H)

t·xi,j

τ0+
∑

rl 6�rj
τl+xj,k = e(G, H)t. (19)

on. Moreover, our constructions support a large-size of role
hierarchy with arbitrary structures. Therefore, we believe
our schemes can be applied to large-scale role-based cryp-
tosystems, such as healthcare and financial systems.

Table 1: Parameters choosing under different scales.

Parameters Small size Medium size Large size

number of roles 10’s 100’s 1000’s

number of users 10-50 50-100 100-200

height of hierarchy 1-4 5-8 9-12

total number of users 100-1,000 1,000-10,000 10,000-100,000

We can consider several degrees to measure the scalability
of our method as follows: 1) small scale (10’s), 2) medium
scale (100’s), and 3) large scale (1000’s). We estimate dif-
ferent parameters under different scales shown in Table 1,
in which we assume that the size of relations is proportional
to the size of roles.

Computation Cost. The basic operation of our schemes
is the computation of a multiple elliptic point in elliptic
curve, namely, [k]P , where k is a positive integer and P
is an elliptic curve point. We neglect the computation costs
of an addition of elliptic points and simple modular arith-
metic operations because they run fast enough. Another
important operation is the computation of a bilinear map
e(·, ·) between two elliptic points. Then, we use the costs of
multiple operation and bilinear map operation to measure
the computation complexity of our schemes.

Table 2: Comparison of computation costs on RBC.
(The number of roles is m in RKH.)

RBE RBS/RBA

Setup (m + 1)/1 (m + 1)/1

GetRkey 0/0 0/0

AddUser 2/0 2/0

Encrypt/Sign (m + 3)/0 4/1

Decrypt/Verify 1/2 5/3

/Trace / 1/2

In Table 2, the costs of various algorithms in RBC, RBE,
and RBS/RBA schemes are listed, where the value n/m de-
notes the number of multiple operations n and the number
of bilinear map operations m, respectively. It is quite clear
that all schemes have the low computational costs.

Communication Overhead. With the same assump-
tion of scalability, we estimate the influence of communica-

tion overloads under the different scales. Suppose the secu-
rity parameter s is 80-bits, we need the elliptic curve domain
parameters over Fq with |q| = 160-bits 3. This means that
the length of integer is l0 = 2s in Zp. Similarly, we have
l1 = 4s in G1, l2 = 20s in G2, and lT = 10s in GT

4.
For RBS/RBA scheme, the communication overloads of

Sign/Interact is 2l0 + 2l1 + l2 = 32s = 320 bytes. For
RBE scheme, the length of ciphertext is ml1 + l2 + lT =
4ms + 30s = 300 + 40m bytes. In terms of Table 1, we can
easily compute that the overheads are increased from 0.7
KBytes(10 roles) to 40 KBytes(1000 roles).

10 100 1000
0.0

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

140.0k

160.0k

100,0001,00001,000

C
ip

he
rte

xt
 s

iz
e

System scale (number of roles (up) and users (down))

 RBE
 R-EFS(1/2)
 R-EFS(1/3)
 R-EFS(1/4)
 R-EFS(1/5)

Figure 8: The ciphertext size under different scales
(The size of roles changes from 10 to 1000. The
number of revoked users is equal to 1/2, 1/3, 1/4,
and 1/5 the number of roles.)

Figure 8 shows the change rate of ciphertext size for the
RBE scheme and the R-EFS scheme. Moreover, the revo-
cation mechanism is considered in R-EFS as well. Figure
8 indicates that the size of revoked users has more impact
than other factors. Our results also indicate that the en-
cryption based on RBE scheme performs far better than the
conventional encryption file systems (EFS) with the follow-
ing parameters:

• Even if we deal with a large-scale organization of 500,000
users the header of a file only requires 256 KBytes in
theory (using a standard 10-bytes (80-bits) security
parameter); and

3Elliptic curve domain parameters over Fp with ⌈log2 p⌉ = 2t
supply approximately t bits of security, which means that
solving the logarithm problem on associated elliptic curve is
believed to take approximately 2t operations.
4Let the embedding degree be 5.

10

• The EFS with our scheme can revoke an approximate
1,000 users (some intermediate data are saved to de-
crypt a file faster) or 10,000 users in a compressed form
at once.

7. CONCLUSION
We have proposed a role-key hierarchy structure along

with hierarchical RBAC model to accommodate the require-
ments of cryptographic access control for large-scale sys-
tems. Based on this hierarchy model, we further proposed
several practical role-based security mechanisms to support
signature, authentication and encryption constructions on
elliptic curve cryptosystem. Our experiments clearly demon-
strated the proposed schemes are flexible and efficient enough
to support large-scale systems. For our further work, we
plan to accommodate other access control features of RBAC
such as session management and constraints. Also, our
promising results lead us to investigate how emerging dis-
tributed computing technologies such as service computing,
cloud computing and mobile computing can leverage the
proposed schemes with possible extensions.

8. REFERENCES
[1] S. Akl and P. Taylor. Cryptographic solution to a

multilevel security problem. In Advances in Cryptology
(CRYPTO’82), 1982.

[2] S. Akl and P. Taylor. Cryptographic solution to a
problem of access control in a hierarchy. ACM
Transaction Computer System, 1(3):239–248, 1983.

[3] E. Bertino, N. Shang, and S. Wagstaff. An efficient
time-bound hierarchical key management scheme for
secure broadcasting. IEEE Trans. on Dependable and
Secure Computing, 5(2):65–70, 2008.

[4] D. Boneh and M. Franklin. Identity-based encryption
from the weil pairing. In Advances in Cryptology
(CRYPTO’01), volume 2139 of LNCS, pages 213–229,
2001.

[5] D. Boneh and M. Hamburg. Generalized identity
based and broadcast encryption schemes. In
ASIACRYPT, pages 455–470, 2008.

[6] D. Boneh and H. Shacham. Group signatures with
verifier-local revocation. In ACM Conference on
Computer and Communications Security, pages
168–177, 2004.

[7] B. W. D. Boneh, C. Gentry. Collusion resistant
broadcast encryption with short ciphertexts and
private keys. In Advances in Cryptology
(CRYPTO’2005), volume 3621 of LNCS, pages
258–275, 2005.

[8] C. Gentry and A. Silverberg. Hierarchical id based
cryptography. In Advances in Cryptology
(ASIACRYPT 2002), volume 2501 of LNCS, pages
548–566, 2002.

[9] E. Goh, H. Shacham, N. Modadugu, and D. Boneh.
Sirius: Securing remote untrusted storage. In
Proceedings of the Internet Society (ISOC) Network
and Distributed Systems Security (NDSS) Symposium,
pages 131–145, 2003.

[10] J. Jing and G.-J. Ahn. Role-based access management
for ad-hoc collaborative sharing. In Proc. of 11th
Symposium on Access Control Models and
Technologies (SACMAT), pages 200–209, 2006.

[11] X. Liang, Z. Cao, H. Lin, and J. Shao. Attribute based
proxy re-encryption with delegating capabilities. In
ASIACCS, pages 276–286, 2009.

[12] R. S. Q. Mahesh Kallahalla, Erik Riedel and K. Fu.
Plutus: Scalable secure file sharing on untrusted
storage. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST),
pages 29–42, 2003.

[13] R. Sandhu, E. Coyne, H. Fenstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2):38–47, 1996.

[14] R. Sandhu, D. Ferraiolo, and D. Kuhn. The nist model
for role-based access control: Towards a unified
standard. In Proceedings of 5th ACM Workshop on
Role Based Access Control (RBAC’00), pages 47–63,
2000.

[15] W. Tzeng. A time-bound cryptographic key
assignment scheme for access control in a hierarchy.
IEEE Trans. on Knowledge and Data Engineering,
14(1):182–188, 2002.

[16] D. Wallner, E. Harder, and R. Agee. Key management
for multicast: Issues and architecture. Technical
Report IETF RFC 2627, In internet draft
draft-waller-key-arch-01.txt, 1999.

[17] C. Wong, M. Gouda, and S. Lam. Secure group
communications using key graphs. In Proc. ACM
SIGCOMM’1998, volume 28 of ACM press, pages
68–79, 1998.

APPENDIX

A. SECURITY MODEL FOR COLLUSION
We define the security notion against collusion attacks in

terms of security games between a challenger B and an ad-
versary A. We divide the users into two categories: honest
users and corrupted users, so that a set of corrupted users
R is built. Moreover, there exists many honest and cor-
rupted users in the same role. We first define a general
model against collusion attacks:

1. Initial: The challenger B constructs an arbitrary role
hierarchy Ψ = 〈R,�〉 with |R| = m, and then runs
Setup(s, Ψ) to generate the partial-order key hierarchy
H and initial public parameters params, finally sends
them to A.

2. Learning: A adaptively issues n times queries q1, · · · , qn

to learn the information of H, where qi is one of the fol-
lowing:

• Honest user query (ui,j 6∈ R): Using AddUser(mk,
ui,j), B generates a new user and sends this user’s
label labi,j to A.

• Corrupted user query (ui,j ∈ R): Using AddUser
(mk, ui,j), B generates a new user and returns this
user’s secret key ski,j , includes user label labi,j and
private key dki,j , to A.

In fact, the n users are joined into this system via n
times queries. A ends up with a key hierarchy H (in-
cludes (params,{labi,j}ui,j 6∈R)) and a set of colluders
{ski,j}ui,j∈R, where |R| = t.

3. Challenge: Involves two cases:

11

• Framing user attack (labi,j : ui,j 6∈ R): B picks
a honest user ui,j at random, and then sends his
label labi,j to A as the challenge.

• Role’s privilege attack (ri ∈ R): B picks a role
ri ∈ R at random, and then sends the challenge ri

to A. Note that, ri may be either the honest roles
(for avoiding the revocation) or the corrupted roles
(for gain the privilege).

4. Guess: A outputs a guess of user key ski,j . A wins if
ski,j is valid, and otherwise it loses.

We denote by AdvE,A(t, n, m) the advantage of adversary
A in winning the game:

AdvH,A(t, n, m)

=
1

2
|Pr[V (H,AH(Ci)) = 1]− Pr[V (H,AH(Ci)) = 0]|

=

∣

∣

∣

∣

Pr[V (H,AH(Ci)) = 1]−
1

2

∣

∣

∣

∣

,

where, Ci is the i-th challenge and V is a verification function
of ski,j . We say that a construction is (t, n, m)-secure if for
a security parameter s and all probabilistic polynomial time
adversaries A, AdvE,A(t, n, m) is a negligible function of s.

B. SECURITY PROOF AGAINST COLLU-
SION ATTACKS

Proof. Firstly, we prove the security of framing attack.
Without loss of generality, we prove the security in G1 rather
than in G1×G2. It is obvious that the latter is hard-er than
the former. The security of frame attack is changed into the
problem: given the number of colluders t and

{Wi}ri∈R, {〈xil,jl
, Ail,jl

〉}uil,jl
∈R,

it is infeasible to forge a new key 〈x′
i,j , A

′
i,j〉, where |R| ≤ t,

and {x′
il,jl
}uil,jl

∈R.
The proof is used by the reduction to absurdity. Suppose

an adversary A can solve the above problem with the ad-
vantage ǫ, i.e., AdvH,A(t, n, m) > ǫ. Using A, we build an
algorithm B to solves the k-SDH problem in G1.

Assume the algorithm B is input a random sequence

〈G, [ξ]G, [ξ2]G, · · · , [ξk]G〉

and expect to output 〈c, [1
ξ+c

]G〉, where ξ is unknown and

c ∈ Z
∗
p. B works by interacting with A as follows:

1. Initial: Firstly, B chooses an arbitrary role hierarchy
〈R,�〉 and assigns a random τi ∈ Z

∗
p for each role ri ∈

R, as well as a random τ0 ∈ Z
∗
p. Let ζi = τ0+

∑

ri 6�rk
τk

in terms of the proposed scheme. B selects at most k−1
roles as the set of corrupted roles {rci

}, and use them

to a polynomial f(x) =
∏k−1

i=1 (ζci
x + xi) =

∑k−1
j=0 aj ·

xj with k − 1 degrees, where (x1, x2, · · · , xk−1) is a
sequence chosen randomly by B in Z

∗
p. B defines

G = [f(ξ)]G = [

k−1
∑

i=0

ai · ξ
i]G =

k−1
∑

i=0

ai · [ξ
i]G,

Ui = [τi · ξ]G = [

k−1
∑

j=0

τiaj · ξ
j+1]G =

k−1
∑

j=0

τiaj · [ξ
j+1]G.

Finally, B sends all Ui to A in ri ∈ R.

2. Learning: involves two kinds of query:

• Honest user query (ui,j 6∈ R): B picks a random ti

as the user label, saves it for the label set T , and
returns it to A.

• Corrupted user query (ui,j ∈ R): If ri is the cor-
rupted roles {rci

} and f(x) has a unassigned item
(ζci

x + xi), then B defines labi,j = xi,j = xi and

Ai,j =

[

xi,j

ζci
ξ + xi,j

]

G =

[

xi · f(ξ)

ζci
ξ + xi

]

G. (20)

B can compute it due to f(x)/(ζci
x+xi) is a com-

putational polynomial with k − 2 degree. B sends
it to A.

Finally, after n times queries, A gets at most k − 1
secret keys and a label set T = {ti}.

3. Challenge: B picks a random ts from T = {ti}, and
then sends it to A as the challenge label. Then A runs
the algorithm to output a new forged key 〈labl,s, Al,s〉 =
〈ts, [

ts

ζlξ+ts
]G〉 in the role rl.

4. Guess: B changes 〈ts, [
ts

ζlξ+ts
]G〉 into the representation

of the generator G, 〈t′s, [1
ξ+t′s

]G〉, as follows:

[

ts

ζlξ + ts

]

G = [ts]

[

f(ξ)

ζlξ + ts

]

G (21)

= [ts]

[

k−2
∑

i=0

a′
i · ξ

i +
r

ζlξ + ts

]

G,

where, we can compute a′
0, · · · , a

′
k−2 by f(x) =

∑k−1
i=0 ai·

xi = (
∑k−2

i=0 a′
i · x

i)(ζlx + ts) + r. Such that if ts 6= xl,
then r 6= 0. Thus, B can compute

[

1

ξ + t′s

]

G = [
ζl

r
]

(

[t−1
s]Al,s −

k−2
∑

i=0

a′
i ·
(

[ξi]G
)

)

= [
ζl

r
]

(

[t−1
s]

[

ts

ζiξ + ts

]

G−
k−2
∑

i=0

a′
i ·
(

[ξi]G
)

)

.

and t′s = ts/ζl. Finally, B outputs 〈t′s, [
1

ξ+t′s
]G〉.

Hence, if the adversary A can break RHC scheme at polyno-
mial time in non-negligible advantage ε, then the algorithm
B can solve k-SDH problem at the polynomial-time, that is,
the advantage of algorithm B is AdvH,A(k − 1, n, m) > ε.
This denotes the algorithm B can compute k-SDH with a
non-negligible success probability, which would contradict
assumption.

Similarly, we also prove collusion security against the role’s
privilege attack, only if we change the challenge into an
assigned role rl and the adversary A returns a forged key
〈ts, [

ts

ζlξ+ts
]G〉 in the role rl, as well as the other parts of

this proof remain unchanged.

It is easy to find that the security of this scheme is inde-
pendent of the number of colluders under k-SDH assump-
tion. This scheme is also secure even if the number of collud-
ers is equal to the total number of users under (n + 1)-SDH
assumption, where k − 1 = n and |U | = n.

12

