
New generic algorithms for hard knapsacks

Nick Howgrave-Graham1 and Antoine Joux2

1 35 Park St, Arlington, MA 02474
nickhg@gmail.com

2 dga and Université de Versailles Saint-Quentin-en-Yvelines
uvsq prism, 45 avenue des États-Unis, f-78035, Versailles cedex, France

antoine.joux@m4x.org

Abstract. In this paper3, we study the complexity of solving hard knap-
sack problems, i.e., knapsacks with a density close to 1 where lattice-
based low density attacks are not an option. For such knapsacks, the cur-
rent state-of-the-art is a 31-year old algorithm by Schroeppel and Shamir
which is based on birthday paradox techniques and yields a running time
of Õ(2n/2) for knapsacks of n elements and uses Õ(2n/4) storage. We
propose here two new algorithms which improve on this bound, finally
lowering the running time down to Õ(20.3113n) for almost all knapsacks
of density 1. We also demonstrate the practicality of these algorithms
with an implementation.

1 Introduction

The 0–1 knapsack problem or subset sum problem is a famous NP-hard problem
which has often been used in the construction of cryptosystems. An instance of
this problem consists of a list of n positive integers (a1, a2, · · · , an) together with
another positive integer S. Given an instance, there exist two forms of knapsack
problems. The first form is the decision knapsack problem, where we need to
decide whether S can be written as:

S =
n∑
i=1

εiai,

with values of εi in {0, 1}. The second form is the computational knapsack prob-
lem where we need to recover a solution ε = (ε1, · · · , εn) if at least one exists.

The decision knapsack problem is NP-complete (see [7]). It is also well-known
that given access to an oracle that solves the decision problem, the computational
problem can be solved using n calls to this oracle. Indeed, assuming that the
original knapsack admits a solution, we can easily obtain the value of εn by
asking the oracle whether the subknapsack (a1, a2, · · · , an−1) can sum to S. If
so, there exists a solution with εn = 0, otherwise, a solution necessarily has
εn = 1. Repeating this idea, we obtain the bits of ε one at a time.

3 Full version of [12].

Knapsack problems were introduced in cryptography by Merkle and Hell-
man [18] in 1978. The basic idea behind the Merkle-Hellman public key cryp-
tosystem is to hide an easy knapsack instance into a hard looking one. The
scheme was broken by Shamir [23] using lattice reduction. After that, many
other knapsack based cryptosystems were also broken using lattice reduction. In
particular, the low-density attacks introduced by Lagarias and Odlyzko [15] and
improved by Coster et al. [4] are a tool of choice for breaking many knapsack
based cryptosystems. The density of a knapsack is defined as:

d =
n

log2(maxi ai)
.

More recently, Impagliazzo and Naor [13] introduced cryptographic schemes
which are as secure as the subset sum problem. They classify knapsack problems
according to their density. On the one hand, when d < 1 a given sum S can
usually be inverted in a unique manner and these knapsacks can be used for
encryption. On the other hand, when d > 1, most sums have many preimages
and the knapsack can be used for hashing purposes. However, for encryption,
the density cannot be too low, since the Lagarias-Odlyzko low-density attack
can solve random knapsack problems with density d < 0.64 given access to an
oracle that solves the shortest vector problem (SVP) in lattices. Of course, since
Ajtai showed in [1] that the SVP is NP-hard for randomized reduction, such
an oracle is not available. However, in practice, low-density attacks have been
shown to work very well when the SVP oracle is replaced by existing lattice re-
duction algorithm such as LLL4 [16] or the BKZ algorithm of Schnorr [20]. The
attack of [4] improves the low density condition to d < 0.94. For high density
knapsacks, with d > 1 there is a variant of these lattice-based attacks presented
in [14] that finds collisions in mildly exponential time O(2n/1000) using the same
lattice reduction oracle.

However, for knapsacks with density close to 1, there is no effective lattice-
based approach to solve the knapsack problem. As a consequence, in this case,
we informally speak of hard knapsacks. Note that, it is proved in [13, Propo-
sition 1.2], that density 1 is indeed the hardest case. For hard knapsacks, the
state-of-the-art algorithm is due to Schroeppel and Shamir [21, 22] and runs in
time O(n · 2n/2) using O(n · 2n/4) bits of memory. This algorithm has the same
running time as the basic birthday based algorithm on the knapsack problem
introduced by Horowitz and Sahni [10], but much lower memory requirements.
To simplify the notation of the complexities in the sequel, we extensively use the
soft-Oh notation. Namely, Õ(g(n)) is used as a shorthand for O(g(n)·log(g(n))i),
for any fixed value of i. With this notation, the algorithm of Schroeppel and
Shamir runs in time Õ(2n/2) using Õ(2n/4) bits of memory.

Since Wagner presented his generalized birthday algorithm in [25], it is well-
known that when solving problems involving sums of elements from several lists,
it is possible to obtain a much faster algorithm when a single solution out of many
is sought. A similar idea was previously used by Camion and Patarin in [2] to

4 LLL stands for Lenstra-Lenstra-Lovász and BKZ for blockwise Korkine-Zolotarev

attack the knapsack based hash function of [5]. In this paper, we introduce two
new algorithms that improve upon the algorithm of Schroeppel and Shamir to
solve knapsack problems. In some sense, our algorithms are a new development
of the generalized birthday algorithm. The main difference is that, instead of
looking for one solution among many, we look for one of the many possible
representations of a given solution.

The paper is organized as follows: In Section 2 we recall some background in-
formation on knapsacks, in Section 3 we briefly recall the algorithm of Schroeppel–
Shamir and introduce a useful practical variant of this algorithm, in Section 4 we
present our improved algorithms and in Section 5 we describe practical imple-
mentations on a knapsack with n = 96. Section 4 is divided into 3 subsections,
in 4.1 we describe the basic idea that underlies our algorithm, in 4.2 we present
a simple algorithm based on this idea and in 4.3 we give an improved recursive
version of this algorithm. Finally, in Section 6 we present several extensions and
some possible applications of our new algorithms.

2 Background on knapsacks

2.1 Modular knapsacks

We speak of a modular knapsack problem when we want to solve:

n∑
i=1

εi ai ≡ S mod M,

where the integer M is the modulus.
Up to polynomial factors, solving modular knapsacks and knapsacks over the
integers are equivalent. Any algorithm that realizes one task can be used to
solve the other. In one direction, given a knapsack problem over the integers
and an algorithm that solves any modular knapsack, it is clear that solving the
problem modulo M = max(S,

∑n
i=1 ai) + 1 yields all integral solutions. In the

other direction, assume that the modular knapsack (a1, · · · , an) with target sum
S mod M is given by representatives ai of the classes of modular numbers in the
range [0,M −1]. In this case, it is clear that any sum of at most n such numbers
is in the range [0, nM−1]. As a consequence, if S is also represented in the range
[0,M −1], it suffices to solve n knapsack problems over the integers with targets
S, S +M , . . . , S + (n− 1)M.

2.2 Random knapsacks

Given two parameters n and D, we define a random knapsack with solution on n
elements with prescribed density D as a knapsack randomly constructed using
the following process:

– Let B(n,D) = b2n/Dc.
– Choose each ai (for i from 1 to n) uniformly at random in [1, B(n,D)].

– Uniformly choose a random vector ε in {0, 1}n and let S =
∑n
i=1 εi ai.

Note that the computed density d of such a random knapsack differs from the
prescribed density. However, as n tends to infinity, the two become arbitrarily
close with overwhelming probability. In [4], it is shown that there exists a lattice
based algorithm that solves all but an exponentially small fraction of random
knapsacks with solution, when the prescribed density satisfies D < 0.94.

2.3 Unbalanced knapsacks

The random knapsacks from above may have arbitrary values in [0, n] for the
weight

∑n
i=1 εi of the solution. Yet, most of the time, we expect a weight close

to n/2. For various reasons, it is also useful to consider knapsacks with different
weights. We define an α-unbalanced random knapsack with solution on n elements
given α and the density D as follows:

– Let B(n,D) = b2n/Dc.
– Choose each ai (for i from 1 to n) uniformly at random in [1, B(n,D)].
– Let ` = bαnc and uniformly choose a random vector ε with exactly ` co-

ordinates equal to 1, the rest being 0s, in the set of
(
n
`

)
such vectors. Let

S =
∑n
i=1 εi ai.

Unbalanced knapsacks are natural to consider, since they already appear in the
lattice based algorithms of [15, 4], where the value of α greatly impacts the
densities that can be attacked. Moreover, in our algorithms, even when initially
solving regular knapsacks, unbalanced knapsacks may appear in the course of
the computations.

When dealing with balanced knapsacks with exactly half zeros and ones, we
also use the above definition and speak of 1/2-unbalanced knapsacks.

2.4 Complementary knapsacks

Given a knapsack a1, . . . , an with target sum S, we define its complementary
knapsack to be the knapsack that contains the same elements and has target sum∑n
i=1 ai−S. The solution ε of the original knapsack and ε′ of the complementary

knapsacks are related by:

For all i: εi + ε′i = 1.

Thus, solving either of the two knapsacks also yields the result of the other
knapsack. Moreover, the weight ` and `′ are related by `+ `′ = n. In particular,
if a knapsack is α-unbalanced, its complementary knapsack is (1−α)-unbalanced.
As a consequence, in any algorithm, we may assume without loss of generality
that ` ≤ bn/2c (or that ` ≥ dn/2e).

2.5 Asymptotic values of binomials

Where knapsacks are considered, binomial coefficients are frequently encoun-
tered, we recall that the binomial coefficient

(
n
`

)
is the number of distinct choices

of ` elements within a set of n elements. We have:(
n

`

)
=

n!
`! · (n− `)!

.

We often need to obtain asymptotic approximation for binomials of the form(
n
αn

)
(or

(
n
bαnc

)
) for fixed values of α in]0, 1[. This is easily done by using

Stirling’s formula:
n! = (1 + o(1))

√
2πn

(n
e

)n
.

Ignoring polynomial factors in n, we find:(
n

αn

)
= Õ

((
1

αα · (1− α)1−α

)n)
.

Many of the algorithms presented in this paper involve complexities of the form
Õ(2c n), where a constant c is obtained by taking the logarithm in basis 2 of
numbers coming from asymptotic estimates of binomials. In this case, to improve
the readability of the complexity, we choose a decimal approximation c0 > c of
c. This would allow us to rewrite the complexity as O(2c0 n) or even o(2c0 n).
However, we prefer to stick to Õ(2c0 n). A typical example is the Õ(20.3113n)
time complexity of our fastest algorithm, which stands for Õ

((
n
n/4

)
· 2−n/2

)
.

2.6 Distribution of random knapsack sums

In order to analyze the behavior of our algorithms, we need to use information
about the distribution of modular sums of the form:

n∑
i=1

aixi (mod M),

for a random knapsack modulo M and for n-tuples (x1, · · · , xn) ∈ B, where B is
an arbitrary set of n-dimensional vectors, with coordinates modulo M . We use
the following important theorem [19, Theorem 3.2]:

Theorem 1. For any set B ⊂ ZnM , the identity:

1
Mn

∑
(a1,··· ,an)∈ZnM

∑
c∈ZM

(
Pa1,··· ,an(B, c)− 1

M

)2

=
M − 1
M |B|

holds, where Pa1,··· ,an(B, c) denotes the probability that
∑n
i=1 aixi ≡ c (mod M)

for a random (x1, · · · , xn) drawn uniformly from B, i.e.:

Pa1,··· ,an(B, c) =
1
|B|

∣∣∣∣∣
{

(x1, · · · , xn) ∈ B such that
n∑
i=1

aixi ≡ c (mod M)

}∣∣∣∣∣ .

This implies the immediate corollaries:

Corollary 1. For any real λ > 0, the fraction of n-tuples (a1, · · · , an) ∈ ZnM
for which there exists a c ∈ ZM that satisfies |Pa1,··· ,an(B, c) − 1/M | ≥ λ/M is
at most:

M2

λ2 |B|
.

Corollary 2. For any reals λ > 0 and 1 > µ > 0, the fraction of n-tuples
(a1, · · · , an) ∈ ZnM for which there exist at least µM values c ∈ ZM that satisfy
|Pa1,··· ,an(B, c)− 1/M | ≥ λ/M is at most:

M

λ2 µ |B|
.

These two corollaries are used when |B| is larger than M . We also need two more
corollaries, one for small values of |B| and one for |B| ≈M :

Corollary 3. For any reals 1 > µ > 0, if m > 1 denotes M/|B|, the fraction
of n-tuples (a1, · · · , an) ∈ ZnM such that less than µ |B| values c ∈ ZM have
Pa1,··· ,an(B, c) 6= 0 is at most:

µ

(1− µ)m

Corollary 4. For any reals λ > 0, the fraction of n-tuples (a1, · · · , an) ∈ ZnM
that satisfy: ∑

c∈ZM

Pa1,··· ,an(B, c)2 ≥ M + |B|
λM |B|

is at most λ.

3 The algorithm of Schroeppel and Shamir

The algorithm of Schroeppel and Shamir was introduced in [21, 22]. It al-
lows one to solve a generic integer knapsack problem on n-elements in time
Õ(2n/2) using a memory of size Õ(2n/4). It improves on the birthday algorithm
of Horowitz and Sahni [10] that can be applied on such a knapsack. We first re-
call this basic birthday algorithm, which is based on the rewriting of a knapsack
solution as an equality:

bn/2c∑
i=1

εi ai = S −
n∑

i=bn/2c+1

εi ai,

where all the εs are 0 or 1. Thus, to solve the knapsack problem, we construct
the set S(1) containing all possible sums of the first bn/2c elements and S(2)

be the set obtained by subtracting from the target S any of the possible sums
of the last dn/2e elements. Searching for collisions between the two sets, we

Algorithm 1 Schroeppel-Shamir algorithm
Require: Knapsack element a1, . . . , an. Knapsack sum S

Let q1 = bn/4c, q2 = bn/2c, q3 = b3n/4c
Create S(1)

L (σ) and S(1)
L (ε): list of all

Pq1
i=1 εi ai and list of ε1···q1 (in the same order)

Create S(1)
R (σ) and S(1)

R (ε): list of all
Pq2
i=q1+1 εi ai and list of εq1+1···q2

Create S(2)
L (σ) and S(2)

L (ε): list of all
Pq3
i=q2+1 εi ai and list of εq2+1···q3

Create S(2)
R (σ) and S(2)

R (ε): list of all
Pn
i=q3+1 εi ai and list of εq3+1···n

Call 4-way merge Algorithm 2 or 3 on (S(1)
L (σ),S(1)

R (σ),S(2)
L (σ),S(2)

R (σ)), n and S.
Store returned set in Sol
for each (i, j, k, l) in Sol do

Concatenate S(1)
L (ε)[i], S(1)

R (ε)[j], S(2)
L (ε)[k] and S(2)

R (ε)[l] into ε
Output: “ε is a solution”

end for

Algorithm 2 Original 4-Way merge routine

Require: Four input lists (S(1)
L ,S(1)

R ,S(2)
L ,S(2)

R), knapsack size n, target sum T
Let S

(1)
L , S

(1)
R , S

(2)
L and S

(2)
R be the sizes of the corresponding arrays.

Create priority queues Q1 and Q2

Sort S(1)
R and S(2)

R in increasing order. Keep track of positions in InitPos1 and
InitPos2
for i from 0 to S

(1)
L do

Insert (i, 0) in Q1 with priority S(1)
L [i] + S(1)

R [0].
end for
for i from 0 to S

(2)
L do

Insert (i, S
(2)
R − 1) in Q2 with priority T − S(2)

L [i]− S(2)
R [S

(2)
R − 1].

end for
Create empty list Sol
while Q1 and Q2 are not empty do

Peek at value q1 of lowest priority element in Q1.
Peek at value q2 of lowest priority element in Q2.
if q1 ≤ q2 then

Get (i, j) from Q1

if j 6= S
(1)
R − 1 then

Insert (i, j + 1) in Q1 with priority S(1)
L [i] + S(1)

R [j + 1].
end if

end if
if q1 ≥ q2 then

Get (k, l) from Q2

if l 6= 0 then
Insert (k, l − 1) in Q2 with priority T − S(2)

L [k]− S(2)
R [l − 1].

end if
end if
if q1 = q2 then

Add (i, InitPos1[j], k, InitPos2[l]) to Sol
end if

end while
Return list of solutions Sol

discover all the solutions of the knapsack problem. This can be done in time and
memory Õ(2n/2) by fully computing the two sets, sorting them and searching
for collisions. In [21, 22], Schroeppel and Shamir show that, in order to find
these collisions, it is not necessary to store the full sets S(1) and S(2). Instead,
they generate them on the fly using priority queues (based either on heaps or a
Adelson-Velsky and Landis trees), requiring memory Õ(2n/4).

More precisely, let us define q1 = bn/4c, q2 = bn/2c, q3 = b3n/4c. We
introduce four sets S(1)

L , S(1)
R , S(2)

L and S(2)
R of size O(2n/4) defined as follows:

– S(1)
L is the set of pairs (

∑q1
i=1 εi ai, ε1···q1) with ε1···q1 ∈ {0, 1}q1 ;

– S(1)
R is the set of (

∑q2
i=q1+1 εi ai, εq1+1···q2) with εq1+1···q2 ∈ {0, 1}q2−q1 ;

– S(2)
L is the set of (

∑q3
i=q2+1 εi ai, εq2+1···q3) with εq2+1···q3 ∈ {0, 1}q3−q2 ;

– S(2)
R is the set of (

∑n
i=q3+1 εi ai, εq3+1···n) with εq3+1···n ∈ {0, 1}n−q3 .

With these notations, solving the knapsack problem amounts to finding four
elements σ(1)

L , σ(1)
R , σ(2)

L and σ(2)
R in the corresponding sets such that S = σ

(1)
L +

σ
(1)
R + σ

(2)
L + σ

(2)
R . We call this a 4-way merge problem.

The algorithm of Schroeppel and Shamir is described in Algorithm 1, using
their original 4-way merge Algorithm 2 as a subroutine. Note that, in Algo-
rithm 1, we describe each set S(i)

X as two lists S(i)
X (σ) and S(i)

X (ε) stored in the
same order.

3.1 A variant of the Schroeppel and Shamir algorithm

In practice, the need for priority queues of large size makes the algorithm of
Schroeppel and Shamir harder to implement and to optimize. Indeed, using
large priority queues either introduces an extra factor in the memory usage, or
unfriendly cache behavior. As a consequence, we would like to avoid priority
queues altogether. In order to do this, we present a variant of their algorithm,
inspired by an algorithm presented in [3] that solves the problem of finding 4
elements from 4 distinct lists with bitwise sum equal to 0. Note that, from a
theoretical point of view, our variant is not as good as the original algorithm
of Schroeppel and Shamir, because for some exceptional knapsacks, it requires
more memory.

The idea is to choose a modulus M near 2(1/4−ε)n and to remark that the
4-way merge condition implies σ(1)

L + σ
(1)
R ≡ S − σ

(2)
L − σ

(2)
R (mod M). As a

consequence, for any solution of the knapsack, there exists a value σM , such
that:

σM = (σ(1)
L + σ

(1)
R) mod M = (S − σ(2)

L − σ
(2)
R) mod M.

Since, we cannot guess the correct value of σM , we simply loop over all possible
values. This gives a new 4-way merge Algorithm 3, which can be used as a
replacement for the original subroutine in Algorithm 1.

Informally, for each test value of σM , Algorithm 3 constructs the set of all
sums σ(1)

L + σ
(1)
R congruent to σM modulo M . This is done by sorting S(1)

R by
values modulo M . Indeed, in this case, it suffices for each σ

(1)
L in S(1)

L to search

Algorithm 3 Modular 4-Way merge routine

Require: Four input lists (S(1)
L ,S(1)

R ,S(2)
L ,S(2)

R), size n, target sum T
Require: Memory margin parameter: ε

Let M be a random modulus in [2(1/4−ε)n, 2 · 2(1/4−ε)n]

Create list S(1)
R (M) containing pairs (S(1)

R [i] mod M, i) where i indexes all of S(1)
R

Create list S(2)
R (M) containing pairs (S(2)

R [i] mod M, i) where i indexes all of S(2)
R

Sort S(1)
R (M) and S(2)

R (M) by values of the left member of each pair
Create empty list Sol
for σM from 0 to M − 1 do

Empty the list S(1) (or create the list if σM = 0)

for i from 1 to size of S(1)
L do

Let σ
(1)
L = S(1)

L [i] and σt = (σM − σ(1)
L) mod M

Binary search first occurrence of σt in S(1)
R (M)

for each consecutive (σt, j) in S(1)
R (M) do

Add (σ
(1)
L + S(1)

R [j]), (i, j)) to S(1)

end for
end for
Sort list S(1) by values of the left member of each pair
for k from 1 to size of S(2)

L do

Let σ
(2)
L = S(2)

L [k] and σt = (T − σM − σ(2)
L) mod M

Binary search first occurrence of σt in S(2)
R

for each consecutive (σt, l) in S(2)
R (M) do

Let T ′ = T − σ(1)
L − S

(2)
R [l]

Binary search first occurrence of T ′ in S(1)

for each consecutive (T, (i, j)) in S(1) do
Add (i, j, k, l) to Sol

end for
end for

end for
end for
Return list of solutions Sol

the value σM − σ(1)
L in S(1)

R . Using this method, we construct the set S(1) of the
birthday paradox algorithm as a disjoint union of smaller sets S(1)(σM), which
are created one at a time within the loop on σM in Algorithm 2. Similarly, we
implicitly construct S(2) as a disjoint union of S(2)(σM), but do not store it,
instead searching for matching values in S(1)(σM).

Complexity analysis. If we ignore the innermost loop that writes down the
solution set Sol, the running time of the execution of the loop iteration corre-
sponding to σM is Õ(S(1)(σM) + S(2)(σM)), with a polynomial factor in n that
comes from sorting and searching. Summing over all iterations of the loop, we
have a total running time of Õ(S(1) + S(2)) = Õ(2n/2), unless Sol has a size
larger than Õ(2n/2).

Where memory is concerned, storing S(1)
L , S(1)

R , S(2)
L and S(2)

R costs O(2n/4).
However, the memory required to store the partitioned representation of S(1) is
maxσM S(1)(σM). Note that we cannot guarantee that this maximum remains
small. A simple counterexample occurs when all ai values (in the first half) are
multiples of M . Indeed, in that case we find that S(1)(0) has size 2n/2. In general,
we do not expect such a bad behavior, more precisely, we have:

Theorem 2. For any real ε > 0 and modulus M close to 2(1/4−ε)n, for a
fraction at least 1 − 2−4ε n of knapsacks with density D < 4 given by n-tuples
(a1, · · · , an) and target value T , Algorithm 1 using as 4-way merge routine Algo-
rithm 3 finds all of the NSol solutions of the knapsack in time Õ(max(2n/2, NSol))
using memory Õ(max(2(1/4+ε)n, NSol)).

Proof. The time analysis is given above. The bound on the memory use for
almost all knapsacks comes from applying Corollary 1 with λ = 1/2 twice on the
left and right-hand side subknapsacks on n/2 elements, using B = {0, 1}n/2. We
need to use the fact that a random knapsack taken uniformly at random with
n/D-bit numbers is close to a random knapsack modulo M , when D < 4.

A high bit version. Instead of using modular values to partition the sets S(1) and
S(2), another option is to look at the value of the dn/4e higher bits. Depending
on the precise context, this option might be more practical than the modular
version. In the implementation presented in Section 5, we make use of both
versions.

Early abort with multiple solutions. When the number of solutions NSol is large,
and we wish to find a single solution, we can use an early abort strategy. Heuris-
tically, assuming that the σM values corresponding to the many solutions are
well-distributed modulo M , this reduces the heuristic expected running time to
Õ(max(2n/4, 2n/2/NSol)).

3.2 Application to unbalanced knapsacks

The basic birthday algorithm, the algorithm of Schroeppel–Shamir and our vari-
ant can also, with some care, be applied to α-unbalanced knapsacks. In this case,

if we let:

Cα =
(
α−α · (1− α)α−1

)
,

the time complexity is Õ(Cn/2α) and the memory complexity is Õ(Cn/2α) for the
basic birthday algorithm, Õ(Cn/4α) for the algorithm of Schroeppel and Shamir
and Õ(C(1/4+ε)nα) for our variant.

Adapting to the unbalanced case. Letting ` = bαnc, if we assume that
the solution of the knapsack has b`/2c elements coming from the first half, then
the algorithms are easily adapted. With the basic birthday method, the only
difference with the balanced case is that S(1) now contains all sums of exactly
b`/2c elements among the bn/2c first elements and S(2) contains all sums of d`/2e
among the last dn/2e elements. This restriction is important, because allowing
more elements on either side makes the sets S(1) or S(2) too large and prevents us
from reaching the expected complexity bound. With balanced knapsacks, this is
not an issue because

(
n
bn/2c

)
and 2n are within polynomial factors of each other.

However, nothing a priori guarantees that the solution satisfies the above
assumption. If it does, we say, following [24], that we have a splitting family.
When n is even, to obtain such a splitting family, we can use a method attributed
to Coppersmith in [24]. The idea is to run the algorithm n times on n knapsacks
whose target sums are all equal to S and whose elements are rotated copies of
a1, . . . , an. Namely, the elements of the i-th knapsack are a(i)

j = a(i+j) mod n. To
prove that this works, it suffices to show that a sliding window of n/2 consecutive
elements intersects the solution S in exactly b`/2c points at least once, see [24]
for details. When n is odd, we instead attempt to solve the two knapsacks on
n − 1 elements a1 to an−1 and targets S and S − an, thus going back to the
even case. Alternatively, it is also possible to use a randomized approach also
due to Coppersmith and described in [24]. In fact, it suffices to randomize the
order of the ai for each new trial and take the first and second halves. Thanks
to Stirling’s formulae, this, on average, only requires O(

√
n) trials.

For applying the algorithm of Schroeppel–Shamir or our variant to unbal-
anced knapsacks, we need to assume that the number of elements in each of
the four quarters is known in advance and is either equal to b`/4c or to d`/4e.
Assuming that n is a multiple of 4, this can be achieved in a deterministic way
by first using a sliding windows to guarantee that the two halves contains b`/2c
or to d`/2e elements, then, inside of each half, we use another sliding window to
balance the number of elements within the corresponding quarter. At most, we
need to try n3/4 configurations. When n is not a multiple of 4, we first guess
the value of ε in (n mod 4) positions and we are back to a knapsack with a num-
ber of elements equal to a multiple of 4. It is also possible to use a randomized
approach, with an expected number of trials O(n3/2).

4 The new algorithms

4.1 Basic principle

In this section, we want to solve a generic knapsack problem on n-elements. We
start from the basic knapsack equation:

S =
n∑
i=1

εiai.

As explained in Section 2, by taking the complementary knapsack if required,
we may assume that ` =

∑n
i=1 εi ≥ dn/2e.

We define the set Sd`/2e as the set of all partial sums of b`/2c or d`/2e
knapsack elements. Clearly, there exists pairs (σ1, σ2) of elements of Sd`/2e such
that S = σ1 + σ2. In fact, there exist many such pairs, corresponding to all the
possible decompositions of the set of ` elements appearing in S into two subsets
of size ≤ d`/2e. The number Nn of such decompositions is given either by the
binomial

(
`
`/2

)
for even ` or by 2

(
`

(`−1)/2

)
for odd `.

The basic idea that underlies all algorithms presented in this paper is to focus
on a small part on Sd`/2e, in order to discover one of these many solutions. We
start by choosing a prime integer M near Nn and a random element R modulo
M . Heuristically, we find that with some constant probability, there exists a
decomposition of S into σ1 + σ2, such that σ1 ≡ R (mod M) and σ2 ≡ S − R
(mod M). To find such a decomposition, it suffices to construct the two subsets
of Sd`/2e containing elements respectively congruent to R and S−R modulo M .
Using the asymptotic estimates of binomials, we find that the expected size of
each of these subsets is:(

n
d`/2e

)
M

≈

(
n
d`/2e

)(
`
d`/2e

) = Õ(20.3113n).

The exponent 0.3113 is obtained by approximating the binomial in the worst
case where ` ≈ n/2. Once these two subsets, respectively denoted by S(1)

d`/2e and

S(2)
d`/2e are constructed, we need to find a collision between σ1 and S − σ2, with

σ1 in S(1)
d`/2e and σ2 in S(2)

d`/2e. Clearly, using a classical sort and match method,

this can be done in time Õ(20.3113n). As a consequence, assuming that we can
construct the sets S(1)

d`/2e and S(2)
d`/2e quickly enough ,we can hope to construct

an algorithm with overall complexity Õ(20.3113n) for solving generic knapsacks,.
The rest of this paper shows how this can be achieved and also tries to minimize
the required amount of memory.

Application to unbalanced knapsacks. The above idea can directly be ap-
plied to unbalanced knapsacks with ` = αn elements in the decomposition of S.
This expected size of the subsets of Sd`/2e can now be approximated by:(

n
d`/2e

)(
`
d`/2e

) = Õ

((
2

αα/2 · (2− α)(2−α)/2

)n
· 2−αn

)
.

Interestingly, when α < 1/2 we obtain a smaller bound by considering the com-
plementary knapsack. As a consequence, in order to preserve the usual conven-
tion α ≤ 1/2, it is useful to substitute α by 1− α, we obtain the bound:

Õ
((

(1− α)(α−1)/2 · (1 + α)−(1+α)/2
)n
· 2αn

)
.

The curve of the logarithm in base 2 of this bound is included in Figure 1.

4.2 Simple algorithm

We first present a reasonably simple algorithm, which can achieve several trade-
offs between time and memory. For simplicity, we assume that ` =

∑n
i=1 εi =

bn/2c. Should this not be the case, it would suffice to run the algorithm (possibly
in the unbalanced version described below) for all values of ` ≤ bn/2c. In such a
sequence of executions, the instance with ` = bn/2c dominates the running time
and the total run time remains within the same bound.

Algorithm 4 Our simple algorithm
Require: Knapsack elements a1, . . . , an. Knapsack sum S. Parameter β

Let M be a random prime close to 2β n

Let R1, R2 and R3 be random values modulo M .
Solve the 1/8-unbalanced knapsack modulo M with elements a and target R1.
Solve the 1/8-unbalanced modular knapsack with target R2.
Solve the 1/8-unbalanced modular knapsack with target R3.
Solve the 1/8-unbalanced modular knapsack with target S −R1 −R2 −R3 mod M .
Create the 4 sets of non-modular sums corresponding to the above solutions.
Do a 4-way merge (with early abort and consistency checks) on these 4 sets.
Rewrite the obtained solution as a knapsack solution.

In our simple algorithm, instead of considering decompositions of S into two
sub-sums as in the previous section, we now consider decompositions into four
parts and write:

S = σ1 + σ2 + σ3 + σ4,

where each σi belongs to the set Sd`/4e of all partial sums of either b`/4c or
d`/4e knapsack elements. The exact number N of such decompositions varies
depending on the value of ` modulo 4, for example:

N =
(

`

`/4, `/4, `/4, `/4

)
when ` ≡ 0 (mod 4).

However, in any case, thanks to Stirling’s formula, we find that N = Õ(2n).
We now choose an integer M near 2β n (with 1/4 < β < 1/3) and three

random elements R1, R2 and R3 modulo M . We then search for a decomposition
that satisfies the constraints σ1 ≡ R1 (mod M), σ2 ≡ R2 (mod M), σ3 ≡ R3

(mod M) and σ4 ≡ S−R1−R2−R3 (mod M). Clearly, the fourth condition is a
consequence of the other three and we heuristically expect NM−3 solutions that
satisfy the extra constraints. To make this heuristic expectation precise enough
we need the following generalization to Corollary 2:

Corollary 5. When log2(M) > (3 log2(3)/16)n ≈ 0.2972n, for any reals λ > 0
and 1 > µ > 0, the fraction of n-tuples (a1, · · · , an) ∈ ZnM for which there exist at
least µM3 values (c1, c2, c3) ∈ ZM that satisfy |Pa1,··· ,an(B, c1, c2, c3)− 1/M3| ≥
λ/M3 is at most:

2M3

λ2 µ |B|
,

where B is the set of decomposition of a given solution as (x(1), x(2), x(3), x(4))
and Pa1,··· ,an(B, c1, c2, c3) denotes the probability of the event:

n∑
i=1

aix
(1)
i ≡ c1 and

n∑
i=1

aix
(2)
i ≡ c2 and

n∑
i=1

aix
(3)
i ≡ c3 (mod M).

Proof. Direct application of Theorem 4 in Appendix B.

Heuristically, we also expect the corollary to hold as long as β > 1/4.
Once we have random values R1, R2 and R3 that match a decomposition of the
solution, we can find the solution as follows: we start by constructing the four
subsets of Sd`/4e containing elements respectively congruent to R1, R2, R3 and
S −R1 −R2 −R3 modulo M . We denote these subsets by S(1)

d`/4e, S
(2)
d`/4e, S

(3)
d`/4e

and S(4)
d`/4e. Once this is done, we search for a knapsack solution by doing a 4-way

merge of these sets. This strategy is outlined in Algorithm 4.

Constructing the subsets. To construct each of the subsets S(1)
d`/4e, S

(2)
d`/4e,

S(3)
d`/4e and S(4)

d`/4e, we use the algorithm of Schroeppel and Shamir. Note that,
since the solution we are searching is a sum of b`/4c or d`/4e elements, we need
to use the algorithm in the unbalanced case, with α = 1/8. Depending on the
value of β, the set of solutions may be quite large. Indeed, the expected number
of solutions is

(
n
dn/8e

)
· 2−βn = Õ(2(0.5436−β)n). Since this is bigger than the size

of the subsets S(i)
d`/4e, the memory complexity of Algorithm 1 is Õ(2(0.5436−β)n),

while its time complexity is Õ(max(2(0.5436−β)n, 20.272n)). For the theoretical
analysis, we assume here that we are using the original 4-way merge algorithm
of Schroeppel and Shamir whose complexity is always guaranteed.

Of course, since we are solving modular knapsack instances, we first need
to transform the problems into (polynomially many instances of) integer knap-
sacks as explained in Section 2. In any case, note that the time and memory
requirements of this stage are dominated by the complexity of the next stage.

Recovering the desired solution. Once the subsets S(1)
d`/4e, S

(2)
d`/4e, S

(3)
d`/4e

and S(4)
d`/4e are constructed, it suffices to perform a 4-way merge of these sets

using a slightly modified version of the modular5 4-way merge Algorithm 3. For
this 4-way merge, we use a modulus M ′ coprime to M . We choose M ′ close to(

n
d`/4e

)
2−βn ≈ 2(0.5436−β)n.

The changes to Algorithm 3 are the following:

1. Rename the modulus as M ′

2. Replace the “for” loop on the σM ′ value, by a loop where each new value of
σM ′ is randomly selected.

3. At each merge, i.e. insertion in S(1), Sol or (implicit) S(2), add a consistency
check to make sure that the corresponding subset sums do not overlap. If
consistency check fails, skip the insertion.

4. Add an early abort criteria: stop the algorithm at the first insertion in Sol.

At the end of the algorithm, the consistent solution σ1 +σ2 +σ3 +σ4 = S present
in Sol can be translated into a solution of the knapsack problem.

Complexity analysis (sketch of proof). We have already seen that the
time complexity of the subset construction phase is Õ(max(2(0.5436−β)n, 20.272n))
using memory Õ(2(0.5436−β)n). To analyze the complexity of the recovery stage,
we need to know the size of the intermediate set of sums S1(σM ′). Note that
this set contains all choices of d`/2e elements among n that can be written as a
sum σ = σ1 + σ2 satisfying a modular constraints, i.e., σ1 ≡ σM ′ (mod M ′). By
construction, we also have σ1 ≡ R1 +R2 (mod M).

Using the same techniques, we can also show that there exists a constant
τ such that at least τ min(2(1−3β)n, 2(1/2−β)n) decompositions of the original
solutions in two parts with σ1 ≡ R1 + R2 (mod M) are obtained. Let B de-
notes this set of accessible decompositions and look at the corresponding sums
modulo M ′ > |B|. Applying Corollary 3 with µ = 1/2, we find that, for all
but an exponentially small fraction of n-tuples (a1, · · · , an), there exist at least
|B|/2 different sums modulo M ′. As a consequence, since the σM ′ values are
taken at random, the 4-way merge requires an expected number of iterations
M ′/(2|B|). Moreover, after nM ′/(2|B|) iterations there is an overwhelming prob-
ability to find at least one such decomposition. Thus, the early abort occurs after
Õ(M ′/(2|B|)) iterations.

It remains to analyze the time complexity of each iteration of the loop. It is
dominated by the number of merged pairs that need to be tested for consistency.
For any value of σM ′ the number of pairs is the sum over c of the number of
elements congruent to c modulo M ′ in the first list by the number of elements
congruent to σM ′−c modulo M ′ in the second list. This is a scalar product of two
vectors on M ′ elements. It is smaller than the product of the norms of the two
vectors. We can bound the squared norm using Corollary 4, with λ = 2−εn. We

5 Here, we cannot use the original 4-way merge, because we do not know how to
analyze its complexity when early abort is used.

find that for an exponentially small fraction λ of n-tuples, the number of pairs
tested for consistency per iteration is Õ(2εnM ′). Multiplying by the number of
iterations, we find a total time Õ(2εnM ′2/|B|) = Õ(2(0.0872+β)n) when ε is small
enough.

We should also state that the number of quadruples tested for consistency is
Õ(20.3113n). Putting everything together, when 1/3 > β > 1/4, we summarize
the overall running time of the algorithm as Õ(max(20.3113n, 2(0.0872+β)n)) using
Õ(2(0.5436−β)n) units of memory. We recall that, when β ≤ 3 log2(3)/16 the
analysis is only heuristic.

Some possible time-memory trade-offs. We now instantiate this simple
algorithm by choosing values for β. A first option is to minimize the required
amount of memory, this is achieved by taking β arbitrarily close to 1/3 and yields
a running time Õ(20.421n), using Õ(20.211n) memory units. A second option is
to look at the smallest value of β for which we can prove the algorithm, i.e.,
β ≈ 0.2972, we have running time Õ(20.385n), using Õ(20.247n) memory units. A
third heuristic option is to require the same amount of memory as in Schroeppel–
Shamir, i.e. Õ(2n/4), this occurs for β ≈ 0.2936 and corresponds to a running
time Õ(20.381n). Finally, we can minimize the running time by taking β close
to 1/4 and obtain an algorithm with time complexity Õ(20.338n) and memory
complexity Õ(20.294n).
For the choices β < 1/4, the time complexity becomes Õ(2(0.5872−β)n) and in-
creases again.

Complexity for unbalanced knapsacks. As in Section 3.1, this algorithm
can be extended to α-unbalanced knapsacks, with α ≤ 1/2. Writing the time
complexity as Õ(2D

T
αn) and the memory complexity as Õ(2D

M
α n), we have:

DTα = 2 log2

(
4

αα/4 · (4− α)(4−α)/4

)
− 2α+ 2βα and

DMα = log2

(
4

αα/4 · (4− α)(4−α)/4

)
− 2βα.

As in the balanced case, the parameter β determines the chosen time-memory
trade-off.

Knapsacks with multiple solutions. Note that nothing prevents the above
algorithm from finding a large fraction of the solutions for knapsacks with many
solutions. However, in that case, we need to take some additional precautions. We
need to change the early abort strategy and to remove any duplicate represen-
tation of a given solution. We should remember that, if the number of solutions
becomes too large it can dominate time and memory complexities.

For an application that would require all the solutions of the knapsack, it is
also necessary to increase the running time. The reason is that this algorithm
is probabilistic and that the probability of missing any given solution decreases

exponentially as a function of the running time. Of course, when there is a large
number NSol of solutions, the probability of missing at least one is multiplied
by NSol. Heuristically, to balance this, we increase the running time by a factor
of log(NSol).

4.3 Recursive version of the algorithm

Finally, we can also use the basic principle of Section 4.1 in a recursive manner.
To solve an α-unbalanced knapsack, we decompose it in two halves and need to
solve the resulting (α/2)-unbalanced knapsacks. We can use this decomposition
technique recursively. We stop the recursion once we reach knapsacks containing
a small number of ones that can be solved in negligible time compared to the
initial α-unbalanced knapsack.

Algorithm 5 Recursive algorithm
Require: Knapsack elements a1, . . . , an. Knapsack sum S. Weight of solution `.
Require: Parameter ε > 0

if ` > n(1/3 + ε) then
Let ` = n− `
Replace S by

Pn
i=1 ai − S

end if
Let M be a random prime close to 2`+ε n

for i from 1 to O(2ε n) do
Let R be a random value modulo M .
if ` ≤ α0n (with α0 ≈ 0.312835) then

Solve unbalanced knapsack modulo M with elements a (mod M), target R and
weight b`/2c using Schroeppel-Shamir.
Solve unbalanced knapsack modulo M with elements a (mod M), target S −
R mod M and weight d`/2e using Schroeppel-Shamir.

else
Recursively solve unbalanced knapsack modulo M with elements a (mod M),
target R and weight b`/2c.
Recursively solve unbalanced knapsack modulo M with elements a (mod M),
target S −R mod M and weight d`/2e.

end if
Create two sets of non-modular sums corresponding to the above solutions.
Perform a collision search (with consistency checks) on these two sets.
Rewrite the collisions as knapsack solutions and add to set of solutions.

end for
Returns set of solutions

More precisely, in the decomposition technique, we write a target value S as
σ1+σ2. The two values σ1 and σ2 are the respective targets of two subknapsacks.
For a direct decomposition, we let ` = bαn/2c and chose for the first subknapsack
an unbalanced knapsack with target σ1 as a sum of ` elements. The second
subknapsack has target σ2 as a sum of `′ = dαn/2e elements. We use a modular

constraint to lower the number of expected solutions of each subknapsack close
to 1. For a decomposition based on the complementary knapsack, we replace the
target S by

∑n
i=1 ai − S, we also replace α by 1− α and proceed similarly.

The number of decompositions of the initial knapsack into two subknapsacks
is
(
αn
`

)
. Asymptotically, this is close to 2αn. To create the modular constraint,

we choose a modulus M close to 2αn with γ ≥ α and thus need to consider
a constant number of different random values for σ1 modulo M . For each of
these random values, denoted by R, we need to compute the list of all solutions
to the subknapsack σ1 = R (mod M), the list of all solutions to σ2 = S − R
(mod M) and finally to search for a collision between the integer values of σ1

and S−σ2. The number of solutions to the first subknapsack is, on average, close
to
(
n
`

)
· 2−αn ≈

(
(α/2)−α/2 · (1− α/2)α/2−1 · 2−α

)n
. The number of solution of

the second subknapsack
(
n
`′

)
· 2−αn has the same asymptotic expression.

Multiplying the number of solutions of each subknapsack by the number of
random value we need to try, we find that the cost of the decomposition step
can be stated as in Section 4.1. We let:

D(α) =
(

2
αα/2 · (2− α)(2−α)/2

)
· 2−α,

When using a direct decomposition of the knapsack, the cost is Õ (D(α)n), when
using a decomposition of the complementary knapsack, the cost is equal to:

Õ (D(1− α)n) = Õ
((

(1− α)(α−1)/2 · (1 + α)−(1+α)/2
)n
· 2αn

)
.

The main difficulty when we try to use the decomposition technique recur-
sively is s to determine which of the decomposition steps dominates the complex-
ity. One difficulty is that we cannot use the idea of decomposing the complemen-
tary knapsack to reach a smaller complexity as in Section 4.1 when α is small.
For example, taking α = 1/4, we obtain two 3/8-unbalanced knapsacks which
are more costly to solve than the original knapsack. To avoid this difficulty, we
use the decomposition technique on the original knapsack when α ≤ 1/3 and
turn to the complementary knapsack when 1/3 < α ≤ 1/2. This ensures that
the subknapsacks always involve fewer elements than the original knapsack. A
direct consequence of this choice is that the complementary knapsack is used at
most once at the top-level of the recursion.

Another interesting threshold appears by considering the running time of
directly solving the α/2-unbalanced knapsacks that arise after applying the de-
composition technique using the algorithm of Schroeppel and Shamir. We recall
that the time complexity of Schroeppel-Shamir algorithm is Õ(C(α)n, with:

C(α) =
(
α−α · (1− α)α−1

)1/2
.

We define α0 ≈ 0.312835 as the unique positive root of D(α) = C(α/2) or
equivalently of:

22x · (x/2)x/2 · (1− x/2)1−x/2 = 1.

When α ≤ α0, we do not use recursion and directly use the basic birthday
algorithm to solve the two α/2-unbalanced knapsacks. Indeed, the size of the two
lists considered by these instances of the basic birthday algorithm are smaller
than the initial cost of decomposing the α-unbalanced knapsack into a pair of
α/2-unbalanced subknapsacks. We remark that, as a consequence, the runtime
of each of the two instances of the basic birthday algorithm is dominated by the
expected number of solutions and, thus, up to a polynomial factor, equal to the
cost of the decomposition step itself.

Finally, depending on the value of α, at most 3 consecutive applications of
the decomposition technique are required. In all cases, the bottom level can be
solved using the basic birthday algorithm (or the algorithm of Shroeppel and
Shamir). The three cases are the following:

– When α ≤ α0, a single application of the decomposition technique suffices.
The two subknapsacks are solved using the basic birthday algorithm.

– When α0 < α ≤ 1/3 or α ≥ 1 − 2α0, the decomposition technique needs
to be used twice. The first application respectively concerns the original
knapsack or the complementary knapsack. If the first inequation holds, we
have α/2 ≤ 1/6 < α0, otherwise we have (1 − α)/2 ≤ α0. After this first
decomposition, we are back to the first case.

– When 1/3 < α < 1− 2α0, we use the decomposition technique three times.
The first application is done on the complementary knapsack. Since α0 <
(1− α)/2 ≤ 1/3, after this first application, we find ourselves in the second
case.

We need to determine which step of the recursion dominates the time complexity
of the algorithm. When α ≤ 1/3, we haveD(α/2) < D(α), sinceD is increasing in
the interval [0, 2/5]. Thus, when α ≤ 1/3 the first step of the recursion dominates
the complexity. When α > 1/3, we are using the complementary knapsack and
we need to compare the cost of the first step D(1− α) with the cost of the next
recursion step D((1− α)/2). Let α1 ≈ 0.458959 denote the unique positive root
of D(1 − α) = D((1 − α)/2). When α ≥ α1 the time complexity is dominated
by the first step and is equal to Õ(D(1 − α)n). When 1/3 < α < α1 the time
complexity is dominated by the second step and is equal to Õ(D((1− α)/2)n).

Putting everything together, we can show that:

Theorem 3. For any real ε > 0, for a fraction at least 1 − 2−ε n−3 of α-
unbalanced knapsacks with density D < 3/2 given by an n-tuple (a1, · · · , an) and
a target value T , if ε = (ε1, · · · , εn) is a solution of the knapsack then Algorithm 5
finds the solution ε in time Õ(min(D(α+ε),max(D(1−α+ε),D((1−α)/2+ε)))n).

Proof. First, since the depth of recursion of the randomized part of the algorithm
is bounded by a constant, namely 3, this randomized part is call at most 7 times.
As a consequence, if the probability of failure of each individual randomized
decomposition (probability relative to the choice of the random value R) is less
than 1/8, then the overall probability of failure is at most 7/8. As a consequence,
repeating the random choice polynomially many times, the probability of success
becomes exponentially close to 1.

Second, for the first randomized decomposition, it is clear than if α < 1/D
(or 1 − α < 1/D when the complementary knapsack is used) then (a1, · · · , an)
is very close to a random knapsack modulo the modulus M and we can use
Theorem 1 and its corollaries. Due the use of the complementary knapsack, the
value of α is at most 2/3, which explains the D < 3/2 bound in the Theorem. For
subsequent decompositions, we need to remember that the knapsack elements
have already been reduced modulo previous values of M . To be able to apply
Theorem 1, it is thus essential to make sure that the sequence of successive
moduli is decreasing quickly enough to make sure that after all the modular
reductions, the resulting knapsack is close to a uniform random knapsack. To
achieve this, it suffices to make sure that the value of the parameter α decreases
at least by ε between two consecutive calls. This can be ensured by replacing
the threshold 1/3 that delimits the use of the ordinary decomposition and of the
complementary knapsack decomposition by 1/3 + ε.

To bound the probability of failure, we apply Corollary 3, with µ = 7/8 and
m = 2ε n. The fraction of bad knapsacks for each application of the decompo-
sition is bounded by 2−ε n if we ignore the non-uniformity and is marginally
affected by this non-uniformity.

It is essential for the analysis to remember that despite the fact that the
recursive calls may return many solutions, where the probability of success is
considered, we only care about one specific “golden solution” that corresponds
to a correct decomposition of the solution seeked at the top level.

The overall running time is obtained by considering the maximum of the
individual running times of the top level decomposition and of its immediate
successor.

Note 1: In [12], we presented a heuristic variant of this recursive algorithm,
dedicated to the specific case α = 1/2. The main differences between the re-
cursive algorithm and the variant presented in [12] is that the variant does not
use the option of using the complementary knapsack and that, instead of using
Schroeppel-Shamir at the bottom level, it relies on Algorithm 4.

Note 2: To reduce the memory requirements, it is possible to choose a larger
modulus M close to 2γn with γ ≥ α. We then need to consider about 2(γ−α)n

different random values for σ1 modulo M . This idea can reduce the memory
complexity of the algorihm to the time complexity of the second recursive call.
However, the analysis becomes harder. In particular, it becomes necessary to
perform two successive levels of randomized decompositions in the cases where
one suffices to cover the time complexity analysis.

5 A practical experiment

In order to make sure that our new algorithms perform well in practice, we have
benchmarked their performance by using a typical hard knapsack problem. We
constructed it using 96 random elements of 96 bits each and then built the target
S as the sum of 48 of these elements.

Variant of Schroeppel–Shamir algorithm. Concerning the implementation
of Schroeppel–Shamir algorithm, we need to distinguish between two cases. Ei-
ther we are given a good decomposition of the set of indices into four quarters,
each containing half zeroes and half ones, or we are not. In the first case, we can
reduce the size of the initial small lists to

(
24
12

)
= 2 704 156. In second case, two

options are possible: we can run the previous approach on randomized decom-
positions until a good is found, which requires about 120 executions; or we can
start from small lists of size 224 = 16 777 216.

For the first case, we used the variant of Schroeppel–Shamir presented in
Section 3.1 with a prime modulus M = 2 704 157. Testing the full space of
solutions requires 120×37 = 4 400 days on a single Intel core 2 duo at 2.66 Ghz.
It turns out that, despite higher memory requirements, the second option is the
faster one and would require about 1 500 days on the same machine to enumerate
the search space. The memory requirements are either 300 Mbytes of memory
with initial lists of size

(
24
12

)
and 1.8 Gbytes with initial lists of size 224.

Of course, the algorithm may succeed before finishing the full enumeration.

Our simple algorithm. As with the Schroeppel–Shamir algorithm, we need to
distinguish between two cases, depending whether or not a good decomposition
into four balanced quarters is initially known. When it is the case, our implemen-
tation recovers the correct solution in less than an hour on the same computer.
When such a decomposition is not known in advance, we need about 120 ran-
domized decompositions and find a solution in about 5 days. The parameters we
use in the implementation are the following:

– For the main modulus that define the random values R1, R2 and R3, we take
M = 1 253 839.

– For the final merging of the four obtained lists, we use the modulus 2 493 709
and apply consistency checks and early abort.

The memory requirement are approximately 2.6 Gbytes of memory.

Heuristic version of the recursive algorithm. We use here a version of the
recursive algorithm, where a single application of the decomposition is followed
by the use of the simple algorithm on each half knapsack. Note that in our
implementation of this algorithm, the small lists that occur at the innermost
level are so small that we replaced Schroeppel–Shamir algorithm there by a
basic birthday paradox method. Thus, we no longer need a decomposition of the
knapsack into four balanced quarters. Instead, two balanced halves are enough.
This means that when such a decomposition is not given, we only need to run
the algorithm an average of 6.2 times to find a correct decomposition instead of
120 times. The parameters we use are:

– For the higher level modulus, we choose M = 4 194 319 · 58 711 · 613.
– The innermost birthday paradox method is done modulo 613.
– Assembling the two half-knapsacks is performed modulo 58 711 · 613.

In practice, using such composite moduli saves time and memory. With the
above parameters, our implementation uses about 1.7 Gbytes and runs in ap-
proximately 1.5 hours given a correct decomposition6 into two halves. Without
such a decomposition, we need less than 10 hours to find a solution.

6 Possible extensions and applications

The algorithmic techniques presented in this paper can be applied to more than
ordinary knapsacks. We already mentioned modular knapsacks in Section 2, we
now describe a few more:

Approximate knapsack problems. A first problem we can consider is to find
approximate solutions to knapsack problems. More precisely, given a knapsack
a1, . . . , an and a target S, we try to write:

S =
n∑
i=1

εi ai + δ,

where δ is small, i.e. belongs to the range [−B,B] for a specified bound B. As
with the modular knapsack problem, this can be solved by transforming it into a
knapsack problem with several targets. Define a new knapsack b1, . . . , bn where
bi is the closest integer to ai/B and let S′ be the closest integer to S/B. To solve
the original problem, it now suffices to find solutions to the new knapsack, with
targets S′ − dn/2e, . . . , S′ + dn/2e.

Vectorial knapsack problems. Another option is to consider knapsacks whose
elements are vectors of integers and where the target is a vector. Without go-
ing into the details, it is clear that this is not going to be a problem for our
algorithms. In fact, the decomposition into separate components can even make
things easier. Indeed, if the individual components are of the right size, they can
be used as a replacement for the modular criteria that determine whether we
keep or remove partial sums.

Knapsacks with εi in {−1, 0, 1}. In this case, we can apply similar methods.
However, we obtain different bounds, since the number of different representa-
tions of a given solution is no longer the same. For simplicity of presentation, we
assume that n is a multiple of 3 and that the solution contains n/3 values of each
type. A simple birthday approach works by searching for a collision between two
sums of n/3 knapsack elements. It is equal to:(

n

n/3

)
≈ Õ(20.9183n).

Note that this is higher than the expected 3n/2. A slightly more complex ap-
proach splits the knapsack in two halves and search for a collision between a left
6 More precisely, we found 30 copies of the solution in 157 585 seconds on a single core.

and right sum, each containing one third each of of 0, 1 and −1. This yields the
expected complexity 3n/2. Using our ideas and taking a collision between two
half-sums each containing two-thirds of 0s and one sixth of each of 1 and −1 of
the n elements, we find a complexity Õ(20.585n) to find one of the 22n/3 possible
decompositions.

Single solution out of many. When there are many possible solutions to a
knapsack problem, we may wish to combine our idea with the generalized birth-
day algorithm of [25] and find one of the many solutions even faster. However,
this approach is difficult to analyze in general.

Combination of the above and possible applications. In fact, it is even
possible to address combinations of the above. As a consequence, this algorithm
can be a very useful cryptanalytic tool. For example, the NTRU cryptosystem
can be seen as an unbalanced, approximate modular vector knapsack. However,
it has been shown in [11] that it is best to attack this cryptosystem by using a
mix of lattice reduction and knapsack-like algorithms. As a consequence, deriving
new bounds for attacking NTRU would require a complex analysis, which is out
of scope for the present paper. In the same vein, Gentry’s fully homomorphic
scheme [8], also needs to be studied with our new algorithm in mind. Another
possible application is the SWIFFT hash function [17].

Note that, in all cases, our algorithms never affect asymptotic security of a
cryptographic scheme, indeed, an algorithm with complexity 20.3113n remains ex-
ponential. However, depending on the initial designers hypothesis, recommended
practical parameters may need to be increased. For the special case of NTRU,
it can be seen that in [9] that the estimates are conservative enough not to be
affected by our algorithms.

Acknowledgements. We would like to thank Igor Shparlinski for useful dis-
cussions about exponential sums and distributions of knapsack outputs. The
first author also appreciates time spent thinking about this problem at NTRU
Cryptosystems, Inc.

7 Conclusion, Open Problems

In this paper, we have proposed new algorithms to solve the knapsack problem
and other related problems, which improve on the current state of the art. In
particular, for the knapsack problem itself, this improves the 31-year old algo-
rithm of Schroeppel and Shamir and gives a positive answer to the question
posed in the Open Problem Garden [6] about knapsack problems: “Is there an
algorithm that runs in time 2n/3?”. Many interesting related problems are still
open:

– Find a fast deterministic algorithm to solve the knapsack problem. In par-
ticular, such an algorithm could show that a given knapsack does not have
a solution.

– Devise a fast Las Vegas algorithm, i.e., a randomized algorithm that can
prove that a given knapsack has no solution.

– Improve our algorithms by using a full recursive approach.
– Reduce the memory requirements. Surprisingly, general cycle finding tech-

niques do not seem to apply in this case and do not yield a constant memory
algorithm with time Õ(2n/2).

References

1. Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reduc-
tions (extended abstract). In 30th ACM STOC, pages 10–19, Dallas, Texas, USA,
May 23–26, 1998. ACM Press.

2. Paul Camion and Jacques Patarin. The Knapsack hash function proposed at
Crypto’89 can be broken. In Donald W. Davies, editor, EUROCRYPT’91, volume
547 of LNCS, pages 39–53, Brighton, UK, April 8–11, 1991. Springer-Verlag, Berlin,
Germany.

3. Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation attacks: An
algorithmic point of view. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of LNCS, pages 209–221, Amsterdam, The Netherlands, April 28–May 2, 2002.
Springer-Verlag, Berlin, Germany.

4. Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko, Claus-
Peter Schnorr, and Jacques Stern. Improved low-density subset sum algorithms.
Computational Complexity, 2:111–128, 1992.

5. Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 416–427, Santa Barbara, CA, USA,
August 20–24, 1990. Springer-Verlag, Berlin, Germany.

6. Open problem garden. http://garden.irmacs.sfu.ca.
7. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. Freeman, San Francisco, 1979.
8. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael

Mitzenmacher, editor, 41st ACM STOC, pages 169–178, Bethesda, MD, USA, may
2009. ACM Press.

9. Philip S. Hirschorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William
Whyte. Choosing NTRUEncrypt parameters in light of combined lattice reduction
and MITM approaches. In Applied cryptography and network security, volume 5536
of LNCS, pages 437–455. Springer-Verlag, Berlin, Germany, 2009.

10. Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the
knapsack problem. J. Assoc. Comp. Mach., 21(2):277–292, 1974.

11. Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS,
pages 150–169, Santa Barbara, CA, USA, August 19–23, 2007. Springer-Verlag,
Berlin, Germany.

12. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knap-
sacks. In CRYPTO 2010, LNCS. Springer-Verlag, Berlin, Germany, 2010.

13. Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as
secure as subset sum. Journal of Cryptology, 9(4):199–216, 1996.

14. Antoine Joux and Louis Granboulan. A practical attack against knapsack based
hash functions (extended abstract). In Alfredo De Santis, editor, EUROCRYPT’94,
volume 950 of LNCS, pages 58–66, Perugia, Italy, May 9–12, 1994. Springer-Verlag,
Berlin, Germany.

15. Jeffrey C. Lagarias and Andrew. M. Odlyzko. Solving low-density subset sum
problems. J. Assoc. Comp. Mach., 32(1):229–246, 1985.

16. Arjen K. Lenstra, Hendrick W. Lenstra, Jr., and László Lovász. Factoring polyno-
mials with rational coefficients. Math. Ann., 261:515–534, 1982.

17. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swifft: A
modest proposal for fft hashing. In Kaisa Nyberg, editor, FSE 2008, volume 5086
of LNCS, pages 54–72, Lausanne, Switzerland, February 10–13, 2008. Springer-
Verlag, Berlin, Germany.

18. Ralph Merkle and Martin Hellman. Hiding information and signatures in trapdoor
knapsacks. IEEE Trans. Information Theory, 24(5):525–530, 1978.

19. Phong Q. Nguyen, Igor E. Shparlinski, and Jacques Stern. Distribution of modular
sums and the security of the server aided exponentiation. Progress in Computer
Science and Applied Logic, 20:331–342, 2001. Final proceedings of Cryptography
and Computational Number Theory workshop, Singapore (1999).

20. Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theoretical Computer Science, 53:201–224, 1987.

21. Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm for
certain NP-complete problems. In FOCS, pages 328–336, 1979.

22. Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm for
certain NP-complete problems. SIAM Journal on Computing, 10(3):456–464, 1981.

23. Adi Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors,
CRYPTO’82, pages 279–288, Santa Barbara, CA, USA, 1983. Plenum Press, New
York, USA.

24. Douglas R. Stinson. Some baby-step giant-step algorithms for the low hamming
weight discrete logarithm problem. Math. Comput., 71(237):379–391, 2002.

25. David Wagner. A generalized birthday problem. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 288–303, Santa Barbara, CA, USA,
August 18–22, 2002. Springer-Verlag, Berlin, Germany.

A Graph of compared complexities

In the following figure, we present the complexity of the algorithms discussed in
the paper for α-unbalanced knapsacks.

B Distribution of triple knapsack sums

We prove here a generalization of [19, Theorem 3.2] on sets of decompositions of `
elements into four quarters, to simply the analysis, we assume that ` is a multiple
of 4. We represent a decomposition as a quadruple `-tuples (x(1),x(2),x(3),x(4)),
where each `-uple has {0, 1} coordinates and for all t, exactly one of x(i)

t is
equal to 1. We let B denote the set of all possible quadruple. We have |B| =(

`
`/4,`/4,`/4,`/4

)
. We also let B1 =

(
`/2
`/4

)
, B2 =

(
`
`/2

)
and B3 =

(
3`/4

`/4,`/4,`/4

)
. We

have:

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

C
α

α

Schroeppel–Shamir
β = 1/3 algorithm

β ≈ 0.2972 algorithm
β = 1/4 algorithm

Recursive algorithm
Theory

Fig. 1. Curves of time complexity exponent for varying balance factor.

Theorem 4. The identity:

1
M `

∑
(a1,··· ,a`)∈Z`M

∑
(c1,c2,c3)∈ZM

(
Pa1,··· ,a`(B, c1, c2, c3)− 1

M3

)2

=

(M − 1)(M − 2)(M − 3)
M3|B|

+
6(M − 1)(M − 2)B1

M3|B|
+

3(M − 1)B2

M3|B|
+

4(M − 1)B3

M3|B|

holds.

Proof. For any fixed quadruple x = (x(1),x(2),x(3),x(4)), the number of quadru-
ples in B that share one fixed quarter x(i) with x is B1 =

(
3`/4

`/4,`/4,`/4

)
. Similarly,

the number of quadruples that share two fixed quarters with x is B2.
As in [19], we use exponential sums techniques. We let:

e(z) = exp(2πiz/M).

We also use the notation a · x as a shorthand for
∑`
i=1 aixi. We first study the

value of the sum:

Z(λ1, λ2, λ3) =
∑

(a1,··· ,a`)∈Z`M

∣∣∣∣∣∑
x∈B

e(λ1 a · x(1) + λ2 a · x(2) + λ3 a · x(3))

∣∣∣∣∣
2

.

We distinguish several cases. More precisely, letting λ4 = 0 for symmetry we
consider the following cases:

– If the four λs are distinct, then: Z(λ1, λ2, λ3) = M `|B|. There are (M −
1)(M − 2)(M − 3) triples in this class.

– If exactly two of the λs are equal then Z(λ1, λ2, λ3) = M `|B|B1. There are
6(M − 1)(M − 2) triples of this form.

– If there are two pairs of equal λs then Z(λ1, λ2, λ3) = M `|B|B2. There are
3(M − 1) triples of this form.

– If exactly three of the λs are equal then Z(λ1, λ2, λ3) = M `|B|B3. There are
4(M − 1) triples of this form.

– If all four λs are equal, then Z(λ1, λ2, λ3) = M `|B|2. There is a single triple
here: (0, 0, 0).

To prove this, we do as in [19] and rewrite:

Z(λ1, λ2, λ3) =
∑
x∈B

∑
y∈B

∑
(a1,··· ,a`)∈Z`M

e(λ1 a·(x(1)−y(1))+λ2 a·(x(2)−y(2))+λ3 (x(3)−y(3)))

Given fixed x and y, we consider the contribution of the inner sum. We denote
by Posx(t) the value i such that x(i)

t = 1. If there exist t such that λPosx(t) 6=
λPosy(t), then the inner sum vanishes. Otherwise, its value is Mn. For a given
x, the number of y that correspond to a non-zero contribution only depends
on the equalities within (λ1, λ2, λ3, λ4). In the first case listed above, i.e., when
all λs are different, there is only one non-zero term when y = x. In the second
case, we can arbitrary rearrange `/2 value in two groups of `/4, there are B1

contributions. In the third case, there are B2 contributions. In the fourth case,
there are B3 contributions. Finally, when all λs are equal to 0, there are |B|
contributions.

We then proceed as the proof of [19, Theorem 3.2] to conclude. We start from
the identity:

Pa1,··· ,a`(B, c1, c2, c3) =
1

M3|B|
∑

x∈B
∑

(λ1,λ2,λ3)∈Z3
M

e(λ1(a · x(1) − c1) + λ2(a · x(2) − c2) + λ3(a · x(3) − c3))

Moreover, the contribution of (0, 0, 0) corresponds to 1/M3. Removing this con-
tribution, squaring and summing over (c1, c2, c3) we find:

∑
(c1,c2,c3)

(
Pa(B, c1, c2, c3)− 1

M3

)2

=

∑
(c1,c2,c3)

1
M6|B|2

∑
x∈B

∑
(λ1,λ2,λ3) 6=0

e

(
3∑
i=1

λi(a · x(i) − ci)

)2

=

1
M6|B|2

∑
(c1,c2,c3)

∑
(λ1,λ2,λ3)6=0

(η1,η2,η3)6=0

∑
(x,y)∈B2

e

(
3∑
i=1

λi(a · x(i) − ci) + ηi(a · y(i) − ci)

)
=

1
M6|B|2

∑
(c1,c2,c3)

∑
(λ1,λ2,λ3) 6=0

∑
(x,y)∈B2

e

(
3∑
i=1

λi(a · x(i) − a · y(i))

)
=

1
M3|B|2

∑
(λ1,λ2,λ3)6=0

∣∣∣∣∣∑
x∈B

e

(
3∑
i=1

λia · x(i)

)∣∣∣∣∣
2

Summing over a ∈ Z`M and grouping the triples (λ1, λ2, λ3) by classes, we get
the result.

When β > 1/4, we see that B1 is small compared to M and that B2 is small
compared to M2 If in addition β > (3 log(3)/8 log(4)), then B3 is small compared
to M2 and Corollary 5 is easily derived.

B.1 About the corollaries proofs

To get Corollary 1, let U be the fraction of bad a. The sum in the main theorem
is then greater than U (λ/M)2 and smalller than 1/|B|. Thus, U < M2/(λ2|B|).

For Corollary 2, we proceed similarly. The lower bound on the sum is now
U µ(λ/M)2.

For Corollary 3, we give a lower bound on the contribution for good a, this
bound is:

|B|
(

1
|B|
− 1
M

)2

+ (M − |B|)
(

1
M

)2

=
1
|B|
− 1
M
.

Similarly, for bad a, we have a bound:

µ|B|
(

1
µ|B|

− 1
M

)2

+ (M − µ|B|)
(

1
M

)2

=
1

µ|B|
− 1
M
.

If U is again the proportion of the bas event, we have:

(1− U)
(

1− 1
m

)
+ U

(
1
µ
− 1
m

)
≤ 1.

Thus:

U

(
1
µ
− 1
)
≤ 1
m
,

and the conclusion follows.
Corollary 4 is obtained by first developing the square and using the fact that

sum of probabilities over all events is 1. We find:

1
Mn

∑
(a1,··· ,an)∈ZnM

∑
c∈ZM

(Pa1,··· ,an(B, c))2 =
M − 1
M |B|

+
1
M

=
M + |B| − 1

M |B|
.

We then use the same technique as for Corollary 1.

