
On Designated Verifier Signature Schemes

Michal Rjaško and Martin Stanek

Department of Computer Science
Faculty of Mathematics, Physics and Informatics

Comenius University
Mlynská dolina, 842 48 Bratislava, Slovak Republic

{rjasko,stanek}@dcs.fmph.uniba.sk

Abstract. Designated verifier signature schemes allow a signer to convince only the designated
verifier that a signed message is authentic. We define attack models on the unforgeability property
of such schemes and analyze relationships among the models. We show that the no-message
model, where an adversary is given only public keys, is equivalent to the model, where an
adversary has also oracle access to the verification algorithm. We also show a separation between
the no-message model and the chosen-message model, where an adversary has access to the
signing algorithm. Furthermore, we present a modification of the Yang-Liao designated verifier
signature scheme and prove its security. The security of the modified scheme is based on the
computational Diffie-Hellman problem, while the original scheme requires strong Diffie-Hellman
assumption.

1 Introduction

Standard digital signature schemes allow a signer to sign messages, so that everyone can verify
the authenticity of the messages. In addition, digital signature schemes have a non-repudiation
property, which guarantees that a signer cannot lie about messages he has signed. However,
sometimes the non-repudiation property is not needed in practice. Moreover there are cases
where this property is undesired. For example the signer should not present signatures to other
parties when signing personal health records, income summary, or an offer of a tenderer in
e-auction system. Jakobsson et al. [4] introduced the concept of designated verifier signature
(DVS for short) schemes which make it possible to a signer A to convince the designated
verifier B that a message he signed is authentic. However, neither A nor the designated
verifier B can convince any other party of authenticity of that message. This is achieved by
ability of B to generate indistinguishable signatures from those produced by A. Thus no one
else can tell whether the signature was created by A or B.

Even though the signer ambiguity exists in the designated verifier signature schemes,
it does not prevent an attacker E eavesdropping on the line between A and B to get the
signature before B receives it. In this case, E can be convinced with high probability that
the signature was issued by A. To overcome this problem, Jakobsson et al. [4] defined a
notion of strong designated verifier. In strong designated verifier signature scheme everyone
can generate signatures indistinguishable (for everyone except B) from those produced by
A. The strong DVS property can be achieved by encrypting the designated verifier signature
with B’s public key. This makes the signature indistinguishable from a random string.

Our contribution. Besides the (strong) designated verifier property, DVS schemes should
provide unforgeability, a property known from the standard digital signature schemes. This
property guarantees, that nobody except A and B can forge a valid signature of some (pre-
viously unsigned) message. We analyze several different models of unforgeability for the DVS

schemes. Based on the resources accessible to an attacker, we differentiate between these
models:

– No-message attack – an adversary is given only public keys of A and B.
– Chosen-message attack – an adversary is given public keys and access to the signing oracle.
– Check attack – an adversary is given public keys and access to the B’s verification oracle.

The first two models are well known for the standard digital signatures. The check attack
model can be defined only in the DVS settings.

In Section 3 we analyze relationships among these models. In particular, we show that the
check model is equivalent to the no-message model. We also present a separation between the
no-message model and chosen-message model. We show that this separation holds in both
standard and strong DVS setting.

In Section 4 we analyze the Yang-Liao scheme [13], which is provably unforgeable in the
no-message model under the strong Diffie-Hellman (DH for short) assumption. We modify
this scheme so that the modified scheme is provably unforgeable in the check model under
the computational DH assumption. Hence, we weaken the assumption needed for provable
security of the scheme. Moreover, we show that the modified Yang-Liao scheme has the
strong designated verifier property. The modified scheme and its analysis use the results of
Cash et al. [1] regarding the twin DH problem (the equivalence of the strong variant of twin
DH problem and the computational DH problem).

Related work. To date, numerous designated verifier signature schemes have been proposed,
such as [4, 6, 10, 13]. There are also several modifications of the standard designated veri-
fier signature schemes like universal DVS schemes [3, 11, 12, 14] and multi-designated verifier
signature schemes [2, 5, 9].

Formal definitions of security notions for the DVS schemes are considered in [7, 8]. They
formally define unforgeability, non-delegatability, non-transferability and disavowability. The
non-delegatability notion guarantees that A and B cannot delegate their ability to generate
signatures to the third party without giving the third party their secret keys. The non-
transferability is another name for the designated verifier property defined in [4, 10] or also in
this paper. The disavowability guarantees, that A cannot disavow signatures issued by itself
(with respect to the designated verifier B).

Cash et al. [1] define the twin DH problem and its variants. They show that the strong twin
DH problem is equivalent to the computational DH problem. Thus, one can modify various
schemes based on the strong DH assumption, so that the resulting scheme is secure under the
computational DH assumption. As an example they modify the ElGamal encryption scheme,
so that the resulting scheme is secure under the computational DH assumption in the random
oracle model.

2 Preliminaries

Let H be a hash function with range Zq. By x $← S we denote a uniform random selection of
x from the set S. Concatenation of two binary strings m1,m2 ∈ {0, 1}∗ is denoted as m1 ||m2.
We assume that from m1||m2 it is possible to uniquely determine the strings m1 and m2 for
all m1,m2 ∈ {0, 1}∗.

A function f is negligible if for every polynomial p(·) there exists N such that for every
n > N it holds that f(n) < 1

p(n) . Negligible functions are denoted as negl(·).

2

The Diffie-Hellman assumption. Let G be a group of order q, g be a generator of G and
x, y ∈ Zq. Let dh(X,Y) denote a solution for Diffie-Hellman problem, i.e.

dh(X,Y) := Z, where X = gx, Y = gy and Z = gxy.

Let dhp(X,Y, Z) denote a predicate dhp(X,Y, Z) := (dh(X,Y) ?= Z). Standard Diffie-
Hellman assumptions are assumptions about hardness of the following problems:

– Decisional DH – distinguishing between tuples (gx, gy, gxy) and (gx, gy, gz) for z $← Zq
– Computational DH – computing dh(X,Y) for random X,Y

– Strong DH – computing dh(X,Y) for random X,Y , with oracle access to the predicate
dhp(X, ·, ·)

– Gap DH – computing dh(X,Y) for random X,Y , with oracle access to the predicate
dhp(·, ·, ·)

By hardness we mean impossibility to solve the problems with non-negligible probability
in the probabilistic polynomial time. Note the difference between strong DH problem and
gap DH, where an adversary is given access to the full decision oracle dhp(·, ·, ·) (instead of
decision oracle with the first input fixed – dhp(X, ·, ·)). Clearly, the computational DH is the
weakest assumption and the gap DH is the strongest assumption. A natural ambition is to
construct cryptographic schemes that depend on the weakest possible assumptions.

The Twin Diffie-Hellman assumption. Recently, Cash, Kiltz and Shoup [1] defined a so called
Twin Diffie-Hellman problem, which is equivalent in its “strong” variant to the computational
DH problem. Using this fact, one can modify various schemes (such as hashed ElGamal), so
that they can be proved to be secure under computational DH assumption, instead of strong
DH assumption.

Let 2dh(X1, X2, Y) denote a solution for twin Diffie-Hellman problem, i.e.

2dh(X1, X2, Y) := (dh(X1, Y), dh(X2, Y)).

By 2dhp(X1, X2, Y, Z1, Z2) we denote a predicate

2dhp(X1, X2, Y, Z1, Z2) := (2dh(X1, X2, Y) ?= (Z1, Z2)).

We consider several twin Diffie-Hellman assumptions about hardness of the following prob-
lems:

– Decisional twin DH – distinguishing between the following tuples: (gx1 , gx2 , gy, gx1y, gx2y)

and (gx1 , gx2 , gy, gz1 , gz2) for z1, z2
$← Zq

– Twin DH – computing 2dh(X1, X2, Y) for random X1, X2, Y

– Strong twin DH – computing 2dh(X1, X2, Y) for random X1, X2, Y , with oracle access to
the predicate 2dhp(X1, X2, ·, ·, ·)

The main result of [1] is stated in the following proposition.

Proposition 1. The computational DH assumption holds if and only if the strong twin DH
assumption holds.

3

3 Security definitions

A designated verifier signature scheme is a protocol with two participants Alice (A) and Bob
(B). Alice wants to construct a signature σ of some message m, such that only Bob can
verify the validity of σ. Moreover, Bob cannot convince any other party of σ’s validity. The
designated verifier property is thus an ability of Bob to generate indistinguishable signatures
of m, so that no one else can distinguish, whether the signature σ is created by A or B.

Definition 1 (Designated verifier signature scheme). Let M be some fixed message
space (usually M = {0, 1}∗). A designated verifier signature scheme (DVSS) for two partici-
pants A and B is a tuple 〈Gen,Sig,Vrf, Sim〉 of polynomial algorithms, where

– Gen(1n) is a probabilistic algorithm, which takes on input a security parameter 1n and
outputs a tuple of keys (pkA, skA, pkB, skB), where pkA, skA are public and private keys of
A and pkB, skB are public and private keys of B.

– Sig(m, skA, pkB) is a probabilistic algorithm that takes on input a message m ∈M , A’s pri-
vate key and B’s public key, and outputs a signature σ, denoted as σ ← Sig(m, skA, pkB).

– Vrf(m,σ, skB, pkA) is a deterministic algorithm, which takes on input a message m, sig-
nature σ, B’s private key and A’s public key. It outputs a bit b = 1 if σ is a valid signature
of m, otherwise it outputs b = 0. If the message m is not needed for the verification pro-
cedure we say that the scheme has “message recovery” property (we’ll see example of such
a scheme in the Section 4).

– Sim(m, pkA, skB) is a probabilistic algorithm producing signatures indistinguishable from
those produced by Sig(·, skA, pkB). In some cases (e.g. the definition of strong designated
verifier) we need the Sim algorithm with different set of inputs – instead of the secret key
skB, it takes B’s public key pkB. We denote this modified algorithm as Sim′(m, pkA, pkB).

In addition, for every n, every tuple (pkA, skA, pkB, skB) generated by Gen(1n), and every
message m ∈M , it must hold that

Vrf(m,Sig(m, skA, pkB), skB, pkA) = 1.

The public and secret keys of A and B can be (and usually are) generated independently.
That is, the algorithm Gen can be “divided” into two independent algorithms GenA(1n) →
(pkA, skA) and GenB(1n) → (pkB, skB). Hence, A and B need not to communicate in order
to obtain public and secret keys. To simplify the presentation, we use the notation with only
one algorithm Gen.

Saednia, Kremer, Markowitch [10] define the designated verifier property as follows.

The designated verifier experiment Ind-DVD,Π(n):
1. Run Gen(1n) to obtain (pkA, skA, pkB, skB).
2. A random bit b $← {0, 1} is chosen.
3. Adversary D is given pkA, pkB and oracle access to either Sig(·, skA, pkB) if b = 0

or to Sim(·, pkA, skB) if b = 1. Eventually, D outputs a bit b′.
4. The output of the experiment is 1 if b = b′ and 0 otherwise.

Definition 2 (Designated verifier). Let Π = 〈Gen, Sig,Vrf, Sim〉 be a DVSS for A and
B. We say that Π has a designated verifier property if for any probabilistic polynomial time
adversary D there exists a negligible function negl, such that

Pr[Ind-DVD,Π(n) = 1] ≤ 1
2

+ negl(n).

4

We note that there exist schemes for which Sim(·, pkA, skB) produces identically dis-
tributed signatures as those produced by Sig(·, skA, pkB). That is, no distinguisher (running
in an arbitrary time) can win the Ind-DV experiment with probability greater than 1

2 . We say
that such schemes has perfect designated verifier property. When a scheme has this property,
then no one can tell whether a signature was issued by A or B, even if their secret keys are
compromised (given public keys, the distinguisher running in an arbitrary time can find secret
keys by itself).

Sometimes, a potential attacker Eve can be convinced (with high probability), that the
signature was created by Alice. For example, when Eve intercepts a signature (m,σ) sent over
a network, which Bob could not see yet. In this case, we need a stronger notion of designated
verifier.

The strong DV experiment Ind-SDVD,Π(n):
1. Run Gen(1n) to obtain (pkA, skA, pkB, skB).

2. A random bit b $← {0, 1} is chosen.
3. Adversary D is given pkA, pkB and oracle access to either Sig(·, skA, pkB) if b = 0

or to Sim′(·, pkA, pkB) if b = 1. Eventually, D outputs a bit b′.
4. The output of the experiment is 1 if b = b′ and 0 otherwise.

Definition 3 (Strong desig. verifier). Let Π = 〈Gen, Sig,Vrf, Sim′〉 be a DVSS for A and
B. We say that Π has a strong designated verifier property if for any probabilistic polynomial
time adversary D there exists a negligible function negl, such that

Pr[Ind-SDVD,Π(n) = 1] ≤ 1
2

+ negl(n).

Thus if the scheme Π has the strong designated verifier property, then everyone is able to
generate indistinguishable signatures using the algorithm Sim′. The strong designated verifier
property is usually achieved by encrypting the signature (with B’s public-key). This makes
the signature indistinguishable from a random string.

Besides the designated verifier property, the designated verifier signature scheme should
also guarantee, that nobody except Alice and Bob can produce a valid signature for some
message m, i.e. a potential attacker Eve is unable to construct a pair (m,σ), where σ is a
valid signature of m. Based on the resources accessible to the attacker, Eve can perform an
attack in several different models:

– no-message attack – Eve has access to public keys and parameters of participants Alice
and Bob (this knowledge is assumed in all other models as well)

– chosen-message attack – Eve has oracle access to Alice’s signing algorithm
– check attack – Eve has oracle access to Bob’s verification algorithm

While the first two models are well known from the standard digital signature schemes,
the check model is meaningful only in the designated verifier settings. The no-message model
is the most used approach in the proofs of security of current DVSS [6, 10, 13].

The no-message experiment NMA-forgeE,Π(n):
1. Run Gen(1n) to obtain (pkA, skA, pkB, skB).
2. Adversary E is given pkA, pkB and outputs (m,σ).
3. The output of the experiment is a bit b = Vrf(m,σ, skB, pkA).

5

Definition 4 (Unforgeability in the no-message model).
A DVSS Π = 〈Gen,Sig,Vrf, Sim〉 is unforgeable in the no-message model, if for all probabilis-
tic polynomial-time adversaries E, there exists a negligible function negl such that:

Pr[NMA-forgeE,Π(n) = 1] ≤ negl(n).

In the chosen-message attack, an adversary E has oracle access to the signing algorithm.
He can adaptively ask queries to its oracle and eventually outputs a pair (m,σ), such that m
was not queried to the signing oracle.

The chosen-message experiment CMA-forgeE,Π(n):
1. Run Gen(1n) to obtain (pkA, skA, pkB, skB).
2. Adversary E is given public keys pkA, pkB and oracle access to Sig(·, skA, pkB).

The adversary then outputs (m,σ). Let Q be the set of all queries made by E to
the signing oracle.

3. The output of the experiment is 1, if Vrf(m,σ, skB, pkA) = 1 ∧ m 6∈ Q, and 0
otherwise.

Definition 5 (Unforgeability in the chosen-message model).
A DVSS Π = 〈Gen,Sig,Vrf, Sim〉 is unforgeable in the chosen-message model, if for all prob-
abilistic polynomial-time adversaries E, there exists a negligible function negl such that:

Pr[CMA-forgeE,Π(n) = 1] ≤ negl(n).

In the following check experiment, an adversary E has oracle access to the verification
algorithm. It means that E can ask whether (m,σ) is a valid “message, signature” pair.

The check experiment Check-forgeE,Π(n):
1. Run Gen(1n) to obtain (pkA, skA, pkB, skB).
2. Adversary E is given public keys pkA, pkB and oracle access to Vrf(·, ·, skB, pkA).

The adversary then outputs (m,σ).
3. The output of the experiment is a bit b = Vrf(m,σ, skB, pkA).

Definition 6 (Unforgeability in the check model).
A DVSS Π = 〈Gen,Sig,Vrf,Sim〉 is unforgeable in the check model, if for all probabilistic
polynomial-time adversaries E, there exists a negligible function negl such that:

Pr[Check-forgeE,Π(n) = 1] ≤ negl(n).

3.1 Relationships among models

Clearly, if some scheme Π is unforgeable in the check model, then it is unforgeable in the
no-message model. The opposite direction is a little bit more involved.

Theorem 1. Let Π = 〈Gen,Sig,Vrf, Sim〉 be a DVSS. If Π is unforgeable in the no-message
model, then it is unforgeable in the check model.

6

Proof. Let E be a polynomial adversary and let

ε(n) = Pr[Check-forgeE,Π(n) = 1].

Our goal is to prove that if Π is unforgeable in the no-message model, then ε(n) is negligible.
Let q(n) be the maximum number of queries to the verification oracle, which E asks during
its attack. Without loss of generality we can assume that E outputs only those signatures
he verified by asking the verification oracle. Consider the following algorithm D performing
attack in the no-message model:

Algorithm D:
The algorithm is given (pkA, pkB)

1. Choose i $← {0, . . . , q(n) − 1}. The value i represents D’s guess of E’s first valid
query to the verification oracle. Note that if E forges a signature, then such valid
query must exist.

2. Given pkA and pkB simulate the adversary E in the Check-forge experiment. If E
asks the verification oracle j-th query (mj , σj) (j = 0, 1, . . . , q(n)− 1), answer it in
the following way:
– if j 6= i answer 0
– otherwise output (mj , σj) and terminate the execution.

3. If the simulation of E ends and D hasn’t returned some signature yet, return ⊥.
(In this case, the guess i of the first valid query was too “big”, i.e. E asked less
than i queries.)

It is obvious that D runs in a polynomial time. The success probability of D is given by
the probability that the first valid query of E has index i. Let FirstValid(j) denote the event
that E’s j-th query is the first valid query of E. Hence,

ε(n) ≤
q(n)∑
j=1

Pr
[
FirstValid(j)] (1)

On the other hand,

Pr[NMA-forgeD,Π(n) = 1] = Pr
[
i

$← Zq(n); FirstValid(i)
]

=

=
q(n)∑
j=1

Pr
[
i

$← Zq(n); FirstValid(i) ∧ i = j
]

=

=
q(n)∑
j=1

Pr
[
i

$← Zq(n); FirstValid(j) ∧ i = j
]

=

=
q(n)∑
j=1

Pr
[
FirstValid(j)

]
· 1
q(n)

≥ ε(n)
q(n)

,

where we used the fact that

FirstValid(i) ∧ i = j ⇔ FirstValid(j) ∧ i = j,

7

and the last inequality is the consequence of (1). Thus,

ε(n) ≤ q(n) · Pr[NMA-forgeD,Π(n) = 1].

By the assumption that Π is unforgeable in the no-message model we conclude that ε(n) is
negligible.

Remark 1. The reduction in the proof above is not “tight”, since the adversary D has much
smaller probability of success than the adversary E. The concrete security of the reduction
can be obtained easily. Fix some security parameter n. We say that some scheme Π is (t, ε)
unforgeable in the check model, if for any adversary E running in time t (relative to some
fixed model of computation) it holds

Pr[Check-forgeE,Π(n) = 1] ≤ ε.

Similarly we can define (t, ε) unforgeability in the no-message model. Then, in the concrete
security settings, we can rewrite the Theorem 1 as follows:

Proposition 2. Let Π = 〈Gen, Sig,Vrf,Sim〉 be a DVSS. If Π is (t, ε) unforgeable in the
no-message model, then it is (t + c, ε · qt) unforgeable in the check model, where c is a small
constant and qt is a maximum number of queries which can be asked by an adversary running
in time t (qt ≤ t).

The constant c is a time overhead that D needs to simulate E. It’s value and the value of
qt depend on a model of computation (which we do not specify here).

In the following theorem we show a separation between the no-message model and chosen-
message model.

Theorem 2. Let Π = 〈Gen, Sig,Vrf, Sim〉 be a DVSS unforgeable in the no-message model.
Then there exists a DVSS Π ′, which is unforgeable in the no-message model, but insecure in
the chosen-message model.

Proof. Let Π ′ = 〈Gen′, Sig′,Vrf ′,Sim′〉 be a DVSS defined as

– Gen′(1n) = Gen(1n),
– Sig′(m′, skA, pkB) = Sig(m, skA, pkB),
– Vrf ′(m′, σ, skB, pkA) = Vrf(m,σ, skB, pkA),
– Sim′(m′, pkA, skB) = Sim(m, pkA, skB),

where m′ = b1 · · · bl and m = 0b2 · · · bl, bi ∈ {0, 1}. Hence, the algorithm Sig′ produces the
same signature for messages b1 · · · bl and b1b2 · · · bl. It is easy to see that such scheme is correct

Vrf ′(m′, Sig′(m′, skA, pkB), skB, pkA) = Vrf(m,Sig(m, skA, pkB), skB, pkA) = 1.

Assume that Π is unforgeable in the no-message model. We show that also Π ′ is unforgeable
in the no-message model. Let E′ be a polynomial adversary, which can find a valid message-
signature pair (m′, σ′);m′ = b1 · · · bl for scheme Π ′ and consider an adversary E, which
simulates E′ and then outputs (m,σ′), where m = 0b2 · · · bl. By the definition of the scheme
Π ′ we know, that

Vrf ′(m′, σ′, skB, pkA) = Vrf(m,σ′, skB, pkA),

8

thus
Pr[NMA-forgeE,Π(n) = 1] ≥ Pr[NMA-forgeE′,Π′(n) = 1].

Hence, if Π is unforgeable in the no-message model, then so is Π ′. However, Π ′ is completely
insecure in the chosen-message model. An adversary D can query its signing oracle for a
signature σ of some message m and output (m′, σ), where m′ is the same as m but with
the first bit inverted. Clearly, such an adversary D succeeds in forging a signature in the
chosen-message model against Π ′.

Remark 2. Note that the separation between the no-message and chosen-message models
holds also for the strong DVS setting. Let Π = 〈Gen,Sig,Vrf, Sim′〉 be a strong DVSS and
let Π ′ = 〈Gen′,Sig′,Vrf ′, Sim′′〉 be defined exactly as above, except the algorithm Sim′′:

Sim′′(m′, pkA, pkB) = Sim′(m, pkA, pkB),

where m′ = b1 · · · bl and m = 0b2 · · · bl, bi ∈ {0, 1}. Note that the algorithms Sim′ and
Sim′′ are different from the ones in the proof above. Instead of B’s secret key skB, Sim′ and
Sim′′ are given on input B’s public key pkB. If there is an adversary D′, which can distinguish
Sig′(·, skA, pkB) from Sim′′(·, pkA, pkB), then the following adversary D distinguishes between
Sig(·, skA, pkB) and Sim′(·, pkA, pkB). The adversary D simulates D′. If D′ asks a query
m′ = b1 · · · bl, the adversary D asks its oracle a query m = 0b2 · · · bl and returns the answer
to D′. Clearly, the adversary D′ cannot detect any difference between the simulation and the
strong DV experiment. Hence,

Pr[Ind-SDVD,Π(n) = 1] ≥ Pr[Ind-SDVD′,Π′(n) = 1].

This means that Π ′ is a strong DVSS, if Π is a strong DVSS.

4 Yang-Liao scheme

We review the Yang-Liao [13] DVSS (“YL scheme” for short) and then we present its modifi-
cation, such that the resulting scheme is secure in the check model under the computational
DH assumption.

YL scheme [13]
Let G be a group of prime order q, where G is a subgroup of Z∗p for large primes p, q
(q is a prime factor of p − 1). Let g be a generator of G. Define a designated verifier
signature scheme as follows:
– Gen(1n) generates a tuple (x,X, y, Y) of private and public keys:

• A: private key x $← Zq, public key X = gx

• B: private key y $← Zq, public key Y = gy

– Sig(m,x, Y) outputs 〈r, s〉, where

• s = H(m || t), where t $← Z∗q
• r = (m || t) · Y xs

– Vrf(m, 〈r, s〉, y,X):
• m || t← r ·X−ys

• return (H(m || t) ?= s)

9

– Sim(m,X, y) outputs 〈r, s〉, where

• s = H(m || t), where t $← Z∗q
• r = (m || t) ·Xys

It is easy to see that the scheme is correct. An obvious drawback of the scheme is, that
it allows to sign messages only of length |m| ≤ lg(p/q). On the other hand the scheme
has the “message recovery” property, what means that the message m is not needed for the
verification procedure. Security of the scheme in the no-message model is given in the following
proposition.

Proposition 3 (Yang-Liao [13]). If an adversary is able to forge a valid designated verifier
signature with non-negligible probability and H is modeled as a random oracle, then strong
DH problem can be solved with non-negligible probability.

For discussion on the designated verifier property and proof of the above proposition, see
[13]. Note that the security of the scheme in the no-message model is based on the strong DH
assumption.

From the Theorem 1 and the proposition above it follows that if H is a random oracle, then
an ability to forge signature in the check model leads to an ability of solving the strong DH
problem. However, the reduction in the proof of the Theorem 1 is not tight. In the following
proof we present a tight reduction.

Theorem 3. If the strong DH problem is hard relative to G, and H is modeled as a random
oracle, then the YL scheme is unforgeable in the check model.

Proof. (sketch) Let Π = 〈Gen,Sig,Vrf,Sim〉 be the YL scheme. Let E be a polynomial adver-
sary attacking Π in the check model. We construct an algorithm D, which has oracle access
to dhp(X, ·, ·) and solves a strong DH problem whenever E forges a valid signature:

Algorithm D:
The algorithm is given (G, p, q, g,X, Y), where X = gx, Y = gy and has oracle access
to dhp(X, ·, ·).
1. Given E public keys X and Y . Maintain a hash table of all E’s queries to the

random oracle H. The table consists of tuples (m, t, s) and is initially empty.
2. When E asks its random oracle query H(m||t), answer in the following way

– search the table for entry (m, t, s), if such entry exists, output s,

– otherwise choose s $← Zq, store (m, t, s) in the table and output s.
3. When E makes a query to its verification oracle Vrf(r, s), answer as follows:

– search the table for entry (m, t, s), if no such entry exists return 0,
– otherwise compute Z = (r/(m||t))1/s mod p and check, whether dhp(X,Y, Z)

holds:
• If so, output Z as the solution of the strong DH and terminate the execution,

otherwise return 0 as an answer to E’s verification oracle query.
4. At the end of E’s execution, it outputs a pair (r, s). Check if it is a valid signature

similarly as in the previous step. If (r, s) is a valid signature, output Z, otherwise
output ⊥.

10

Clearly, E’s view in the simulation above is the same as in the Check-forge experiment, except
the case when it queries the verification oracle with (r, s) and there is no entry (·, ·, s) in the
table. However, this case occurs only with negligible probability (see the proof of the Theorem
6 for formal discussion). If the case does not occur, then whenever during the simulation E
asks its verification oracle a valid query, D solves the strong DH problem. Hence, if the strong
DH is hard relative to G then the YL scheme is unforgeable in the check model.

4.1 Modified YL scheme

We modify the YL scheme so that its security is based on the strong twin DH problem, which
is equivalent to the computational DH problem. Hence, the modified scheme is based on a
weaker assumption than the original one.

Modified YL scheme
Let G be a group of prime order q, where G is a subgroup of Z∗p for large primes p, q
(q is a prime factor of p − 1). Let g be a generator of G. Define a designated verifier
signature scheme as follows:
– Gen(1n) generates a tuple (x1, x2, X1, X2, y, Y) of private and public keys:

• A: private key (x1, x2), public key (X1, X2), where x1, x2
$← Zq and X1 = gx1 ,

X2 = gx2

• B: private key y $← Zq, public key Y = gy

– Sig(m, 〈x1, x2〉, Y) outputs 〈r1, r2, s〉, where

• s = H(m || t), where t $← Z∗q
• r1 = (m || t) · Y x1s

• r2 = (m || t) · Y x2s

– Vrf(m, 〈r1, r2, s〉, y,X):
• m || t← r1 ·X−ys1 (parsing)

• return (m || t ?= r2 ·X−ys2 ∧H(m || t) ?= s)
– Sim(m, 〈X1, X2〉, y) outputs 〈r1, r2, s〉, where

• s = H(m || t), where t $← Z∗q
• r1 = (m || t) ·Xys

1

• r2 = (m || t) ·Xys
2

The perfect designated verifier property of the above scheme comes immediately from the
fact that

Y x1s = (gy)x1s = (gx1)ys = Xys
1

and
Y x2s = (gy)x2s = (gx2)ys = Xys

2 .

Theorem 4. Let Π = 〈Gen, Sig,Vrf,Sim〉 be the modified YL scheme. Then the algorithm
Sim(·, 〈X1, X2〉, y) produces identically distributed signatures as those produced by the algo-
rithm Sig(·, 〈x1, x2〉, Y).

11

Proof. Let n be some fixed security parameter and (x1, x2, X1, X2, y, Y) be a tuple of private
and public keys generated by Gen(1n). Fix some r1, r2 and s. We need to show, that the
following probabilities are equal

Pr
[
m

$← Z∗p; (r1, r2, s)← Sig(m, 〈x1, x2〉, Y)
]

and
Pr
[
m

$← Z∗p; (r1, r2, s)← Sim(m, 〈X1, X2〉, y)
]
,

where the probabilities are taken over random selection of m and random coins of Sig and
Sim respectively.

Pr
[
m

$← Z∗p; (r1, r2, s)← Sig(m, 〈x1, x2〉, Y)
]

=

= Pr
[
m

$← Z∗p; t
$← Z∗q ;

s = H(m||t) ∧ r1 = (m || t) · Y x1s ∧ r2 = (m || t) · Y x2s
]

= Pr
[
m

$← Z∗p; t
$← Z∗q ;

s = H(m||t) ∧ r1 = (m || t) ·Xys
1 ∧ r2 = (m || t) ·Xys

2

]
= Pr

[
m

$← Z∗p; (r1, r2, s)← Sim(m, 〈X1, X2〉, y)
]
.

Hence, the scheme Π has the designated verifier property.

Besides the perfect designated verifier property, the modified YL scheme has also the
strong designated verifier property. Let Sim′(m, 〈X1, X2〉, Y) be an algorithm that outputs a
tuple 〈r1, r2, s〉, where

– s = H(m || t), where t $← Z∗q
– r1 = (m || t) · gz1s, where z1

$← Zq
– r2 = (m || t) · gz2s, where z2

$← Zq.

Theorem 5. Let Π = 〈Gen, Sig,Vrf, Sim′〉 denote the modified YL scheme with the Sim′

algorithm as above. If the decisional twin DH assumption is hard relative to G, then the
scheme Π has the strong designated verifier property.

Proof. Let E be a polynomial adversary and let

ε(n) := Pr[Ind-SDVE,Π(n) = 1]− 1
2
.

From the adversary E we construct an algorithm D that solves the decisional twin DH prob-
lem whenever E wins in the strong designated verifier experiment. Consider the following
algorithm D:

Algorithm D:
The algorithm is given (G, p, q, g,X1, X2, Y, Z1, Z2), where X1 = gx1 , X2 = gx2 , Y = gy

and Z1, Z2 are either equal to gx1y, gx2y or to gz1 , gz2 for z1, z2
$← Zq.

1. Simulate E in the strong designated verifier experiment with public keys 〈X1, X2〉
and Y . When E asks its oracle a query m, answer a tuple 〈r1, r2, s〉, where:

12

– s = H(m || t), where t $← Z∗q ,
– r1 = (m || t) · Zs1 ,
– r2 = (m || t) · Zs2 .

2. At the end of E’s execution, it outputs a bit b′, output b′.

It is obvious that D runs in a polynomial time. When D’s input is a twin DH tuple, i.e. Z1 =
gx1y and Z2 = gx2y, then D simulates E’s oracle exactly as the algorithm Sig(·, 〈x1, x2〉, Y).

On the other hand, when Z1 = gz1 and Z2 = gz2 for z1, z2
$← Zq, then D answers E’s queries

exactly as Sim′(·, 〈X1, X2〉, Y). Let b be a bit chosen randomly in the strong designated verifier
experiment. We have:

ε(n) =
1
2

Pr[Ind-SDVE,Π(n) = 1|b = 1] +
1
2

Pr[Ind-SDVE,Π(n) = 1|b = 0]− 1
2

=
1
2

Pr[Ind-SDVE,Π(n) = 1|b = 1] +
1
2

(1− Pr[Ind-SDVE,Π(n) = 0|b = 0])− 1
2

=
1
2

Pr[Ind-SDVE,Π(n) = 1|b = 1]− 1
2

Pr[Ind-SDVE,Π(n) = 0|b = 0]

=
1
2

Pr[D(X1, X2, Y, g
z1 , gz2)→ 1]− 1

2
Pr[D(X1, X2, Y, g

xy, gxy)→ 1].

By the assumption that the decisional DH problem is hard relative to G we conclude that
there exists a negligible function negl such that ε(n) = negl(n). Hence, the scheme Π has the
strong designated verifier property.

The security of the scheme in the check model can be proved similarly to the proof of the
Theorem 3.

Theorem 6. If the strong twin DH problem is hard relative to G, and H is modeled as a
random oracle, then the modified YL scheme is unforgeable in the check model.

Proof. Let Π = 〈Gen,Sig,Vrf,Sim〉 be the modified YL scheme. Consider a polynomial ad-
versary E attacking Π in the check model. Let

ε(n) := Pr[Check-forgeE,Π(n) = 1].

Without loss of generality we can assume that E outputs only those signatures (r1, r2, s),
which he verified by asking the verification oracle. Let ValidQuery denote the event that the
adversary E asks its verification oracle a valid query (r1, r2, s) (i.e. Vrf(r1, r2, s, y,X) = 1).
Let QH = {(mi, ti, si)}qH(n)

i=0 be the set of all queries and corresponding answers E asks the
random oracle H. Let Bad denote the event that E asks a valid query (r1, r2, s), but there is
no entry (·, ·, s) in the set QH . We have

ε(n) ≤ Pr
[
ValidQuery

]
= Pr

[
ValidQuery ∧ Bad

]
+ Pr

[
ValidQuery ∧ Bad

]
≤ Pr

[
Bad

]
+ Pr

[
ValidQuery|Bad

]
(2)

We claim that Pr[Bad] is negligible. Intuitively, if H is a random oracle then E is unable
to forge a valid query (r1, r2, s) without knowing m, t for which H(m||t) = s. Formally, let

13

QV = {(r1,i, r2,i, si)}qV (n)
i=0 be the set of all queries made by E to its verification oracle. Let Badi

denote the event that the i-th query (r1,i, r2,i, si) is valid, but there is no previous query to
H with response si. Obviously, the probability of Badi is negligible, since Vrf(r1,i, r2,i, si) = 1
only if H(m || t) = si, where m || t← r1,i ·X−ysi

1 . If H(m || t) was not queried previously then
it is equal to si with probability 1/q. Hence,

Pr
[
Bad

]
≤

qV (n)∑
i=0

Pr
[
Badi

]
≤ qV (n)

q
. (3)

We now show that if the strong twin DH problem is hard, then Pr[ValidQuery|Bad] is
negligible. Consider the following algorithm D:

Algorithm D:
The algorithm is given (G, p, q, g,X1, X2, Y), where X1 = gx1 , X2 = gx2 , Y = gy and
has oracle access to 2dhp(X1, X2, ·, ·, ·).
1. Given E public keys X1, X2 and Y . Maintain a hash table of all E’s queries to the

random oracle. The table consists of tuples (m, t, s) and is initially empty.
2. When E asks its random oracle a query H(m||t), answer in the following way

– search the table for entry (m, t, s), if such an entry exists, output s,

– otherwise choose s $← Zq, store (m, t, s) in the table and output s.
3. When E asks a query to its verification oracle Vrf(r1, r2, s), answer as follows:

– search the table for entry (m, t, s), if no such entry exists return 0,
– otherwise compute Z1 = (r1/(m||t))1/s mod p and Z2 = (r2/(m||t))1/s mod p

and check, if 2dhp(X1, X2, Y, Z1, Z2) holds:
• If so, output (Z1, Z2) as a solution of the strong twin DH problem and

terminate the execution, otherwise return 0 as an answer to E’s verification
oracle query.

4. At the end of E’s execution, it outputs a tuple (r1, r2, s). Check if it is a valid
signature as in the previous step. If (r1, r2, s) is a valid signature, output Z1, Z2,
otherwise output ⊥.

It is obvious that D runs in a polynomial time. Clearly, if Bad does not occur, E’s view in
the simulation above is the same as in the Check-forge experiment. If E asks a valid query to
its verification oracle, then D solves the strong twin DH problem. Since we assume that the
strong twin DH problem is hard, we have

Pr[ValidQuery|Bad] = negl(n) (4)

By combining equations (2), (3) and (4) we have

ε(n) ≤ Pr
[
Bad

]
+ Pr

[
ValidQuery|Bad

]
≤ qV (n)

q
+ negl(n).

Hence, ε(n) is negligible.

By the results of Cash et al. [1], the strong twin DH assumption is equivalent to the
computational DH assumption. Thus we can state the following corollary:

Corollary 1. If the computational DH problem is hard relative to G and H is modeled as a
random oracle, then the modified YL scheme is unforgeable in the check model.

14

5 Conclusion

We analyzed relationships among different models of unforgeability of designated verifier sig-
nature schemes. We proved that the no-message model is equivalent to the check model, where
an adversary has oracle access to the verification algorithm. We also presented a separation
between the no-message model and the chosen-message model. The separation holds in both
standard and strong DV settings.

In the second part of this paper we presented a modification of Yang-Liao [13] scheme.
We proved that if the strong twin DH assumption holds the modified scheme has strong
designated verifier property and is unforgeable in the check model. These facts together with
the results from the Section 3 imply that the modified scheme is unforgeable also in the
chosen-message model (under the computational DH assumption).

Acknowledgment. Both authors were supported by VEGA grant No. 1/0266/09.

References

1. D. Cash, E. Kiltz, V. Shoup: The Twin Diffie-Hellman Problem and Application, Journal of Cryptology,
Vol. 22, No. 4, Springer, 2009.

2. S.S.M. Chow: Identity-based StrongMulti-Designated Verifiers Signatures, EuroPKI 2006, LNCS, vol. 4043,
pp. 257-259, Springer, 2006.

3. X. Huang, W. Susilo, Y. Mu, F. Zhang: Restricted Universal Designated Verifier Signature, UIC 2006,
LNCS, vol. 4159, pp. 874-882. Springer, 2006.

4. M. Jakobsson, K. Sako, R. Impagliazzo: Designated Verifier Proofs and Their Applications, Advances in
Cryptology (Proceedings of Eurocrypt ’96), LNCS vol. 1070, pp. 143–154, Springer, 1996.

5. F. Laguillaumie, D. Vergnaud: Multi-designated Verifiers Signatures, ICICS 2004, LNCS, vol. 3269, pp.
495-507, Springer, 2004.

6. J. Lee, J.H. Chang: Comment on Saeedniia et al.’s strong designated verifier signature scheme, Computer
Standards & Interaces, Vol. 31, pp. 258–260, Elsevier, 2009.

7. Y. Li, W. Susilo, Y. Mu, D. Pei: Designated Verifier Signature: Definition, Framework and New Construc-
tions, UIC 2007, LNCS, vol. 4611, pp. 1191–1200, Springer, 2007.

8. H. Lipmaa, G. Wang, F. Bao: Designated Verifier Signature Schemes: Attacks, New Security Notions and
A New Construction, ICALP 2005, LNCS, vol. 3580, pp. 459-471. Springer, 2005.

9. C.Y. Ng, W. Susilo, Y. Mu: Universal Designated Multi Verifier Signature Schemes, SNDS 2000, pp.
305-309, IEEE Press, NJ, New York, 2005.

10. S. Saeednia, S. Kremer, O. Markowitch: An Efficient Strong Designated Verifier Signature Scheme, Infor-
mation Security and Cryptology, LNCS vol. 2971, pp. 40–54, Springer, 2004.

11. R. Steinfeld, L. Bull, H. Wang, J. Pieprzyk: Universal Designated-Verifier Signatures, ASIACRYPT 2003,
LNCS, vol. 2894, pp. 523-542. Springer, 2003.

12. D. Vergnaud: New Extensions of Pairing-based Signatures into Universal Designated Verifier Signatures,
ICALP 2006, LNCS, vol. 4052, pp. 58-69. Springer, 2006.

13. F. Yang, C. Liao: A Provably Secure and Efficient Strong Designated Verifier Signature Scheme, Interna-
tional Journal of Network Security, Vol. 11, No. 2, pp. 60–64, 2010.

14. R. Zhang, J. Furukawa, H. Imai: Short Signature and Universal Designated Verifier Signature Without
Random Oracles, ACNS 2005, LNCS, vol. 3531, pp. 483-498, Springer, 2005.

15

