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Abstract

The round complexity of a protocol is a very important efficiency consideration, and it is desirable to reduce it as much
as possible. Oblivious transfer is a fundamental building block for multiparty computation protocols. In this paper, we
present a generally realizable framework for fully-simulatable t-out-of-n oblivious transfer (OTn

t ) with security against
non-adaptive malicious adversaries in the plain mode. Our construction relies on a single cryptographic primitive
which is a variant of smooth projective hashing (SPH). A direct consequence of our work is that the existence of
protocols for OTn

t is reduced to the existence of this SPH variant. Before this paper, the only known reductions
provided half-simulatable security and every known efficient protocol involved at least two distinct cryptographic
primitives. We show how to instantiate this new SPH variant under not only the decisional Diffie-Hellman assumption,
the decisional N-th residuosity assumption and the decisional quadratic residuosity assumption as currently existing
SPH constructions, but also the learning with errors problem. In an efficiency point of view, our framework only
needs 4 communication rounds, which implies that it is more round-efficient than known protocols holding identical
features, and expectedly costs 20 n encryptions and 20 t decryptions.

Keywords: oblivious transfer, secure multiparty computation, malicious adversaries, smooth projective hashing,
learning with errors.

1. Introduction

1.1. Secure Oblivious Transfer

Oblivious transfer (OT), introduced in [1], is a fundamental cryptographic primitive allowing the secure multiparty
computation (MPC) of any computable function [2]. Beside this completeness result by Kilian, OT exhibits interests
on its own since this primitive is generally used as a building block in a variety of security protocols: secure com-
putation of the median [3], privacy-preserving data publishing [4], privacy-preserving set operations [5], electronic
commerce [6], private mutual authentication [7], privacy preserving data mining [8], database search [9, 10], oblivious
keyword search [11], oblivious polynomial evaluation [12], contract signing [13], oblivious sampling [14, 9].

In MPC, two categories of adversaries are usually considered: semi-honest (also called honest-but-curious) and ma-
licious. In both cases, the adversary’s goal is to learn more information using the transcript of the computation than
what is inferred by his private input and the result of the computation. However, there is a fundamental difference
between these two models: a semi-honest adversary always executes the steps of the MPC protocol faithfully while a
malicious enemy can arbitrarily deviate from them [15]. A standard way of proving the security of a MPC protocol is
to use the ideal/real model paradigm. In this context, adversaries in the real world are demonstrated to be equivalent
to enemies in the ideal world where the computation is executed by an incorruptible entity named ideal functionality.
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As the MPC protocol (in the real world) simulates the ideal world, the security is said to be fully-simulatable. A relax-
ation of this model appears in the 2-party case with the notion of half-simulatability where simulation-based security
is guaranteed if the sender is corrupted while privacy is ensured when the receiver is corrupted. However, this simpler
security model exhibits some major issues. In particular, half-simulatable protocols cannot offer the same compos-
ability properties as fully-simulatable ones since composability depends on full-simulation. As a consequence, such
protocols are hard to use as building blocks of more complex functionalities. In addition, half-simulatable protocols
for OT are vulnerable to selective-failure attacks where the sender causes a failure depending on the receiver’s selec-
tion [9]. Such weaknesses do not appear in fully-simulatable protocols as the ideal/real world paradigm only makes
assumptions about the adversary’s computational power rather than about some concrete attacks.

OT is a particular family of 2-party functionalities. This primitive has the property that we can convert a fully-
simulatable OT protocol Π having security against a semi-honest adversary (SASHA) into a fully-simulatable OT
protocol Π′ with security against a malicious adversary (SAMA) thanks to enhanced trapdoor permutations [16].
The issue with this approach is the fact that it relies on the use of sub-functionalities for coin tossing and commit-
ment schemes whose security relies on zero-knowledge (ZK) proof systems for NP-statements. Thus, for efficiency
purposes, one usually prefers designing an OT protocol with SAMA from the scratch rather than first exclusively
focussing on passive adversaries and then using the above conversion technique.

In this paper, we focus our interest on t-out-of-n oblivious transfer (OTn
t ) protocols. These deal with the scenario

where a sender holds n private values m1,m2, . . . ,mn and a receiver possesses t private indexes i1, i2, . . . , it. The re-
ceiver expects to get the values mi1 ,mi2 , . . . ,mit without leaking any information about which ones were chosen. On
the other hand, the sender does not want the receiver to know anything but the t values queried about.

The first efficient protocols for OT were independently presented in [17] and [6]. The first fully-simulatable protocol
for OTn

t with adaptive adversaries was presented in [18]. However, the underlying intractability assumptions were non-
standard. Recently, Green and Hohenberger presented a protocol for adaptive OTn

t under a simple, static assumption
[10]. The first fully-simulatable protocol based on a standard assumption was proposed in [19]. Later, Lindell con-
structed two protocols for OT2

1. One relies on the decisional Diffie-Hellmann (DDH) assumption and the other assumes
the existence of homomorphic encryption schemes with some additional properties, perfectly binding commitments
and perfectly hiding commitments. Recently, Lindell and Pinkas [20] proposed an efficient DDH-based instantiation
of [21] in the plain model (i.e., with no set-up assumptions beyond that of authenticated communication). Despite
the loss of the universal composability property, it is remarkably the most efficient protocol for fully-simulatable OT2

1
in the plain model. In a practical point of view, the plain model approach is needed. Indeed, protocols with set-up
require this trusted phase to occur before the actual computation. In many settings (e.g., peer-to-peer network), this
is impractical. To illustrate this issue, consider the protocol for OT2

1 appearing in [21]. It is based on the common
reference string (CRS) model. However, [22, 23] showed that, even given an authenticated communication channel, it
was impossible to implement a universally composable protocol providing a useful CRS in the presence of malicious
adversaries. In addition, despite [21] suggested to get a CRS from natural processes, no formal proof of security was
provided and [24] also pointed out that, although certain natural events could be viewed as producing bit-sources with
high min-entropy, the resulting bit-sources might not be uniformly random.

1.2. Our Contribution

We are to present a framework Π for OTn
t with fully-simulatable SAMA. Our construction is efficient enough for

practical use and it works in the plain model. Our starting point is the construction proposed in [25] (preliminary
version [26]) for OT2

1 with half-simulatable SAMA. To save space in the current paper, we assume that the reader is
familiar with this work.

In the following subsections, we are to provide detailed explanations of our contribution. The main points can be
summarized as follows.

1. We present a generally realizable framework for fully-simulatable t-out-of-n oblivious transfer (OTn
t ) with

SAMA. Our framework is more round-efficient than known protocols holding identical features, and is more
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computationally efficient than them under the decisional N-th residuosity assumption, the decisional quadratic
residuosity assumption, and the learning with errors problem. See Section 1.2.4.

2. We present a new smooth projective hash (SPH) variant, and the first reduction OTn
t to SPH with fully-

simulatable security.
3. We instantiate this SPH variant under not only the decisional Diffie-Hellman assumption, the decisional N-th

residuosity assumption and the decisional quadratic residuosity assumption as currently existing SPH construc-
tions, but also the learning with errors problem.

1.2.1. Cryptographic Approach
The main cryptographic tool used by Halevi and Tauman Kalai is a smooth projective hash family (SPH), a notion
introduced by Cramer and Shoup [27] to construct efficient public-key encryption scheme secure against adaptive
chosen ciphertext attacks. The variant used in [25] was called verifiably smooth projective hash family. It deals with
two types of instances (smooth and projective) which are computationally indistinguishable due to a property called
hard subset membership. Nonetheless, another property called verifiable smoothness provides a way to verify whether
at least one of a two instances is smooth. In the remaining of this paper, we are to denote verifiably smooth projective
hash family with hard membership property by VSPH-HM.

For each instance x of each type, there are two kinds of keys (hash keys and projection keys). In addition, every
projective instance holds a witness while no smooth instance does so. A hash value is computed from a hash key (i.e.,
Hash(x, hk)) while a projection value is computed from a projection key and a witness (i.e., pHash(x, pk,w)). For
a smooth instance, the projection value reveals almost no knowledge about the hash value due to a property called
smoothness. However, for a projective instance, the projection value equals the hash value. This fact is guaranteed by
another property called projection.

Despite the notion of VSPH-HM can be used to deal with OTn
1, it seems difficult to extend it to handle the gener-

al case OTn
t . The reason is that, to hold verifiable smoothness, both types of instances have to be generated in a

dependent way. This makes it difficult to design an algorithm checking that at least t of n arbitrary instances are
smooth without leaking any information to the adversaries which could be used to distinguish smooth instances from
projective instances. Therefore, even constructing a protocol for OTn

t that is half-simulatable as in [25] seems difficult.

Another problem comes from the fact that, for a protocol using a VSPH-HM, it is impossible to gain simulation-based
security in the case where only the receiver is corrupted. The reason is that, to extract the adversary’s real input in this
case, the simulator has to identify the projective part of a smooth-projective instance pair. However, this is computa-
tionally impossible because of the hard subset membership assumption.

Seeing the above difficulties, we define a new variant of SPH called smooth projective hash family with distinguisha-
bility and hard subset membership (SPH-DHM). The most essential difference between the notions of SPH-DHM
and VSPH-HM is that a SPH-DHM also provides witnesses to the smooth instances while verifiable smoothness is
removed. Furthermore, we introduce the distinguishability property providing a way to differentiate smooth instances
from projective ones when needed witnesses are given. This enables a SPH-DHM to generate both types of instances
independently. Thus, the notion of SPH-DHM is tailored to treat OTn

t .

We would like to recall that, in [25], the receiver learns the value it queried about via a projective instance. For a
smooth-projective instance pair, if the witness pair is available, the simulator can identify the projective instance, and
hence the simulator can learn which value the adversary chooses (i.e. it learns the adversary’s real input). Employing
a cut-and-choose technique as in [28, 29], the simulator can see the witnesses by rewinding the adversary’s computa-
tion. Our idea is for the receiver to ”cut” some instance vectors (where each one contains t projective instances and
n − t smooth instances) and for the sender to ”choose” some instance vectors at random to check their legalities (i.e.,
the sender checks that each vector indeed contains at least n− t smooth instances). The receiver then sends the chosen
instance vectors’ witnesses. Combining the previous analysis, we can see that for a protocol constructed following
this idea, the simulator can extract the adversary’s real input, and hence simulation-based security can be gained in
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the case where only the receiver is corrupted.

To summarize our approach at a high level, our basic idea is to use the notion of SPH-DHM and a cut-and-choose
technique to construct a framework Π for OTn

t with fully-simulatable SAMA. Our scheme can be depicted as follows:

1. Let K be a predetermined positive integer. The receiver generates a hash family parameter and ”cuts” K vectors
where each vector contains t projective instance-witness pairs and n−t smooth instance-witness pairs. It shuffles
each vector and sends the parameter and the shuffled instance vectors to the sender.

2. The sender first checks that the hash family parameter is legal. Then, it ”chooses” some instance vectors at
random to check their legalities.

3. To prove the chosen instance vectors’ legalities, the receiver sends their witness vectors to the sender.
4. After the sender has checked the validity of those vectors, the receiver reorders each non-chosen instance vector

using a permutation over {1, 2, . . . , n} based on its private indexes (representing the t elements it wants to obtain).
Then, the receiver forwards all these permutations to the sender.

5. According to the permutations, the sender reorders every non-chosen instance vector. Then, it encrypts its
private n values by XOR-ing them with the hash values of the non-chosen instance vectors. Finally, the sender
sends the encryptions and projection keys of non-chosen instance vectors to the receiver.

6. The receiver computes the projection values of the non-chosen instances vectors and it XOR-es the projection
values and the encryptions to gain the t values it sought.

1.2.2. Reducing OT to SPH
One of our theoretical contributions is that we reduce the existence of OTn

t to the existence of SPH. This follows
the fact that Π only employs one cryptographic primitive (namely, SPH-DHM). Before this paper, only one such a
reduction was known and it only guaranteed half-simulatable security [25]. We would like to point out that all known
efficient protocols for OT in the plain model [18, 19, 28, 20, 10] use at least two different cryptographic primitives,
such as ZK proof of knowledge, commitment and signature.

Though we use a cut-and-choose approach as [28, 29], we removed the need of the coin-tossing protocol which
involved two additional cryptographic primitives (a perfectly binding commitment scheme and a perfectly hiding
commitment scheme). In [28, 29], the objects are chosen by the sender and receiver via a coin-tossing protocol. The
underlying motivations were that, in the case where only the sender was corrupted, the simulator could gain a good
coin-tossing result by rewinding the adversary in order to extract the adversary’s real input through one time. Thus,
these work could achieve simulation-based security in this case.

However, in [25], it is feasible for the simulator to extract the adversary’s real input through multiple times rather
than one time. The views of the sender interacting with the receiver with distinct private inputs are computationally
indistinguishable. Therefore, Halevi and Tauman Kalai gave an idea (without proof) that let the simulator take distinct
indexes as private input in distinct rewinds and extracts one of the adversary’s two private values in each rewind.

Observing this, we will remove the coin-tossing protocol and allow only the sender to choose objects in Π. However,
we emphasize that Halevi and Tauman Kalai’s idea does not work well to provide the simulation-based security in the
case where only the sender is corrupted as one may expect. This is due to the fact there are two subtle problems to be
considered. First, the adversary’s private values may be distinct in different rewinds. Second, the adversary may refuse
to interact with the simulator in some rewinds and may not in some rewind. Our solutions are very technical. We
solve the first problem by formally proving that the simulation-based security does not depend on that the adversary’s
private values are the same in distinct rewinds. Concerning dealing with the second problem, we use a technique
originating from [30]

1.2.3. Instantiation of the Framework
We will present an instantiation of a SPH-DHM based on the learning with errors (LWE) assumption following the
original design of the public key cryptosystem from [31]. Prior to our construction, it was thought to be technically
difficult to instantiate a SPH under this assumption. We observed that the algorithm Hash(.) (computing hash values)
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could be viewed as an encryption algorithm while pHash(.) (computing projection values) could be interpreted as a
decryption algorithm. Our instantiation idea is to take public-private key pairs as projective instance-witness pairs
and take messy public-private key pairs1 as smooth instance-witness pairs. With this identification, we can see that
normal public keys and messy public keys can provide projection and smoothness, respectively. To implement this
idea, we let the key generator (i.e., the algorithm generating the hash-projection key pairs) take an instance as a part of
its input. This is a technical difference between a SPH-DHM and a SPH. Besides the LWE assumption, we also show
that a SPH-DHM can be instantiated under the DDH assumption, the decisional N-th residuosity (DNR) assumption
and the decisional quadratic residuosity (DQR) assumption as for previous existing SPH.

1.2.4. Efficiency of the Construction
Our protocol Π for OTn

t costs 4 communication rounds. In practice, it expectedly costs 20 n encryptions and 20 t
decryptions. In the particular case of OT2

1, its communication rounds (respectively, expected computational overhead)
is twice (respectively, 20 times) of [25].

Known constructions with identical features as ours appear in [19] (OTn
t ), [28] (OT2

1) and [20] (OT2
1). Considering

the number of communication rounds, our framework Π is more efficient as it respectively costs 8, 2, 2 rounds less
than these schemes. On the computational overhead side, Π is more efficient than [19, 28] but less efficient than
[20]. This follows the fact that Lindell’s scheme is already more efficient than [19] and that our protocol improves
the cut-and-choose technique used in [28, 29]. Since Lindell and Pinkas’ scheme [20] is only DDH-based and Green
and Hohenberger’s relies on the decisional bilinear Diffie-Hellman assumption, we conclude that, under the DDH
assumption, the construction from [20] is the best approach for OT2

1, while under other intractability assumptions
quoted above, our framework Π is the most efficient one for OTn

t .

1.3. Paper Organization

In the next section, we describe the notations used throughout our work and the security definition for OTn
t . In

Section 3, we define a new variant of smooth projective hash (i.e. SPH-DHM). Our framework Π for OTn
t is exposed

in Section 4 and its security is demonstrated in Section 5. In Section 6, we reduce the construction of SPH-DHM to
considerably simpler hash families. In Section 7, we instantiate those simpler families under the DDH, LWE, DQR,
DNR assumptions, respectively. Finally, the last section concludes with some open problems.

2. Preliminaries

Most notations and concepts mentioned in this section come from [32, 16, 33] and we tailored them to deal with OTn
t .

2.1. Basic Notations and Definitions

We set the following notations for this paper:

• N: set of natural numbers.

• k: security parameter where k ∈ N. It is used to measure the security of the underlying computational assump-
tions (e.g., the DDH assumption).

• K: statistical security parameter where K ∈ N. This is the number of instance vectors that the receiver ”cuts”,
and so K defines the size of our ”cut-and-choose” test. Thus, K is used to measure the probability that the
adversary is not caught in cut-and-choose type checks (see Lemma 25). Note that this probability does not
depend on any computational intractability assumption.

• [i]: the set {1, 2, . . . , i} where i ∈ N.

• ~x〈 j〉: the j-th entry of the vector ~x.

1A key is called messy if a ciphertext generated under such a key carries no information (statistically) about the corresponding plaintext.
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• S n: the set of all permutations of [n] where n ∈ N.

• σ(~x): the vector gained by shifting the i-th entry of the n-vector ~x to the σ(i)-th entry where σ ∈ S n. In other
words, σ(~x) denotes the vector ~y such that: ∀i ∈ [n] ~y〈σ(i)〉 = ~x〈i〉.

• Poly(.): an unspecified positive polynomial.

• {0, 1}∗: set of all bitstrings.

• α ∈U D: an element α chosen uniformly at random from a domain D.

• α ∈χ D: an element α chosen from a domain D according the probabilistic distribution χ.

• |X|: the cardinality of a finite set X.

Definition 1. A (positive) function µ(.) is called negligible in k, if and only if:

∀Poly(·) > 0∃k0 ∈ N : ∀k > k0 µ(k) < 1/Poly(k).

Definition 2. A probability ensemble

X
de f
= {X(1k, a)}k∈N,a∈{0,1}∗

is an infinite sequence of random variables indexed by (k, a), where a represents various types of inputs used to sample
the instances according to the distribution of the random variable X(1k, a).

Definition 3. A probability ensemble X is polynomial-time constructible, if there exists a probabilistic polynomial-
time (PPT) sampling algorithm Samp(.) such that for any a, any k, the random variables Samp(1k, a) and X(1k, a)
are identically distributed.

Definition 4. Let X,Y be two probability ensembles. We say they are computationally indistinguishable, denoted by
X c

= Y, if for any non-uniform PPT algorithm D with auxiliary input z = (zk)k∈N (where each zk ∈ {0, 1}∗), there exists
a negligible function µ(.) such that for any sufficiently large k and any a ∈ {0, 1}∗, it holds that

|Prob(D(1k, a, X(1k, a), zk) = 1) − Prob(D(1k, a,Y(1k, a), zk) = 1)| 6 µ(k).

Definition 5. Let X,Y be two probability ensembles. They are said to be statistically indistinguishable, denoted by
X s

= Y, if their statistical difference is negligible. More specifically, if there exists a negligible function µ(.) such that

1/2 ·
∑

α∈{0,1}∗
|Prob(X(1k, a) = α) − Prob(Y(1k, a) = α)| = µ(k).

Definition 6. Let X,Y be two probability ensembles. They are said to be identical, denoted by X ≡ Y, if the distribu-
tions of X(1k, a) and Y(1k, a) are identical.

Remark 7. Let X,Y be two probability ensembles. We obviously have: X ≡ Y implies X s
= Y and X s

= Y implies
X c

= Y.

2.2. OTn
t with Non-Adaptive SAMA

The OTn
t functionality is defined as follows.

f : N × {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗ × {0, 1}∗

(1k, ~m,T ) 7−→ (λ, (~m〈i〉)i∈T )

where:

• k is the security parameter,

6



• ~m is a vector of n values having identical bitlength,

• λ denotes the empty string,

• T is a set of t indexes from [n],

• (~m〈i〉)i∈T is the sequence of t values indexed by T .

In this functionality, the sender S privately holds the input ~m and receives no output while the receiver R privately
owns the set T and receives (~m〈i〉)i∈T .

Before engaging the OT protocol, the adversary A corrupts the parties listed in the set I ⊆ {S,R}. As A is non-
adaptive, the set I of corrupted players will not change until the computation ends. In our case, we consider that at
most one party is corrupted byA. Non-corrupted participants (i.e. honest parties) will faithfully follow the protocol’s
instructions. WhenA corrupts a party, A takes control over the party’s actions andA gets aware of the party’s com-
munication and computation history. In particular, the input of the corrupt participant is known (and controlled) byA.
The objective ofA is to gain some extra knowledge about the honest player’s private input other than what is inferred
by the result of the computation andA’s protocol input.

We are now to recall how the ideal/real world paradigm works. For simplicity, we are to associate the value 1 with the
sender S and the value 2 with the receiver R. Thus: {S,R} = {1, 2}.

2.2.1. The Ideal World
In the ideal world, there is an incorruptible trusted third party (TTP) (named ideal functionality in Section 1). An
execution of OTn

t proceeds as follows.

• Inputs. All entities know the public security parameter k. The sender S holds ~m. The receiver R holds T . The
adversary A holds a name list I ⊆ {1, 2}, a randomness rA ∈ {0, 1}∗ and an auxiliary input z = (zk)k∈N, where
zk ∈ {0, 1}∗.

Before proceeding to the next stage,A corrupts parties listed in I and learns their inputs.

• Sending inputs to the TTP. Each honest party sends its input to the TTP. For each corrupted party, A sends a
string to the TTP on behalf of the party. This string may be the input of the corrupted party, other input of the
same length, or an early termination request Aborti (i ∈ I).

Denote the inputs received by the TTP by ~y = (y1, y2) (note that ~y does not necessarily equal (~m,T )). If the TTP
receive an Aborti for some i ∈ I, it sends Aborti to both parties and the ideal execution terminates.

Remark 8. If the TTP received multiple aborting messages, then it means that both players have been corrupted by
A. This situation represents no security objective whatsoever since the adversary controls every entity.

In the case no aborting message was sent to the TTP, the execution of the protocol proceeds to the next step.

• TTP answering the adversary. The TTP computes f (y1, y2) and sends A the outputs ( f (y1, y2)〈i〉)i∈I of the
corrupted parties.

• TTP answering the honest parties. A sends either Aborti for some i ∈ I or Continue to the TTP. If the TTP
receives Continue, then it sends the honest parties their results. Otherwise, it sends the honest parties Aborti.

• Outputs. Each honest party always outputs the message obtained from the TTP. Each corrupted party outputs
nothing. Instead, A outputs any arbitrary (PPT computable) function of the initial inputs of the corrupted par-
ties, the auxiliary input, and the messages obtained from the TTP.

7



The output of the execution is defined/denoted by a 3-entry vector Ideal f ,A(z),I(1k, ~m,T, rA) written as:

Ideal f ,A(z),I(1k, ~m,T, rA) = (Ideal f ,A(z),I(1k, ~m,T, rA)〈0〉, Ideal f ,A(z),I(1k, ~m,T, rA)〈1〉, Ideal f ,A(z),I(1k, ~m,T, rA)〈2〉)

where

• Ideal f ,A(z),I(1k, ~m,T, rA)〈0〉 isA’s output,

• Ideal f ,A(z),I(1k, ~m,T, rA)〈1〉 is the sender’s output,

• Ideal f ,A(z),I(1k, ~m,T, rA)〈2〉 is the receiver’s output.

2.2.2. The Real World
In the real world, we do not have any TTP and the two parties communicate with each other using an authenticated
channel. Let Π be a protocol for OTn

t . A execution of Π proceeds as follows.

• Inputs. They are identical to the inputs in the ideal world except that S (resp., R) additionally holds a random-
ness r1 (resp., r2).

• Computation. Computing f is done via interactions between the sender and the receiver. Each honest party
strictly follows the prescribed protocol Π. The corrupted parties follows A’s instructions and may arbitrarily
deviate from Π.

• Outputs. Each honest party always outputs what Π instructs. Each corrupted party outputs nothing. Instead,
A outputs any arbitrary (PPT computable) function of the initial inputs of the corrupted parties, the auxiliary
input, and the messages it sees during the execution of Π.

The output of the execution is defined/denoted by a 3-entry vector RealΠ,I,A(zk)(1k, ~m,T, rA, r1, r2) where the first,
second and third entries are A’s output, the sender’s output and the receiver’s output respectively similarly to
Ideal f ,A(z),I(1k, ~m,T, rA).

2.2.3. Security Definition
Intuitively speaking, we say that protocol Π securely computes OTn

t in the presence of malicious adversaries, if and
only if, for any malicious adversaryA, what harmA can do in the real world is not more than in the ideal world. This
intuition is formally captured by the following definition.

Definition 9. Let f denote the functionality of OTn
t . Let Π be a concrete protocol for OTn

t . Let Ψ be a set of the
receiver’s all legal private inputs. We say Π securely computes f in the presence of malicious adversaries, if and only
if for any non-uniform PPT adversaryA with auxiliary input z = (zk)k∈N in the real world, there exists a non-uniform
probabilistic expected polynomial-time adversary S with the same auxiliary input in the ideal world such that, for
any I ⊆ [2], the following equation holds.

{RealΠ,I,A(zk)(1k, ~m,T )}k∈N,~m∈({0,1}∗)n,T∈Ψ,zk∈{0,1}∗
c
= {Ideal f ,I,S(zk)(1k, ~m,T )}k∈N,~m∈({0,1}∗)n,T∈Ψ,zk∈{0,1}∗ , (1)

where the parameters input to the two probability ensembles are the same. The adversary S is called the simulator of
the adversaryA.

We point out that the security definitions presented in [16, 33] require the simulator S to run in strictly polynomial-
time but those from [34, 29, 28] allow S to run in expected polynomial-time. Definition 9 follows the latter. We
argue about our choice as follows. First, allowing the simulator to run in expected polynomial-time is essential
for achieving (non-trivial) constant-round protocols (our framework Π has constant round complexity) as Barak and
Lindell showed that there was no (non-trivial) constant-round ZK proof of argument having a strictly polynomial-time
black-box simulator [35]. Second, in many cases (also when strictly polynomial-time simulators exist), the expected
running time of the simulator provides a better bound than the worst-case running time [36].
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3. A New Smooth Projective Hash

As said in Section 1, SPH was introduced to design chosen-ciphertext secure encryption schemes and Halevi and Tau-
man Kalai applied a variant of this cryptographic primitive to construct a protocol for OT. However, these definitions
does not suffice for our application. Rather, we define another variant of SPH.

Definition 10. A hash familyH is defined by means of the following seven PPT algorithmsH = (PG, IS,Check,DI,
KG,Hash, pHash):

• Parameter generator PG: it takes a security parameter k as input and returns a hash parameter Λ: i.e. Λ ←

PG(1k).

• Checker Check: it takes a security parameter k and a hash parameter Λ as input and returns an indicator bit
b ∈ {0, 1}: i.e. b← Check(1k,Λ). The objective is to check that Λ was correctly generated.

• Instance sampler IS: it takes a security parameter k and a hash parameter Λ as input and returns a vector
~a = ((ẋ1, ẇ1), . . . , (ẋt, ẇt), (ẍt+1, ẅt+1), . . . , (ẍn, ẅn)) (i.e., ~a ← IS(1k,Λ)) where each entry of ~a is an instance-
witness pair with the first t pairs are projective and the last n − t pairs are smooth.

• Distinguisher DI: it takes a security parameter k, a hash parameter Λ and an instance-witness pair (x,w) as
input and outputs an indicator value b: i.e., b← DI(1k,Λ, x,w). Its goal is to distinguish smooth instances and
projective instances.

• Key generator KG: it takes a security parameter k, a hash parameter Λ and an instance x as input and outputs
a hash-projection key pair (hk, pk): i.e., (hk, pk)← KG(1k,Λ, x).

• Hash algorithm Hash: it takes a security parameter k, a hash parameter Λ, an instance x and a hash key hk as
input and outputs a value y: i.e., y← Hash(1k,Λ, x, hk).

• Projection algorithm pHash: it takes a security parameter k, a hash parameter Λ, an instance x, a projection
key pk and a witness w of x as input and outputs a value y: i.e., y← pHash(1k,Λ, x, pk,w).

Definition 11. For a given hash parameter Λ, if Check outputs 1, then Λ is said to be legal; otherwise, it is said to
be illegal.

Remark 12. It is obvious that any Λ generated by PG is legal.

Definition 13. Let R = {(x,w) : x,w ∈ {0, 1}∗} be a relation. For a legal Λ, we define its projective relation as ṘΛ =

{(ẋ, ẇ) : (ẋ, ẇ) is generated by IS(1k,Λ)} and its smooth relation as R̈Λ = {(ẍ, ẅ) : (ẍ, ẅ) is generated by IS(1k,Λ)}.

Definition 14 (Distinguishability). For any legal hash parameter Λ, any instance-witness pair (x,w), we require:

DI(1k,Λ, x,w) =


0 if (x,w) ∈ ṘΛ,
1 if (x,w) ∈ R̈Λ,
2 otherwise.

Definition 15. If R is a relation, then its language is defined as L
de f
= {x ∈ {0, 1}∗ : ∃w((x,w) ∈ R)}.

Let L̇Λ and L̈Λ be the languages of relation ṘΛ and relation R̈Λ, respectively. The properties smoothness and projection
to be defined next will ensure that L̇Λ∩ L̈Λ = ∅ holds. That is, no instance can exhibit both smoothness and projection.

Definition 16 (Projection). For any hash parameter Λ generated by PG(1k), any projective instance-witness pair
(ẋ, ẇ) generated by IS(1k,Λ), and any hash-projection key pair (hk, pk) generated by KG(1k,Λ, ẋ), it holds that

Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ).

Definition 17. For an instance-witness vector ~a = ((x1,w1), . . . , (xn,wn)), we define its instance vector as ~x~a
de f
=

(x1, . . . , xn) and its witness vector as ~w~a de f
= (w1, . . . ,wn).

9



Definition 18. Fix a legal hash parameter Λ. If a vector ~a contain at least n − t smooth instance-witness pairs, (i.e.,
at least n − t pairs in R̈Λ), then ~a is said to be legal.

Remark 19. Note that any ~a generated by IS(1k,Λ) is legal, and the legality of any ~a that may be maliciously
generated can be checked by invoking algorithm DI at most n times.

Definition 20 (Smoothness). For any legal hash parameter Λ, any legal instance-witness vector ~a (without loss of
generality, we assume that the last n − t entries of ~a are smooth), any permutation σ ∈ S n, smoothness holds if the

two probability ensembles SM1
de f
= {SM1(1k)}k∈N and SM2

de f
= {SM2(1k)}k∈N, specified as follows, are statistically

indistinguishable: i.e., SM1
s
= SM2. Perfect smoothness holds, if SM1 ≡ SM2.

• GΛ

de f
= {y : x ∈ L̇Λ ∪ L̈Λ, (hk, pk)← KG(1k,Λ, x), y← Hash(1k,Λ, x, hk)} is a set of all possible hash values.

• Algorithm SmGen1(1k) works as follows:

– ~x← ~x~a.

– For each j ∈ [n], perform: (hk j, pk j)← KG(1k,Λ, ~x〈 j〉), y j ← Hash(1k,Λ, ~x〈 j〉, hk j).

– Set
−−→
pky← (pk j, y j) j∈[n] and output

−−→
pky.

• Algorithm SmGen2(1k) works as SmGen1(1k) except that for each j ∈ {t + 1, t + 2, . . . , n}, y j ∈U GΛ.

• For i ∈ [2], algorithm SMi(1k) works as follows:
−−→
pky← S mGeni(1k),

−̃−→
pky← σ(

−−→
pky) and output

−̃−→
pky.

Definition 21 (Hard Subset Membership). For any σ ∈ S n, the two probability ensembles HS1
de f
= {HS1(1k)}k∈N and

HS2
de f
= {HS2(1k)}k∈N, specified as follows, are computationally indistinguishable, i.e., HS1

c
= HS2.

• Algorithm HS1(1k) works as follows: Λ← PG(1k), ~a← IS(1k,Λ) and outputs (Λ, ~x~a).

• Algorithm HS2(1k) operates as HS1(1k) except that it outputs (Λ, σ(~x~a)).

Remark 22. In this paper, for a projective instance ẋ, its witness ẇ is mainly used to gain the instance’s hash value
while, for a smooth instance ẍ, its witness ẅ serves as a proof of smoothness (i.e., a proof of ẍ ∈ L̈Λ). The distin-
guishability property guarantees that, given the needed witness-vector, projective instances and smooth instances are
distinguishable.

As both our SPH-DHM notion and Halevi and Tauman Kalai’s VSPH-HM [25] are used to construct protocols for
OT, it is necessary to discuss the differences between these two variants of SPH.

1. The major difference between these two notions is that a SPH-DHM not only provides a witness to each pro-
jective instance (as a VSPH-HM) but also to every smooth instance.

2. The key generation algorithm KG of a SPH-DHM takes an additional parameter: an instance x. This tech-
nical modification makes instantiating such a hash family easier as we will see in Section 7 using the LWE
assumption.

3. The instance sampling algorithm IS of a VSPH-HM generates tuples consisting of a smooth instance, a pro-
jective instance and its witness. To deal with OTn

t , in a SPH-DHM, the sampling algorithm returns vectors
containing t projective instance-witness pairs and n − t smooth instance-witness pairs. As a natural result, the
properties of smoothness and hard subset membership are extended to consider instance vectors of n entries.

4. A SPH-DHM does not need the verifiable smoothness property of a VSPH-HM (implemented by algorithm IT
in [25]). This property was used by Halevi and Tauman Kalai to verify whether at least one of two instances is
smooth. Instead, a SPH-DHM exhibits the distinguishability property (implemented by algorithm DI).
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4. A Framework for OTn
t with Fully-Simulatable SAMA

4.1. Description of the Protocol
LetH = (PG, IS,Check,DI,KG,Hash, pHash) be a SPH-DHM. For our construction, we will need a PPT algorithm
Γ taking two legal inputs T1,T2 ∈ Ψ of the receiver as input and outputting a uniformly chosen permutation σ ∈ S n

mapping T1’s indexes to T2’s. We will use the notation σ ← Γ(T1,T2) to denote a call to this algorithm. For an
implementation example of Γ, please see [37].

For clarity, we make the following convention. If S refuses to send R a message which is supposed to be sent, or S
sends an invalid message that R cannot process then R halts the protocol and outputs Abort1. Likewise, if R deviates
in a similar way, S outputs Abort2. The inputs are described as follows:

• Private Inputs: The sender S holds a vector ~m ∈ ({0, 1}∗)n containing n values and holds a random tape r1 ∈

{0, 1}∗. The receiver R holds a set T ∈ Ψ containing t indices and holds a random tape r2 ∈ {0, 1}∗. The
adversaryA holds a name list I ⊆ {S,R} = {1, 2} and a random tape rA ∈ {0, 1}∗.

• Auxiliary Inputs: The adversaryA holds an auxiliary input z ∈ {0, 1}∗. The security parameter k, the statistical
security parameter K, and the description ofH are known to R,S andA.

The interactions between R and S as described in Protocol 1.

Remark 23. Note thatS only cares about whether each chosen instance vector contains at least n−t smooth instances.
Thus, in Step R2, to prove the legalities of the chosen instance vectors, R only needs to send the witnesses of the smooth

instances. Formally speaking, R only needs to send ((i, j, ~̃wi〈 j〉))i∈CS , j∈Ji to S, where Ji
de f
= { j : ~̃xi〈 j〉 is smooth}.

4.2. Analysis of Π

4.2.1. Correctness of the Protocol
We now check that, when both the sender S and the receiver R are honest, Π is sound. For each i ∈ CS , each j ∈ [n],
we know:

~c〈 j〉 = ~m〈 j〉 ⊕ (⊕i∈CS
~βi〈 j〉) and m′j = ~c〈 j〉 ⊕ (⊕i∈CS β

′
i j).

For each j ∈ T , ˜̃~xi〈 j〉 is a projective instance. H’s property projection guarantees that its projection value equals its
hash value. That is to say: ~βi〈 j〉 = β′i j. Thus, we get: ~m〈 j〉 = m′j which proves that R gets (~m〈i〉)i∈T which is the sought
data.

For each j < T , ˜̃~xi〈 j〉 is a smooth instance. H’s smoothness property guarantees that its projection value reveals no
knowledge of its hash value. Thus, R cannot get any information about (~m〈i〉)i<T .

4.2.2. Security of the Scheme
The security of Π can be stated as follows.

Theorem 24. Assume that H is a smooth projective hash family that holds properties distinguishability and hard
subset membership. Then, Π (i.e., Protocol 1) securely computes functionality OTn

t in the presence of non-adaptive
malicious adversaries where the sender’s security is statistical and the receiver’s security is computational.

We defer the strict proof of Theorem 24 to Section 5 and simply give an intuitive analysis here. First, let’s focus on
the sender’s security. The framework should prevent any malicious adversary controlling the corrupted receiver from
learning more than t values. This is achieved by using a cut and choose technique. The following lemma shows that
the probability that the malicious adversaries learn extra values is negligible.

Lemma 25. In the case where the sender is honest and the receiver is corrupted by a malicious adversary, the
probability that the adversary learns more than t values is at most 1/2K .

Proof. Let A be a malicious adversary. According to the design of Π, the following conditions are necessary for A
to learn any extra value.

11



Protocol 1 Π

R1 (Receiver’s step): R chooses a hash parameter and samples its instance-witness vectors as follows.

1. R chooses a hash parameter Λ by running PG(1k).
2. R samples K instance-witness vectors: ∀i ∈ [K] ~ai ← IS(1k,Λ).
3. R shuffles each of these K vectors. That is, for each i ∈ [K], R uniformly chooses a permutation σ1

i ∈U S n

and ~̃ai ← σ1
i (~ai).

4. R sends the hash parameter Λ and the instance vectors ~̃x1, ~̃x2, . . . , ~̃xK to S, where ~̃xi is the instance vector of
~̃ai (i.e., ~̃xi = ~x~̃ai ).

S1 (Sender’s step): S verifies that the hash parameter is legal by calling Check(1k,Λ).

1. If Check(1k,Λ) = 0, then S halts and outputs Abort2.
2. If Check(1k,Λ) = 1, then S uniformly chooses a random string r ∈ {0, 1}K and sends it to R.

Comment: The string r indicates that the instance vectors whose indices fall into CS
de f
= {i : r〈i〉 = 1} (similarly

said, CS
de f
= {i : r〈i〉 = 0}) are chosen by S. In other words, r indicates that instance vectors (~̃xi)i∈CS are chosen.

For this reason, we call r choice indicator.

R2 (Receiver’s step): According to the value of the string r, R sends the witness vectors corresponding to the chosen
instance vectors and the different permutations of T to S as follows.

1. R sends the witnesses of the chosen instance vectors (~̃wi)i∈CS to S.
2. R shuffles his private input. For each non-chosen vector, R reorders it by applying a permutation, so that the

set of indexes of projective instances of the resulting vector and set T be identical. Formally speaking, let
~̃xi be a non-chosen vector (i.e. i ∈ CS ) and denote by Gi the set of indexes of its projective instances (i.e.,
Gi={ j : ~̃xi〈 j〉 is projective}). For each i ∈ CS , R chooses a permutation σ2

i ← Γ(Gi,T ).
3. R sends the permutations, (σ2

i )i∈CS , to S.

S2 (Sender’s step): S checks the legality of the chosen instance vectors and sends the encryption of ~m to R via the
following instructions.

1. S verifies that each chosen instance vector is legal by checking if it contains at least n − t smooth instances.
Knowing the witness vectors (~̃wi)i∈CS , R invokes algorithm DI to check the validity of instance vectors
(~̃xi)i∈CS . If R did not send the witness vectors at Step R2 or if the check fails, then S halts and outputs
Abort2; otherwise S proceeds to the next step.

2. S reorders the non-chosen instance vectors following the way prescribed by R: ∀i ∈ CS ˜̃~xi ← σ2
i (~̃xi).

3. S encrypts the value vector ~m. That is, for each i ∈ CS and for each j ∈ [n], (hki j, pki j) ← KG(1k,Λ, ˜̃~xi〈 j〉),

βi j ← Hash(1k,Λ, ˜̃~xi〈 j〉, hki j), ~βi
de f
= (βi1, βi2, . . . , βin), ~c← ~m ⊕ (⊕i∈CS

~βi),
−→
pki

de f
= (pki1, pki2, . . . , pkin).

4. S sends the encryption of ~m and the projection keys, (~c, (
−→
pki)i∈CS ), to R.

R3 (Receiver’s step) R decrypts ~c. That is, for each i ∈ CS and j ∈ T , the receiver computes β′i j ←

pHash(1k,Λ, ˜̃~xi〈 j〉,
−→
pki〈 j〉,

˜̃~wi〈 j〉), m′j ← ~c〈 j〉 ⊕ (⊕i∈CS β
′
i j). Finally, R recovers the values (m′j) j∈T .
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1. A has to generate at least one illegal instance vector containing more than t projective instances. If not, A
cannot correctly decrypt more than t encryptions due to the smoothness of H . Without loss of generality, we
assume the illegal instance vectors are ~x`1 , ~x`2 , . . . , ~x`d .

2. All illegal instance vectors are lucky not to be chosen by the sender and all the unchosen instance vectors are
just the illegal instance vectors: i.e., CS = {`1, `2, . . . , `d}. We prove this claim in the following two cases.

(a) If CS ⊂ {`1, `2, . . . , `d}, then there exists an illegal instance vector chosen by the sender who detects the
cheating andA gains nothing.

(b) If CS ⊃ {`1, `2, . . . , `d}, then there exists a legal instance vector not chosen by the sender. Following
the instructions of Π, this instance vector is used to encrypt the n values. Looking at Step S2, the final
n encryptions are gained by XOR-ing the n values and the hash values of all unchosen instance vectors.
Because a legal instance vector holds at least n − t smooth instances, at least n − t encryptions statistically
hide their encrypted values. As a result,A knows almost nothing about at least n − t encrypted values.

Now, let us estimate the probability that the second necessary condition is met. We have:

Prob(CS = {`1, `2, . . . , `d}) = (1/2)d(1/2)K−d = 1/2K .

This means that the probability thatA cheats to learn more than t values is at most 1/2K .

Second, consider the receiver’s security. It is necessary for Π to prevent any malicious adversary controlling the
corrupted sender from learning which values the receiver chose. Intuitively, there might be a possible information
leakage in Step R2 where R shuffles T . Since j ∈ T if and only if ˜̃~xi’s j-th entry is projective for each i ∈ CS , learning
some j ∈ T means identifying a projective entry of some ˜̃~xi. Given the fact that n and t are known to both players, A
can guess some j ∈ T with probability t/n and can identify a projective entry of some ˜̃~xi with probability t/n as well.
However, H’s hard subset membership property guarantees that ˜̃~xi’s projective instances and smooth instances are
computationally indistinguishable. As a result, the probability of A identifying a projective entry of ˜̃~xi is negligibly
greater than t/n. Furthermore, the probability ofA learning some j ∈ T is negligibly greater than t/n too. In a word,
A only knows that T is a set containing t indexes and its probability of learning extra knowledge about T is negligible
in the security parameter k.

Another cheating strategy that A can follow is to send invalid messages. If R cannot process these messages (e.g.,
the messages are malformed), then R detects a cheating tentative and aborts. If R can process them nonetheless, this
can be viewed asA altering its private values. This has no significance whatsoever since in the ideal worldA is also
allowed to alter its input before sending it to the TTP. In a word, this cheating approach is not effective andA cannot
gain any extra knowledge of T following this strategy.

4.2.3. Efficiency of the Framework
It is clear that Π needs 4 communication rounds as Step R3 can be performed without communication.

Abstractly, we can see an invocation of Hash as a call to an encryption algorithm and an invocation of pHash as
a request to the corresponding decryption algorithm. Such a consideration is justified since, in Π, Hash plays an
encrypting role to hide S’s values while pHash can be considered as decryption machine recovering the values that
R wants. This parallel to a cryptosystem is not fortuitous as the first usage of a SPH was to construct public-key
encryption schemes [27].

Looking at Step S1, it is easy to see that the expected number of chosen instance vector is K/2. Therefore, the main
expected computational overhead is K n/2 encryptions at the sender (Step S2) and K t/2 decryptions at the receiver
(Step R3).

Since K determines the computational overhead of Π, a natural question is how to set it in practice. In the proof
of Theorem 24, the simulator S does not simulate the case where the adversary learns more than t values. This is
justified, because Lemma 25 shows this case arises with negligible probability 1/2K (see Remark 35 for the details).
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Thus, we must set K to be a value so that 1/2K is small enough to be negligible in the security parameter.

In [20], it is said that an error of 1/240 ≈ 9.09 × 10−13 would be negligible in practice. So, we set K = 40 for our
purpose. It follows that, in a practical point of view, the main expected computational overhead is 20 n encryptions
and 20 t decryptions.

Remark 26. How to set the security parameter k or the statistical security parameter K in practice? This is essentially
the question of bridging theoretical cryptography and practice in order to translate a guarantee of asymptotic security
into a concrete security one. The task of determining the value of the (statistical) security parameter to use, generally
speaking, is complex and depends on the scheme in question as well as other considerations. This problem is discussed
in [32, 38] for instance but no concrete standard solution is suggested.

5. Formal Security Proof

This section is dedicated to the demonstration of Theorem 24. For notational clarity, we denote the sender, the receiver
and the adversary in the real world by S, R,A and their corresponding entities in the ideal world by S′, R′, S.

Based on the parties corrupted by A, there are four cases to be considered: only S is corrupted, only R is corrupted,
both S and R are corrupted, both parties are honest. Because the security proofs of the last two cases are trivial, we
omit them to save space.

5.1. Only S is Corrupted

In this case, A takes the full control of S in the real world. Correspondingly, A’s simulator S takes the full control
of S′ in the ideal world, where S is constructed as described in Algorithm 2.

To simplify the description of S, we assumed that during the interactions between A and S (i.e., from Step Sim2
onwards), if A refuses to send some message it is supposed to send or A sends an invalid message that S cannot
process, the simulator S sends Abort1 to the TTP and halts with outputting whateverA returns.
The simulator construction (Algorithm 2) follows the ideas appearing in [25] in the case of half-simulatable OT2

1.
Nonetheless, it ignores two subtle problems.

P1 ~̃m is not obtained in one shot. Indeed, A’s private value vector may be distinct during different repetitions of
procedure Υ. This may involve that ~̃m be different fromA’s real value vector (remember that S has to simulate
A) or they may even be computationally distinguishable.

P2 A’s responses may not always be good2 in all repetitions. Note that ifA make a good response in a repetition,
S will get t values in the repetition.

To illustrate P2, consider the following. Let p j be the probability that A makes a good response when it interacts
with an honest receiver whose private input is T j. Similarly, we use notation p for A and T . The probability of S

successfully constructing ~̃m is
d
Π
j=1

p j. Thus, the probability of R′ learning t values in the ideal world is
d
Π
j=1

p j. It is easy

to see that the probability of R learning t values in the real world is p. Therefore, the real world’s output and the ideal

world’s output may be distinguished with probability at least |p −
d
Π
j=1

p j|. Unfortunately, this difference may not be

negligible: e.g., p = p1 = . . . = pd = 0.5, d = 3, |p −
d
Π
j=1

p j| = 0.375. We will now show how to solve both problems.

2We say an adversary’s response in an execution is good, if it does not cause an honest receiver to output Abort1.
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Algorithm 2 Simulator S when S is the only Corrupted Player
Input: The security parameter k, the statistical security parameter K, the auxiliary input zk, the name list I = {1}

(recall that the value 1 is associated to the sender) and a uniformly distributed randomness tape rS ∈ {0, 1}∗.

Sim1 (Initialization step):

1. S corrupts S′ and learns S′’s private input ~m.
2. LetA be a copy ofA. S invokesA as a subroutine with initial inputs ofA to be S’s initial inputs with the

exception that the randomness of A to be a uniformly distributed string. In other words, the initial inputs of
A are set as k, I, zk and r

A
with r

A
∈U {0, 1}∗.

3. S activates A. As in the real world, A sends a message to corrupt the sender. S plays the role of S and
suppliesA with ~m.

Comment: To simulate the environment ofA in the real world, S is to simultaneously plays the role of S and R to
interact withA during the following steps.

Sim2: Playing the role of R, S honestly follows the receiver’s Step R1-R2.1 of Π to interact withA.

Sim3: Let T1,T2, . . . ,Td be arbitrary legal index sets such that [n] = ∪d
j=1T j. S repeats d times the following

procedure denoted by Υ.

• Procedure Υ: S rewindsA to the beginning of Step S2 of Π. S honestly follows the receiver’s Step R2.2-R3
to interact withA.

In each repetition, S uses fresh randomness. In the j-th repetition, S plays the role of R with private input T j. If S
receive t values in this repetition, it records theses values. Otherwise, S sends Abort1 to the TTP, stops repeating
procedure Υ, and outputs whateverA returned.

Sim4: Using the recorded values, S builds a value vector ~̃m as follows. S takes the values obtained in the j-th
repetition as (~̃m〈i〉)i∈T j . If there are two distinct sets T j,T j′ such that i ∈ T j ∩ T j′ for some i, then there are multiple
values corresponding to the same index i and S takes arbitrary one of these as ~̃m〈i〉.

Sim5 (Output step): S sends ~̃m to the TTP and receives λ in return. Then, S sends Continue to the TTP. WhenA
halts, S outputs whatA returned.
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Lemma 27. Let View j
A

denote the view of A when it interacts with an honest receiver whose private input is T j.
Similarly, we use notation ViewA forA and T . Then, we have:

View j
A

c
= ViewA.

Proof. In the ideal world, the honest receiver’s private input T is unknown to the simulator. Therefore, it may occur
that T j , T . If T j = T , then obviously View j

A
≡ ViewA. When T j , T , there are two differences between View j

A
and

ViewA.

First Difference. In View j
A

, each permutation σ2
i relates to T j while, in ViewA, each σ2

i is related to T . In both views,
permutation σ1

i is uniformly chosen from S n. As a result, for set Gi (defined in Step R2.2 of Π), its elements are
uniformly distributed over [n]. Looking at the implementation of Γ as depicted in [37], we know that for any image
c ∈ [n], its pre-image under permutation σ2

i is uniformly distributed over [n]. This implies that each σ2
i is uniformly

distributed over S n. Therefore, any σ2
i in View j

A
and any σ2

i in ViewA are identically distributed.

Second Difference. In View j
A

, for each instance vector ˜̃~xi, its projective entries correspond to index set T j, and in

ViewA, the projective entries of ˜̃~xi are indexed by T . Nonetheless, the fact that any ˜̃~xi in View j
A

and any ˜̃~xi in ViewA
are computationally indistinguishable immediately follows from the hard subset membership property ofH .

Combining the above two points, we obtain that View j
A

c
= ViewA also holds in the case of T j , T .

Corollary 28. Let p j, p be the probabilities introduced above. Let ~m∗j be a random variable describing the distribution

of the real value vector of A when it makes a good response during its interaction with an honest receiver whose
private input is T j. Similarly, we use notation ~m∗ forA and T . Then, we have:

~m∗j
c
= ~m∗ and |p j − p| ≤ µ(k),

where µ(k) is a negligible function of the security parameter k.

Following Corollary 28, even if the value vector ~̃m built by S is not equal toA’s real value vector, their distributions
are computationally indistinguishable. This is good enough to solve problem P1.

To overcome problem P2, the simulator S must allow R′ to get t values with probability close to p (e.g., p1). This is
due to the fact that R gets t values with probability p. Note that R′ gets t values if and only if S successfully constructs
~̃m. This means that, if A make a good response in the first repetition (occurring with probability p1), then S must
successfully extract t values for each T j( j ≥ 2). Given T j( j ≥ 2), a straightforward way to extract values for this index
set is for S to repeat procedure Υ until it receives t values. The expected number of times Υ is to be iterated is p1/p j.
Following Corollary 28, the difference |p1 − p j| is negligible in k. However, the ratio p1/p j might not be polynomial
in k (e.g., p j = 1/2k, p1 = 1/22k, p1/p j = 2k). Our solution to this issue is for S to first estimate the value of p1 and
then to appropriately upper bound the number of times Υ is to be repeated. This technique was previously presented
by Goldreich in the context of ZK [30].

Based on the above discussion, we modify Algorithm 2 by replacing Step Sim3 with the following three sub-steps.

• Sim3.1: Playing the role of R with private input T1, S executes Υ once. If A gives a bad response in this
execution, S sends Abort1 to the TTP and outputs whatA returned whenA halted.

• Sim3.2: (Estimating p1) Let Poly1(.) be a sufficiently large polynomial. Playing the role of R with private input
T1, S repeats Υ until the number of A’s good responses received is up to Poly1(k). In each repetition, S uses
fresh randomness. Let ` denote the number of the times Υ is repeated. The estimated value of p1 is set to
p̃1 = Poly1(k)/`.
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• Sim3.3: S tries to extract values for each T j ( j ≥ 2). Let Poly2(.) be another sufficiently large polynomial. For
T j, S operates as follows:

Playing the role of R with private input T j, S repeats Υ at most Poly2(k)/ p̃1 times. If A makes a good
response, S records the received t values and stops the iterations for T j. IfA always makes bad responses,
S halts and outputs Timeout.

Lemma 29. The modified simulator S outputs Timeout with (at most) negligible probability.

Proof. We introduce the following probabilistic event notations:

• TO
de f
= {S outputs Timeout},

• TO j
de f
= {S outputs Timeout when S tries to extract values for private input T j}.

We have:

Prob(TO) ≤
d∑

j=2

Prob(TO j),

Prob(TO j) ≤ p1

+∞∑
i=1

Prob
(⌊

1
p̃1

⌋
= i

)
(1 − p j)i Poly2(k). (2)

In the proof of Claim 2 of [30], Goldreich and Kahan showed that the right hand side of Equation (2) is negligible in
k. Therefore, our lemma holds.

Combining Lemma 29 and the previous discussion, we know that R′ learns t values with probability p1 − µ(k). Thus,
the difference between the probability of R′ learning t values and the probability of R learning t values is negligible.
This solves the problem P2. Now, we are ready to prove Theorem 24 in the case where only S is corrupted.

Proposition 30. The modified simulator S runs in expected polynomial-time.

Proof. All steps of simulator S are polynomial-time except Step Sim3. Let ET, TΥ, ETP, TV j denote the expected
running time of whole Step Sim3, the running time of Υ, the expected running time of Step Sim3.2 and the running
time of extracting values for T j, respectively. We have the following three relations:

ET = (1 − p1)TΥ + p1(TΥ + ETP +

d∑
j=2

TV j) ETP =
Poly1(k)

p1
× TΥ TV j ≤

Poly2(k)
p̃1

× TΥ.

Furthermore:
ET ≤ TΥ + Poly1(k) × TΥ +

p1

p̃1
× Poly2(k) × (d − 1)TΥ. (3)

Therefore, it remains to consider the ratio p1/ p̃1. Let’s focus on Step Sim3.2 and denote by Yi a binary random
variable that equals 1 if A makes a good response in the i-th repetition and equals 0 otherwise. Let 0 ≤ δ ≤ 1. We
have:

Prob
(

p1

p̃1
>

1
1 − δ

)
= Prob

 p1
`

Σ
i=1

Yi/`

>
1

1 − δ

 = Prob

∑̀
i=1

Yi < (1 − δ)`p1]

 ≤ 1
eδ2`p1/2

where the right hand side inequality follows the Chernoff bound [39]. Setting δ = 1/2, we get:

Prob
(

p1

p̃1
> 2

)
≤

1
e`p1/8

≤
1

ePoly1(k) p1/8
, (4)

where the rightmost inequality follows the fact Poly1(k) ≤ `. This shows that p1
p̃1
> 2 holds with at most negligible

probability in k.

Combining Inequality (3) and Inequality (4), it is easy to see that Step Sim3 runs in expected polynomial-time.
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Proposition 31. In the case where only the sender is corrupted, Equation (1) in Definition 9 holds.

Proof. Let’s focus on the real world. Because R is honest, its output is a deterministic function of A’s real private
input. Without loss of generality, we assume that A’s output α = RealΠ,{1},A(zk)(1k, ~m,T )〈0〉 contains its real private
input, denoted by γ. Therefore, R’s output is a deterministic function ofA’s output, where the function is:

g(α) =

Abort1 if γ causes R to output Abort1,
(γ〈i〉)i∈T if γ is a vector containing n values.

Let h(α)
de f
= (α, λ, g(α)). We have:

RealΠ,{1},A(zk)(1k, ~m,T ) ≡ h(RealΠ,{1},A(zk)(1k, ~m,T )〈0〉). (5)

Now, we concentrate our attention to the ideal world. We claim that S’s output and A’s output are computationally
indistinguishable:

RealΠ,{1},A(zk)(1k, ~m,T )〈0〉 c
= Ideal f ,{1},S(zk)(1k, ~m,T )〈0〉. (6)

Note that S almost always takesA’s output as its own and, with at most negligible probability, it takes Timeout as its
own output (Lemma29). Lemma 27 implies thatA’s output in each repetition in the ideal world andA’s output in the
real world are computationally indistinguishable. Therefore, the claim holds.

We claim that R′’s output is a deterministic function of S’s output, specifically,

Ideal f ,{1},S(zk)(1k, ~m,T )〈2〉 c
= g(Ideal f ,{1},S(zk)(1k, ~m,T )〈0〉). (7)

We argue about this claim as follows:

1. In the case whereA makes a bad response in Step Sim3.1, R′ receives Abort1, and so Equation (7) holds.
2. In the case that A makes a good response in Step Sim3.1 and S does not output Timeout, R′ receives t values

of ~̃m. Though ~̃m is gained by S playing the role of R with distinct private inputs, Corollary 28 implies that
the distribution of ~̃m and the distribution of the value vector in S’s output (~m∗d defined in Corollary 28) are
computationally indistinguishable. Thus, Equation (7) holds.

3. Following Lemma 29, we do not need to consider the case whereA makes a good response in Step Sim3.1 and
S outputs Timeout.

Therefore, similarly to the real word, the following equation holds.

Ideal f ,{1},S(zk)(1k, ~m,T ) c
= h(Ideal f ,{1},S(zk)(1k, ~m,T )〈0〉) (8)

Combining Equations (5), (6), (8), we deduce that Equation (1) holds which proves our proposition.

5.2. Only R is Corrupted

In this case,A takes the full control of R in the real world. Correspondingly, the simulator S takes the full control of
R′ in the ideal world. It works as represented in Algorithm 3 where we adopted the same policy as before concerning
the incorrect message transmission behavior ofA.

Proposition 32. The simulator S runs in expected polynomial-time.

Proof. First, let’s focus on Step Sim3. In each iteration of Ξ, the chosen instance vectors are uniformly distributed.
This leads to the probability that A gives a good response in each repetition to be the same. We denote this value by
p. Let ET3 and TΞ denote expected the running time of Step Sim3 and the running time of Ξ respectively. We have:

ET3 = (1/p) TΞ.
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Algorithm 3 Simulator S when R is the only Corrupted Player
Input: The security parameter k, the statistical security parameter K, the auxiliary input zk, the name list I = {2}

(recall that the value 2 is associated to the receiver) and a uniformly distributed randomness tape rS ∈ {0, 1}∗.
Sim1 (Initialization step):

1. S corrupts R′ and learns R′’s private input T .
2. LetA be a copy ofA. S invokesA as a subroutine with initial inputs ofA to be S’s initial inputs with the

exception that the randomness of A to be a uniformly distributed string. In other words, the initial inputs of
A are set as k, I, zk and r

A
with r

A
∈U {0, 1}∗.

3. S activatesA.
4. As in the real world, A sends a message to corrupt the receiver. S plays the role of R and supplies A with

T .

Sim2: Playing the role of S, the simulator S honestly executes Step S1-S2.2 of Π. IfA’s response in the interaction
is good (i.e., it does not cause an honest sender to output Abort2), then S records the choice indicator r and proceeds
to the next step. Else, S halts outputting whatA returned.

Sim3: The simulator repeats the following procedure Ξ until A gives a good response. In each iteration, S uses
fresh randomness.
• Procedure Ξ: S rewindsA to the beginning of Step R2 of Π. Playing the role of S, the simulator S honestly

follows Step S1-S2.2 to interact withA.

S records the choice indicator r̃ and the received witness vectors in the last iteration.

Comment: The chosen instance vectors ofA in the last iteration are legal as they passed the legality check.

Sim4:
• Case 1: r = r̃. The simulator S outputs Failure and halts.

• Case 2: r , r̃ and ∀i (r〈i〉 , r̃〈i〉 ⇒ r〈i〉 = 1 and r̃〈i〉 = 0). The simulator is reset to the beginning of Step
Sim1 with a new randomness rS ∈U {0, 1}∗.

• Case 3: r , r̃ and ∃i : r〈i〉 = 0 and r̃〈i〉 = 1. The simulator S arbitrarily chooses one such instance i and
records it as e. Then, it proceeds to the next step.

Comment: The aim of Step Sim3 and Sim4 is to extract one of A’s possible real private inputs related to the
interaction with S in Step Sim2. If Case 3 happens, S knows ~̃xe’s witness vector ~̃we. Note that ~̃xe is a legal
instance vector. Then, S can easily deduceA’s private index set corresponding to permutation σ2

e received in Step
Sim2. We stress the fact that this private input is one of A’s possible private inputs as distinct permutations may
correspond to distinct private inputs. However, as we will see in the proof of Lemma 34, this inconsistence does
not affect the correctness of our simulation. A’s initial inputs are fixed by S in Step Sim1. Thus, ifA receives the
same messages, it responds in the same way. Therefore, S can reproduce the scenario of Step Sim2 by rewinding
A to the beginning of Step R2 and sending the choice indicator r toA.

Sim5: The simulator rewindsA to the beginning of Step R2 of Π, chooses r as choice indicator, honestly executes
Step S1-S2.2 and deducesA’s private input (denoted by T ′e) corresponding to permutation σ2

e .

Sim6: The simulator sends T ′e to the TTP and receives (~m〈i〉)i∈T ′e in return. Then, S sends Continue to the TTP and
builds a value vector ~m′ as follows. For each i ∈ T ′e, ~m′〈i〉 ← ~m〈i〉. For each i < T ′e, set ~m′〈i〉 to be a value uniformly
chosen from GΛ, where GΛ is a set of all possible hash values (see Definition 20).

Sim7 (Output step): Playing the role ofSwith private input ~m′, S follows Step S2.3 of Π to complete the interaction
withA. WhenA halts, S outputs whatA returned.
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For the same reason, the probability that A gives a good response in Step Sim2 is p as well. Let OncET1−3 denote
the expected running time of one run of the sequence Step Sim1 to Step Sim3. Let T j denote the running time of S’s
j-th step. We have:

OncET1−3 ≤ T1 + T2 + p ET3 ≤ T1 + T2 + TΞ

Second, consider Step Sim4 and especially Case 2. Note that the initial inputs of S (apart from the refreshed random-
ness) remain the same in each iteration. Thus, the probability that S runs from scratch in each iteration is the same.
We denote this probability by 1 − q. As a consequence, the expected running time of the sequence Step Sim1 to Step
Sim4, denoted by ET1−4, is:

ET1−4 ≤ (1 + 1/q) (OncET1−3 + T4) ≤ (1 + 1/q) (T1 + T2 + TΞ + T4).

The reason why there is 1 in the term (1 + 1/q) is that S has to run from scratch at least one time in any case. Thus,
the simulator’s expected running time, denoted by ETS, can be upper bounded as:

ETS ≤ ET1−4 + T5 + T6 + T7 ≤ (1 + 1/q) (T1 + T2 + TΞ + T4) + T5 + T6 + T7. (9)

Third, let’s estimate the value of q being the probability of the event {S does not run from scratch in an iteration}. It
is easy to see that this event happens if and only if one of the following mutually disjoint events happens.

1. Event {S halts before reaching Step Sim3} happens. We denote this event by E.
2. Event E happens and R = R̃ where R (resp., R̃) is the random variable defined as the choice indicator recorded

by S in Step Sim2 (resp., Step Sim3).
3. Event E happens and: ∃i : R〈i〉 = 0 and R̃〈i〉 = 1.

Based on this partition of {S does not run from scratch in an iteration}, we obtain:

q =Prob(E) + Prob(E ∩ {R = R̃}) + Prob(E ∩ {∃i : R〈i〉 = 0 and R̃〈i〉 = 1})

=Prob(E) + Prob(E) [Prob({R = R̃}|E) + Prob({∃i : R〈i〉 = 0 and R̃〈i〉 = 1}|E)].
(10)

We introduce the following notations to denote probabilistic events:

• U1 represents {(r, r̃) : (r, r̃) ∈ ({0, 1}K)2 and r = r̃},

• U2 represents {(r, r̃) : (r, r̃) ∈ ({0, 1}K)2 and r , r̃ and ∀i (r〈i〉 , r̃〈i〉 ⇒ r〈i〉 = 1 and r̃〈i〉 = 0)},

• U3 represents {(r, r̃) : (r, r̃) ∈ ({0, 1}K)2 and r , r̃ and ∃i (r〈i〉 = 0 and r̃〈i〉 = 1)}.

It is easy to see that U1, U2, U3 are mutually disjoint, ({0, 1}K)2 = U1 ∪ U2 ∪ U3, |U1| = 2K and |U2| = |U3| = 2K−1.
Since both R and R̃ are uniformly distributed, we have:

Prob({R = R̃}|E) = |U1|/|({0, 1}K)2
| = 1/2K , (11)

and
Prob({∃i (R〈i〉 = 0 and R̃〈i〉 = 1)}|E) = |U3|/|({0, 1}K)2

| = 1/2 − 1/2K+1. (12)

Combining Equation (10) to Equation (12), we obtain:

q = Prob(E) + Prob(E) (1/2 + 1/2K+1) = 1/2 + 1/2K+1 + (1/2 − 1/2K+1) Prob(E) (13)

In particular, we have q > 1/2. Combining Equation (9) and Equation (13), we get:

ETS < 3 (T1 + T2 + TΞ + T4) + T5 + T6 + T7,

which means that the simulator’s expected running time is bounded by a polynomial in the security parameter k.
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Lemma 33. The simulator S outputs Failure with probability at most 1/2K−1.

Proof. Let X be the random variable defined as the number of the trials of S in a whole execution. From the proof
of Lemma32, we know two facts. First, we have: Prob(X = i) = (1 − q)i−1q < 1/2i−1. Second, in each trial the event
{S outputs Failure} is the combined event of E and R = R̃. This combined event happens with probability:

Prob(E ∩ {R = R̃}) ≤ Prob(E) Prob({R = R̃}|E) ≤ Prob({R = R̃}|E).

Combining the above inequality to Equation (11), we obtain:

Prob(E ∩ {R = R̃}) ≤ 1/2K .

Therefore, the probability that S outputs Failure in a whole execution is

∞∑
i=1

Prob(X = i) Prob(E ∩ {R = R̃}) ≤ (1/2K)
∞∑

i=1

1/2i−1 ≤ 1/2K−1.

Lemma 34. The output of the adversary A in the real world and that of the simulator S in the ideal world are
statistically indistinguishable, i.e.:

{RealΠ,{2},A(zk)(1k, ~m,T )〈0〉}k∈N,~m∈({0,1}∗)n,T∈Ψ,zk∈{0,1}∗
s
= {Ideal f ,{2},S(zk)(1k, ~m,T )〈0〉}k∈N,~m∈({0,1}∗)n,T∈Ψ,zk∈{0,1}∗ .

Proof. First, we claim that S’s output and A’s output are statistically indistinguishable. Indeed, S always returns
A’s output with the exception of returning Failure when Case 1 of Step Sim4 happens. Since Lemma 33 shows that
this situation arises with negligible probability, our claim holds.

Second, we claim that the outputs of A and A are statistically indistinguishable. The only difference between A’s
view andA’s view is that the encryption received byA is the encryption of the constructed ~m′ rather than ~m.

Let T ′i be the private input corresponding to permutation σ2
i where i ∈ CS . Let T ′

de f
= ∩i∈CS T ′i . From the proof of

Lemma 25, we know that the probability of the event {|T ′| > t} is negligible. As a result, it suffices to prove that A’s
view andA’s view are statistically indistinguishable in the case where |T ′| ≤ t.

Looking at Step S2.3 of Π (i.e., Protocol 1), we know that the encryption is generated by XOR-ing ~m with the hash
values of the unchosen instance vectors.

For each i ∈ T ′, the value is hidden by hash values of projective instances. The projection property of H guarantees
thatA (resp.,A) learns (~m′〈i〉)i∈T ′ (resp., (~m〈i〉)i∈T ′ ). Seeing Step Sim6 of S, we know:

(~m′〈i〉)i∈T ′ = (~m〈i〉)i∈T ′ .

For each i < T ′, the value is hidden by hash values of smooth instances. The smoothness property of H guarantees
thatA (resp.,A) learns nothing about (~m′〈i〉)i<T ′ (resp., (~m〈i〉)i<T ′ ) and

(~c ′〈i〉)i<T ′
s
= (~c〈i〉)i<T ′ .

Therefore, A’s view and A’s view are statistically indistinguishable in the case of |T ′| ≤ t. Thus, our second claim
holds which achieves our lemma demonstration.

Remark 35. Because S filters out the case that all chosen instance vectors are legal and all unchosen ones are illegal
by repeating procedure Ξ in Step Sim3, S does not simulate the real world case where A learns more than t values.
Correspondingly, in the proof of Lemma 34, we do not consider the corresponding case where |T ′| > t. This is justified
by the fact that Lemma 25 shows this situation arises with probability at most 1/2K .
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Proposition 36. In the case where only the receiver is corrupted, Equation (1) in Definition 9 holds.

Proof. Note that the senders S and S′ end up with outputting nothing as they honestly follow Π. On the other hand,
the receivers R and R′ end up with no output either bcause they are corrupted and so are dummy players. As a
consequence, the fact that the outputs of S andA are statistically indistinguishable (Lemma 34) immediately proves
this proposition.

6. Reducing the Construction Conditions of a SPH-DHM

In order to obtain a SPH-DHM, we need to satisfy a large number of properties. In this section, we reduce the design
of such a family to the construction of considerably simpler hash families. The basic idea is to generate the instances
of each type (projective/smooth) independently.

6.1. Basic Hash Family
Definition 37. A basic hash familyH is defined by means of the same seven PPT algorithmsH = (PG, IS,Check,DI,
KG,Hash, pHash) as in Definition 10 with the exception of algorithm IS is defined as follows.

• Instance sampler IS: it takes a security parameter k, a hash parameter Λ, a work mode δ ∈ {0, 1} as input and
outputs an instance-witness pair (x,w) (i.e., (x,w) ← IS(1k,Λ, δ)). Its goal is to generate projective instance-
witness pairs under mode 0 and smooth ones under mode 1.

To be consistent with Definition 10, we write the instance-witness pair generated under mode δ = 0 as (ẋ, ẇ), and
under mode δ = 1 as (ẍ, ẅ). The properties of distinguishability and projection are defined as in Section 3. However,
the properties of smoothness and hard subset membership are defined in considerably simpler way.

Definition 38 (Smoothness). For any legal hash parameter Λ, any instance-witness (ẍ, ẅ) generated by IS(1k,Λ, 1),

smoothness holds if the two probability ensembles BSM1
de f
= {BSM1(1k)}k∈N and BSM2

de f
= {BSM2(1k)}k∈N, specified

as follows, are statistically indistinguishable, i.e., BSM1
s
= BSM2. Perfect smoothness holds, if BSM1 ≡ BSM2.

• BSM1(1k): Generate (hk, pk)← KG(1k,Λ, ẍ) and compute y← Hash(1k,Λ, ẍ, hk). Output (pk, y).

• BSM2(1k): Compared to BSM1(1k), the only difference is that y ∈U GΛ where GΛ is a set of all possible hash
values (see Definition 20).

Definition 39 ([27, 25]). Let 0 < ε < 1. For any legal hash parameter Λ, any instance-witness (ẍ, ẅ) generated by
IS(1k,Λ, 1), ε-universality holds if for any string pk ∈ {0, 1}∗, and any value y ∈ GΛ, it holds that

Prob(Hash(1k,Λ, ẍ,HK) = y | PK = pk) ≤ ε,

where (HK, PK)← KG(1k,Λ, ẍ). The probability is taken over the randomness used by KG.

Intuitively speaking, universality requires that, for any instance-witness (ẍ, ẅ) generated by IS(1k,Λ, 1), the probability
of guessing its hash value is at most ε. Compared with smoothness, ε-universality relaxes the upper bound of this
probability to be a higher value. However, we can efficiently gain smoothness from universality.

Lemma 40 ([27, 25]). Given a basic hash family H̃ holding universality, then we can efficiently construct a basic
hash familyH holding smoothness.

The constructive proof of this lemma proceeds in two steps as follows. First, it reduces ε-universality to εc-universality
by simple c-fold ”parallelization”. Second, smoothness is obtained from εc-university by simply applying the Leftover
Hash Lemma (see [40] for this lemma). We refer the reader to [27, 25] for the proof details.

Definition 41 (Hard subset membership). The two probability ensembles BHS1
de f
= {BHS1(1k)}k∈N and BHS2

de f
=

{BHS2(1k)}k∈N defined as follows, are computationally indistinguishable (i.e., BHS1
c
= BHS2).

• BHS1(1k): Generate Λ← PG(1k) and compute (ẋ, ẇ)← IS(1k,Λ, 0). Output (Λ, ẋ).

• BHS2(1k): Generate Λ← PG(1k) and compute (ẍ, ẅ)← IS(1k,Λ, 1). Output (Λ, ẍ).
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Construction 1 Reduction Procedure
Input: A basic hash familyH = (PG, IS,Check,DI,KG,Hash, pHash).

We construct a hash familyH (as defined in Definition 10) having the same algorithmsH with the exception of the
instance sampling algorithm IS which is defined as follows.

• IS(1k,Λ): For each i ∈ [t], ~a〈i〉 ← IS(1k,Λ, 0). For each i ∈ [n] \ [t], ~a〈i〉 ← IS(1k,Λ, 1). Return ~a.

6.2. The Reduction Process

Theorem 42. In Construction 1, if the basic hash family H has (perfect) smoothness, then H holds this property as
well.

Theorem 43. In Construction 1, if the basic hash family H has the property hard subset membership property, then
the hash familyH holds this property as well.

We will prove the above two theorems in Section 6.2.1 and Section6.2.2 respectively. A consequence of these two
theorems and Lemma 40, we can reduce the construction of a SPH-DHM to the design of a basic hash family having
smoothness (or universality), projection, distinguishability and hard subset membership.

6.2.1. Proof of Theorem 42
Before starting our demonstration of Theorem 42, we need some preliminary results.

Definition 44. For any probability ensemble X = {X(1k, a)}k∈N,a∈{0,1}∗ , we define its multiple-sampled probability
ensemble ~X as follows:

~X = {~X(1k, a)}k∈N,a∈{0,1}∗ with ~X(1k, a) = (X1(1k, a), X2(1k, a), . . . , Xn(1k, a)),

where each Xi(1k, a) ≡ X(1k, a) and each random variable Xi(1k, a) is independent.

Lemma 45 ([32]). Let X, Y be two probability ensembles, and ~X, ~Y their multiple-sampled probability ensembles,
respectively.

• If X s
= Y, then ~X s

= ~Y.

• If X and Y are polynomial-time constructible and X c
= Y, then ~X c

= ~Y.

Definition 46. Let F
de f
= ( fk)k∈N be a function family. For a probability ensemble X = {X(1k, a)}k∈N,a∈{0,1}∗ , we define

its image probability ensemble F(X) under F as follows:

F(X) = { fk(X(1k, a))}k∈N,a∈{0,1}∗ .

Lemma 47. Let X, Y be two probability ensembles and F(X), F(Y) their image probability ensembles, respectively.
If X s

= Y, then F(X) s
= F(Y).

Proof.

1
2

∑
α∈{0,1}∗

|Prob[ fk(X(1k, a)) = fk(α)]−Prob[ fk(Y(1k, a)) = fk(α)]| ≤
1
2

∑
α∈{0,1}∗

|Prob[X(1k, a) = α]−Prob[Y(1k, a) = α]|.

This shows that the statistical difference between F(X) and F(Y) is less than that between X and Y .

We can now expose our proof of Theorem 42.
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Proof. We only consider smoothness as the proof in the case of perfect smoothness is similar and simpler. We reuse
notations SmGeni(1k), SMi from Definition 20 and BSMi from Definition 38.

For the hash familyH in Construction 1, we define the following probability ensemble for each i ∈ [2] and j ∈ [n].

SM j
i = {SM j

i (1
k)}k∈N

de f
= {SmGeni(1k)〈 j〉}k∈N.

It is easy to see that: ∀ j ∈ {t + 1, t + 2, · · · , n} SM j
i ≡ BSMi. Combining the fact that basic hash family H holds

smoothness (i.e., BSM1
s
= BSM2) and Lemma 45, we have:

{(SMt+1
1 (1k), . . . ,SMn

1(1k))}k∈N
s
= {(SMt+1

2 (1k), . . . ,SMn
2(1k))}k∈N.

We introduce the following notations: ~X
de f
= {(SM1

1(1k), . . . ,SMn
1(1k))}k∈N and ~Y

de f
= {(SM1

2(1k), . . . ,SMn
2(1k))}k∈N.

Looking at the definition of SmGeni(1k), we notice: ∀ j ∈ [t] SM j
1(1k) ≡ SM j

2(1k). So, it holds: ~X s
= ~Y .

Let F
de f
= (σ)k∈N where σ is an arbitrary permutation over set [n]. Following Lemma 47, we have F(~X) s

= F(~Y), i.e.:

{σ(SM1
1(1k), . . . ,SMn

1(1k))}k∈N
s
= {σ(SM1

2(1k), . . . ,SMn
2(1k))}k∈N.

This means: SM1
s
= SM2.

6.2.2. Proof of Theorem 43
We start by some preliminary results to be used in our main proof.

Definition 48. For any probability ensemble X = {X(1k, a)}k∈N,a∈{0,1}∗ and Y={Y(1k, a)}k∈N,a∈{0,1}∗ , we define their
hybrid probability ensemble

−−→
XY as follows:

−−→
XY={

−−→
XY(1k, a)}k∈N,a∈{0,1}∗ with

−−→
XY(1k, a)=(X1(1k, a), . . . , Xt(1k, a),Yt+1(1k, a), . . . ,Yn(1k, a)),

where each Xi(1k, a) ≡ X(1k, a), each Yi(1k, a) ≡ Y(1k, a), and all random variables are independent.

Lemma 49. Let X, Y be two probability ensembles and
−−→
XY their hybrid probability ensemble. Let σ(

−−→
XY) be the image

probability ensemble of
−−→
XY under the function family F=(σ)k∈N where σ is an arbitrary element of S n. If X c

= Y and
X, Y are polynomial-time constructible, then

−−→
XY c

= σ(
−−→
XY).

Proof. If {σ〈i〉}i∈[t] ⊆ [t], then the relation
−−→
XY c

= σ(
−−→
XY) holds. It remains to consider the case where {σ〈i〉}i∈[t] * [t].

Assume that the lemma is false in this case. Then, there exists a non-uniform PPT distinguisher D with auxiliary input
z = (zk)k∈N, a polynomial Poly(.), an infinite positive integer set G ⊆ N such that, for each k ∈ G, we have:

|Prob(D(1k, zk, a,
−−→
XY(1k, a)) = 1) − Prob(D(1k, zk, a, σ(

−−→
XY(1k, a)) = 1)| ≥ 1/Poly(k). (14)

Consider V
de f
= {i : i ∈ [t], σ(i) < [t]}. We list the elements of V in order as i1 < ... < i j... < i|V |. Let V j

de f
= {i1, . . . , i j}.

We define the following |V | + 1 permutations over [n].

φ0(i) =

i if i ∈ V ∪ {σ(i′)}i′∈V ,
σ(i) otherwise.

For each j ∈ [|V |], we set:

φ j(i) =

i if i ∈ (V \ V j) ∪ {σ(i′)}i′∈V\V j ,

σ(i) otherwise.
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In particular: σ = φ|V |. Note that φ j(
−−→
XY(1k, a)) is well defined as σ(

−−→
XY(1k, a)), because φ j is a permutation over [n]

as σ. As φ0(
−−→
XY(1k, a)) is obtained by not swapping positions between X(1k, a) and Y(1k, a), it holds that

−−→
XY(1k, a) ≡

φ0(
−−→
XY(1k, a)). So, we have:

|Prob(D(1k, zk, a,
−−→
XY(1k, a)) = 1) − Prob(D(1k, zk, a, σ(

−−→
XY(1k, a))) = 1)|

= |Prob(D(1k, zk, a, φ0(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ|V |(

−−→
XY(1k, a))) = 1)|. (15)

Using the triangle inequality, we get:

|Prob(D(1k, zk, a, φ0(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ#V (

−−→
XY(1k, a))) = 1)| ≤

|V |∑
j=1

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)| (16)

Combining Inequality (14) to Inequality (16), we have:

|V |∑
j=1

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)| ≥ 1/Poly(k).

So, there exists j ∈ [|V |] such that

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)| ≥ 1/(|V |Poly(k)). (17)

For any pair of permutations (φ j−1, φ j), they differ at values of points i j and σ(i j). Similarly, for probability ensembles

φ j−1(
−−→
XY(1k, a)) and φ j(

−−→
XY(1k, a)) differ at their i j-th entry and σ(i j)-th entry. Specifically,

φ j−1(
−−→
XY(1k, a))〈i j〉 ≡ X(1k, a),

φ j−1(
−−→
XY(1k, a))〈σ(i j)〉 ≡ Y(1k, a),

φ j(
−−→
XY(1k, a))〈i j〉 ≡ Y(1k, a),

φ j(
−−→
XY(1k, a))〈σ(i j)〉 ≡ X(1k, a).

Let
−−−−→
MXY

de f
= {
−−−−→
MXY(1k, a)}k∈N,a∈{0,1}∗ where

−−−−→
MXY(1k, a) is defined as follows.

∀d ∈ [n]
−−−−→
MXY(1k, a)〈d〉 ≡

φ j−1(
−−→
XY(1k, a))〈d〉 if d , σ(i j)

X(1k, a) if d = σ(i j)

Using the triangle inequality, we get:

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a,

−−−−→
MXY(1k, a)) = 1)|+

|Prob(D(1k, zk, a,
−−−−→
MXY(1k, a)) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)|

≥ |Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)| (18)

Combining Inequality (17) and Inequality(18), we know that either

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a,

−−−−→
MXY(1k, a)) = 1)| ≥ 1/(2 |V |Poly(k)) (19)

or
|Prob(D(1k, zk, a,

−−−−→
MXY(1k, a)) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)| ≥ 1/(2 |V |Poly(k)) (20)
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Without loss of generality, we assume that Inequality (19) holds (in the case where Inequality (20) holds, the proof is
similar). The difference between

−−−−→
MXY(1k, a) and φ j−1(

−−→
XY(1k, a)) is on their σ(i j)-th entry. Specifically:

−−−−→
MXY(1k, a)〈σ(i j)〉 ≡ X(1k, a),

φ j−1(
−−→
XY(1k, a))〈σ(i j)〉 ≡ Y(1k, a).

We can construct a distinguisher D′ with auxiliary input z = (zk)k∈N for the probability ensembles X and Y as follows.

• D′(1k, zk, a, γ): Sample an instance vector −−−→mxy according to the random variable
−−−−→
MXY(1k, a) and set γ to be its

σ(i j)-th entry. Return D′(1k, zk, a,−−−→mxy).

Obviously, we have:

|Prob(D′(1k, zk, a, X(1k, a)) = 1) − Prob(D′(1k, zk, a,Y(1k, a)) = 1)| =

|Prob(D(1k, zk, a,
−−−−→
MXY(1k, a)) = 1) − Prob(D(1k, zk, a, φ j−1(

−−→
XY(1k, a))) = 1)|. (21)

Combining Inequality (19) and Inequality(21), we obtain:

|Prob(D′(1k, zk, a, X(1k, a)) = 1) − Prob(D′(1k, zk, a,Y(1k, a)) = 1)| ≥ 1/(2 |V |Poly(k))

which contradicts the fact X c
= Y .

Remark 50. Let Poly1(.),Poly2(.) be two arbitrary positive polynomials such that Poly1(.) < Poly2(.). It is easy to
verify that Lemma 49 also holds in the case where t = Poly1(k), n = Poly2(k).

We are ready to prove Theorem 43.

Proof. We reuse the notations HSi from Definition 21, and BHSi from Definition 41. For a hash family H in Con-
struction 1, we define the following probability ensemble for each j ∈ [n].

HS j={HS j(1k)}k∈N
de f
= {(HS1(1k)〈1〉,HS1(1k)〈2〉〈 j〉)}k∈N,

Recall that HS1(1k)〈1〉 corresponds to the hash parameter Λ, and HS1(1k)〈2〉 corresponds to the instance vector ~x ~a. It
is easy to see that: ∀ j ∈ [t] HS j ≡ BHS1 and: ∀ j < [t] HS j ≡ BHS2. Combining the fact that basic hash family H
holds the hard subset membership property (i.e., BHS1

c
= BHS2) and Lemma 49, we have:

((HS1(1k)〈1〉,HS1(1k)〈2〉〈1〉), . . . (HS1(1k)〈1〉,HS1(1k)〈2〉〈n〉)) c
=

(HS2(1k)〈1〉,HS2(1k)〈2〉〈1〉), . . . (HS2(1k)〈1〉,HS2(1k)〈2〉〈n〉)).

Since HS1(1k)〈1〉 ≡ HS2(1k)〈1〉, we have:

(HS1(1k)〈1〉,HS1(1k)〈2〉〈1〉, . . . ,HS1(1k)〈2〉〈n〉) c
= (HS2(1k)〈1〉,HS2(1k)〈2〉〈1〉, . . . ,HS2(1k)〈2〉〈n〉),

That is: HS1
c
= HS2.

7. Constructing Basic Hash Families

In the previous section, we reduced the existence of a SPH-DHM to the construction of a basic hash family having
smoothness (or universality), projection, distinguishability and hard subset membership. In this section, we show how
to create such families under several mathematical hardness assumptions: DDH, LWE, DNR and DQR.
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7.1. Instantiation under the Decisional Diffie-Hellman Assumption
Let Gen(1k) be a PPT algorithm taking a security parameter k as input and outputting the description of a cyclic group
G of prime order: (g1, g2, q)← Gen(1k) where g1, g2 and q are respectively two distinct generators of G and the group
order.

Assumption 51. The decisional Diffie-Hellman (DDH) assumption assumes that there is no non-uniform PPT al-
gorithm distinguishing the following two probability ensembles DDH1={DDH1(1k)}k∈N and DDH2={DDH2(1k)}k∈N
defined as:

• DDH1(1k): Set (g1, g2, q)← Gen(1k) and choose a ∈U Zq, b ∈U Zq. Output ((g1, g2, q), ga
1, g

b
2).

• DDH2(1k): Operate as DDH1(1k) but return ((g1, g2, q), ga
1, g

a
2).

Our DDH-based basic hash family whose syntax is specified in Section 6.1 is described in Construction 2.

Construction 2 A DDH-based basic hash family

• PG(1k): Set Λ← Gen(1k) and return Λ.

• IS(1k,Λ, δ): Parse Λ as (g1, g2, q) and choose a ∈U Zq, b ∈U Zq. Set ẋ ← (ga
1, g

a
2), ẇ ← a, ẍ ← (ga

1, g
b
2) and

ẅ← a. Return (ẋ, ẇ) if δ = 0 or (ẍ, ẅ) if δ = 1.

• Check(1k,Λ): Parse Λ as (g1, g2, q). If q is a prime number of appropriate bitlength, and g1, g2 are two
distinct generators, then outputs 1. Otherwise, output 0.

• DI(1k,Λ, x,w): Parse Λ as (g1, g2, q) and x as (α, β). If (α, β) = (gw
1 , g

w
2 ), then output 0. If α = gw

1 and β , gw
2 ,

then output 1. Otherwise return 2.

• KG(1k,Λ, x): Parse Λ as (g1, g2, q) and choose u ∈U Zq, v ∈U Zq. Set hk ← (u, v) and compute pk ← gu
1gv

2.
Output (hk, pk).

• Hash(1k,Λ, x, hk): Parse x as (α, β) and hk as (u, v). Compute y← αuβv and return y.

• pHash(1k,Λ, x, pk,w): Compute y← pkw and output y.

Lemma 52. The hash family obtained from Construction 2 has perfect smoothness.

Proof. Let Λ = (g1, g2, q) be a legal hash parameter. Let (ẍ, a) = ((ga
1, g

b
2), a) be an instance-witness pair generated by

IS(1k,Λ, 1). For this family, the probability ensembles BSM1, BSM2 in Definition 38 can be described as follows.

• BSM1(1k): Choose u ∈U Zq and v ∈U Zq. Set hk ← (u, v), pk ← gu
1gv

2 and y← gau
1 gbv

2 . Output (pk, y).

• BSM2(1k): Run as BSM1(1k) with the exception that y ∈U G, where G is the group described by (g1, g2, q).

The difference between the two ensembles is the generation of y. Let’s consider the value y generated by BSM1. Since
g1 is a generator of the cyclic group G, there exists a constant c such that g2 = gc

1. Then: gau
1 gbv

2 = gau+cbv
1 . Since u

and v are chosen uniformly from Zq, au + cbv is also uniformly distributed over Zq. Since q is prime, gau+cbv
1 (= y)

is uniformly distributed over the group G. Therefore: BSM1 ≡ BSM2 since the value y created by BSM2(1k) is, by
construction, uniformly uniformly distributed over G.

Lemma 53. The hash family obtained from Construction 2 has the projection property.

Proof. Write Λ = (g1, g2, q) and let (ẋ, ẇ) = ((ga
1, g

a
2), a) denote an instance-witness pair generated by IS(1k,Λ, 0). Let

(hk, pk) = ((u, v), gu
1gv

2) be a hash-projection key pair generated by KG(1k,Λ, ẋ). We have:

Hash(1k,Λ, ẋ, hk) = Hash(1k,Λ, (ga
1, g

a
2), (u, v)) = gau

1 gav
2 ,

pHash(1k,Λ, ẋ, pk, ẇ) = pHash(1k,Λ, (ga
1, g

a
2), gu

1gv
2, a) = gau

1 gav
2 .

Therefore, we obtain: Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ).
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Lemma 54. The hash family obtained from Construction 2 has the distinguishability property.

The proof of this lemma is trivial, so we omit it.

Lemma 55. Assuming that the DDH assumption holds, the hash family obtained from Construction 2 has hard subset
membership.

Proof. For this family, the probability ensembles BHS1, BHS2 in Definition 41 can be described as follows.

• BHS1(1k): Generate Λ ← PG(1k), and parse Λ as (g1, g2, q). Choose a ∈U Zq and compute ẋ ← (ga
1, g

a
2).

Return (Λ, ẋ).

• BHS2(1k): Generate Λ ← PG(1k), and parse Λ as (g1, g2, q). Choose a ∈U Zq, b ∈U Zq and compute ẍ ←
(ga

1, g
b
2). Return (Λ, ẍ).

Obviously: BHS1
c
= BHS2.

7.2. Instantiation under the Learning with Errors Assumption

We start this section with some preliminaries related to the discretization of probabilistic distributions.

We consider the quotient ring R/Z representing the segment [0, 1) with addition modulo 1. Let β be an arbitrary
positive real number. We denote by Ψβ the distribution over R/Z obtained by sampling from a normal variable with
mean 0 and standard deviation β/

√
2π and reducing the result modulo 1.

Ψβ : R/Z −→ R+

r 7−→

∞∑
k=−∞

1
β

exp

−π (
r − k
β

)2 .
Definition 56 ([41]). Given an arbitrary integer q ≥ 2, an arbitrary distribution φ : R/Z→ R+, the discretization of
φ over Zq is defined as:

φ : Zq −→ R+

i 7−→

∫ (i+1/2)/q

(i−1/2)/q
φ(x) dx.

Let Gen(1k) be a PPT algorithm taking a security parameter k as input and outputs a description (q,m, χ), where q is
a prime, m = Poly(k) and χ = Ψα where α ∈ (2

√
k/q, 1).

Assumption 57 ([41]). The decision version of the learning with errors (LWE) assumption assumes that that there
is no non-uniform PPT algorithm distinguishing the following two probability ensembles LWE1={LWE1(1k)}k∈N and
LWE2={LWE2(1k)}k∈N defined as:

• LWE1(1k): Set (q,m, χ)← Gen(1k) and choose A ∈U (Zq)m×k, ~s ∈U (Zq)k, ~e ∈χ (Zq)m (which means each entry
of ~e is independently drawn from Zq according to χ). Compute ~b← A~s + ~e mod q and output ((q,m, χ), A, ~b).

• LWE2(1k): Operate as LWE1(1k) except that ~b ∈U (Zq)m.

Remark 58. Assumption 57 describes only the decision version of LWE problem. Nonetheless, the hardness of this
decision problem is the same as the LWE problem itself [41].

Remark 59. The LWE problem is an average-case problem. However, Regev showed that its hardness is implied
by both the worst-case hardness of the shortest independent vector problem (SIVP) and the worst-case hardness of
the decision version of the shortest vector problem (GapSVP) (see Theorem 1 of [41]). In other words, if the LWE
problem is efficiently solvable, so are both the SIVP and GapSVP. Since these two problems are believed to be hard
even for quantum algorithms [42], so is the LWE problem.
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Before presenting our LWE-based instantiation of basic hash family, we need to recall the key generation algorithm
of a LWE-based public key cryptosystem presented by Gentry et al. to be used as a building block [31].

• Message space: {0, 1}.

• Setup(1k): Uniformly chooses a prime q such that q ∈ [k2, 2k2]. Set m← (1 + ε)(k + 1) log q (where ε > 0 is an
arbitrary constant and arbitrarily choose α such that α = o(1/(

√
k log k)) (e.g., α = 1

√
k(log k)2 ). Set χ ← Ψα and

Λ← (q,m, χ). Output Λ.

• KeyGen(1k,Λ): Parse Λ as (q,m, χ). Choose A ∈U (Zq)m×k, ~s ∈U (Zq)k and ~e ∈χ (Zq)m. Compute ~b ←
A~s + ~e mod q and set pubk ← (A, ~b) and sk ← ~s. Return the public-private key pair (pubk, sk).

Definition 60 ([31]). A public key (A, ~b) is messy if and only if, for all m0,m1 ∈ {0, 1}, the statistical difference
between the distributions of EncA,~b(m0) and EncA,~b(m1) is negligible where Enc denotes the encryption algorithm of
the cryptosystem.

We would like to point out that any ciphertext produced under messy public keys carries no information (statistically)
about the encrypted message. Therefore, for any (even unbounded) adversary, recovery of the corresponding plaintext
is impossible. Gentry et al. showed that, if the construction parameters were appropriately chosen, their cryptosystem
held the following properties.

P1 It provides security against chosen plaintext attack. [For our construction, we only need semantic security.]
P2 All but an at most 2/qk-fraction of (A, ~b) ∈ ((Zq)m×k, (Zq)m) is messy.
P3 There exists an efficient algorithm IsMessy that identifies messy public keys. It takes a public key (A, ~b), a

trapdoor T as input and outputs an indicator. IsMessy has the following properties.

• IsMessy outputs 1 on an overwhelming fraction of all possible public keys which may be maliciously
generated.

• If IsMessy(A,T, ~b) outputs 1 on a public key (A, ~b), then (A, ~b) is indeed messy.

We do not know how to gain distinguishability as defined in Definition 14. Instead, we will be able to obtained a
relaxed version defined as follows.

Definition 61 (Relaxed Distinguishability). For any legal hash parameter Λ, any instance-witness pair (x,w) ∈
({0, 1}∗)2 which may be maliciously generated, we require:

DI(1k,Λ, x,w) =


0 if (x,w) ∈ ṘΛ,
1 if (x,w) ∈ R̈Λ,
0 or 2 otherwise.

In our framework for OTn
t , the only usage of DI is to check the legalities of instance-witness vectors. According to the

legality definition (Definition 18), an instance-witness vector is called legal if and only if it has at least n − t entries
that on receiving them DI outputs 1. Therefore, this relaxed distinguishability is sufficient for our objective.

Our LWE-based basic hash family whose syntax is specified in Section 6.1 is described in Construction 3.

Lemma 62. The hash family obtained from Construction 3 has smoothness.

Proof. Let Λ = (q,m, χ) be a legal hash parameter. Let (ẍ, ẅ) = ((A, ~b), (1,T )) be an instance-witness pair generated
by IS(1k,Λ, 1). For this family, the probability ensembles BSM1 and BSM2 from Definition 38 can be described as
follows.

• BSM1(1k): Choose a ∈U {0, 1} and compute pk ← EncA,~b(a). Set y← a and output (pk, y).

• BSM2(1k): Choose a′ ∈U {0, 1} and compute pk ← EncA,~b(a′). Pick y ∈U {0, 1} and output (pk, y).
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Construction 3 A LWE-based basic hash family
(Setup, KeyGen, Enc, Dec) representing the cryptosystem from [31] where the parameters of Setup were tuned so
that properties P1, P2 and P3 hold.

• PG(1k): Set Λ← Setup(1k) and return Λ.

• IS(1k,Λ, δ): Parse Λ as (q,m, χ) and choose A ∈U (Zq)m×k along with its trapdoor T , ~s ∈U (Zq)k and ~e ∈χ
(Zq)m. Compute ẋ← (A, A~s+~e mod q) and set ẇ← (0, ~e, ~s). Pick ~b ∈U (Zq)m such that IsMessy(A,T, ~b) = 1
and set ẍ← (A, ~b), ẅ← (1,T ). Output (ẋ, ẇ) if δ = 0, (ẍ, ẅ) if δ = 1.

• Check(1k,Λ): Parse Λ as (q,m, χ). If q is a prime number, m is a positive integer, and χ is a discretization of
an appropriate distribution then output 1. Otherwise, return 0.

• DI(1k,Λ, x,w): Parse Λ as (q,m, χ) and x as (A, ~b). Let i denote the value of w’s first entry. If i = 0, then
(0, ~e, ~s)← w; if i = 1, then (1,T )← w; otherwise output 2. Perform the following checks:

– if i = 0: Check ~b, ~e ∈ (Zq)m, A ∈ (Zq)m×k, ~s ∈ (Zq)k and ~b = A~s + ~e mod q. If the checks are all
successful then output 0; else output 2.

– if i = 1: Check ~b ∈ (Zq)m, A ∈ (Zq)m×k, T is a trapdoor and IsMessy(A,T, ~b) = 1. If the checks are all
successful then output 1; otherwise output 2.

• KG(1k,Λ, x): Parse Λ as (q,m, χ) and x as (A, ~b). Choose a ∈U {0, 1} and compute α ← EncA,~b(a). Set
hk ← a, pk ← α and output (hk, pk).

• Hash(1k,Λ, x, hk): Output hk.

• pHash(1k,Λ, x, pk,w): Parse Λ as (m, q, χ) and w as (0, ~e, ~s). Compute a← Dec~s(pk) and output a.
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It is easy to see that the second component of each ensemble is uniformly distributed. The difference between these
two ensembles is their first value denoted by pk. In the case of BSM1(1k), it is the encryption of y while, for BSM2(1k),
it corresponds to the encryption of a′. Because (A, ~b) is messy, the two distributions of this value pk are statistically
indistinguishable. Therefore, BSM1

s
= BSM2.

Lemma 63. The hash family obtained from Construction 3 has the projection property.

Proof. Let (ẋ, ẇ) = ((A, ~b), (0, ~e, ~s)) be an instance-witness generated by IS(1k,Λ, 0). Obviously, ((A, ~b), ~s) is a normal
public-private key pair. Then, we have:

Hash(1k,Λ, ẋ, hk) = a and pHash(1k,Λ, ẋ, pk, ẇ) = Dec~s(α) = Dec~s(EncA,~b(a)) = a

This means that, for any (Λ, ẋ, ẇ) generated by the hash family, it holds: Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ).

Lemma 64. The hash family obtained from Construction 3 has the distinguishability property.

Proof. Let Λ be a legal hash parameter, (x,w) an instance-witness pair that may be maliciously generated. It is trivial
to see that DI outputs 0 if (x,w) can be generated by IS(1k,Λ, 0) (i.e., (x,w) ∈ ṘΛ).

Recalling the property of algorithm IsMessy, we know that if DI outputs 1, then (x,w) ∈ R̈Λ; if (x,w) ∈ R̈Λ, then DI
outputs 1 with probability almost 1.

Lemma 65. Assuming the LWE assumption holds, the hash family obtained from Construction 3 has hard subset
membership.

Proof. For this family, the probability ensembles BHS1, BHS2 from Definition 41 can be described as follows.

• BHS1(1k): Generate Λ ← PG(1k) and parse it as (q,m, χ). Choose A ∈U (Zq)m×k along with its trapdoor T ,
~s ∈U (Zq)k and ~e ∈χ (Zq)m. Compute ẋ← (A, A~s + ~e mod q) and output (Λ, ẋ).

• BHS2(1k): Generate Λ ← PG(1k) and parse it as (q,m, χ). Choose A ∈U (Zq)m×k along with its trapdoor T and
pick ~b ∈U (Zq)m such that IsMessy(A,T, ~b) = 1. Set ẍ← (A, ~b) and output (Λ, ẍ).

Obviously, BHS1
c
= BHS2.

Since, in our basic hash family, each instance holds a matrix A, so does the hash family resulting from Construction 1.
It is trivial to show that this hash family can be improved by each instance vector sharing a common matrix A.
However, to securely instantiate our framework for OTn

t , it cannot be improved by all instance vectors sharing a
common matrix A. The reason is that, in this case, seeing A’s trapdoor T in Step S2 of the framework Π, the sender
can distinguish smooth instances and projective instances of the unchosen instance vectors and thus he can deduce the
receiver’s private input.

7.3. Instantiation under the Decisional Quadratic Residuosity Assumption

Let Gen(1k) be a PPT algorithm taking a security parameter k as input and returning an integer N being the product
of two distinct k-bit odd primes. Let JN be the subgroup of Z∗N of elements having Jacobi symbol +1.

Assumption 66 ([43]). The decisional quadratic residuosity (DQR) assumption assumes that there is no non-uniform
PPT algorithm distinguishing the following two probability ensembles DQR1={DQR1(1k)}k∈N and DQR2={DQR2(1k)}k∈N
defined as:

• DQR1(1k): Generate N ← Gen(1k), choose r ∈U Z∗N and compute x← r2 mod N. Output (N, x).

• DQR2(1k): Operate as DQR1(1k) except x ∈U JN .
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Definition 67 ([25]). A hash familyH = (PG, ÎS, ÎT, K̂G,Hash, pHash) is a verifiably-ε-universal projective hashing
family, if for any Λ generated by PG(1k), any (ẋ, ẇ, ẍ) generated by ÎS(1k,Λ),H is projective on ẋ, and universal on
ẍ. In addition, it holds verifiable-ε-universallity, which is defined as follows.

• For any Λ generated by PG(1k), any (ẇ, ẋ, ẍ) generated by ÎS(1k,Λ), we have: ÎT(1k,Λ, ẋ, ẍ) = ÎT(1k,Λ, ẍ, ẋ) =

1.

• For any tuple (Λ, x1, x2) which may be maliciously generated, if ÎT(1k,Λ, x1, x2) = 1, then H is ε-universal on
at least one of x1 or x2.

We can see that the syntax of a hash family appearing in [25] is different from our basic hash family notion. It does
not have algorithms like Check or DI. However, it possesses an algorithm ÎT. There are some additional syntaxic
differences not reflected by above definition. In a Halevi and Tauman Kalai hash family, ÎS does not take any work
mode parameter δ and ÎS(1k,Λ) outputs a tuple (ẋ, ẇ, ẍ) where typically ẋ and ẍ are generated in dependent way. In
addition, their key generating algorithm K̂G does not take any instance parameter x.

Under the DQR assumption, Halevi and Tauman Kalai proposed the following verifiably-ε-universal projective hash
family.

Construction 4 A verifiably-universal projective hash family [25]

• PG(1k): Choose uniformly two k-bit prime p, q such that p = q = 3 mod 4. Set N ← pq, choose a ∈U Z∗N
and compute g← a2 mod N. Set Λ← (N, g) and output Λ.

• ÎS(1k,Λ): Parse Λ as (N, g). Set T ← 2dlog Ne, choose ẇ ∈U ZN and compute ẋ← (gT )ẇ mod N and ẍ← N− ẋ.
Output (ẇ, ẋ, ẍ).

• ÎT(1k,Λ, ẋ, ẍ): Parse Λ as (N, g). Checks that N > 22n, g, ẋ ∈ Z∗N , and ẍ = N − ẋ. Outputs 1 if all these tests
pass and 0 otherwise.

• K̂G(1k,Λ): Parse Λ as (N, g). Set T ← 2dlog Ne, choose hk ∈U ZN and compute pk ← (gT )hk mod N. Output
(hk, pk).

• Hash(1k,Λ, x, hk): Parse Λ as (N, g) and compute y← xhk mod N. Output y.

• pHash(1k,Λ, x, pk,w): Parse Λ as (N, g) and compute y← pkw mod N. Output y.

Our DQR-based basic hash family whose syntax is specified in Section6.1 is described in Construction 5.

Construction 5 A DQR-based basic hash family

• Algorithms PG, KG, Hash, pHash operate as in Construction 4.

• IS(1k,Λ, δ): Parse Λ as (N, g). Set T ← 2dlog Ne, choose r ∈U ZN and compute ẋ← (gT )r mod N. Set ẇ← r,
compute ẍ← N − (gT )r mod N and assign ẅ← r. Output (ẋ, ẇ) if δ = 0; output (ẍ, ẅ) if δ = 1.

• Check(1k,Λ): Parse Λ as (N, g). If it holds that N > 22k and g ∈ Z∗N , then output 1; otherwise, output 0.

• DI(1k,Λ, x,w): Parse Λ as (N, g). Set T ← 2dlog Ne and r ← w. If x = (gT )r mod N, then output 0. If
x = N − (gT )r mod N, then output 1. Otherwise, output 2.

It is easy to see that the basic hash family obtained from Construction 5 inherits the universality and projection
properties from Construction 4.

Lemma 68. The hash family obtained from Construction 5 has the distinguishability property.
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Proof. Let Λ be a legal hash parameter and (x,w) an instance-witness pair that may be maliciously generated. It
is easy seen that DI(1k,Λ, x,w) = 0 if and only if (x,w) can be generated by IS(1k,Λ, 0) (i.e., (x,w) ∈ ṘΛ) and
DI(1k,Λ, x,w) = 1, if and only if (x,w) can be generated by IS(1k,Λ, 1) (i.e., (x,w) ∈ R̈Λ).

Lemma 69. Assuming that the DQR assumption holds, the hash family obtained from Construction 5 has hard subset
membership.

Proof. For this family, the probability ensembles BHS1 and BHS2 from Definition 41 can be described as follows.

• BHS1(1k): Generate (N, g) ← PG(1k). Set T ← 2dlog Ne, choose r ∈U ZN and compute ẋ ← (gT )r mod N.
Output (Λ, ẋ).

• BHS2(1k): Operate as BHS1(1k) except that it outputs (Λ, ẍ), where ẍ← N − (gT )r mod N.

It is easy to see that (gT )r mod N is a quadratic residue modulo N and N is a Blum integer. Following the properties
of Blum integers, N − (gT )r mod N is not a quadratic residue and N − (gT )r mod N ∈ JN . Therefore, if the DQR
assumption holds, we have: BHS1

c
= BHS2.

7.4. Instantiation under the Decisional N-th Residuosity Assumption

We use the same parameter generator Gen(1k) as in Section 7.3.

Assumption 70 ([44]). The decisional N-th residuosity (DNR) assumption assumes that there is no non-uniform PPT
algorithm distinguishing the following two probability ensembles DNR1={DNR1(1k)}k∈N and DNR2={DNR2(1k)}k∈N
defined as follows:

• DNR1(1k): Generate N ← Gen(1k) and choose a ∈U Z∗N2 . Compute b← aN mod N2 and output (N, b).

• DNR2(1k): Operate as DNR1(1k) except that b ∈U Z∗N2 .

Similarly to our DQR-based basic hash family, our DNR-based basic hash family is built from Halevi and Kalai’s
DNR-based verifiably-ε-universal projective hash family [25]. The modifications and security proofs are similar too.
To save space, we omit these details and only describe our basic hash family in Construction 6.

Construction 6 A DNR-based basic hash family

• PG(1k): Generate N ← Gen(1k), choose a ∈U Z∗N2 and compute g ← aN mod N. Set Λ ← (N, g) and return
Λ.

• IS(1k,Λ, δ): Parse Λ as (N, g). Set T ← Nd2 log Ne, choose r ∈U Z∗N and compute ẋ ← (gT )r mod N2. Set
ẇ← (r, 0), v ∈U Z∗N , choose ẍ← (gT )r(1 + vN) mod N2 and ẅ← (r, v). Output (ẋ, ẇ) if δ = 0; output (ẍ, ẅ)
if δ = 1.

• Check(1k,Λ): Parse Λ as (N, g). If N > 22k and g ∈ Z∗N2 , then output 1. Otherwise, output 0.

• DI(1k,Λ, x,w): Parse Λ as (N, g) and w as (r, v). If v = 0, r ∈ Z∗N and x = (gT )r mod N2, then output 0. If
v , 0, r, v ∈ Z∗N and x = (gT )r(1 + vN) mod N2, then output 1. Otherwise, output 2.

• KG(1k,Λ, x): Parse Λ as (N, g). Set T ← Nd2 log Ne, choose hk ∈U ZN2 and compute pk ← (gT )hk mod N2.
Output (hk, pk).

• Hash(1k,Λ, x, hk): Output xhk mod N2.

• pHash(1k,Λ, x, pk,w): Output pkw mod N2.
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8. Conclusion

In this paper, we proposed a framework Π for OTn
t with fully-simulatable SAMA working in the plain model. Our

construction is based on a new SPH variant called SPH-DHM. This approach reduced the existence of protocols for
OTn

t to this primitive. We showed how to generate a SPH-DHM under several hardness assumption such as DDH,
DRN, DQR and LWE. In an efficiency point of view, our framework is quite performant as Π only needs 4 communi-
cation rounds and it expectedly costs 20 n encryptions and 20 t decryptions. This work leads to two interesting open
problems. First, can the existence of SPH be reduced to the existence of OT? Since both SPH and OT are public-
key cryptographic primitives, we conjecture this might be the case. Second, before this paper, known OT protocols
required at least 6 communication rounds. Since our protocol Π only has 4 rounds, one may wonder if this value is
necessary to realize OT with fully-simulatable SAMA in the plain model. In other words, is it possible to design such
a secure framework with at most 3 rounds?

Bibliography

References

[1] M. O. Rabin, How to exchange secrets by oblivious transfer, Tech. Rep. Technical Report TR-81, Aiken Computation Lab, Harvard University
(1981).

[2] J. Kilian, Founding cryptography on oblivious transfer, in: 20th Annual ACM Symposium on Theory of Computing (STOC’88), ACM Press,
Chicago, USA, 1988, pp. 20 – 31.

[3] G. Aggarwal, N. Mishra, B. Pinkas, Secure computation of the median (and other elements of specified ranks), Journal of Cryptology 23 (3)
(2010) 373–401.

[4] N. Mohammed, D. Alhadidi, B. C. M. Fung, M. Debbabi, Secure two-party differentially private data release for vertically partitioned data,
Dependable and Secure Computing, IEEE Transactions on 11 (1) (2014) 59–71.

[5] C. Hazay, K. Nissim, Efficient set operations in the presence of malicious adversaries, Journal of Cryptology 25 (3) (2012) 383–433.
[6] B. Aiello, Y. Ishai, O. Reingold, Priced oblivious transfer: How to sell digital goods, in: B. Pfitzmann (Ed.), Advances in Cryptology -

Eurocrypt’01, Vol. 2045 of Lecture Notes in Computer Science, Springer - Verlag, Innsbruck, Austria, 2001, pp. 119 – 135.
[7] S. Jarecki, X. M. Liu, Private mutual authentication and conditional oblivious transfer, in: S. Halevi (Ed.), Advances in Cryptology - Crypto

2009, Vol. 5677 of Lecture Notes in Computer Science, 2009, pp. 90–107.
[8] Lindell, Pinkas, Privacy preserving data mining, Journal of Cryptology 15 (2002) 177–206.
[9] M. Naor, B. Pinkas, Computationally secure oblivious transfer, Journal of Cryptology 18 (1) (2005) 1 – 35.

[10] M. Green, S. Hohenberger, Practical adaptive oblivious transfer from simple assumptions, in: Y. Ishai (Ed.), 8th Theory of Cryptography
Conference (TCC’11), Vol. 6597, Springer - Verlag, Providence, USA, 2011, pp. 347 – 363.

[11] W. Ogata, K. Kurosawa, Oblivious keyword search, Journal of complexity 20 (2) (2004) 356–371.
[12] M. Naor, B. Pinkas, Oblivious polynomial evaluation, SIAM Journal on Computing 35 (2006) 1254 – 1281.
[13] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing contracts, Communications of the ACM 28 (6) (1985) 637–647.
[14] K. Bharat, A. Broder, A technique for measuring the relative size and overlap of public web search engines, Computer Networks and ISDN

Systems 30 (1) (1998) 379–388.
[15] D. Catalano, R. Cramer, I. Damgård, G. Di Crescenzo, D. Poincheval, T. Takagi, Contemporary Cryptology, Advanced Courses in Mathe-

matics - CRM Barcelona, Birkhäuser, 2005.
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