
Increased Resilience in Threshold Cryptography

Sharing a Secret with Devices That Cannot Store Shares

Koen Simoens, Roel Peeters, and Bart Preneel

K.U.LEUVEN ESAT/SCD-COSIC and IBBT
Kasteelpark Arenberg 10 bus 2446
3001 Heverlee (Leuven),Belgium

firstname.lastname@esat.kuleuven.be

Abstract. Threshold cryptography has been used to secure data and control access
by sharing a private cryptographic key over different devices. This means that a
minimum number of these devices, the threshold t+ 1, need to be present to use the
key. The benefits are increased security, because an adversary can compromise up to
t devices, and resilience, since any subset of t+ 1 devices is sufficient.
Many personal devices are not suitable for threshold schemes, because they do not
offer secure storage, which is needed to store shares of the private key. This arti-
cle presents several protocols in which shares are stored in protected form (possibly
externally). This makes them suitable for low-cost devices with a factory-embedded
key, e.g., car keys and access cards. All protocols are verifiable through public broad-
cast, thus without private channels. In addition, distributed key generation does not
require all devices to be present.

1 Introduction

The increased capabilities of mobile devices and connectivity with the rest of the world have
made the use of these devices exceed their original purpose. Mobile phones are being used
to read e-mail, authorise bank transactions or access social network sites. As a consequence,
personal devices are used more and more for security-sensitive tasks. Moreover, personal data
are copied to these devices and need to be protected. In both cases, by using cryptography,
security reduces to the management of cryptographic keys. Although mobility is considered
as a major benefit, it is a weakness in terms of security and reliability. Mobile devices are
susceptible to theft, they can easily be forgotten or lost, or simply run out of battery power.
These weaknesses can be mitigated by introducing threshold cryptography.

The aim of threshold cryptography is to protect a key by sharing it amongst a number
of entities in such a way that only a subset of minimal size, namely the threshold t+ 1, can
use the key. No information about the key can be learnt from t or less shares. The setup of
a threshold scheme typically involves a Distributed Key Generation (DKG) protocol. In a
DKG protocol a group of entities cooperate to jointly generate a key pair and obtain shares
of the private key. These shares can then be used to sign or decrypt on behalf of the group.

The benefits of a threshold scheme are increased security, because an adversary can
compromise up to t devices, and resilience, since any subset of t + 1 devices is sufficient.
To increase resilience we want to maximise the number of devices included in the threshold
scheme. However, the number of personal devices suitable for threshold schemes is limited



2 Koen Simoens, Roel Peeters, and Bart Preneel

because many of these do not incorporate secure storage, which is needed to store shares of
the private key. We enlarge the group of high-end devices by also considering small devices
with public-key functionality, e.g., car keys or access cards. Typically, these small devices
have a factory-embedded private key, which cannot be updated and is the only object that
resides in tamper-proof secure storage.

We present a solution that allows to store shares, possibly externally, in protected form1.
These protected shares are generated through a run of our new DKG protocol, which is pub-
licly verifiable. Public verifiability implies that the correctness of any device’s contribution
can be verified by all. As such, not every device needs to be present during the DKG. More-
over, shares can be used implicitly, they are never needed in unprotected form. Furthermore,
some devices can be completely ignorant of the underlying threshold scheme and only serve
as partial decryption oracles.

Organisation. Related work is surveyed in Section 2. In Section 3 we introduce some basic
concepts. We give an overview of typical routines in a threshold setting and we describe our
communication and adversarial model. Security definitions are given along with an overview
of relevant number-theoretic assumptions. Some notation is presented on bilinear pairings,
which is one of the underlying primitives in our protocols. In Section 4 we present how we
protect shares and our main result, which is a new publicly verifiable DKG protocol that does
not require every device to be present. In Section 5 we demonstrate how protected shares can
easily be used in discrete-log based cryptosystems and signature schemes. More specifically,
we demonstrate this for the ElGamal [15] and the Cramer-Shoup [8] cryptosystems, and the
Schnorr signature scheme [26].

2 Related Work

Shamir’s early idea [28] of distributing shares of a secret as evaluations of a polynomial
has become a standard building block in threshold cryptography. Feldman [9] introduced
verifiable secret sharing (VSS) by publishing the coefficients of this polynomial hidden in
the exponent of the generator of a group in which the discrete-log assumption holds. Peder-
sen [23] then used this idea to construct the first distributed key generation (DKG) protocol,
sometimes referred to as Joint Feldman, by having each player in a group run an instance of
Feldman’s protocol in parallel. Soon thereafter, Pedersen [24] produced another remarkable
result. He made Feldman’s VSS scheme information-theoretically secure by choosing two
polynomials and broadcasting the corresponding coefficients as paired commitments, which
are known as Pedersen commitments. Gennaro et al. [16] pointed out that the uniformity
of the key produced by Pedersen’s DKG protocol cannot be guaranteed in the context of a
rushing adversary. They constructed a new DKG protocol [16] by first running Pedersen’s
VSS in parallel (Joint Pedersen). Since Pedersen VSS does not produce a public key, an
extra round of communication, basically an instance of Joint Feldman on the first polyno-
mial, has to be added to compute the public key. They proved their protocol secure against
a static adversary by means of a simulation argument. Interestingly, Gennaro et al. showed

1 An obvious answer would be to store a share encrypted under the device’s public key. This is
undesired because at some point the share will be in the clear in unprotected memory.



Increased Resilience in Threshold Cryptography 3

later [17] that, despite the biased distribution of the key, certain discrete-log schemes that
use Pedersen DKG can still be proved secure at the cost of an increased security parameter.
Canetti et al. [6] used interactive knowledge proofs and erasures, i.e., players erase private
data before commitments or public values are broadcast, in the key construction phase
of the DKG of [16] to make the protocol secure against adaptive adversaries. Comparable
adaptively secure threshold schemes were presented by Frankel et al. [11].

In the protocols discussed so far, it is assumed that there are private channels between
each pair of players. Both [6] and [11] suggest that these channels can still be established
even with an adaptive adversary using the non-committing encryption technique of Beaver
and Haber [3], which assumes erasures. Jarecki and Lysyanskaya [20] criticised this erasure
model and pointed out that the protocols presented in [6] and [11] are not secure in the
concurrent setting, i.e., two instances of the same scheme can not be run at the same time.
They solved this by introducing a “committed proof”, i.e., a zero-knowledge proof where
the statement that is being proved is not revealed until the end of the proof. To implement
the secure channels without erasures they use an encryption scheme that is non-committing
to the receiver. Abe and Fehr [1] later proposed an adaptively-secure (Feldman-based) DKG
and applications with complete security proofs in the Universal Composability framework of
Canetti [5]. They demonstrated that a discrete-log DKG protocol can be achieved without
interactive zero-knowledge proofs. However, they still need a single inconsistent player and
a secure message transmission functionality (private channels), which can be realised using
a receiver non-committing transmission protocol based on [20].

As a consequence of private channels, each of the aforementioned DKG protocols has
some kind of complaint procedure or dispute resolution mechanism. To get rid of these,
several authors have proposed protocols that provide public verifiability. Stadler [30] was of
the first to propose a publicly verifiable secret sharing (PVSS) protocol. In addition to the
Feldman commitments, shares were broadcast in encrypted form and verified using a non-
interactive proof of equality of (double) discrete logarithms. A more efficient protocol was
presented by Fujisaki and Okamoto [12], which is secure under a modified RSA assumption.
The first PVSS shown secure under the Decisional Diffie-Hellman (DDH) assumption was
given by Schoenmakers [27]. The shares are broadcast in encrypted form by hiding them
in the exponent of each player’s individual public key, which has a different base (another
generator) than the Feldman commitments. The dealer then uses non-interactive proofs of
discrete-log equality. Furthermore, correct behaviour of the players is verified by extending
the secret reconstruction phase with additional proofs of correctness. Based on Schoenmak-
ers’ result Heidarvand and Villar [19] presented the first PVSS protocol where verifiability
is obtained from bilinear pairings over elliptic curves and proofs are no longer needed. Un-
fortunately, their scheme cannot be used to set up a DKG because the secret that is used is
in the co-domain of the pairing. The first full DKG that does not require private channels
was given by Fouque and Stern [10]. The main buildings blocks for their construction are
the Paillier cryptosystem and a new non-interactive zero-knowledge proof. To deal with a
rushing adversary it is simply assumed that communication is completely synchronous. For
participants not present during the DKG the amount of information that needs to be stored,
i.e., the subshares that need to be decrypted, is linear in the number of participants that
are active in the DKG.



4 Koen Simoens, Roel Peeters, and Bart Preneel

3 Basic Concepts

Before we describe our new protocols, we give an overview of basic concepts that will be
used later on.

3.1 Threshold Cryptography

Threshold cryptography typically involves routines related to setting up the group, encryp-
tion and signatures. A private key is shared amongst the n devices in the scheme and only a
subset of at least t+1 devices need to employ their shares to (implicitly) use this private key
in a cryptosystem or signature scheme. We define the following set of routines (threshold
routines are indicated with the prefix T):

Pre-setup.
– Init: Initialise the system parameters.
– KeyGen: Generate key material for a device.

Setup.
– ConstructGroup: Given a set of n devices and their public keys, create and share a

key pair for the group with a subset of the devices.
Signatures.
– T-Sign: At least t+ 1 devices collaborate to generate a signature on a message that is

verifiable under the group’s public key.
– Verify: Using the group’s public key a signature is verified.

Encryption.
– Encrypt: Encrypt a message under the group’s public key.
– T-Decrypt: At least t + 1 devices collaborate to decrypt a given ciphertext that was

encrypted under the group’s public key.

3.2 Communication and Adversarial Model

We assume that n devices {Di}i=1..n, of which t can be faulty, communicate over a dedicated
broadcast channel2. By dedicated we mean that if a device Di broadcasts a message, then
it is received by all other devices and recognised as coming from this device. There are
no private channels, all communication goes over the broadcast channel. Communication is
round-synchronous, protocols run in rounds and there is a time bound on each round.

A distinction is commonly made between static and adaptive adversaries. Static means
that the adversary corrupts the devices before the protocol starts, whereas adaptive means
that a device can become corrupt before or at any time during execution of a protocol.
We assume a malicious computationally bounded static adversary who can corrupt up to
t devices. The adversary has access to all information stored by the corrupted devices and
can manipulate their behaviour during the execution of a protocol in any way. The round-
synchronous communication implies that the adversary could be rushing, i.e., he can wait
in each round to send messages on behalf of the corrupted devices until he has received the
messages from all uncorrupted devices.
2 We abstract from the actual implementation of the dedicated broadcast channel.



Increased Resilience in Threshold Cryptography 5

3.3 Security Definitions

In a secret sharing scheme a dealer splits a secret into pieces, called shares, and distributes
them amongst several parties. In a threshold setting, the secret can be reconstructed from
any subset of shares of a minimum size. An early solution was given by Shamir [28], who
shared a secret x by choosing a random polynomial f of degree t such that x = f(0) and
each share is an evaluation of this polynomial, i.e., xi = f(i). Any point on a polynomial
of degree t can be reconstructed by Lagrange interpolation through at least t+ 1 points of
this polynomial. To reconstruct the secret x, the shares are combined as x =

∑
λixi, with

λi the appropriate Lagrange multipliers.
Verifiable secret sharing (VSS) allows the receivers to verify that the dealer properly

shared a secret. We briefly rephrase the requirements of a secure VSS (see [24] and [16,
Lemma 1]).

Definition 1 (Secure VSS). A VSS protocol is secure if it satisfies the following condi-
tions:

1. Correctness. If the dealer is not disqualified then any subset of t+ 1 honest players can
recover the unique secret.

2. Verifiability. Incorrect shares can be detected at reconstruction time by using the output
of the protocol.

3. Secrecy. The view of a computationally bounded static adversary A is independent of the
secret, or, the protocol is semantically secure against A.

The drawback of VSS is that a single party knows the secret. This can be resolved by gen-
erating and sharing the key in a distributed way. The correctness and secrecy requirements
for DKG were defined by Gennaro et al. [18].

Definition 2 (Secure DKG). A DKG protocol is secure if it satisfies the following con-
ditions:
Correctness is guaranteed if:
(C1) All subsets of t+ 1 shares provided by honest players define the same private key.
(C2) All honest parties know the same public key corresponding to the unique private key
as defined by (C1).
(C3) The private key (and thus also the public key) is uniformly distributed.
Secrecy is guaranteed if an adversary can learn no information about the private key be-
yond what can be learnt from the public key. This requirement can be further enhanced with a
simulation argument: for any adversary there should be a simulator that, given a public key,
simulates a run of the protocol for which the output is indistinguishable of the adversary’s
view of a real run of the protocol that ended with the given public key.

3.4 Pairings and Number-Theoretic Assumptions

Pairings. The main building block in our protocols are pairings. These are essentially
bilinear maps and are usually defined over elliptic curve groups. They will be used to achieve
verifiability in the DKG protocol, for signature verification and for decryption.



6 Koen Simoens, Roel Peeters, and Bart Preneel

Let G1, G2 and GT be cyclic groups of order ` and let ê be a non-degenerate bilinear
pairing

ê : G1 ×G2 → GT .

A pairing is non-degenerate if for each element P in G1 there is a Q in G2 such that
ê(P,Q) 6= 1 and vice versa for each element Q in G2. A pairing is bilinear if ê(P +P ′, Q) =
ê(P,Q)ê(P ′, Q), thus ê(aP,Q) = ê(P,Q)a with a ∈ Z`, and vice versa for elements in G2.
We will use multiplicative notation for GT and additive notation for G1 and G2.

Number-Theoretic Assumptions. Security in public-key cryptography usually depends
on the intractability of some number-theoretic problem. This means that a protocol or
scheme is secure under the condition that certain number-theoretic assumptions hold. We
review some relevant assumptions and refer the reader to [22] and [29] for more details.

Discrete Logarithm. Let P be a generator of G1 and let Y be a given arbitrary element of
G1. The discrete logarithm (DL) problem in G1 is to find the unique integer a ∈ Z` such
that Y = aP . Similarly, the problem can be defined in G2 and GT . The DL assumption
states that it is computationally hard to solve the DL problem.

Diffie-Hellman. Let P be a generator of G1 and let aP, bP be two given arbitrary elements
of G1, with a, b ∈ Z`. The computational Diffie-Hellman (CDH) problem in G1 is to find
abP . The tuple 〈P, aP, bP, abP 〉 is called a Diffie-Hellman tuple. Given a third element
cP ∈ G1, the decisional Diffie-Hellman (DDH) problem is to determine if 〈P, aP, bP, cP 〉 is
a valid Diffie-Hellman tuple or not. Obviously, if one can solve the DL problem then one
can also solve the CDH problem. The opposite does not necessarily hold and, therefore, the
CDH assumption is said to be a stronger assumption than the DL assumption. A divisional
variant of the DDH problem [2], which is considered to be equivalent, is to determine if
〈P, aP, cP, abP 〉 is a valid DH tuple or not, i.e., if c = b.

Co-Bilinear Diffie-Hellman (coBDH). For asymmetric pairings, i.e., G1 6= G2, where there is
no known efficiently computable isomorphism ψ : G2 → G1 the following problem can be de-
fined. The coBDH-2 problem is defined as given P ∈ G1 and Q, aQ, bQ ∈ G2, find ê(P,Q)ab.
We denote the decisional variant as coDBDH-2. A divisional variant of the coDBDH-2 prob-
lem is to determine whether 〈P,Q, aQ, abQ, gc〉 is a valid coBDH-2 tuple.

Inversion Problems. Galbraith et al. [13] studied several inversion problems for pairings.
They concluded that these problems are hard enough to rely upon. The most intuitive
argument is that if one can solve a particular pairing inversion in polynomial time then one
can also solve a related Diffie-Hellman problem in one of the domains or the co-domain.

3.5 Pre-setup

The pre-setup phase is straightforward and works as follows.

Init(1k): The input is a security parameter k. Let G1, G2 and GT be finite cyclic groups of
prime order ` with P , Q and g = ê(P,Q) generators of the respective groups. It is assumed



Increased Resilience in Threshold Cryptography 7

that there is no known efficiently computable isomorphism ψ : G2 → G1. Let P ′ and P ′′

be two other generators of G1 for which the discrete logarithm relative to the base P is
unknown and let g1 = g, g2 = ê(P ′, Q) and g3 = ê(P ′′, Q). The procedure outputs the
description of the groups (G1,G2,GT ) and the pairing (ê) along with the public system
parameters

PubPar = (P, P ′, P ′′, Q) ∈ G3
1 ×G2 .

KeyGen(PubPar,Di): For the given device Di a random si ∈R Z∗` is chosen as private key.
The corresponding public key is Si = siQ. The procedure outputs Di’s key pair

(si, Si) ∈ Z∗` ×G2 .

Note that this procedure is executed only once in the lifetime of each Di and that si
is the only secret that has to be securely stored. Typically, this routine is executed during
fabrication of the device. A public key can easily be computed for a different set of system
parameters if this would be required.

4 Distributed Key Generation

In this section, we present our main result, which is a new distributed key generation (DKG)
protocol. Recall from the introduction that we want to set up a threshold construction
without the devices having to securely store their share. Instead, the shares will be stored
in protected form. This idea is put forward in Section 4.1. Our DKG consists of two phases.
First, a private key is jointly generated and shared through the parallel execution of a
new publicly verifiable secret sharing (PVSS) protocol. This PVSS protocol is described in
Section 4.2. Second, the corresponding public key is extracted. Together, these two phases
make up our new DKG protocol, which is presented in Section 4.3.

4.1 Protecting Shares

As mentioned in Section 3.5, each device Di is initialised with its own key pair (si, Si). If
the group’s private key was x ∈ Z`, then the device would receive a share xi ∈ Z` that has
to be securely stored. Since the device does not provide secure storage it has to store its
share in protected form. One option is to encrypt the share xi. This has the disadvantages of
involving a costly decryption operation and the fact that the share will at some point reside
in the clear in the device’s memory. Another option is to store the share as the product xisi.
The obvious disadvantage is that t+ 1 devices can collaborate to compute another device’s
private key si.

As we do not want a device’s private key si ever to be revealed, we will combine shares
with the device’s public key and store these as public correction factors Ci = xiSi ∈ G2.
A similar idea was used in [27]. However, here we use bilinear pairings to achieve public
verifiability and easy integration of our scheme in existing discrete-log cryptosystems and
signature schemes, without ever having to reveal the shares (see Section 5). We define3 the
3 We note that we could use notation X and Xi for the private key and its shares. However, to

compute the correction factor Ci, elements of Z` will be combined with Si, but by definition,
private key material is in G2.



8 Koen Simoens, Roel Peeters, and Bart Preneel

group’s private key as xQ ∈ G2 and its public key as y = gx = ê(P, xQ) ∈ GT . As such, the
share of a device is xiQ = s−1

i Ci ∈ G2. The construct group routine is formally defined as
follows.

– ConstructGroup(PubPar,{Di, Si},t): A subset of the devices Di generates the group’s
public key gx and shares the private key xQ in the form of public correction factors
Ci = xiSi for all n devices. The procedure outputs the group’s public key

y = gx = ê(P, xQ) ∈ GT

and the public correction factors which are added to the public parameters

PubPar = (P, P ′, P ′′, Q, y, {Ci}i=1,...,n) ∈ G3
1 ×G2 ×GT ×Gn

2 .

4.2 Publicly Verifiable Secret Sharing

The main building block to construct our DKG protocol is a new PVSS protocol. In this
protocol, a dealer generates shares of a secret and distributes them in protected form. Any
party observing the output of the protocol can verify that the dealer behaved correctly.
Basically, the protocol goes as follows.

The dealer chooses uniformly at random x ∈R Z`. The actual secret that will be shared
at the end of the protocol is xQ. Similar to Pedersen’s VSS scheme [24], the dealer chooses
two random polynomials f and f ′ of degree t, sets the constant term of the first polynomial
to x and broadcasts pairwise commitments Ak ∈ G1 to the coefficients of the polynomials.
Evaluations of both polynomials will be combined with the public keys of the devices and
broadcast in protected form. Each device then verifies that all broadcast shares are correct
by applying the pairing to check them against the commitments. The details of the protocol
are given in Fig. 1.

Private channels are avoided because the shares xiQ are broadcast in protected form
xiSi. Each device could recover its share by using its private key. However, the shares are
never needed in unprotected form. The protected form allows for public verifiability, since for
any device Di the correctness of xiSi and x′iSi can be verified by pairing the commitments
with Di’s public key Si. The dealer is disqualified, if for any Di this verification fails. As
a consequence, there is no need for a cumbersome complaint procedure. Moreover, not all
devices need to be present during the execution of the protocol because the shares were
already broadcast in the form in which they will be stored and used.

In the next theorem we will demonstrate that our new PVSS protocol satisfies the
requirements of secure VSS protocol as given by Definition 1.

Theorem 1. Our new PVSS protocol is a secure VSS protocol (Definition 1) under the
divisional variant of the DDH assumption in G2.

Proof (Correctness). It follows directly from Pedersen’s result [24] that each subset of t+ 1
devices can reconstruct the coefficients ckQ, c′kQ of the polynomials F (z) = f(z)Q and
F ′(z) = f ′(z)Q from their shares. If the dealer is not disqualified then Equation (1) holds
for all devices and the coefficients will successfully be verified against the commitments Ak.
Hence, it can be verified that all shares are on the same (respective) polynomial and each
subset of t+ 1 devices can compute the same secret xQ = F (0) . ut



Increased Resilience in Threshold Cryptography 9

Input: The public key Si = siQ of each device Di
Output: Protected shares xiSi, such that xiQ is the share of device Di

The dealer shares the secret xQ, for which he chooses x ∈R Z` :

1. The dealer constructs two polynomials f(z) and f ′(z) of degree t by choosing random
coefficients ck, c

′
k ∈R Z∗` for k = 0 . . . t , except for c0, which is c0 = x :

f(z) = c0 + c1z + · · ·+ ctz
t , f ′(z) = c′0 + c′1z + · · ·+ c′tz

t .

The dealer broadcasts commitments

Ak = ckP + c′kP
′ , k = 0 . . . t .

2. For each device Di, the dealer computes and broadcasts

xiSi , x
′
iSi with xi = f(i) , x′i = f ′(i) , i = 1 . . . n .

3. Each device verifies the broadcast shares for all Di by checking that

ê(P, xiSi) · ê(P ′, x′iSi) =

tY
k=0

ê(Ak, Si)
ik . (1)

If any of these checks fails, the dealer is disqualified.

Fig. 1. Publicly verifiable secret sharing.

Proof (Verifiability). During reconstruction Di provides xiQ and x′iQ, and it can be verified
that

ê(P, xiQ) · ê(P ′, x′iQ) =
t∏

k=0

ê(Ak, Q)i
k

.

ut

Proof (Secrecy). Consider a worst-case static adversary A , i.e., an adversary that corrupts
t devices before the protocol starts. The protocol is semantically secure against A, if A
chooses two values x0Q, x1Q ∈ G2 and cannot determine which of these two was shared
with negligible advantage over random guessing, given the output of a run of the protocol
that shared either the secret x0Q or x1Q. We prove the semantic security by showing that
no such adversary can exist.

If there exists an A that has a non-negligible advantage in attacking the semantic security
of our protocol, then we can build a simulator SIM that uses A to solve an instance of the
divisional DDH problem in G2 (see Section 3.4). Since, this is assumed to be a hard problem
we conclude that no such adversary can exist.

We now describe this simulator. The simulator SIM is given a tuple 〈Q, aQ, cQ, abQ〉 and
has to decide if this is a valid DH tuple, i.e., if cQ = bQ.

1. The simulator SIM does the pre-setup. He chooses the system parameters PubPar, which
contain P and P ′ = ηP , with η known to SIM. He constructs a set of devices Di, of which



10 Koen Simoens, Roel Peeters, and Bart Preneel

one will be the designated device, denoted as Dd. For each Di 6= Dd, SIM generates a
random key pair. The public key of Dd is set to Sd = cQ.

2. The adversary A receives PubPar and the set of devices along with their public keys. He
announces the subset of corrupted devices, which will be denoted by Dj for j = 1 . . . t .

3. The simulator SIM gives the private keys sj of the corrupted devices to A. Device Dd
is corrupted with a worst-case probability of roughly 1/2, in which case the simulation
fails.

4. A outputs two values x0Q and x1Q, of which one has to be shared.
5. Without loss of generality, we assume SIM chooses x0Q. The output of the VSS protocol

is generated as follows.
– SIM chooses k random values zk ∈R Z∗` and broadcasts commitments Ak = zkP .
– SIM constructs a random polynomial F (z) of degree t subject to F (0) = x0Q and
F (d) = aQ . For Equation (1) to hold, future shares xiQ and x′iQ will have to satisfy

αiQ = xiQ+ ηx′iQ with αi =
t∑

k=0

zki
k . (2)

SIM evaluates the polynomial F (z) and sets the shares xjQ = F (j) for each cor-
rupted Dj . For the non-corrupted Di 6= Dd, SIM chooses random shares xiQ ∈R G2 .
For i 6= j, the shares on the second polynomial x′iQ and x′jQ are determined by
Equation (2).

– With the private keys si and sj , SIM computes the protected shares xiSi, x′iSi and
xjSj , x

′
jSj .

– For the designated device, SIM sets xdSd = abQ and x′dSd = η−1(αdSd − abQ).
– All protected shares are broadcast by SIM.

6. The adversary outputs a guess to which of the secrets was shared. If A has a non-
negligible advantage in determining which secret was shared then SIM concludes that
〈Q, aQ, cQ, abQ〉 must be a valid DH tuple.

The view of A consists of the commitments Ak, all public keys, the private keys of the
corrupted devices, all protected shares and the shares of the corrupted devices. The adversary
A can only gain an advantage in guessing which key was shared from values, other than his
own shares, which were not chosen at random. This leaves him with only his shares xjQ
and the values xdSd and Sd. The adversary’s problem of deciding which secret was shared is
equivalent to deciding whether xdQ = x0Q−

∑
λjxjQ or xdQ = x1Q−

∑
λjxjQ. Because

we assume SIM chose x0Q, A has to decide whether 〈Q, x0Q−
∑
λjxjQ,Sd, xdSd〉 is a valid

DH tuple or not. ut

We note that given the specific form in which the shares are broadcast, our PVSS protocol
cannot be proved secure against an adaptive adversary by means of a simulation argument,
which does not imply that it is insecure. Indeed, it was already suggested in [6] and [11] that
to maintain private transmission of shares some form of non-committing encryption should
be used. We insist on storing shares as xiSi in order to maintain the nice properties of this
form, which allow integrating our construction in other threshold applications, as shown in
Section 5.



Increased Resilience in Threshold Cryptography 11

A somewhat related4 PVSS scheme was presented by Heidarvand and Villar [19]. Our
PVSS scheme differs from theirs by putting the secret in G2, instead of GT , and thus allowing
it to be a building block for DKG and discrete-log constructions. Moreover, our protocol
is semantically secure while the scheme in [19] is only proved to be secure under a weaker
security definition, because the adversary is not allowed to choose the secrets that he has to
distinguish.

4.3 Distributed Key Generation.

We now establish a new DKG protocol that outputs protected shares and is publicly ver-
ifiable. Inspired by [16] and [6] the protocol consists of two phases. In the first phase, the
group’s private key is generated in a distributive manner and shared through a joint PVSS.
In the second phase, the group’s public key is computed. This phase follows to a large extent
the result of Canetti et al. [6]. The protocols proceeds as follows.

Each participating device runs an instance of our new PVSS protocol. It chooses a secret
ci,0 ∈R Z` and broadcasts shares of that secret in protected form. These will be denoted as
protected subshares. Each device, acting as a dealer, that is not disqualified is added to a set
of qualified devices, denoted as QUAL. The group’s private key, although never computed
explicitly, is defined as xQ =

∑
i∈QUAL ci,0Q . A device’s protected share Ci = xiSi is

computed as the sum of the protected subshares that were received from the devices in
QUAL.

To recover the group’s public key y = gx, the qualified devices will expose gxi from which
y can easily be computed through Lagrange interpolation5. Each device will prove in zero-
knowledge that the exponent of gxi matches the share xiQ hidden in Ci, without revealing it.
The technique used in our protocol is a committed proof as proposed by Cramer et al. [7].6

Cramer et al. [7] proposed a very efficient method of extending Σ-protocols, which are
used for zero-knowledge proofs. They make use of a committed proof, a zero-knowledge
protocol where the statement that is being proved is not revealed until the end of the
proof. To create the (almost) random common challenge with multiple parties, each party
contributes a random string. The concatenation of these strings will contain at least t + 1
inputs from honest parties and therefore contain randomness. At the time of creating the
challenge, all parties already committed to the statement they want to proof, without other
parties having knowledge about the statement.

The details of the protocols are given in Fig. 2. Note that on the one hand, at least t+ 1
honest devices are required for the protocol to end successfully, hence we require n > 2t.
On the other hand, since we require no explicit private channels, only a minimum of t + 1
honest devices must participate in the DKG.

4 Note that we use an asymmetric pairing which is more standard (e.g., see [14]) than the symmetric
form used in [19].

5 As opposed to [6], we do not expose gci,0 , which avoids the costly reconstruction of the gcj,0 of
the qualified devices that no longer participate in the second phase.

6 An earlier version of our work was based on interactive zero-knowledge proofs in which the uni-
formly distributed challenges were generated by another run of our Joint PVSS. This is explained
in appendix B.



12 Koen Simoens, Roel Peeters, and Bart Preneel

Input: PubPar, the set of participating devices Di and their public keys Si, and the threshold
t
Output: Protected shares Ci = xiSi , with xiQ the share of Di, and the group’s public key
y = gx

1. All participating devicesDi run the PVSS protocol simultaneously, the protected subshares
are only broadcast after receiving all commitments from all participating devices.
(a) Each Di constructs two polynomials fi(z) and f ′i(z) of degree t by choosing random

coefficients ci,k, c
′
i,k ∈R Z∗` for k = 0 . . . t:

fi(z) = ci,0 + ci,1z + · · ·+ ci,tz
t , f ′i(z) = c′i,0 + c′i,1z + · · ·+ c′i,tz

t ,

and broadcasts commitments

Ai,k = ci,kP + c′i,kP
′ , k = 0 . . . t .

(b) For each device Dj , each Di computes and broadcasts

xijSj , x
′
ijSj with xij = fi(j) , x

′
ij = f ′i(j) .

(c) Each device verifies the broadcast shares for all Di by checking that

ê(P, xijSj) · ê(P ′, x′ijSj) =

tY
k=0

ê(Ai,k, Sj)
jk

.

Each Di that is not disqualified as a dealer is added to the list of qualified devices, denoted
by QUAL. The group’s private key is defined as xQ =

P
i∈QUAL ci,0Q . For each Di its

protected share is computed as

Ci = xiSi =
X

j∈QUAL

xjiSi .

2. The qualified devices expose gxi to compute the public key y = gx.
(a) Each Di in QUAL computes αi = gxi and Ai = siP

′′. In addition, Di chooses a
random ri ∈R Z∗` and computes βi = gri and Bi = riSi.
– Commit to the values αi, βi, Ai, Bi. First these values are converted to binary

strings and concatenated. A hash function is used to get an element of Z∗l . For a
random d′i ∈R Z∗` :

Di = diP + d′iP
′ with di = H(αi ‖ βi ‖ Ai ‖ Bi) .

– Provide randomness for the challenge ei ∈R Z∗` .
Di in QUAL broadcasts the values Di and ei.

(b) Generation of the challenge e. All broadcast ei are concatenated and put through a
hash function to get an element of Z∗l .

(c) All Di in QUAL open their commitments by broadcasting αi, βi, Ai, Bi, d
′
i. Addition-

ally they broadcast Zi = s−1
i (riSi + eCi) = (ri + exi)Q which completes the zero

knowledge protocol.
(d) Any device can verify that

Di = diP + d′iP
′ with di = H(αi ‖ βi ‖ Ai ‖ Bi)

and

ê(Ai, Q) = ê(P ′′, Si), ê(P,Zi) = αeiβi, ê(Ai, Zi) = ê(P ′′, Bi + eCi) .

(e) The public key y is computed from t+ 1 correctly verified αi = gxi as

y =
Y

αλi
i .

Fig. 2. Publicly verifiable DKG with protected shares.



Increased Resilience in Threshold Cryptography 13

We now prove that our new DKG protocol is a secure DKG protocol according to the
requirements specified in Definition 2.

Theorem 2. Our new DKG protocol is a secure DKG protocol (Definition 2) under the
divisional variant of the coDBDH-2 assumption.

Proof (Correctness). All honest devices construct the same set of qualified devices QUAL
since this is determined by public broadcast information.

– (C1) Each Di that is in QUAL at the end of phase 1 has successfully shared ci,0Q
through a run of our PVSS protocol. Any set of t + 1 honest devices Di that combine
correct shares xjQ can reconstruct the same secret xQ since

xQ =
∑

i∈QUAL

ci,0Q =
∑

i∈QUAL

∑
j

λjxijQ

 =
∑
j

λj
∑

i∈QUAL

xijQ =
∑
j

λjxjQ .

In the key extraction phase of our protocol at least t+ 1 values gxi have been exposed
and thus using interpolation gxj can be computed for any Dj . This allows to tell apart
correct shares from incorrect ones.

– (C2) This property follows immediately from the key extraction phase and the relation
between the ci,0Q and the shares xiQ given for the previous property (C1).

– (C3) The private key is defined as xQ =
∑
i∈QUAL ci,0Q and each ci,0Q was shared

through an instance of our PVSS. Since we proved that a static adversary cannot learn
any information about the shared secret, the private key is uniformly distributed as long
as one non-corrupted device successfully contributed to the sum that defines xQ. ut

Uniformity. Our protocol withstands the attack of a rushing adversary that can influence
the distribution of the group’s key as described by Gennaro et al. [18]. In this attack an
adversary is able to compute a deterministic function of the private key from the broadcasts,
before sending out his contributions. He can influence the set of qualified devices by choosing
whether or not to send out proper contributions. This allows influencing the outcome of the
deterministic function and thus the distribution of the private key. In our protocol, no
such function can be computed before the second phase. But, because the private key and
thus also the correction factors are fixed after the first phase and determined by QUAL, the
adversary can no longer influence the group’s key. As long as t+1 honest devices participate,
the public key can be recovered in the second phase.

Proof (Secrecy). We describe a simulator SIM that, given a public key y, simulates a run of
the protocol and produces an output that is indistinguishable from the adversary’s view of
a real run of the protocol that ended with the given public key. We assume that SIM knows
η ∈ Z∗` for which P ′ = ηP .

– The first phase of the DKG is run as in the real protocol. Since SIM knows the private
keys si of at least t+1 non-corrupted devices, he knows at least t+1 shares xiQ = s−1

i Ci.
By interpolation of these shares, SIM learns the shares of the corrupted devices. This
also allows SIM by pairing to compute gxi for all devices.



14 Koen Simoens, Roel Peeters, and Bart Preneel

– In the second phase of the DKG protocol SIM sets gx
∗
i for the non-corruptedDi, such that

the public key will be y. The gx
∗
i for the non-corrupted Di are calculated by interpolation

of the gxj of the corrupted Dj and y = gx.
(a) SIM broadcasts Di = d′iP and ei for each non-corrupted Di.
(b) The challenge for the zero knowledge proof e is constructed.
(c) For all non-corrupted Di, SIM sets α∗i = gx

∗
i , Ai = siP

′′ and computes β∗i = α−ei gzi ,
B∗i = ziSi−eCi and Z∗i = ziQ for a random zi ∈R Z∗` . The new value d′∗i is computed
as η−1(d′i − d∗i ) with d∗i = H(α∗i ‖ β∗i ‖ Ai ‖ B∗i ) such that Di = d∗iP + d′∗i P

′. SIM
broadcasts (α∗i , β

∗
i , Ai, B

∗
i , d
∗
i , Z

∗
i ) for each non-corrupted Di.

(d) All values verify.

ê(P,Z∗i ) = gzi and α∗ei β
∗
i = α∗ei α

∗−e
i gzi = gzi ,

ê(Ai, Zi) = gsizi and ê(P ′′, B∗i + eCi) = ê(P ′′, ziSi) = gsizi .

(e) At the end of the protocol the public key is computed as the given y.

To prevent an adversary from being able to distinguish between a real run of the protocol
and a simulation, the output distribution must be identical. The first phase, i.e., the Joint
PVSS, is identical in both cases. The data that are output in the second phase and that have
a potentially different distribution in a real run and simulation are given in the following
table. We show that all data in this table have a uniform distribution.

REAL SIM
1. gxi gx

∗
i

2. gri , riSi β∗i , B
∗
i

3. di d∗i
4. Zi Z∗i

1. The values xi are evaluations of a polynomial of degree t with uniformly random coef-
ficients. The values x∗i are evaluations of a polynomial that goes through t evaluations
of the first polynomial, namely the xj of the corrupted participants, and through the
discrete logarithm of y. Since the protocol is assumed to generate a uniformly random
key, the new polynomial’s distribution is indistinguishable from the distribution of the
first.

2. The value ri was chosen uniformly at random. In the simulation β∗i = gzi(gx
∗
i )−e and

B∗i = ziSi − eCi. The value zi is uniformly random.
3. In the simulation d′∗i = (d′i − d∗i )η−1, the value d′i was choosen uniformly at random.
4. We have that Zi = riQ + ηxiQ and Z∗i = ziQ. The values ri, d and zi were chosen

uniformly at random.

We notice that even though the modified gx
∗
i have the right output distribution, it is

important to note that by broadcasting the modified gx
∗
i we introduce a new assumption.

Namely that an adversary cannot distinguish between 〈P,Q, xisiQ, siQ, gxi〉 and
〈P,Q, xisiQ, siQ, gx

∗
i 〉. This is the divisional variant of the coDBDH-2 assumption, as defined

in Section 3.4. An adversary cannot distinguish 〈Q,Si, diQ, diSi〉 from 〈Q,Si, d∗iQ, diSi〉.
This is the divisional variant of the DDH assumption, which is a weaker assumption than
the coDBDH-2 assumption, meaning that if one could not solve the coDBDH-2 problem,
one can also not solve the DDH problem. Knowledge of P allows to calculate gdi and gd

∗
i

and hence transform this to the divisional variant of the coDBDH-2 assumption. ut



Increased Resilience in Threshold Cryptography 15

5 Threshold Applications

In this section our construction is used to turn discrete-log schemes into threshold variants
with protected shares. It is not our intention to give a rigorous proof of security of these
variants. We rather want to demonstrate the ease with which our construction fits into
existing schemes. We do this for the ElGamal [15] and the Cramer-Shoup [8] cryptosystems,
where we show how pairings allow implicit use of the shares, i.e., without having to reveal
them explicitly, and the Schnorr [26] signature scheme.

5.1 ElGamal

Basic Scheme. We define the ElGamal [15] scheme in GT with some minor modifications;
the randomness is moved from GT to G1 and the private key is an element of G2 instead
of Z∗` , i.e., xQ ∈ G2 for some x ∈R Z∗` . Let y = ê(P,Q)x be the corresponding public key.
Encryption and decryption are then defined as follows.

– Encrypt(PubPar,y,m): To encrypt a message m ∈ GT under the public key y, choose
a random k ∈R Z∗` and output the ciphertext

(R, e) = (kP,myk) ∈ G1 ×GT .

– Decrypt(PubPar,xQ,(R, e)): To decrypt the given ciphertext (R, e) output the plain-
text

m =
e

ê(R, xQ)
∈ GT .

Threshold Variant. Encryption in the threshold variant is the same as in the basic scheme.
To decrypt a given ciphertext we have to combine the randomness kP with t+1 shares xiQ,
which are stored as xiSi. If the shares were stored as gxisi , it would have been impossible to
combine them with the randomiser or the ElGamal encryption and for each device Di the
ciphertext would contain something like gxisik. By taking advantage of the bilinearity of the
pairing, the size of the ciphertext remains constant. Note that Di never has to reveal his
share explicitly; his private key is combined with the randomness and then paired with the
correction factor. The cost of providing a partial decryption is minimal, namely one elliptic-
curve point multiplication. In this way we can use small devices as partial decryption oracles.
The decryption procedure goes as follows.

– T-Decrypt(PubPar,{Di , Si},(R, e)): To decrypt the ciphertext (R, e) each device Di
provides a partial decryption

Di = s−1
i R = s−1

i kP ∈ G1 .

The combining device receives the contributions Di and verifies that ê(Di, Si) = ê(R,Q).
He then combines t+ 1 contributions to output the plaintext

m =
e

d
with d =

∏
ê(Di, Ci)λi .



16 Koen Simoens, Roel Peeters, and Bart Preneel

5.2 Cramer-Shoup

Basic Scheme. Cramer and Shoup [8] presented an ElGamal based cryptosystem in the
standard model that provides ciphertext indistinguishability under adaptive chosen cipher-
text attacks (IND-CCA2). We define their scheme in GT with the same modifications as in
the ElGamal scheme; the first two (random) elements in the ciphertext are moved from GT

to G1 and the private key is a tuple from G5
2 instead of (Z∗` )5. Let H : G1 ×G1 ×GT → Z`

be an element of a family of universal one-way hash functions. The private key is

privK = (x1Q, x2Q, y1Q, y2Q, zQ) ∈R G5
2

and the public key is

pubK = (c, d, h) = (gx1
1 gx2

2 , gy11 gy22 , gz1) ∈ G3
T .

Encryption and decryption are defined as follows.

– Encrypt(PubPar,pubK,m): To encrypt a message m ∈ GT under pubK, choose a ran-
dom k ∈R Z` and output the ciphertext

(U1, U2, e, v) = (kP, kP ′,mhk, ckdkα) ∈ G2
1 ×G2

T with α = H(U1, U2, e) .

– Decrypt(PubPar,privK,(U1, U2, e, v)): To decrypt the given ciphertext (U1, U2, e, v),
first compute α = H(U1, U2, e) and validate the ciphertext by testing if

ê(U1, x1Q+ y1αQ) · ê(U2, x2Q+ y2αQ) = v .

If the test fails, the ciphertext is rejected, otherwise output the plaintext

m =
e

ê(U1, zQ)
∈ GT .

Threshold Variant. It is clear that the Cramer-Shoup public key is not immediately estab-
lished from running five instances of our DKG protocol. The decomposition of c = gx1

1 gx2
2

and d = gy11 gy22 should not be known. We can solve this problem by introducing a third
polynomial f ′′(z) in our DKG protocol that generates public keys c and d. This variant is
described in Appendix A. The key generation is thereby reduced to two runs of the variant
DKG protocol and one run of the basic DKG protocol. This results in five protected shares
Cx1
i , Cx2

i , Cy1i , C
y2
i and Czi for each device.

Encryption is the same as in the basic scheme. The decryption routine, which applies
the same ideas as in the threshold ElGamal scheme goes as follows. Note that the cost of
providing a partial decryption is minimal, namely two elliptic-curve point multiplications.

– T-Decrypt(PubPar,{Di, Si},(U1, U2, e, v)): To decrypt the given ciphertext (U1, U2, e, v)
each device Di provides Di = s−1

i U1 and D′i = s−1
i U2. The combining device verifies

that ê(Di, Si) = ê(U1, Q) and ê(D′i, Si) = ê(U2, Q). He then computes

vi = ê(Di, C
x1
i + αCy1i ) · ê(D′i, C

x2
i + αCy2i ) .

and combines t+1 values vi to validate the ciphertext by testing that v =
∏
vλi
i . If vali-

dation fails, the ciphertext is rejected. The combining device combines t+1 contributions
to output the plaintext

m =
e

d
with d =

∏
ê(Di, C

z
i )λi .



Increased Resilience in Threshold Cryptography 17

5.3 Schnorr Signatures

The Schnorr signature scheme [26] is an example of a scheme that provides existential
unforgeability under an adaptive chosen-message attack in the random oracle model [25]
and has been used many times to create a threshold signature scheme, e.g., in [18, 1]. We
will define the signature scheme in GT and then extend it to a threshold variant.

Basic Scheme. Let H ′ : {0, 1}∗×GT → Z` be a cryptographic hash function. Let the private
key be xQ ∈ G2 for some x ∈R Z∗` and let y = gx ∈ GT be the public key.

– Sign(PubPar,xQ,m): To sign a message m ∈ {0, 1}∗ with the private key xQ choose a
random k ∈R Z`, compute r = ê(P, kQ) and c = H ′(m, r), and output the signature

(c, σ) = (H ′(m, r), kQ+ c xQ) ∈ Z` ×G2 .

– Verify(PubPar,y,(c, σ),m): To verify the signature (c, σ) on a message m compute r̃ =
ê(P, σ)y−c and verify equality of c = H ′(m, r̃) .

Threshold Variant. The basic scheme naturally extends to a threshold variant. As opposed
to the encryption schemes, the bilinearity of the pairing is not really needed. However, the
signing devices need to share some randomness and will, therefore, run the DKG protocol
of Section 4.3. Signature verification is the same as in the basic scheme. Signing goes as
follows.

– T-Sign(PubPar,{Di},m): To sign a message m ∈ {0, 1}∗ with the group’s private key
the devices Di will run an instance of the DKG protocol of Section 4.3. Each device then
holds a share kiSi in protected form of kQ ∈ G2. Because the value r = ê(P, kQ) ∈ GT

is publicly computed at the end of the protocol, each device can compute c = H ′(m, r)
and σi = s−1

i (kiSi + cCi) = (ki + c xi)Q, which is sent to the combining device. Note
that these partial signatures can be verified since the output of the DKG protocols
contained gki and gxi . Values that were not in the output can be computed through
interpolation. The combining device computes the signing equation σ =

∑
σiλi and

outputs the signature

(c, σ) = (H ′(m, r), kQ+ c xQ) ∈ Z` ×G2 .

6 Conclusion

In this paper, we have shown how to increase resilience in threshold cryptography by in-
cluding small devices with limited or no secure storage capabilities. Assuming these devices
have some support for public-key functionality, shares can be stored in protected form. By
using bilinear pairings, this particular form yields some advantages. The most important fea-
ture is public verifiability, which makes explicit private channels and cumbersome complaint
procedures obsolete. Moreover, not all devices need to be present during group setup.

We have demonstrated how to adopt the protected shares in existing discrete-log based
signature schemes and cryptosystems. Because shares are never needed in unprotected form,
small devices can be used as decryption oracles at a minimal cost.



18 Koen Simoens, Roel Peeters, and Bart Preneel

Acknowledgements. The authors would like to thank Frederik Vercauteren, Ivan Damg̊ard,
Alfredo Rial Duran and Markulf Kohlweiss for the fruitful discussions.

This work was supported in part by the Concerted Research Action (GOA) Ambiorics
2005/11 of the Flemish Government, by the IAP Programme P6/26 BCRYPT of the Belgian
State (Belgian Science Policy), and in part by the European Commission through the ICT
and IST programmes under the following contract: ICT-2007-216676 ECRYPT II. Roel
Peeters is funded by a research grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

References

[1] M. Abe and S. Fehr. Adaptively secure Feldman VSS and applications to universally-composable
threshold cryptography. In M. K. Franklin, editor, Advances in Cryptology – CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages 317–334. Springer-Verlag, 2004.

[2] F. Bao, R. H. Deng, and H. Zhu. Variations of Diffie-Hellman problem. In S. Qing, D. Gollmann,
and J. Zhou, editors, ICICS 2003, volume 2836 of Lecture Notes in Computer Science, pages
301–312. Springer, 2003.

[3] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adversaries.
In R. A. Rueppel, editor, Advances in Cryptology – EUROCRYPT ’92, volume 658 of Lecture
Notes in Computer Science, pages 307–323. Springer-Verlag, 1992.

[4] D. R. L. Brown. Generic groups, collision resistance, and ECDSA. Designs, Codes and Crypto-
graphy, 35(1):119–152, 2005.

[5] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings of the 42nd Annual Symposium on Foundations of Computer Science – FOCS 2001,
pages 136–145. IEEE Computer Society, 2001.

[6] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security for threshold
cryptosystems. In M. J. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666
of Lecture Notes in Computer Science, pages 98–115. Springer-Verlag, 1999.

[7] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from threshold homomor-
phic encryption. In B. Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, volume
2045 of LNCS, pages 280–299. Springer, 2001.

[8] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In H. Krawczyk, editor, Advances in Cryptology – CRYPTO ’98,
volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer-Verlag, 1998.

[9] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual
Symposium on Foundations of Computer Science, pages 427–437. IEEE Computer Society, 1987.

[10] P.-A. Fouque and J. Stern. One round threshold discrete-log key generation without private
channels. In Public Key Cryptography, PKC 2001, volume 1992 of LNCS, pages 300–316.
Springer-Verlag, 2001.

[11] Y. Frankel, P. D. MacKenzie, and M. Yung. Adaptively-secure distributed public-key systems.
In J. Nesetril, editor, European Symposium on Algorithms – ESA ’99, volume 1643 of Lecture
Notes in Computer Science, pages 4–27. Springer, 1999.

[12] E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly verifiable
secret sharing and its applications. In K. Nyberg, editor, Advances in Cryptology – EURO-
CRYPT ’98, volume 1403 of Lecture Notes in Computer Science, pages 32–46. Springer-Verlag,
1998.

[13] S. Galbraith, F. Hess, and F. Vercauteren. Aspects of pairing inversion. IEEE Transactions
on Information Theory, 54(12):5719–5728, 2008.



Increased Resilience in Threshold Cryptography 19

[14] S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Cryptology ePrint
Archive, Report 2006/165, 2006. http://eprint.iacr.org/.

[15] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In G. R. Blakley and D. Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO ’84,
volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer-Verlag, 1985.

[16] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for
discrete-log based cryptosystems. In J. Stern, editor, Advances in Cryptology – EUROCRYPT
’99, volume 1592 of Lecture Notes in Computer Science, pages 295–310. Springer-Verlag, 1999.

[17] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure applications of pedersen’s dis-
tributed key generation protocol. In M. Joye, editor, Topics in Cryptology - CT-RSA 2003,
volume 2612 of Lecture Notes in Computer Science, pages 373–390. Springer, 2003.

[18] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for
discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, 2007.

[19] S. Heidarvand and J. L. Villar. Public verifiability from pairings in secret sharing schemes. In
R. Avanzi, L. Keliher, and F. Sica, editors, Selected Areas in Cryptography – SAC 2008, volume
5381 of Lecture Notes in Computer Science, pages 294–308. Springer, 2009.

[20] S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography: Introducing concur-
rency, removing erasures. In B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, pages 221–242. Springer-Verlag, 2000.

[21] J. Malone-Lee and N. P. Smart. Modifications of ECDSA. In K. Nyberg and H. M. Heys,
editors, Selected Areas in Cryptography – SAC 2002, volume 2595 of Lecture Notes in Computer
Science, pages 1–12. Springer, 2002.

[22] W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall, 2003.
[23] T. P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract). In

D. W. Davies, editor, Advances in Cryptology – EUROCRYPT ’91, volume 547 of Lecture Notes
in Computer Science, pages 522–526. Springer-Verlag, 1991.

[24] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
J. Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, volume 576 of Lecture Notes in
Computer Science, pages 129–140. Springer-Verlag, 1992.

[25] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, 2000.

[26] C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor,
Advances in Cryptology – CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 239–252. Springer-Verlag, 1989.

[27] B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to
electronic voting. In M. J. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume
1666 of Lecture Notes in Computer Science, pages 148–164. Springer-Verlag, 1999.

[28] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
[29] N. P. Smart and F. Vercauteren. On computable isomorphisms in efficient asymmetric pairing-

based systems. Discrete Applied Mathematics, 155(4):538–547, 2007.
[30] M. Stadler. Publicly verifiable secret sharing. In U. M. Maurer, editor, Advances in Cryptology –

EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages 190–199. Springer-
Verlag, 1996.



20 Koen Simoens, Roel Peeters, and Bart Preneel

A Distributed Key Generation Variant for Cramer-Shoup

Running fives instances of the basic DKG protocol (Section 4.3) to generate Cramer-Shoup
keys is not desired since that would reveal the decomposition of the first two elements of
the public key c = gx1

1 gx2
2 and d = gy11 gy22 (see Section 5.2). We propose a variant of the

basic DKG protocol that introduces a third polynomial f ′′(z) in the PVSS. Each device
now receives three instead of two shares. The public key is extracted by revealing the third
share and by proving the discrete log equality of gx

′′
i

3 and x′′i Si. The two parts of the private
keys that are shared are x1Q and x2Q, where x1 =

∑
i∈QUAL ci,0 and x2 =

∑
i∈QUAL c

′
i,0

are the respective sums of the private inputs ci,0 and c′i,0 of the qualified dealers Di . The
corresponding part of the public key is c = gx1

1 gx2
2 . The details of the protocol are shown in

Fig. 3.



Increased Resilience in Threshold Cryptography 21

Input: PubPar, the set of participating devices Di and their public keys Si, and the threshold
t
Output: Protected shares Ci = xiSi and C′i = x′iSi, , with xiQ and x′iQ shares of Di, and
the group’s public key y = gx1 g

x′
2

1. All participating devices Di run a modified PVSS protocol simultaneously, the subshares
are only broadcast after receiving all commitments from all participating devices.
(a) Each Di constructs three polynomials fi(z), f

′
i(z) and f ′′i (z) of degree t by choosing

random coefficients ci,k, c
′
i,k, c

′′
i,k ∈R Z∗` for k = 0 . . . t:

fi(z) = ci,0 + · · ·+ ci,tz
t , f ′i(z) = c′i,0 + · · ·+ c′i,tz

t , f ′′i (z) = c′′i,0 + · · ·+ c′′i,tz
t

and broadcasts commitments

Ai,k = ci,kP + c′i,kP
′ + c′′i,kP

′′ , k = 0 . . . t .

(b) For each device Dj , each Di computes and broadcasts

xijSj , x
′
ijSj , x

′′
ijSj with xij = fi(j) , x

′
ij = f ′i(j) , x

′′
ij = f ′′i (j) .

(c) Each device verifies the broadcast shares for all Di by checking that

ê(P, xijSj) · ê(P ′, x′ijSj) · ê(P ′′, x′′ijSj) =

tY
k=0

ê(Ai,k, Sj)
jk

.

Each Di that performed a valid PVSS is added to the list of qualified devices, denoted by
QUAL. For each Di the public correction factors are computed as

Ci = xiSi =
X

j∈QUAL

xjiSi , C′i = x′iSi =
X

j∈QUAL

x′jiSi .

2. Extraction of the public key y = gx1 g
x′
2 .

(a) Each Di in QUAL chooses a random ri ∈R Z∗` and broadcasts x′′i Q, siriP
′′ and riP

′′.
It is easily verified that

ê(siriP
′′, Q) = ê(riP

′′, Si) and ê(siriP
′′, x′′i Q) = ê(riP

′′,
X

j∈QUAL

x′′jiSi) .

(b) The public key y is computed from t+ 1 correctly verified x′′i Q, as

y = gx1 g
x′
2 =

ê(A0, Q)Q
ê(P ′′, x′′i Q)λi

where A0 =
X

j∈QUAL

Aj,0 .

Fig. 3. Publicly verifiable DKG with protected shares for Cramer-Shoup.



22 Koen Simoens, Roel Peeters, and Bart Preneel

B Alternative Public Key Extraction Phase

In an earlier version of our DKG protocol we used interactive zero-knowledge proofs to
prove the validity of the values gxi exposed by the devices in the key extraction phase.
These proofs require uniformly distributed challenges but these challenges can be the same
for all devices and can alternatively be generated as follows.

A uniformly distributed challenge is generated through another run of our joint PVSS.
All devices receive protected shares diSi. After open reconstruction we have a uniformly
distributed element dQ ∈ G2 . However, the challenge needs to be some element d̃ ∈ Z`.
This implies a bijective (not necessarily homomorphic) mapping ψ : G2 → Z` . An example of
such a mapping is to take the x-coordinate of dQ modulo `, as is used in ECDSA signatures.
Several issues have been reported with this mapping and alternatives, e.g., taking the sum
of the x and the y-coordinates modulo ` [21], have been proposed. We refer the reader to [4]
for a more in-depth treatment of this subject. The public key extraction phase is shown in
Fig. 4.

2. The qualified devices expose gxi to compute the public key y = gx.
(a) Each Di in QUAL broadcasts gxi and siP

′′. It is easily verified that ê(siP
′′, Q) =

ê(P ′′, Si) . In addition, Di chooses a random ri ∈R Z∗` and broadcasts commitments
gri and riSi.

(b) Generation of the uniform challenge, needed in the zero-knowledge proof.
– Devices in QUAL run a Joint PVSS and obtain protected shares diSi and d′iSi,

which are broadcast and verified. We denote the commitments of this Joint PVSS
as Bi,k.

– Open reconstruction of dQ. Devices in QUAL broadcast diQ and d′iQ. These are
verified by checking that

ê(P, diQ) · ê(P ′, d′iQ) =

tY
k=0

ê(Bk, Q)j
k

for Bk =
X

i∈QUAL

Bi,k .

– dQ is mapped to the challenge d̃ = ψ(dQ), where ψ is a bijective map from G2 to
Z`.

(c) Each Di broadcasts Zi = s−1
i (riSi + d̃Ci) = (ri + d̃xi)Q and any device can verify

that
ê(P,Zi) = gri(gxi)d̃ and ê(siP

′′, Zi) = ê(P ′′, riSi) · ê(P ′′, Ci)d̃ .
(d) The public key y is computed from t+ 1 correctly verified αi = gxi as

y =
Y

αλi
i .

Fig. 4. Alternative Public Key Extraction Phase.


