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Abstra
t

We demonstrate the feasibility of throughput-e�
ient routing in a highly unreliable net-

work. Modeling a network as a graph with verti
es representing nodes and edges representing

the links between them, we 
onsider two forms of unreliability: unpredi
table edge-failures, and

deliberate deviation from proto
ol spe
i�
ations by 
orrupt nodes. The �rst form of unpre-

di
tability represents networks with dynami
 topology, whose links may be 
onstantly going up

and down; while the se
ond form represents mali
ious insiders attempting to disrupt 
ommuni-


ation by deliberately disobeying routing rules, by e.g. introdu
ing junk messages or deleting or

altering messages. We present a robust routing proto
ol for end-to-end 
ommuni
ation that is

simultaneously resilient to both forms of unreliability, a
hieving provably optimal throughput

performan
e. Our proof pro
eeds in three steps: 1) We use 
ompetitive-analysis to �nd a lower-

bound on the optimal throughput-rate of a routing proto
ol in networks sus
eptible to only

edge-failures (i.e. networks with no mali
ious nodes); 2) We prove a mat
hing upper bound by

presenting a routing proto
ol that a
hieves this throughput rate (again in networks with no ma-

li
ious nodes); and 3) We modify the proto
ol to provide additional prote
tion against mali
ious

nodes, and prove the modi�ed proto
ol performs (asymptoti
ally) as well as the original.
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1 Introdu
tion

With the immense range of appli
ations and the multitude of networks en
ountered in pra
-

ti
e, there has been an enormous e�ort to study routing in various settings. For the purpose of

developing network models in whi
h routing proto
ols 
an be developed and formally analyzed,

networks are typi
ally modelled as a graph with verti
es representing nodes (pro
essors, routers,

et
.) and edges representing the 
onne
tions between them. Beyond this basi
 stru
ture, additional

assumptions and restri
tions are then made in attempt to 
apture various features that real-world

networks may display. In de
iding whi
h network model is best-suited to a parti
ular appli
ation,

developers must make a 
hoi
e with respe
t to ea
h of the following 
onsiderations: 1) Syn
hronous

or Asyn
hronous; 2) Stati
 or Dynami
 Topology; 3) Global Control or Distributed/Lo
al Control;

4) Conne
tivity/Liveness Assumptions; 5) Existen
e of Faulty/Mali
ious Nodes.

Noti
e that in ea
h option above there is an inherent trade-o� between generality/appli
ability

of the model verses optimal performan
e within the model. For instan
e, a proto
ol that assumes a

�xed network topology will likely out-perform a proto
ol designed for a dynami
 topology setting,

but the former proto
ol may not work in networks subje
t to edge-failures. Similarly, a proto
ol that

prote
ts against the existen
e of faulty or deliberately mali
ious nodes will likely be out-performed

in networks with no faulty behavior by a proto
ol that assumes all nodes a
t honestly.
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From both a theoreti
al and a pra
ti
al standpoint, it is important to understand how ea
h

(
ombination) of the above listed fa
tors a�e
ts routing performan
e. In this paper, we explore

the feasibility of end-to-end routing in highly unreliable networks, i.e. networks that simultaneously


onsider all of the more general features: Asyn
hronous, Dynami
 Topology, Lo
al Control, no

Conne
tivity Assumptions, and the existen
e of deliberately Mali
ious Nodes. Admittedly, in this

�worst-
ase� model it is unlikely that any proto
ol will perform well, and one (or more) stronger

assumption(s) must be made to a
hieve a reasonable level of performan
e. However, understanding

behavior in the worst 
ase, even with respe
t to the most basi
 task of end-to-end 
ommuni
ation,

is important to determine how mu
h (if any) the addition of ea
h assumption improves optimal

proto
ol performan
e.

1.1 Previous Work

As mentioned above, development and analysis of routing proto
ols relies heavily on the 
hoi
es

made for the network model. To date, all network models have guaranteed at least one (and

more 
ommonly multiple) �reliability� assumption(s) with respe
t to the above list of �ve network


hara
teristi
s. In this se
tion, we explore various 
ombinations of assumptions that have been

made in re
ent work, highlighting positive and negative results with respe
t to ea
h network model,

emphasizing 
learly whi
h assumptions are employed in ea
h 
ase. Sin
e our work fo
uses on

theoreti
al results, for spa
e 
onsiderations we do not dis
uss below the vast amount of resear
h

and analysis of routing issues for spe
i�
 network systems en
ountered in pra
ti
e, e.g. the Internet.

Even still, the amount of resear
h regarding network routing and analysis of routing proto
ols is

extensive, and as su
h we in
lude only a sket
h of the most related work, indi
ating how their

models di�er from ours and providing referen
es that o�er more detailed des
riptions.

End-to-End Communi
ation: One of the most relevant resear
h dire
tions to our paper is

the notion of End-to-End 
ommuni
ation in distributed networks, where two nodes (sender and

re
eiver) wish to 
ommuni
ate through a network. While there is a multitude of problems that

involve end-to-end 
ommuni
ation (e.g. End-to-End Congestion Control, Path-Measurement, and

Admission Control), we dis
uss here work that 
onsider networks whose only task is to fa
ilitate


ommuni
ation between sender and re
eiver. Some of these in
lude a line of work developing the

Slide proto
ol (the starting point of our proto
ol): Afek and Gafni [2℄, Awerbu
h et al. [12℄, Afek

et al. [1℄, and Kushilevitz et al. [18℄. The Slide proto
ol (and its variants) have been studied in a

variety of network settings, in
luding multi-
ommodity �ow (Awerbu
h and Leighton [11℄), networks


ontrolled by an online bursty adversary (Aiello et al. [4℄), and networks that allow 
orruption of

nodes (Amir et al. [7℄). However, prior to our work there was no version of the Slide proto
ol

that 
onsidered routing in the �worst 
ase� network setting: only [7℄ 
onsiders networks in whi
h

nodes are 
orruptible, but their network model assumes syn
hronous 
ommuni
ation and demands

minimal 
onne
tivity guarantees.

Fault Dete
tion and Lo
alization Proto
ols: There have been a number of papers that

explore the possibility of 
orrupt nodes that deliberately disobey proto
ol spe
i�
ations in order

to disrupt 
ommuni
ation. In parti
ular, there is a re
ent line of work that 
onsiders a network


onsisting of a single path from the sender to the re
eiver, 
ulminating in the re
ent work of Barak

et al. [13℄ (for further ba
kground on fault lo
alization see referen
es therein). In this model, the

adversary 
an 
orrupt any node (ex
ept the sender and re
eiver) in a dynami
 and mali
ious manner.
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Sin
e 
orrupting any node on the path will sever the honest 
onne
tion between sender and re
eiver,

the goal of a proto
ol in this model is not to guarantee that all messages sent are re
eived. Instead,

the goal is to dete
t faults when they o

ur and to lo
alize the fault to a single edge.

Goldberg et al. [17℄ show that a proto
ol's ability to dete
t faults relies on the assumption that

One-Way Fun
tions (OWF) exist, and Barak et al. [13℄ show that the (
onstant fa
tor) overhead (in

terms of 
ommuni
ation 
ost) in
urred for utilizing 
ryptographi
 tools (su
h as MACs or Signature

S
hemes) is mandatory for any fault-lo
alization proto
ol. Awerbu
h et al. [10℄ also explore routing

in the Byzantine setting, although they do not present a formal treatment of se
urity, and indeed a


ounter-example that 
hallenges their proto
ol's se
urity is dis
ussed in the appendix of [13℄.

Fault Dete
tion and Lo
alization proto
ols fo
us on very restri
tive network models (typi
ally

syn
hronous networks with �xed topology and some 
onne
tivity assumptions), and throughput-

performan
e is usually not 
onsidered when analyzing fault dete
tion/lo
alization proto
ols.

Competitive Analysis: Competitive Analysis was �rst introdu
ed by Sleator and Tarjan [21℄

as a me
hanism for measuring the worst-
ase performan
e of a proto
ol, in terms of how badly the

given proto
ol may be out-performed by an o�-line proto
ol that has a

ess to perfe
t information.

Re
all that a given proto
ol has 
ompetitive ratio 1/λ (or is λ-
ompetitive) if an ideal o�-line proto
ol

has advantage over the given proto
ol by at most a fa
tor of λ.

One pla
e 
ompetitive analysis has been used to evaluate performan
e is the setting of distributed

algorithms in asyn
hronous shared memory 
omputation, in
luding the work of Ajtai et al. [6℄. This

line of work has a di�erent �avor than the problem 
onsidered in the present paper due to the

nature of the algorithm being analyzed (
omputation algorithm verses network routing proto
ol).

In parti
ular, network topology is not a 
onsideration in this line of work (and mali
ious deviation

of pro
essors is not 
onsidered).

Competitive analysis is a useful tool for evaluating proto
ols in unreliable networks (e.g. asyn-


hronous networks and/or networks with no 
onne
tivity guarantees), as it provides best-possible

standards (sin
e absolute performan
e guarantees may be impossible due to the la
k of network

assumptions). For a thorough des
ription of 
ompetitive analysis, see [14℄.

Max-Flow and Multi-Commodity Flow: The Max-�ow and multi-
ommodity �ow models

assume networks that are syn
hronous with 
onne
tivity/liveness guarantees and have in
orrupt-

ible nodes (max-�ow networks also typi
ally have �xed topology and are global-
ontrol). There

has been a tremendous amount of work in these areas, see e.g. Leighton et al. [19℄ for a dis
ussion

of the two models and a list of results, as well as Awerbu
h and Leighton [11℄ who show optimal

throughput-
ompetitive ratio for the network model in question.

Admission Control and Route Sele
tion: The admission 
ontrol/route sele
tion model

di�ers from the multi-
ommodity �ow model in that the goal of a proto
ol is not to meet the de-

mand of all ordered pairs of nodes (s, t), but rather the proto
ol must de
ide whi
h requests it


an/should honor, and then designate a path for honored requests. There are numerous models

that are 
on
erned with questions of admission 
ontrol and route sele
tion: The Asyn
hronous

1

Transfer Model (see e.g. Awerbu
h et al. [9℄), Queuing Theory (see e.g. Borodin and Kleinberg [15℄

and Andrews et al. [8℄), Adversarial Queuing Theory (see e.g. Broder et al. [16℄ and Aiello et al.

[5℄). For an extensive dis
ussion about these resear
h areas, see [20℄ and referen
es therein.

1

We emphasize that the de�nition of asyn
hroni
ity in ATM is di�erent than the one 
onsidered in this paper. In

parti
ular, �asyn
hroni
ity� in ATM literature is meant to emphasize the fa
t that the requests are not known ahead

of time, and thus proto
ols fa
e the added 
hallenge of handling new requests adaptively.
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The admission 
ontrol/route sele
tion model assumes syn
hronous 
ommuni
ation and in
or-

ruptible nodes and makes 
onne
tivity/liveness guarantees. Among the other options (�xed or

dynami
 topology, global or lo
al 
ontrol), ea
h 
ombination has been 
onsidered by various au-

thors, see the above referen
e for further details and results within ea
h spe
i�
 model.

1.2 Our Results

In this paper, we 
onsider the feasibility of end-to-end routing in unreliable networks. We be-

gin by exploring optimal throughput performan
e in networks whose nodes are trustworthy, but

otherwise the network represents a �worst-
ase� network model. In parti
ular, we use 
ompetitive

analysis to prove mat
hing upper and lower bounds on throughput performan
e for end-to-end 
om-

muni
ation in networks that are asyn
hronous, lo
al-
ontrol, and have dynami
 topology with no


onne
tivity guarantees.

Theorem 1 (Informal) The best 
ompetitive-ratio that any proto
ol 
an a
hieve in a distributed

asyn
hronous network with dynami
 topology (and no 
onne
tivity assumptions) is 1/n (where n is

the number of nodes). In parti
ular, given any proto
ol P, there exists an alternative proto
ol P ′
,

su
h that P ′
will out-perform P by a fa
tor of at least n.

Theorem 2 (Informal) There exists a proto
ol that a
hieves a 
ompetitive ratio of 1/n in a dis-

tributed asyn
hronous network with dynami
 topology (and no 
onne
tivity assumptions).

Next, we move to networks where the nodes are sus
eptible to 
orruption and may deviate from the

spe
i�ed proto
ol in any desired manner to disrupt 
ommuni
ation as mu
h as possible. Somewhat

surprisingly, we show that this in
reased level of unreliability does not a�e
t optimal throughput

performan
e; indeed, we demonstrate a proto
ol that a
hieves 1/n 
ompetitive ratio, whi
h mat
hes

the lower-bound of Theorem 1.

Theorem 3 (Informal) Assuming one-way fun
tions exist and Publi
-Key Infrastru
ture, there

exists a proto
ol with 
ompetitive ratio 1/n in a distributed asyn
hronous network with dynami


topology (and no 
onne
tivity assumptions), even if an arbitrary subset of mali
ious nodes deliber-

ately disobey the proto
ol spe
i�
ations in order to disrupt 
ommuni
ation as mu
h as possible.

In Se
tion 2 we de�ne formally the network model(s) and our me
hanism for analyzing throughput

performan
e, then in Se
tions 3-5 we go through the ideas for Theorems 1-3 (respe
tively). Rigorous

proofs of all theorems 
an be found in the Appendix.

2 The Model

In this se
tion, we des
ribe formally the model in whi
h we will be analyzing routing proto
ols.

We begin by modeling the network as a graph G with n verti
es (or nodes). Two of these nodes are

designated as the sender S and re
eiver R, and the sender has a stream of messages {m1,m2, . . . }
that it wishes to transmit through the network to the re
eiver.

Asyn
hronous 
ommuni
ation networks vary from syn
hronous networks in that the transmission

time a
ross an edge in the network is not �xed (even along the same edge, from one message

transmission to the next). Sin
e there is no 
ommon global 
lo
k or me
hanism to syn
hronize

events, an asyn
hronous network is often said to be �message driven,� in that the a
tions of the

nodes in the network o

urs exa
tly (and only) when they have just sent/re
eived a message.
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Asyn
hronous networks are 
ommonly modelled by introdu
ing a s
heduling adversary that 
on-

trols the edges of the network as follows. Informally, we fo
us on a single edge E(u, v), and then

a �round� 
onsists of allowing the edge to deliver a message in both dire
tions.

2

To model unpre-

di
table delivery times a
ross ea
h edge, we have ea
h node u de
ide on the next message to send

to v immediately after re
eiving a message from v, and this message is then sent to the adversary

who stores the message until the next time the adversary a
tivates edge E(u, v).

Formally, we de�ne a round to 
onsist of a single edge E(u, v) in the network 
hosen by the

adversary in whi
h two sequential events o

ur: 1a) Among the pa
kets from u to v that the

adversary is storing, it will 
hoose one (in any manner it likes) and deliver it to v; 1b) Similarly, the

adversary 
hooses one of the pa
kets it is storing from v to u and delivers it to u; 2a) After seeing

the delivered pa
ket, u sends requests of the form (u, v,m) = (sending node, target node, message)

to the adversary, whi
h will be stored by the adversary and may be delivered the next time E(u, v)

is made a round; 2b) Similarly for v. If e.g. u does not have a pa
ket he wishes to send v in step

(2a), then u 
an 
hoose to send nothing here. Similarly, the adversary does not send anything to v

in step (1a) if he is not storing a message from u to v during round E(u, v).

Modelling asyn
hroni
ity in this manner 
aptures the intuition that a node has no idea how

long a message �sent� to an adja
ent node will take to arrive, and this de�nition also 
aptures the

�worst-
ase� asyn
hroni
ity, in that a (potentially deliberately mali
ious) adversary 
ontrols the

s
heduling of rounds/edges.

For ease of dis
ussion, we assume that all edges in the network have a �xed bandwidth/
apa
ity,

and that this quantity is the same for all edges in the network. We emphasize that this assumption

does not restri
t the validity of our 
laims in a more general model allowing varying bandwidths,

but is only made for ease of exposition.

Aside from obeying the above spe
i�ed rules, we pla
e no restri
tion on the s
heduling adversary.

In other words, it may honor whatever edges it likes (this models the fa
t our network makes no


onne
tivity assumptions), wait inde�nitely long between honoring the same edge twi
e (modeling

both the dynami
 and asyn
hronous features of our network), and do anything else it likes (so long as

it respe
ts steps 1) and 2) above ea
h time it honors an edge) in attempt to hinder the performan
e

of a routing proto
ol.

In Se
tion 5, our model will also allow a polynomially bounded node-
ontrolling adversary to


orrupt the nodes in the network. The node-
ontrolling adversary is mali
ious, meaning that he


an take 
omplete 
ontrol over the nodes he 
orrupts, and 
an therefore for
e them to deviate from

any proto
ol in whatever manner he likes. We further assume that the adversary is dynami
, whi
h

means that he 
an 
orrupt nodes at any stage of the proto
ol, de
iding whi
h nodes to 
orrupt

based on what he has observed thus far. We do not impose any �a

ess-stru
ture� limitations on

the adversary. That is, the adversary may 
orrupt any nodes it likes (although if the sender and/or

re
eiver is 
orrupt, se
ure routing between them is impossible). Be
ause integrity of the messages

re
eived by the re
eiver is now a 
on
ern (as 
orrupt nodes 
an delete and/or modify messages), we

will say a routing proto
ol is se
ure if the re
eiver eventually gets all of the messages sent by the

sender, in order and without dupli
ation or modi�
ation.

2

The demand that the adversary deliver messages in both dire
tions when honoring an edge E(u, v) does not

restri
t the power of the adversary. To generalize to the 
ase where the adversary 
an deliver messages in only one

dire
tion, one 
ould simply de�ne an edge to be �down� until at least one message has been able to travel in ea
h

dire
tion. Sin
e 
ompetitive analysis 
an be used to show that a
knowledgements of some kind are requisite to a
hieve

�nite 
ompetitive-ratio, it is natural to de�ne a round in su
h a way so as to allow 
ommuni
ation in both dire
tions.
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The separation of the adversaries into two distin
t entities is solely for 
on
eptual reasons.

Note that the s
heduling adversary 
annot be 
ontrolled or eliminated: edges themselves are not

inherently �good� or �bad,� so identifying an unresponsive edge does not allow us to forever refuse

the proto
ol to utilize this edge. By 
ontrast, our proto
ol will limit the amount of in�uen
e the

node-
ontrolling adversary has in the network. Spe
i�
ally, we will show that if a node deviates

from the proto
ol in a su�
iently destru
tive manner (in a well-de�ned sense), then our proto
ol

will be able to identify it as 
orrupted in a timely fashion. On
e a 
orrupt node has been identi�ed,

it will be eliminated from the network by ex
luding it from all future 
ommuni
ation.

Note that our network model is on-line and distributed, in that we do not assume that the nodes

have a

ess to any information (in
luding future knowledge of the adversary's s
hedule) aside from

the pa
kets they re
eive during a round they are a part of. Also, we insist that nodes have bounded

memory whi
h is at least Ω(n2).3

The goal of this paper is to analyze the performan
e of routing proto
ols in a network model that

is: on-line, distributed, asyn
hronous, dynami
 with no 
onne
tivity assumptions, and sus
eptible

to misbehaving nodes. Our me
hanism for evaluating proto
ols will be to measure their throughput,

a notion we 
an now de�ne formally in the 
ontext of rounds and the s
heduling adversary. In

parti
ular, let fA
P : N → N be a fun
tion that measures, for a given proto
ol P and adversary A, the

number of pa
kets that the re
eiver has re
eived as a fun
tion of the number of rounds that have

passed. Note that in this paper, we will 
onsider only deterministi
 proto
ols, so fA
P is well-de�ned.

The fun
tion fA
P formalizes our notion of throughput.

As mentioned in the Introdu
tion, we utilize 
ompetitive analysis to gauge the performan
e (with

respe
t to throughput) of a given proto
ol against all possible 
ompeting proto
ols. In parti
ular, for

any �xed adversary A, we may 
onsider the ideal �o�-line� proto
ol P ′
whi
h has perfe
t information:

knowledge of all future de
isions of the s
heduling adversary, as well as knowledge of whi
h nodes

are/will be
ome 
orrupt. That is, for any �xed round x, there exists an ideal o�-line proto
ol

P ′(A, x) su
h that fA
P ′(x) is maximal. We demand that the ideal proto
ol P ′

never utilizes 
orrupt

nodes, on
e they have been 
orrupted (this restri
tion is not only reasonable, it is ne
essary, as it


an easily be shown that allowing P ′
to utilize 
orrupt nodes will result in every on-line proto
ol

having 
ompetitive ratio

1
∞).

De�nition 2.1. We say that a proto
ol P has 
ompetitive ratio 1/λ (respe
tively is λ-
ompetitive)

if there exists a 
onstant k and fun
tion g(n,C) (C is the memory bound per node) su
h that for

all possible adversaries A and for all x ∈ N:
4

fA
P ′(x) ≤ (k · λ) · fA

P (x) + g(n,C) (1)

We assume that there is a Publi
-Key Infrastru
ture (PKI) that allows digital signatures. In

parti
ular, before the proto
ol begins we 
hoose a se
urity parameter l su�
iently large and run a

key generation algorithm for a digital signature s
heme, produ
ing n = |G| (se
ret key, veri�
ation
key) pairs (sku, vku). As output to the key generation, ea
h pro
essor u ∈ G is given its own private

signing key sku and a list of all n signature veri�
ation keys vkv for all nodes v ∈ G. In parti
ular,

this allows the sender and re
eiver to sign messages to ea
h other that 
annot be forged (ex
ept

with negligible probability in the se
urity parameter) by any other node in the system.

3

For simpli
ity, we assume that all nodes have the same memory bound, although our argument 
an be readily

extended to handle the more general 
ase.

4

Typi
ally, λ is a fun
tion of the number of nodes in the network n, and De�nition 2.1 impli
ity assumes the

minimal value of λ for whi
h (1) holds.
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3 Optimal Competitive Ratio in Unrestri
ted Networks

Due to spa
e 
onstraints and the 
omplexity of the argument, we will only be able to sket
h the

proof of Theorem 1 in this se
tion. At a high level, the idea is to des
ribe an adversary that s
hedules

edges based on the given proto
ol's a
tions su
h that the pa
kets of the proto
ol get �spread out�

among the nodes of the network. Meanwhile, with knowledge of the adversary's s
hedule, an o�ine

proto
ol 
an 
hoose to only move pa
kets along edges leading to the re
eiver. A short des
ription

is below; the full proof 
an be found in Appendix A.

The network model assumes that nodes have bounded memory, so let C denote the maximal

number of pa
kets that any node 
an store at any time. We will show that for any deterministi


proto
ol P, there exists an adversary A, a proto
ol P ′
, and a sequen
e of stri
tly positive integers

{m1,m2, . . . } su
h that for any α > 0, by round x =
∑α

i=1 miC:

fA
P ′(x) = αC and fA

P (x) ≤
αC

(n − 2)
≈

αC

n
, (2)

from whi
h we 
on
lude that the 
ompetitive ratio of P is at best 1/n.

We begin by des
ribing the adversary, i.e. a s
hedule (or order) of edges that will be honored. The

s
hedule will pro
eed in 
y
les, with the ith 
y
le lasting miC rounds. Let the height of a node refer

to the number of pa
kets 
urrently stored by that node. For the �rst C rounds, the adversary �nds

the internal node A1 with the largest height (ties are broken arbitrarily), and honors edge E(S,A1)

for C rounds (here S denotes the Sender). The proto
ol then pro
eeds indu
tively, starting with

j = 2 and Â1 = A1:

1. The adversary �nds node Aj , where Aj is the node in the network 
losest in height (but

smaller) to Âj−1. If there is no su
h node, set Aj to the Re
eiver R.

2. The adversary honors edge E(Âj−1, Aj) for C rounds

3. The adversary sets Âj to be whi
hever node (Âj−1 or Aj) has fewer pa
kets after the C rounds

of edge E(Âj−1, Aj) has just passed.

The above three steps are 
ontinued until the end of the C rounds for whi
h Aj = R.

Noti
e a few features of the adversarial strategy: 1) The Sender's ability to insert pa
kets is

hindered by the fa
t the adversary is 
hoosing to honor edge E(S,N) for the node N with the

smallest 
apa
ity to store more pa
kets; 2) By sele
ting in Step 2 the node storing fewer pa
kets,

the adversary is attempting to minimize the number of pa
kets that make progress towards the

Re
eiver; indeed 3) Among all nodes in the network, the node N that is 
urrently storing the fewest

pa
kets will be the one 
onne
ted to the Re
eiver in the �nal C rounds of the 
y
le. Also, it is 
lear

that an o�-line proto
ol P ′
with knowledge of all future rounds will be able to deliver C pa
kets

every 
y
le. Sin
e a 
y
le 
onsists of C ∗ m rounds for some positive integer m, we 
an generate a

sequen
e of positive integers {mi} 
oming from the ith 
y
le, yielding the �rst equality of (2), so it

remains to prove the se
ond bound in (2).

Fix any on-line proto
ol P we wish to analyze. If we 
ould demonstrate that P delivers at

most C/(n − 2) pa
kets per 
y
le, then (2) would be immediate. Unfortunately, one 
an imagine

e.g. the state of the network at the beginning of some 
y
le being su
h that all internal nodes are

storing the maximum C allowed pa
kets. In this 
ase, P will be able to deliver C pa
kets this 
y
le.

Therefore, we instead need to argue that if P ever rea
hes a state where it is able to deliver more
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than C/(n − 2) pa
kets in some 
y
le (e.g. all nodes are full), then it must be that P has delivered

fewer than an average of C/(n − 2) pa
kets per 
y
le in the past.

With this 
ounter-example in mind, we de�ne a potential fun
tion Ψα
, whi
h intuitively measures

the ability of P to deliver pa
kets in the αth

y
le. We will show that whenever P delivers more than

C/(n − 2) pa
kets, the di�eren
e Ψα − Ψα+1
will be positive and �su�
iently large.� Conversely,

any time Ψα+1 > Ψα
, we will show that ne
essarily P delivered �signi�
antly fewer� than C/(n− 2)

pa
kets in the αth

y
le.

Formally, at the start of any 
y
le α, label the internal nodes as {N1, . . . , Nn−2} in des
ending

order in terms of how full their bu�ers are at the start of α. Let Hα
i denote the number of pa
kets

that node Nα
i is storing at the outset of α, and then de�ne:

Ψα =

n−2∑

i=1

(
1

2

)n-i-2

· max

(
0,Hα

i − (n − i − 2)
C

n − 2

)
(3)

Let Zα
denote the number of pa
kets the Re
eiver re
eives in the αth


y
le. Our main te
hni
al

result for this se
tion is then:

Lemma 3.1. For all α ∈ N:

Zα + (Ψα+1 − Ψα) ≤
7C

n − 2
(4)

Proof. See the proof of Lemma A.12 in the Appendix.

With Lemma 3.1 in hand, we obtain the se
ond inequality of (2) as an immediate 
orollary:

Lemma 3.2. For any α ∈ N and x = (n − 2)αC:

fA
P (x) ≤

7αC

n − 2
(5)

Proof. Consider the string of inequalities:

fA
P (x) =

∑

β≤α

Zβ ≤
∑

β≤α

(
7C

(n − 2)
− (Ψβ+1 − Ψβ)

)
=

7αC

n − 2
+ Ψ1 − Ψα+1 ≤

7αC

n − 2
, (6)

where the last inequality follows from the fa
t that Ψα+1 ≥ 0 and Ψ1 = 0 (the latter is true sin
e

at the outset of the proto
ol, all nodes are not storing any pa
kets).

4 Optimal On-line Lo
al Control Proto
ol

In this se
tion we present an on-line proto
ol that enjoys 
ompetitive ratio 1/n. The proto
ol

is a basi
 implementation of the �Slide� proto
ol (or gravitational-�ow), whi
h was �rst introdu
ed

by Afek, Gafni, and Rosén [3℄, and further developed in a series of work [1℄ and [18℄. We 
hose to

analyze the performan
e of this proto
ol in our �unrestri
ted� network model be
ause its inherent

message-driven proto
ol is well-suited for the asyn
hronous network, and it has also been shown

to out-perform more naive 
andidates for asyn
hronous routing proto
ols (e.g. broad
ast) when

stronger network assumptions are made [7℄.

Be
ause the Slide proto
ol has nodes make routing de
isions based on their 
urrent height (how

many pa
kets they are 
urrently storing), it will be easier to work in a simpli�ed model for asyn-


hroni
ity over the one presented in Se
tion 2. In parti
ular, for the remainder of this se
tion, we

assume a semi-asyn
hronous model, de�ned as follows:
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1′ The adversary does not maintain a bu�er of requests of pa
kets from nodes and must instead

satisfy them immediately as spe
i�ed in 3′ below

2′ The adversary pro
eeds in the same manner as before, by sele
ting an edge E(u, v) to honor

a

ording to the same guidelines as in Se
tion 2

3′ During a round E(u, v), the adversary �rst �awakens� u and v to alert them they are a part of

the 
urrent round. Nodes u and v may now submit their request, 
onsisting only of a pa
ket

plus 
ontrol information, to the adversary who must dire
tly deliver the pa
ket p to v during

this round (similarly the pa
ket p′ that v submitted is delivered to u).

Comparing this to the fully asyn
hronous model de�ned in Se
tion 2, the di�eren
e is that here the

pa
kets that u and v deliver to ea
h other, with their height information in
luded, are 
urrent; in

the model of Se
tion 2, the pa
kets and height information delivered in some round E(u, v) were

a
tually set the previous time E(u, v) was honored. This slightly 
ompli
ates things for routing

proto
ols in the fully asyn
hronous model, as the nodes are for
ed to make routing de
isions based

on outdated information.

It turns out that proving our proto
ol enjoys a 
ertain 
ompetitive-ratio in the semi-asyn
hronous

setting is the hard part, and it is not di�
ult to extend the proof to work in the fully asyn
hronous

setting. Indeed, all of the major ideas 
ome from 
onsidering only the semi-asyn
hronous setting.

In the next subse
tion we des
ribe our proto
ol in the semi-asyn
hronous setting, and then sket
h a

proof that it enjoys 
ompetitive-ratio 1/n. The formal details of the proof are presented in Appendix

B, and a des
ription of the proto
ol extended to the fully asyn
hronous setting, together with formal

proofs that it has the same 
ompetitive ratio, are provided in Appendix C.

4.1 Des
ription of the Proto
ol

There are numerous instantiations of the Slide proto
ol that vary slightly between one another,

but the basi
 prin
iple is always the same. Due to spa
e 
onstraints, we will not provide a de-

tailed des
ription of the proto
ol, but refer the reader to [3℄ for the original proto
ol, and [1℄, [18℄,

and [7℄ for various modi�
ations. Below, we present a basi
 implementation of the Slide proto
ol,

and then go on to prove that the basi
 Slide proto
ol a
hieves 
ompetitive ratio 1/n in the re-

stri
ted semi-asyn
hronous model of 1′ − 3′ des
ribed above. Somewhat surprisingly, even though

the Slide proto
ol has been in existen
e for over a de
ade, no throughput 
ompetitive analysis for

the asyn
hronous (or even semi-asyn
hronous) model has ever been performed.

The network model assumes that nodes have bounded memory, so let C denote the maximal

number of pa
kets that any node 
an store at any time. Also, we will assume C/n ∈ N and in

parti
ular that C/n ≥ 2 (the former assumption is not ne
essary but will make the exposition

easier; the latter is ne
essary for the Slide proto
ol to work). Within the 
ontext of the semi-

asyn
hronous network model (1′ − 3′ above), we des
ribe the request that a node u will make to

the adversary when it is �awakened,� and also how this node u will respond to the pa
ket it re
eives

from v:

1. If u is the Sender, then u �nds the next pa
ket pi ∈ {p1, p2, . . . } that has not yet been deleted (see

1a below), and forms the pa
ket to send to the adversary: p := (pi, C + C
n
− 1). Meanwhile, when u

re
eives (in the same round) the pa
ket (pj , h):

(a) If h < C, then u deletes pa
ket pi from his input stream {p1, p2, . . . } (and ignores the re
eived

pa
ket pj)

(b) If h ≥ C, then u keeps pi (and ignores the re
eived pa
ket pj)
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2. If u is the Re
eiver, then u forms the pa
ket to send p := (⊥, −C
n

). Meanwhile, when u re
eives a

pa
ket of form (pj , h), if pj 6= ⊥, u stores/outputs pj as a pa
ket su

essfully re
eived.

3. If u is an internal node (not Sender or Re
eiver) and u 
urrently has height H , then u �nds the last

5

pa
ket pi that it has re
eived, and sets the pa
ket to send to the adversary: p := (pi, H) (if H = 0,
then set pi = ⊥). Meanwhile, when u re
eives (in the same round) a pa
ket of form (pj , h):

(a) If H ≥ h + C/n, then u will delete pi (and ignore the pa
ket pj)

(b) If H ≤ h − C/n, then u will keep pi, and also store pj (as the most re
ent pa
ket re
eived)

(
) If |H − h| < C/n, then u will keep pi and ignore pa
ket pj

Noti
e that rules 1-3 essentially state that internal nodes will always a

ept pa
kets from the

Sender (if they have room), always send pa
kets to the Re
eiver (if they have any to send), and will

transfer a pa
ket to a neighboring internal node if and only if they are 
urrently storing at least

C/n more pa
kets than that neighbor.

4.2 Competitive Analysis of Slide in the Semi-Asyn
hronous Model

Due to spa
e 
onstraints, we provide here only a very brief sket
h of the proof that the above

des
ribed Slide proto
ol enjoys 
ompetitive ratio 1/n. The full proof 
an be found in Appendix B.

Re
all that we wish to show that there exists a 
onstant k and fun
tion g(n,C) su
h that for

any round x and against any adversary A (see (1)):

fA
P ′(x) ≤ (kn) · fA

P (x) + g(n,C) (7)

Above (and through the remainder of this se
tion), P will denote the Slide proto
ol, and for �xed


hoi
e of adversary A and round x, P ′(A, x) will denote the ideal o�-line proto
ol (sin
e we will be

�xing x and A, we will usually write simply P ′
). We will show that (7) will be true for all rounds x

and all adversaries A for k = 4 and g(n,C) = 4n2C. We pro
eed by �xing an arbitrary adversary

A and round x ∈ N, and showing that for these (arbitrary) 
hoi
es, (7) will be satis�ed. Let Y P ′

(resp. ZP ′

) denote the pa
kets that have been inserted (resp. re
eived) by the Sender (resp. the

Re
eiver) for proto
ol P ′
as of round x (de�ne Y P

and ZP
analogously). Noti
e that fA

P ′(x), the

left-hand-side of (7), is equal to |ZP ′

| (we will o

asionally write ZP ′

when we really mean |ZP ′

|;
the meaning will be 
lear from 
ontext). We split ZP ′

into two disjoint subsets ZP ′

= ZP ′

1 ∪ ZP ′

2 ,

whi
h we now des
ribe.

We 
an view the adversary A as simply a s
hedule (or order) of edges that the adversary

will honor. We will imagine a virtual world, in whi
h the two proto
ols (Slide and the ideal o�-line

proto
ol) are run simultaneously in the same network. De�ne ZP ′

1 to be the subset of ZP ′


onsisting

of pa
kets p′ for whi
h there exists at least one round E(u, v) su
h that both p′ and some pa
ket

p ∈ Y P
were both transferred this round.

6

Set ZP ′

2 = ZP ′

\ ZP ′

1 .

Lemma 4.1. |ZP ′

1 | ≤ n|ZP | + n2C

Proof Sket
h. Sin
e every pa
ket in ZP ′

1 travelled at the same time as a pa
ket transfer in P, we

an bound |ZP ′

1 | by the number of pa
ket transfers in P. Sin
e any �xed pa
ket drops in height

at least C/n ea
h time it is transferred, the total number of pa
ket transfers is at most n|Y P |.
Finally, sin
e the maximal number of pa
kets that 
an be stored in all internal bu�ers is nC, we

have |Y P | ≤ |ZP | + nC. �

5

The Slide proto
ol typi
ally utilizes FILO storage bu�ers, and then uses error-
orre
ting 
odes to 
ompensate

the pa
kets that get �stu
k� in a node's storage.

6

Note that we make no 
ondition that the two pa
kets traveled in the same dire
tion.
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Lemma 4.2. |ZP ′

2 | ≤ 2n|Y P | ≤ 2n|ZP | + 2n2C

Proof Sket
h. Consider a �xed pa
ket p′ ∈ ZP ′

2 . When this pa
ket was �rst inserted by P ′
, say

into some node u's bu�er, sin
e P did not insert a pa
ket in this round (by de�nition of ZP ′

2 ), we

have that u's bu�er must have been full (rule 1(a)). Meanwhile, when the re
eiver re
eived p′ from

some node v, sin
e P did not transfer a pa
ket this round, it must have been that v had an empty

bu�er during this round. Thus, p′ travelled from a node with a 
ompletely full bu�er to one with

a 
ompletely empty bu�er. In Appendix B we show how to use this fa
t to bound |ZP ′

2 | by the

number of pa
ket transfers in P, whi
h 
an then be bounded by 2n|Y P | as in Lemma 4.1. �

5 Proto
ol Se
ure Against Mali
ious Adversary

We now move to the network setting that allows both unreliable edges 
ontrolled by the s
hedul-

ing adversary and unreliable nodes 
orrupted by the node-
ontrolling adversary (see Se
tion 2 for a

formal dis
ussion of the network model and these two adversaries). Below is a high-level des
ription

of the proto
ol and a statement of the main result. Pseudo-
ode of the proto
ol, as well as rigorous

proofs of se
urity and throughput performan
e, 
an be found in Appendix D.

5.1 High Level Des
ription

Our strategy in developing a proto
ol that routes e�e
tively in this highly unreliable network

setting will be to start with the Slide+ proto
ol, whi
h has optimal 
ompetitive ratio in terms

of throughput, and add elements from 
ryptography to provide extra se
urity against the node-


ontrolling adversary. Spe
i�
ally, we will modify the Slide+ proto
ol by using digital signatures in

the following two ways:

1. The sender signs every pa
ket, so that honest nodes do not waste resour
es on modi�ed or

junk pa
kets, and so that pa
kets the re
eiver gets are unmolested

2. Communi
ation between nodes will be signed by ea
h node. This information will then be

used later by the sender (if there has been mali
ious a
tivity) to hold nodes a

ountable for

their a
tions, and ultimately eliminate 
orrupt nodes

The routing rules for ea
h internal node are the same as in the Slide+ proto
ol, ex
ept that whenever

a node u sends a pa
ket to a neighbor v, there will be four parts to this 
ommuni
ation:

(a) The pa
ket itself, i.e. one of the pa
kets from the sender intended for the re
eiver

(b) The 
urrent height of u, i.e. how many pa
kets u is 
urrently storing

(
) A signature on the 
ommuni
ation that u has had so far with v, to be des
ribed shortly

(d) Signatures from other nodes that the sender has requested, to be des
ribed shortly

The �rst two parts of ea
h 
ommuni
ation are identi
al to the Slide+ proto
ol, so it remains to

dis
uss the se
ond two items, whi
h are used for the identi�
ation of 
orrupt nodes. Note that the

se
ond two items ea
h 
onsist of a signature on some quantity; for this reason we will require that

the bandwidth of ea
h edge is large enough to allow for simultaneous transmission of two signatures

(plus the pa
ket itself).

7

The signature that u in
ludes on his 
ommuni
ations with v for Item (
)

above pertains to the following four items:

7

This assumption on bandwidth is not unreasonable: for a signature s
heme with se
urity parameter k, ea
h
signature requires only O(k) bits. Also, the requirement that bandwidth is large enough to allow two signatures is

made for 
onvenien
e of exposition; our proto
ol 
an be modi�ed to handle the 
ase of smaller bandwidth, although

this is not pursued here.
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Sig. 1. The total number of pa
kets u has sent to v so far

Sig. 2. The total number of times the previous pa
ket p that was ex
hanged between them

has 
rossed the edge E(u, v) (in general, the same pa
ket may 
ross the same edge multiple

times)

Sig. 3. The 
umulative di�eren
e in u and v's heights, measured from ea
h time u and v

ex
hanged a pa
ket

Sig. 4. An index representing how many times E(u, v) has been honored, to serve as a

time-stamp on the above three items

It remains to explain Item (d) from above, for whi
h it will be useful to �rst des
ribe from a high-

level how our proto
ol handles mali
ious a
tivity by 
orrupt nodes. We �rst note that if either the

sender or re
eiver is 
orrupted by the node-
ontrolling adversary, then se
ure routing is impossible

(indeed it is not 
lear what is even meant by �se
ure routing� in this 
ase). We will therefore assume

that the sender and re
eiver are in
orruptible, and they will be responsible for regulation of the

network (e.g. identifying and eliminating 
orrupt nodes). Also, be
ause our de�nition of se
urity

(see Se
tion 2) requires that the re
eiver gets all of the pa
kets sent by the sender, it is no longer

enough to simply measure throughput in terms of number of pa
kets re
eived (as was done for

the Slide and Slide+ proto
ols above). Instead, we will use error-
orre
tion and �rst expand the

messages into 
odewords so that the re
eiver 
an re
onstru
t ea
h message if he has a 
onstant

fra
tion of the 
odeword pa
kets. See e.g. [7℄ for a spe
i�
 des
ription of how this 
an be done.

We note that be
ause the de�nition of throughput only 
ares about asymptoti
 performan
e (i.e.


onstants are absorbed in the k that appears in De�nition 1), the use of error-
orre
tion will not

a�e
t the throughput of our proto
ol.

From a high-level, the proto
ol attempts to transfer one message (
odeword), 
onsisting of O(nC)

bits, at a time. The sender will 
ontinue inserting pa
kets 
orresponding to the same 
odeword until

one of the following o

urs:

S1 The sender gets a message from the re
eiver indi
ating he 
ould de
ode the 
urrent 
odeword

F2 The sender gets a message from the re
eiver indi
ating in
onsisten
ies in height di�eren
es

F3 The sender has inserted all pa
kets 
orresponding to the 
urrent 
odeword

F4 The sender gets a message from the re
eiver indi
ating the re
eiver got the same pa
ket twi
e

F5 The sender is able to identify a 
orrupt node

In the 
ase of S1, the message/
odeword was delivered su

essfully, and the sender will begin inserting

pa
kets 
orresponding to the next message/
odeword. In the 
ase of F5, the sender will eliminate the

identi�ed node (i.e. alert all nodes in the network to never trust or utilize the 
orrupt node again),

and begin anew transmitting pa
kets 
orresponding to the 
urrent 
odeword. The other three 
ases

all 
orrespond to failed attempts to transfer the 
urrent message/
odeword due to 
orrupt nodes

disobeying proto
ol rules, and in ea
h 
ase the sender will use the signed information from Item (
)

above to identify a 
orrupt node.

In 
ases F2-F4, the sender will begin anew transmitting pa
kets 
orresponding to the 
urrent


odeword. Before nodes are allowed to parti
ipate in transferring the 
odeword pa
kets, they must

�rst learn that the last transmission failed, the reason for failure (F2-F4), and the sender must

re
eive all of the signatures the node was storing from its neighbors (i.e. all signed information from

Item (
) above). Note that the network itself is the only medium of 
ommuni
ation available for

relaying the signatures a node is storing to the sender, and hen
e part of the bandwidth of ea
h

edge (and part of the storage 
apa
ity of ea
h node) is devoted to returning these pie
es of signed

information to the sender (this is Item (d) from the above list). The spe
i�
 rules regarding storing
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and transferring other nodes' signatures ba
k to the sender 
an be found in the pseudo-
ode in

Appendix D.

Until the sender has re
eived all of a node's information 
orresponding to a failed transmission,

that node will remain on the bla
klist. That is, no honest node u will transfer any 
odeword

pa
kets to another node v until u obtains veri�
ation from the sender that the sender has re
eived

all signatures from v. In Appendix D, we prove rigorously our main theorem:

Theorem 3. If at any time P ′
has re
eived Θ(xn) messages, then P has re
eived Ω((x − n2))

messages. Thus, if the number of messages x ∈ Ω(n2), then our proto
ol has 
ompetitive ratio 1/n.
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Appendix

A Formal Proof of Throughput Bound

In this se
tion, we go through the rigorous details of the proof of Theorem 1, whi
h was sket
hed

in Se
tion 3. We will use the same notation introdu
ed there for the remainder of this se
tion. In

parti
ular, re
all that there is some �xed proto
ol P that we wish to analyze, and we are 
onsidering

a s
heduling adversary A that pro
eeds in 
y
les.

We begin with a redu
tion of the given proto
ol P to a virtual proto
ol P ′
, whi
h will be operating

with respe
t to a di�erent s
heduling adversary A′
than P. The s
hedule of edges honored by A′

will be (in general) di�erent than those honored by A, but A′
will also pro
eed in 
y
les. For any


y
le α in P ′
's world, de�ne Ψ′α

and Z ′α
analogous to Ψα

and Zα
that were de�ned for P in Se
tion

3. We emphasize that the two worlds of P and P ′
are di�erent, and we are not attempting to apply


ompetitive analysis to these two proto
ols. Rather, the property that P ′
will satisfy is:

∀α ∈ N : Ψα = Ψ′α
and Zα = Z ′α

(8)

Then given that (8) holds for all 
y
les α, if we 
an show for all α (subje
t to A′
's s
hedule):

Z ′α + (Ψ′α+1 − Ψ′α) ≤
7C

n − 2
, (9)

then the equivalent statement will be true for P, whi
h is Lemma 3.1 in Se
tion 3, and thus the

proof will be 
omplete.

We now explain the alternate s
heduling adversary A′
, whi
h will be de�ned in terms of any

arbitrary proto
ol attempting to route in a network 
ontrolled by A′
. As mentioned above, the

s
hedule of A′
will pro
eed in 
y
les, ea
h of whi
h will last (n − 1)C rounds. At the beginning of
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any 
y
le α, A′
labels the internal nodes by {Nα

1 , Nα
2 , . . . , Nα

n−2}, so that for all 1 ≤ i ≤ n − 3,

node Nα
i is storing more pa
kets than Nα

i+1 at the outset of 
y
le α (note that the labels/indi
es of

the internal nodes will 
hange every 
y
le). For the �rst C rounds of the 
y
le, the adversary will

honor edge E(S,N1) (here S denotes the Sender). We des
ribe the remaining rounds in this 
y
le

indu
tively (starting below for i = 1, and Ñα
1 = Nα

1 ):

1. The adversary honors edge E(Ñα
i , Nα

i+1) for C rounds

2. After the �rst (i + 1)C rounds of 
y
le α have passed (i.e. edge E(Ñα
i , Nα

i+1) has just been

honored C times), let Ñα
i+1 ∈ {Ñα

i , Nα
i+1} denote the node storing fewer pa
kets than the

other.

Steps 1-2 are repeated through i = n− 3, so that E(Ñα
n−3, N

α
n−2) has just 
ompleted, and Ñα

n−2 has

been de�ned. Then for the last C rounds of 
y
le α, the adversary honors edge E(Ñα
n−2, R).

Lemma A.1. Given proto
ol P routing in a network 
ontrolled by A (whose s
hedule was des
ribed

in Se
tion 3), there exists a proto
ol P ′

ompeting against A′

, su
h that with respe
t to ea
h proto
ol's

own 
y
le, (8) is valid.

Proof. Sin
e we are 
onsidering only deterministi
 proto
ols, we 
an de�ne what P ′
will do in any

round based on what P is doing. We will a
tually demonstrate something slightly stronger than

(8), that is:

Indu
tion Hypothesis. Up to permutation of the internal nodes, the heights of ea
h

of the internal nodes in both worlds is the same at the start/end of any 
y
le, as is the

number of pa
kets delivered in any 
y
le.

We pro
eed by indu
tion on the 
y
le. In parti
ular, �x some 
y
le α, and assume that the indu
tion

hypothesis is true for all 
y
les β < α. In the �rst C rounds of α in P's world, A opens edge E(S,A1),

where A1 is the internal node 
urrently storing the most pa
kets. Similarly, in the �rst C rounds,

A′
opens edge E(S,A′

1), where A′
1 is the internal node 
urrently storing the most pa
kets in P ′

's

world. By the indu
tion hypothesis, although the labels of node A1 verses A′
1 may be di�erent, the

node that label represents will have the same height in the two worlds, and we de�ne P ′
to do the

same thing that P does in these �rst C rounds.

Let A2 denote the node for whi
h the adversary A will honor edge E(A1, A2) for the next C

rounds, and similarly for A′
2 with respe
t to A′

. Note that by the indu
tion hypothesis together

with the de�nition of P ′
(so far) for the �rst C rounds of 
y
le α, we have that the height of A1

equals the height of A′
1, and similarly the heights of A2 and A′

2 mat
h. Now de�ne P ′
to do in

the C rounds E(A′
1, A

′
2) whatever P does in the C rounds E(A1, A2).

8

Thus, after 2C rounds have

passed, the two networks are still identi
al (up to permutation of the nodes).

Let Ã2 denote the node among {A1, A2} that is storing fewer pa
kets after the C rounds of

E(A1, A2). Now in P's world, the adversary will sear
h for the node A3 with height 
losest to (but

smaller than) Ã2, and the adversary A will next honor edge E(Ã2, A3) for C rounds. Noti
e that, if

e.g. P had A2 transfer all its pa
kets to A1 during the C rounds of E(A1, A2), it is possible that A3

8

In order to preserve Fa
t 1 below, we demand that after the C rounds of E(A′
1, A

′
2), A′

2 is storing fewer pa
kets

than A′
1. Therefore, if this is not the 
ase for E(A1, A2), then de�ne P ′

to end in a symmetri
 state as P , i.e. so that
the pair of nodes (A1, A2) have the same height as the pair of nodes (A′

1, A
′
2), but in the latter pair, ne
essarily A′

1

is storing at least as many pa
kets as A′
2 after the C rounds of E(A′

1, A
′
2).
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is not the node that had the third highest height at the start of 
y
le α (indeed, its even possible

that A3 = R).

By the indu
tion hypothesis, there is some node A′
i (i ≥ 3) in P ′

's world su
h that at the start

of α, the height of A3 equals the height of A′
i (if A3 = R, then i = n − 1, i.e. set A′

i = R). Noti
e

that in 
ontrast to P's world, the s
hedule of A′
will ne
essarily go through every internal node at

least on
e. Indeed, for any 2 ≤ m ≤ n − 2, the node in P ′
's world that started 
y
le α as the mth

fullest node will ne
essarily be a part of rounds mC through (m + 1)C − 1. Therefore, for ea
h

3 ≤ m ≤ i, di
tate that during rounds mC through (m + 1)C − 1, proto
ol P ′
will have the two

nodes swap �nal states. In parti
ular, for any 3 ≤ m ≤ i, if H ′
m denotes the height of A′

m at the

start of 
y
le α, then we di
tate that P ′
transfers enough pa
kets from A′

m to A′
m−1 during the C

rounds of E(A′
m−1, A

′
m) su
h that the height of A′

m−1 at the end of the C rounds is equal to H ′
m.

In this manner, it is 
lear that by the time the virtual world of P ′
rea
hes the end of iC 
y
les

(re
all that i is de�ned so that the height of A3 equals the height of A′
i), the state of the networks

in the two worlds will be identi
al (up to permutation of the nodes). Furthermore, during the next

C rounds of ea
h 
y
le, the adversaries A and A′
will honor an edge between two nodes (E(A2, A3)

verses E(A′
i−1, A

′
i)) su
h that at the moment the C rounds start, the height of A2 equals A′

i−1, and

the height of A3 equals A′
i. Therefore, this pro
ess may be repeated iteratively through the end of

the 
y
le in ea
h respe
tive world, and it is 
lear that the indu
tion hypothesis will remain valid by

the end of 
y
le α. �

For the remainder of the se
tion, we will seek to prove (9) for the proto
ol P ′
. To simplify

notation, it will be 
onvenient to de�ne m = n − 2. At the outset of every 
y
le α, we label the

internal (i.e. ex
luding the Sender and Re
eiver) nodes {Nα
1 , Nα

2 , . . . , Nα
m}, su
h that if i < j, then

node Nα
i is storing more (or an equal number of) pa
kets at the start of 
y
le α than Nα

j . For all

α, let Nα
0 = S and Nα

n−1 = R. For any 1 ≤ i ≤ n − 2, let Hα
i denote the height the node had at

the outset of α. We emphasize that while the heights of nodes may 
hange through the 
ourse of


y
le α, the labeling {Nα
i } and the quantities {Hα

i } will remain �xed throughout the 
y
le. Indeed,

the following fa
t implies that the labeling of nodes is independent of α (and in fa
t is �xed for all

time):

Fa
t 1. For all α ∈ N and all 1 ≤ i ≤ m: Nα
i = Nα+1

i

Fa
t 2. For any 
y
le α, node Ni is a part of 2C rounds of the 
y
le: �rst for C rounds

with E(Ni−1, Ni), and then for C rounds with E(Ni, Ni+1)

These fa
ts, along with the following observations, all follow from the de�nition/
onstru
tion of P ′

in the proof of Lemma A.1 above. To �x notation, for ea
h 0 ≤ i ≤ m let Aα
i denote the number

of pa
kets sent from Ai to Ai+1 during the C rounds E(Ni, Ni+1) of 
y
le α. Note that Aα
i may be

negative if the net pa
ket �ow during E(Ni, Ni+1) was towards Ni.

Lemma A.2. For any 
y
le α and for any 1 ≤ i ≤ m:

1) Aα
i ≤

Aα
i−1 + Hα

i − Hα
i+1

2
(10)

2) Aα
i ≤ Hα+1

i − Hα
i+1 (11)
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Proof. Statement 1 follows from the two fa
ts above as follows. Note that after the C rounds

E(Ni−1, Ni) but before the next C rounds, node Ni will have height Aα
i−1 + Hα

i . Now by de�nition

of proto
ol P ′
, at the end of the C rounds of E(Ni, Ni+1), Nα

i will have a greater (or equal) number

of pa
kets than Nα
i+1. In parti
ular, sin
e there are Aα

i−1 + Hα
i + Hα

i+1 total pa
kets between the

two nodes at the start of the C rounds E(Nα
i , Nα

i+1), it must be that at the end of these C rounds,

Nα
i is storing at least half of these. Sin
e the number of pa
kets stored by Nα

i after the C rounds

of E(Nα
i , Nα

i+1) is given by Aα
i−1 + Hα

i − Aα
i , Statement 1 follows.

Also, again sin
e proto
ol P ′
spe
i�es that Nα

i must have more (or an equal number of) pa
kets

as Nα
i+1 immediately after the C rounds of E(Nα

i , Nα
i+1), and by Fa
t 2 the height of Nα

i will not


hange through the remainder of 
y
le α, Statement 2 follows. �

Statement 1 above immediately implies the following, whi
h we state separately for later use:

Corollary A.3. For any 
y
le α and for any 1 ≤ i ≤ m:

Aα
i ≤

Aα
i−1 + Hα

i − min
(
Hα

i+1,
C
m

(m − i − 1)
)

2

We are interested in the potential fun
tion:

Ψ′α =
m∑

i=1

(
1

2

)m−i

· max

(
0,Hα

i − (m − i)
C

m

)
(12)

For ea
h 1 ≤ i ≤ m, de�ne:

δα
i =

{
1 if the 2nd

term of the max statement in (12) dominates

0 otherwise

(13)

Also, for any pair of indi
es 1 ≤ i < j ≤ m, de�ne:

(Ψ′α+1−Ψ′α)i,j =

j∑

k=i

(
1

2

)m−k

·

[
max

(
0,Hα+1

k − (m − k)
C

m

)
− max

(
0,Hα

k − (m − k)
C

m

)]
(14)

Claim A.4. For any index 1 ≤ i ≤ m and any 
y
le α:

Hα+1
i = Hα

i + Aα
i−1 − Aα

i (15)

Proof. Noti
e Nα+1
i = Nα

i (Fa
t 1) and Ni is a part of exa
tly 2C rounds for the αth

y
le (Fa
t 2).

In the �rst C rounds, Hi 
hanges by Aα
i−1, and in the se
ond C rounds it 
hanges by −Aα

i . Sin
e

Ni began the 
y
le with height Hα
i , we have that its height at the start of the (α + 1)th 
y
le will

be Hα
i + Aα

i−1 − Aα
i . �

It will be 
onvenient to introdu
e the following notation:

De�nition A.5. For any 1 ≤ i ≤ m and any 
y
le α, de�ne:

να
i := max

(
0, Hα

i − (m − i)
C

m

)
and ωα

i := min

(
0, Hα

i − (m − i)
C

m

)
(16)
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Claim A.6. For any index 1 ≤ i ≤ m and any 
y
le α:

1) If δα+1
i = 1, then: (Ψ′α+1 − Ψ′α)i,i =

1

2m−i
(Aα

i−1 − Aα
i + ωα

i )

2) If δα+1
i = 0, then: (Ψ′α+1 − Ψ′α)i,i =

1

2m−i
να

i (17)

Proof. If δα+1 = 1, then 
onsider the equalities:

(Ψ′α+1 − Ψ′α)i,i =
1

2m−i

[
max

(
0,Hα+1

i − (m − i)
C

m

)
− max

(
0,Hα

i − (m − i)
C

m

)]

=
1

2m−i

[
(Aα

i−1 − Aα
i + Hα

i ) − (m − i)
C

m
− max

(
0,Hα

i − (m − i)
C

m

)]

=
1

2m−i
(Aα

i−1 − Aα
i ) +

{
0 if Hα

i ≥ (m − i) C
m

1
2m−i

(
Hα

i − (m−i)C
m

)
if Hα

i < (m − i) C
m

=
1

2m−i
(Aα

i−1 − Aα
i + ωα

i )

where the se
ond equality is from Claim A.4 together with the assumption that δα+1 = 1. Otherwise,

if δα+1 = 0, then Statement 2 is immediate. �

Lemma A.7. For any pair of indi
es 1 ≤ i < j < m for whi
h δα+1
k = 1 for every i ≤ k ≤ j:9

(Ψ′α+1
�Ψ′α)i,j +

Aj

2m−j−1
−

j∑

k=i

ωk

2m−k
≤

Ai−1

2m−i
+

(j-i+1)

2m−i+1
(Ai−1+Hi) −

Hj+1

2m−j+1
+

j−1∑

k=i+1

(j − k)

2m−k+2
Hk

Proof. This follows via an indu
tive argument on j − i together with Lemma A.2 and Claim A.6:

Base Case: j = i + 1: First 
onsider the right-hand-side of the inequality of Lemma A.7 with

j = i + 1:

RHS A.7 =
Ai−1

2m−i
+

2

2m−i+1
(Ai−1 + Hi) −

Hi+2

2m−i

=
Ai−1

2m−i
+

1

2m−i
(Ai−1 + Hi) −

Hi+2

2m−i

=
Ai−1

2m−i−1
+

1

2m−i
(Hi − Hi+2) (18)

9

Unless expli
ity written otherwise, assume all supers
ripts are α, whi
h we have suppressed for notational 
on-

venien
e.
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Meanwhile, for j = i + 1, the left-hand-side of the inequality of Lemma A.7 is:

LHS A.7 = (Ψ′α+1
�Ψ′α)i,i+1 +

Ai+1

2m−i−2
−

i+1∑

k=i

ωk

2m−k

= (Ψ′α+1
�Ψ′α)i,i + (Ψ′α+1

�Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i

ωk

2m−k

=
1

2m−i
(Ai−1 − Ai + ωi) +

1

2m−i−1
(Ai − Ai+1 + ωi+1) +

Ai+1

2m−i−2
−

i+1∑

k=i

ωk

2m−k

=
1

2m−i−1
Ai+1 +

1

2m−i
(Ai + Ai−1)

≤
1

2m−i
((Ai + Hi+1 − Hi+2) + (Ai + Ai−1))

=
1

2m−i
(Ai−1 + Hi+1 − Hi+2) +

1

2m−i−1
Ai

≤
1

2m−i
(Ai−1 + Hi+1 − Hi+2) +

1

2m−i
(Ai−1 + Hi − Hi+1)

=
Ai−1

2m−i−1
+

1

2m−i
(Hi − Hi+2) (19)

where the third equality is due to Claim A.6, the �rst inequality is Statement 1 of Lemma A.2

(applied to Ai+1), and the se
ond inequality is Statement 1 of Lemma A.2 (applied to Ai). Noti
e

(18) mat
hes (19), as required.
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Indu
tion Step: Consider the string of inequalities:

(Ψ′α+1
�Ψ′α)i,j +

Aj

2m−j−1
−

j∑

k=i

ωk

2m−k
= (Ψ′α+1

�Ψ′α)i,i + (Ψ′α+1
�Ψ′α)i+1,j +

Aj

2m−j−1
−

j∑

k=i

ωk

2m−k

≤
Ai−1 − Ai

2m−i
+

Ai

2m−i−1
+

j − i

2m−i
(Ai + Hi+1)

−
Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

=
Ai−1 − Ai

2m−i
+

Ai

2m−i−1
+

j − i + 1

2m−i
(Ai + Hi+1)

−
Ai + Hi+1

2m−i
−

Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

≤
Ai−1 − Ai

2m−i
+

Ai

2m−i−1
+

j − i + 1

2m−i+1
(Ai−1 + Hi + Hi+1)

−
Ai + Hi+1

2m−i
−

Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

=
Ai−1

2m−i
+

j − i + 1

2m−i+1
(Ai−1 + Hi) +

j − i − 1

2m−i+1
(Hi+1)+

2

2m−i+1
(Hi+1) −

Hi+1

2m−i
−

Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

=
Ai−1

2m−i
+

j − i + 1

2m−i+1
(Ai−1 + Hi) −

Hj+1

2m−j+1
+

j−1∑

k=i+i

(j − k)

2m−k+2
Hk

where the �rst inequality is by the indu
tion hypothesis together with Claim A.6 and the se
ond

inequality is by Statement 1 of Lemma A.2. �

Lemma A.8. For any pair of indi
es 1 ≤ i < i + 1 < j ≤ m for whi
h δα+1
j = 1 but δα+1

k = 0 for

every i < k < j:10

(Ψ′α+1 − Ψ′α)i+1,j−1 +
Aj−1

2m−j
−

j−1∑

k=i+1

ωk

2m−k
≤

Ai

2m−i−1
+

Hi+1

2m−i
−

Hj

2m−j+1
+

j−1∑

k=i+1

Hk

2m−k+1

Proof. This follows via an indu
tive argument on j − i together with Lemma A.2:

Base Case: j − i = 2: Looking at the right-hand-side of the inequality of Lemma A.8 for j = i+2:

RHS A.8 =
Ai

2m−i−1
+

Hi+1

2m−i
−

Hi+2

2m−i−1
+

Hi+1

2m−i

=
Ai + Hi+1 − Hi+2

2m−i−1
(20)

10

On the right-hand side of the inequality of Lemma A.7, all supers
ripts are α, whi
h we have suppressed for

notational 
onvenien
e.
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Meanwhile, looking at the left-hand-side of the inequality of Lemma A.8 for j = i + 2:

LHS A.8 = (Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

ωi+1

2m−i−1

=
Ai+1

2m−i−2

≤
Ai + Hi+1 − Hi+2

2m−i−1
, (21)

where the se
ond equality is from Claim A.6 (sin
e δα+1
i+1 = 0) and the inequality is Statement 1 of

Lemma A.2. Noti
e (20) mat
hes (21), as required.

Indu
tion Step: Consider the string of inequalities:

(Ψ′α+1
�Ψ′α)i+1,j−1+

Aj−1

2m−j
−

j−1∑

k=i+1

ωk

2m−k
= (Ψ′α+1

�Ψ′α)i+1,i+1 + (Ψ′α+1
�Ψ′α)i+2,j−1+

Aj−1

2m−j
−

j−1∑

k=i+1

ωk

2m−k

≤
Ai+1

2m−i−2
+

Hi+2

2m−i−1
−

Hj

2m−j+1
+

j−1∑

k=i+2

Hk

2m−k+1

≤
Ai

2m−i−1
+

Hi+1

2m−i
−

Hj

2m−j+1
+

j−1∑

k=i+1

Hk

2m−k+1

where the �rst inequality is by the indu
tion hypothesis together with Claim A.6 and the last

inequality is by Statement 1 of Lemma A.2. �

Lemma A.9. For any 
y
le α and any index 1 ≤ i < m− 1, if δα+1
i = 1, δα+1

i+1 = 0, and δα+1
i+2 = 1,

then:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
≤

Ai

2m−i−1
+

1

2m−i−1

C

m
(22)

Proof. Consider:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
=

Ai+1

2m−i−2

≤
Ai + Hi+1 − Hi+2

2m−i−1

≤
Ai

2m−i−1
+

1

2m−i−1

C

m

where the �rst equality is Statement 2 of Lemma A.6, the �rst inequality is Statement 1 of A.2, and

the last inequality follows from the fa
t that δα+1
i+1 =0, and δα+1

i+2 =1 implies that Hi+1−Hi+2 ≤ C
m
. �

Lemma A.10. For any 
y
le α and any index 1 ≤ i < m−2, if δα+1
i = 0, δα+1

i+1 = 1, and δα+1
i+2 = 0,

then:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
≤

Ai

2m−i−1
+

1

2m−i−1

C

m
(23)
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Proof. Consider:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
=

Ai

2m−i−1
+

Ai+1

2m−i−1

≤
Ai + Hα+1

i+1 − Hα
i+2

2m−i−1

≤
Ai

2m−i−1
+

1

2m−i−1

C

m

where the �rst equality is Statement 1 of Lemma A.6, the �rst inequality is Statement 2 of A.2,

and the last inequality follows from the fa
t that δα+1
i = 0, δα+1

i+1 = 1, and δα+1
i+2 = 0 implies that

Hα+1
i+1 −Hα

i+2

2m−i−1 ≤ 1
2m−i−1

C
m
. �

Claim A.11. For any 
y
le α, we have:

Zα + (Ψ′α+1 − Ψ′α)m,m ≤ Aα
m−1 (24)

Proof. Sin
e (Hα+1
m − (m − m) C

m
) = Hα+1

m ≥ 0, we have that the se
ond term of min(0,Hα+1
m −

(m − m) C
m

) always dominates, and hen
e for all 
y
les, δα+1
m = 1. Therefore, applying Claim A.6

(for i = m):

(Ψ′α+1 − Ψ′α)m,m = Aα
m−1 − Aα

m + ωα
m

≤ Aα
m−1 − Aα

m

= Aα
m−1 − Zα

(25)

where the inequality follows sin
e ωα
i ≤ 0 for all 
y
les α and nodes i, and the last equality is

be
ause Nm is the node that will be 
onne
ted to the Re
eiver in the last C rounds of α, so by

de�nition Aα
m = Zα

. �

We are now ready to prove the main result of this se
tion, namely that (9) is satis�ed for all


y
les α:

Lemma A.12. For all 
y
les α, the following is always true:

Z ′α + (Ψ′α+1 − Ψ′α) ≤ 7
C

m
,

Proof. Fix 
y
le α, and 
onsider the string of bits {δα+1
i }m

i=1:

(δα+1
1 , δα+1

2 , . . . , δα+1
m−1, δ

α+1
m ) (26)

By Claim A.11, we have:

Zα + Ψ′α+1 − Ψ′α = Zα + (Ψ′α+1 − Ψ′α)1,m ≤ (Ψ′α+1 − Ψ′α)1,m−1 + Aα
m−1 (27)

We now use Lemmas A.7, A.8, A.9, and A.10 on the appropriate indi
es (based on the form of

{δα+1
i }), whi
h yields:

11

11

We 
ombine these lemmas by starting at the far right index i = m − 1, and working our way down through

smaller indi
es by using the appropriate lemma. Noti
e that the �rst term on the RHS of the inequality of ea
h

lemma is exa
tly the term needed on the LHS of the next lemma.
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1. For the smallest index i su
h that δα+1
i = 1, we have leading term:

Ai−1

2m−i
(28)

2. For any indi
es (i, j) falling under Lemma A.7, we have 
ontributions:

j − i + 1

2m−i+1
(Ai−1 + Hi) +

j−1∑

k=i+1

(j − k + 1)(m − i)

2m−k+2
(29)

3. For any indi
es (i, j) falling under Lemma A.8, we have 
ontribution:

j∑

k=i

m − i

2m−k+1
(30)

4. For any indi
es (i, j) falling under Lemma A.9 or A.10, we have 
ontribution:

1

2m−i−1

C

m
(31)

Noti
e that in terms of the 
ontributions from (29), (Ai−1 + Hi) ≤ (m−i−1)C
m

by Statement 2 of

Lemma A.2 together with the fa
t that δα+1
i−1 = 0 implies Hα+1

i−1 < (m−i+1)C
m

. The theorem now

follows immediately from the fa
ts:

1. For any 1 ≤ i < j < ∞,
∑j

k=i
1
2k ≤

∑∞
k=1

1
2k = 1

2. For any 1 ≤ i < j < ∞,
∑j

k=i
k
2k ≤

∑∞
k=1

k
2k = 2

3. For any 1 ≤ i < j < ∞,
∑j

k=i
k(k−1)

2k ≤
∑∞

k=1
k(k−1)

2k = 4
�

The remainder of the proof that the optimal 
ompetitive ratio is 1/n was presented in Se
tion 3.

B Rigorous Proof of Competitive Ratio of Slide

The high-level ideas of the proof of Theorem 2 were sket
hed in Se
tion 4.2, and we en
ourage

the reader to re-read that se
tion before pro
eeding here. In this Se
tion, we begin by providing in

Se
tion B.1 a deeper explanation of the proof than was provided in Se
tion 4.2, but still does not

go into the details of the proofs. Then in Se
tions B.2-B.5 we rigorously prove all the lemmas and

theorems.
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B.1 Motivation and De�nitions

In what follows, unless stated otherwise, all notation is as de�ned in Se
tion 4.2. Re
all from

Se
tion 4.2 that we wish to 
onstru
t two potential fun
tions. The �rst one, denoted by ϕp′ , will be

asso
iated to every pa
ket p′ ∈ ZP ′

2 . However, ϕp′ will not be exa
tly as de�ned in Se
tion 4.2, so

we provide now the motivation to explain how ϕp′ is a
tually de�ned, and why we need to slightly


hange what it represents.

Our �rst attempt employed in Se
tion 4.2 was to de�ne ϕp′ to be the height, with respe
t to

P, of the node in whi
h p′ was 
urrently being stored. We state on
e-and-for-all that when

referen
ing the height of a node, we will mean its height with respe
t to the Slide

proto
ol P. As noted in Se
tion 4.2, if we de�ne ϕp′ this way, then for every p′ ∈ ZP ′

2 , ϕp′ will be

initially set to C (when P ′
�rst inserts p′), and ϕp′ will be zero when p′ is delivered to the Re
eiver.

Thus, there is a net 
hange of −C to ϕp′ from the time of insertion by the Sender to the time of

re
eption by the Re
eiver. The goal was then to de�ne a se
ond overall network potential fun
tion

Φ, whi
h in
reases by C every time P transfers a pa
ket, and su
h that any time ϕp′ 
hanges for

any p′ ∈ ZP ′

2 , the 
umulative 
hanges of

∑
p′∈ZP′

2
ϕp′ will be mimi
ked by Φ. Sin
e Φ in
reases by C

when there is a pa
ket transfer in P, one (good) way to think of this approa
h is that for ea
h drop

in ϕp′ , we would like to �nd a pa
ket transfer in P that 
an be �
harged,� i.e. this pa
ket transfer

�allowed� ϕp′ to de
rease.

Unfortunately, with the simplisti
 de�nition of ϕp′ equal to the height of the node it is 
urrently

stored in, we en
ounter a problem. To 
larify the problem, as well as to set notation, at the very

beginning of ea
h round x, we will label the internal nodes (i.e. not the Sender or Re
eiver) as:

{Nx
1 , Nx

2 , . . . , Nx
n−2}, where the labeling respe
ts heights, so that at the start of the round x, Nx

i+1

is storing at least as many pa
kets as Nx
1 (ties are broken arbitrarily). Letting Hx

i denote the height

of Nx
i at the start of x (i.e. the number of pa
kets Nx

i is storing with respe
t to P), we may restate

the 
riterion for labeling nodes at the start of ea
h round by writing: Hx
1 ≤ Hx

2 ≤ · · · ≤ Hx
n−2. Note

that nodes may 
hange labels from one round to the next, i.e. we may have Nx
i 6= Nx+1

i . When the

round is unimportant, we will suppress the supers
ript x. Let S denote the Sender and R denote

the Re
eiver.

We may now explain why the simplisti
 de�nition of ϕp′ above will not be adequate. De�ne

Q := C−n
n

, and 
onsider the following two s
enarios that may be present at the start of some round

x:

S
enario 1: Hn−2 = C Hn−3 = C . . . H3 = C H2 = C H1 = (n − 3)Q

S
enario 2: Hn−2 = (n − 3)Q Hn−3 = (n − 4)Q . . . H3 = 2Q H2 = Q H1 = 0

In S
enario 1, 
onsider a pa
ket p′ ∈ ZP ′

2 that begins round x in node N1, so that ϕp′ = (n − 3)Q.

Noti
e that if the adversary honors the edge E(N1, R), the Slide proto
ol will transfer a pa
ket to

the Re
eiver (Rules 2 and 3a of Se
tion 4.1). Now by de�nition of being in the set ZP ′

2 , in order for

p′ to be delivered to the Re
eiver via node

12 N1, node N1 must have height zero when the adversary

honors edge E(N1, R). Therefore, there must be exa
tly (n − 3)Q transfers in P (to drain N1)

before p′ 
an be delivered to R via N1. Thus, loosely speaking, we 
an �
harge� the resulting drop

in ϕp′ from (n − 3)Q to 0 to these (n − 3)Q transfers in P.

12

Of 
ourse there is no reason to assume that p′
must be transferred to R via N1, but for the sake of the example,

we imagine this is the 
ase.
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Now instead imagine we are in S
enario 2, and again �x a pa
ket p′ ∈ ZP ′

2 su
h that ϕp′ =

(n − 3)Q at the start of round x, so p′ ∈ Nn−2. In this 
ase, noti
e that p′ has a way to rea
h

R without any pa
kets being transferred in P. In parti
ular, the adversary 
ould honor edge

E(Nn−2, Nn−3) in round x, and then E(Nn−3, Nn−4) in round x + 1, and so forth. Sin
e the

di�eren
e in heights between adja
ent nodes is less than C/n, the Slide proto
ol will not transfer

any pa
kets during these rounds. Meanwhile, proto
ol P ′
may di
tate that p′ is transferred ea
h

of these rounds, all the way to the Re
eiver. Thus, in this s
enario, ϕp′ was able to de
rease from

(n − 3)Q to zero without any pa
kets being transferred in P. Be
ause we are trying to asso
iate

drops in ϕp′ to pa
ket transfers in P, this is problemati
.

Noti
e that the problem in S
enario 2 is that there exists a �bridge� between Nn−2 and R. That

is, even though Nn−2 has a relatively large height, there is still a way for pa
kets p′ ∈ ZP ′

2 that

are in Nn−2 to rea
h R without P being able to transfer any pa
kets. In 
ontrast, in S
enario 1,

p′ ∈ N1 will also have ϕp′ = (n− 3)Q, but now there must be (n− 3)Q transfers in P before p′ 
an

rea
h R (again, sin
e p′ ∈ ZP ′

2 requires that p′ is never transferred at the same time as a pa
ket in

P). In summary, one might say that even though node N1 in S
enario 1 has the same height as

node Nn−2 from S
enario 2, these two nodes have di�erent �e�e
tual� heights.

Considering the above two S
enarios, we were en
ouraged to modify our de�nition of ϕp′ as

follows:

- For node Ni, de�ne the node's e�e
tual height:
13 H̃i := max(0,Hi − (i − 1)C

n
)

- For any p′ ∈ ZP ′

2 that is 
urrently in Ni, de�ne its potential: ϕp′ := H̃i

This is almost the a
tual de�nition we eventually make for ϕ, but we will need to �rst �smooth-out�

this de�nition. To motivate the need to smooth the de�nition, 
onsider the following events, whi
h

represent the only ways that ϕp′ 
an 
hange (based on the new de�nition of ϕp′):

Case 1. p′ is transferred from Ni to Nj in some round E(Ni, Nj)

Case 2. p′ ∈ Ni when Ni 
hanges height due to a pa
ket transfer in P, but this pa
ket transfer
does not 
ause a re-indexing of nodes

Case 3. p′ is in some node Ni when a pa
ket transfer in P 
auses Ni to 
hange index to Nj

(i.e. this node moves from the ith fullest node to the jth
fullest node)

Sin
e we are only 
on
erned with p′ ∈ ZP ′

2 , we note that whenever ϕp′ 
hanges as by 1) above,

ne
essarily P did not transfer a pa
ket this round. In parti
ular, this means that |Hi −Hj| < C/n.

In order to 
ontrol 
hanges to ϕp′ that are a result of Case 1, we would therefore like for H̃i ≈ H̃j

whenever Hi ≈ Hj. Although the de�nition of e�e
tual height H̃i above almost 
aptures this, there

is ne
essarily a �jump� of C/n between the values H̃i and H̃j. This is one of the reasons we will

want to �smooth-out� the de�nition of ϕp′ .

Changes to ϕp′ that 
ome from Case 2 above are okay, sin
e in su
h 
ases ϕp′ will 
hange by

one, and this 
an be �
harged� to the fa
t that there has been a pa
ket transfer in P. Lastly, noti
e
that ϕp′ 
an only 
hange as in Case 3 above if there are two nodes at the outset of some round x, Ni

and Ni+1, su
h that a pa
ket transfer during round x 
auses them to swit
h pla
es (e.g. before the

transfer, Hi = Hi+1, and then Ni re
eives a pa
ket in round x). Be
ause there has been a pa
ket

13

The �maximum� is added to prevent the e�e
tual height of a node from being negative.
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transfer in P, we 
an �
harge� some of the 
hanges in ϕp′ to this pa
ket transfer, but again the fa
t

that there will be a �jump� of C/n to 
hanges in ϕ will en
ourage a �smoothing� of the de�nition

of ϕ.

This leads to the notion of a family of nodes. In parti
ular, we will partition the internal nodes

into families. Intuitively, two nodes will be in the same family if they are relatively 
lose to ea
h

other in height (or more generally, if there is a �bridge� 
onne
ting them, as in S
enario 2 above).

Then within ea
h family, we will distribute the 
umulative e�e
tual height of the nodes in that family

evenly among all nodes in the family. Formally, for a family of nodes

14 F = {Ni, Ni+1, . . . , Nj},
de�ne the 
umulative e�e
tual height HF of the family F by:

H̃F :=

j∑

k=i

H̃k =

j∑

k=i

max

(
0,Hk − (k − 1)

C

n

)

For any p′ ∈ ZP ′

2 su
h that p′ is 
urrently in some node of family F , we will de�ne ϕp′ to be the

average e�e
tual height of the family, i.e.:

ϕp′ :=
H̃F

|F|

Of 
ourse, H̃F may not divide evenly among the nodes in the family F , and then to for
e ϕp′ ∈ N,

we will distribute the ex
ess weight (the remainder) to the nodes with higher indi
es. Based on this

de�nition of ϕp′ , note that if p′ transfers between two nodes of the same family, ϕp′ 
an 
hange by

at most one.

We re-visit the three ways ϕp′ may 
hange, explaining in ea
h 
ase how we 
an �nd a pa
ket

transfer in P to �
harge� for the 
hange in ϕp′ . In terms of 
hanges to ϕp′ resulting from Case

1 above, we re
all that ne
essarily |Hi − Hj| < C/n. We show in Lemma B.12 that anytime

|Hi − Hj| < C/n, Ni and Nj are ne
essarily in the same family, in whi
h 
ase our de�nition of ϕ

now guarantees that ϕp′ 
an 
hange by at most one when p′ is transferred between nodes. Changes

to ϕp′ due to Case 2 will be at most one (sin
e the 
umulative e�e
tual height of the family will


hange by at most one, and this 
hange will be distributed among nodes in the family), and we 
an

�
harge� su
h 
hanges to the pa
ket transfer in P that 
aused Case 2 to o

ur. Finally, for Case 3,

if p′ ∈ Ni when Ni's index 
hanges but Ni remains in the same family, then sin
e ϕ is distributed

evenly among nodes in the family, the 
hange in index will be irrelevant (i.e. this will not 
ause

ϕp′ to 
hange). On the other hand, we will show that whenever a node Ni swit
hes families as a

result of a pa
ket transfer in P, the average e�e
tual height of its new family will di�er by at most

one from the average e�e
tual height of its old family. Thus, in this 
ase the 
hange in ϕp′ is also

bounded by one, and we 
an �
harge� this 
hange to the pa
ket transfer that 
aused families to

re-align.

De�ning how to partition nodes into families so that the families behave the way we want (e.g.

so that: 1) nodes with height within C/n of ea
h other are in the same family; 2) Families 
an only

re-align during a round in whi
h P transfers a pa
ket; and 3) When families re-align, the average

e�e
tual height of any node before and after the re-alignment di�ers by at most one) requires a

little thought, and it is done pre
isely in the following se
tion. On
e we have the formal de�nition

of a family, we would like to formalize the notion of �
harging a 
hange in ϕp′ to a pa
ket transfer in

14

We will show in the next se
tion that nodes within the same family will always have adja
ent indi
es.
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P.� Namely, as mentioned in Se
tion 4.2, we de�ne a se
ond network potential Φ that will in
rease

by C every time there is a pa
ket transfer in P, and that will also mirror the 
umulative 
hanges of

ϕp′ for ea
h p′ ∈ ZP ′

2 . In order to prove Φ is always positive, we will distribute the total network

potential between the families:

Φ = ΦF1 + · · · + ΦFl
(32)

and then show in Lemma B.17 that within ea
h family F :

ΦF ≥ 0. (33)

The 
areful de�nition of families and the pre
ise de�nition of the potential ϕ and the network

potential Φ is presented below in Se
tion B.2. The main lemma and proof of the fa
t that at all

times Φ ≥ 0 
an be found in Se
tion B.5.

B.2 Formal De�nition of �Family� and Potential of a Pa
ket (ϕp′)

We begin by de�ning formally the notion of a family introdu
ed in the previous se
tion. Note

that families will in general re-align during a round when there is a pa
ket transfer in P, so we use

the notation Fx
to denote some family F that was in existen
e at the start of round x. Re
all that

at the start of ea
h round x, the internal nodes are indexed a

ording to their heights with respe
t

to P: {N1, N2, . . . , Nn−2}, so that Hi ≤ Hj if i < j (ties are broken arbitrarily). Also re
all from

the previous se
tion the de�nition of the e�e
tual height H̃i of node Ni:

H̃i := max

(
0,Hi − (i − 1)

C

n

)
(34)

At the start of ea
h round, we will partition the internal nodes into families indu
tively (starting

from the emptiest nodes), so that the average e�e
tual height of ea
h family is minimized. In

parti
ular:

De�nition B.1. At the start of round x, internal nodes will be partitioned into families {Fx
i } as

follows. Starting at i = 1 and k0 = 0:

F1 Find index ki−1 < ki ≤ n − 2 su
h that the following quantity is minimal:

ki∑

j=k(i−1)+1

H̃j

(ki − ki−1)

(35)

In 
ase there are multiple values for ki that a
hieve the same minimum, de�ne ki to be the

largest of all possibilities. Then de�ne

15

family Fx
i := {Nx

k(i−1)+1, . . . , N
x
ki
}.

F2 Set i = i + 1 and repeat Step F1 until all internal nodes are in some family.

F3 The Sender and Re
eiver will form their own, separate, families. Denote the Sender's family

by Fn and the Re
eiver's family by F0.
16

15

When the round x is unimportant, we will suppress the supers
ript in our notation.

16

The only reason we pla
e the Sender and Re
eiver in a family at all is to make the terminology easier in the

lemmas that follow. In parti
ular, the notation we use for the Sender's family ensures that it will have a higher index

than all other nodes (there will be a gap between the index of the largest indexed family of internal nodes and the

Sender's family, whi
h is unimportant), and 
onversely the Re
eiver's family will have a smaller index than all other

nodes.
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De�nition B.2. The 
umulative e�e
tual height H̃F of a family F is the sum of the e�e
tual heights

of ea
h of the nodes in the family. The average e�e
tual height 〈H̃F 〉 of a family is the 
umulative

e�e
tual height divided by the size of the family. Su

in
tly, if F := {Ni, Ni+1, . . . , Nj}:

H̃F :=

j∑

k=i

H̃k and 〈H̃F 〉 :=
H̃F

|F|
=

j∑

k=i

H̃k

j − i + 1

(36)

Noti
e that by 
onstru
tion (see Rules F1 and F2), families are 
reated so that the average

e�e
tual height of (the lowest indexed) families is minimized.

With the formal de�nition of families in hand, we are ready to formally de�ne the �rst kind of

potential, ϕ. Re
all that this potential will be asso
iated to pa
kets p′ ∈ ZP ′

2 , and if p′ ∈ Ni ∈ F at

the start of some round, then ϕp′ will (roughly) represent the average e�e
tual height 〈H̃F 〉. More

pre
isely, we will as
ribe to ea
h node Ni ∈ F a potential ϕi equal to the average e�e
tual height,

ex
ept that the potential for some nodes in the family will be one bigger to a

ount for the 
ase

that

H̃F

|F| /∈ Z. Formally:

De�nition B.3. Let F = {Ni, Ni+1, . . . , Nj}. Then the potential ϕk of a node Nk ∈ F will be

either 〈H̃F 〉 or 〈H̃F 〉 + 1. More pre
isely, writing:

H̃F = ⌊〈H̃F 〉⌋ ∗ |F| + r (37)

Then de�ne subsets of F :

F− := {Ni, Ni+1, . . . , Nj−r} and F+ := {Nj−r+1, . . . , Nj} (38)

Then for nodes Nk ∈ F+
, de�ne ϕk = ⌊〈H̃F 〉⌋ + 1. For nodes Nk ∈ F−

, de�ne ϕk = ⌊〈H̃F 〉⌋.
Finally, if p′ ∈ ZP ′

2 and p′ is 
urrently being stored in Nk, then de�ne the potential ϕp′ to be the

potential of Nk, i.e. ϕp′ := ϕk.

One immediate 
onsequen
e of the above de�nition that we will need later is:

Lemma B.4. At the beginning of any round x and for any family Fx
, the sum of the potentials for

the nodes in F equals the 
umulative e�e
tual height of the family:

∑

N∈F

ϕN = H̃F (39)

De�nition B.5. The network potential Φ is an integer satisfying the following properties:

1. Φ begins the proto
ol equal to zero.

2. Φ in
reases by 4C every time a pa
ket is transferred in proto
ol P

3. For any pa
ket p′ ∈ ZP ′

2 , any time ϕp′ 
hanges, Φ 
hanges by the same amount.
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B.3 Preliminary Lemmas

In this se
tion, we state and prove the basi
 properties that follow from the de�nitions of the

previous se
tion.

Lemma B.6. At all times, all families 
onsist of nodes with adja
ent indi
es. In parti
ular, if at

the start of any round x there are l families, then there exist indi
es k1 < k2 < · · · < kl−1 su
h that:

F1 = {N1, . . . , Nk1}, F2 = {Nk1+1, . . . , Nk2}, . . . , Fl = {Nkl−1+1, . . . , Nn−2} (40)

Proof. This follows immediately from the rules regarding the 
onstru
tion of families (see F1 and

F2 in the previous se
tion). �

Lemma B.7. Fix some round x and some pair of nodes Nx
i and Nx

j for i < j. Then:

1. If Hx
i ≥ Hx

j − C/n, then H̃x
i ≥ H̃x

j .

2. If Hx
i < Hx

j − (j − i)C/n and H̃j > 0, then H̃x
i < H̃x

j .

Proof. Consider the following string of inequalities:

H̃i − H̃j = max(0,Hi − (i − 1)C/n) − max(0,Hj − (j − 1)C/n)

≥ max(0,Hi − (i − 1)C/n) − max(0, (Hi + C/n) − (j − 1)C/n)

≥ max(0,Hi − (i − 1)C/n) − max(0, (Hi + C/n) − ((i + 1) − 1)C/n)

= max(0,Hi − (i − 1)C/n) − max(0, (Hi − (i − 1)C/n)

= 0

This proves Statement 1. For Statement 2, if H̃i = 0, then it is immediate. Otherwise, 
onsider the

inequalities:

H̃j − H̃i = Hj − (j − 1)C/n − (Hi − (i − 1)C/n)

= Hj − Hi + ((i − 1) − (j − 1))C/n

> (j − i)C/n + (i − j)C/n

= 0 �

We state a trivial observation regarding fra
tions of positive numbers that will be useful in proving

the lemmas below.

Observation 1. For any positive numbers a, b, c, d ∈ N:

1.

a
b

< c
d

⇒ a
b

< a+c
b+d

< c
d

2.

a
b

= c
d

⇒ a
b

= a+c
b+d

= c
d

Lemma B.8. Let x be any round, and suppose that at the outset of the round there is some family

Fx
α = {Ni, Ni+1, . . . , Nj}. Then the following statements are all true at the outset of round x:

1) For any i ≤ k < j :

∑k
m=i H̃m

k − i + 1
≥ 〈H̃Fα〉 ≥

∑j
m=k+1 H̃m

j − k

2) For any j < k ≤ n − 2 : 〈H̃Fα〉 <

∑k
m=j+1 H̃m

k − j

3) 〈H̃Fα〉 < 〈H̃Fα+1〉
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Proof. The fa
t that

∑k
m=i H̃m

k−i+1 ≥
∑j

m=k+1 H̃m

j−k
follows immediately from Observation 1 together with

the rules regarding the 
onstru
tion of families (see Rule F1 from the previous se
tion), and in

parti
ular the fa
t that indi
es are found by minimizing (35). Statement 1 now follows from Ob-

servation 1. Statement 2 also follows immediately from Rule F1 and Observation 1, and Statement

3 follows immediately from Statement 2. �

Statement 3 of Lemma B.8 
an be immediately extended:

Corollary B.9. Let x be any round, and suppose that at the outset of the round there are l families.

Then:

〈H̃F1〉 < 〈H̃F2〉 < · · · < 〈H̃Fl
〉

Lemma B.10. Let x be any round, and suppose that at the outset of the round there is some family

Fx
α = {Ni, Ni+1, . . . , Nj}. Then:

For any 1 ≤ k < i :

∑i−1
m=k H̃m

i − k
< 〈H̃Fα〉 (41)

Proof. Sin
e k < i, ne
essarily Nk is in some family Fβ with index β < α. Then:

∑i−1
m=k H̃m

i − k
≤ 〈H̃Fβ

〉 < 〈H̃Fβ+1
〉 < . . . < 〈H̃Fα−1〉 < 〈H̃Fα〉, (42)

where the �rst inequality is from Statement 1 of Lemma B.8 and the other inequalities are from

Corollary B.9. �

Lemma B.11. If at the start of some round x we have that H̃x
j+1 ≤ H̃x

j , then Nj and Nj+1 are in

the same family at the start of round x.

Proof. Suppose for the sake of 
ontradi
tion that they are not in the same family at the start of

round x. Let Fx
denote Nj 's family at the start of the round. By Lemma B.6 and the fa
t that j

and j +1 are adja
ent indi
es, we must have that Fx = {Ni, Ni+1, . . . , Nj} for some i ≤ j. The key

observation is that:

H̃j+1

1
≤

H̃j

1
⇒

H̃j+1

1
≤

H̃j+1 + H̃j

2
≤

H̃j

1
(43)

If i = j, then (43) 
ontradi
ts Statement 2 of Lemma B.8 (set k = j + 1). If i < j, then de�ne:

A : =

j−1∑

l=i

H̃l and B := j − i (44)

Then by Lemma B.8:

H̃j+1

1
≤

H̃j

1
≤

A

B
⇒

H̃j+1 + H̃j + A

B + 2
≤

H̃j + A

B + 1
= 〈H̃F 〉, (45)

whi
h 
ontradi
ts Statement 1 of Lemma B.8. �

Lemma B.12. If at the outset of any round x, we have that |Hx
i −Hx

j | ≤ C/n for any pair of nodes

Nx
i and Nx

j , then ne
essarily the nodes are in the same family at the start of round x.
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Proof. Suppose for the sake of 
ontradi
tion that there exists some round x and some pair of nodes

Nx
i and Nx

j for whi
h |Hx
i − Hx

j | ≤ C/n, but these nodes are in di�erent families. Sin
e families


onsist of adja
ent indi
es (Lemma B.6) and nodes are indexed a

ording to their heights at the

start of the round, we may assume without loss of generality that i and j are adja
ent (i.e. that

j = i+1). By de�nition of indexing, we must have Hi ≤ Hi+1, whi
h 
ombined with the hypothesis

of the lemma implies that Hi+1 − C/n ≤ Hi. But then H̃i ≥ H̃i+1 by Lemma B.7, and then Nx
i

and Nx
i+1 in di�erent families 
ontradi
ts Lemma B.11. �

B.4 Lemmas Regarding the Re-stru
turing of Families

In this se
tion, we dis
uss all possible 
hanges between how families are arranged at the beginning

of one round and the next.

Lemma B.13. Families 
an only re-align during rounds E(Na, Nb) during whi
h there is a pa
ket

transfer in P from Na to Nb.

Proof. This is immediate from the rules regarding 
onstru
ting families, sin
e the values of {H̃i}
(34) 
an only 
hange if there is a pa
ket transfer in P, and thus the analysis in Rule F1 (35) will

not 
hange if there has been no pa
ket transfer in P. �

Lemma B.14. Suppose that in some round x = E(Na, Nb), the Slide proto
ol transfers a pa
ket from

Na to Nb. Let Fα := {Ne, . . . , Na, . . . , Nf} denote Na's family at the start of round x (e ≤ a ≤ f),

and Fβ := {Nc, . . . , Nb, . . . , Nd} denote Nb's family

17

at the start of x (c ≤ b ≤ d). The following

des
ribes all possible 
hanges to the way families are organized between the start of round x and the

next round:

Case 1: H̃a and H̃b do not 
hange. Then the families at the start of round x + 1 are

identi
al the arrangement of families at the start of x.

Case 2: H̃a does not 
hange, and H̃b in
reases by one. Then:

(a) Families Fδ to the left of Fβ (i.e. δ < β) do not 
hange

(b) For any node Nm with b ≤ m ≤ d, Nm will be in the same family as Nb at the start of

round x + 1

(
) For any node Nm with d < m, letting Fx
µ denote Nm's family at the start of round x,

one of the following happens:

i. Fx
µ does not 
hange

ii. Every node in Fx
µ is in the same family as Nb at the start of x + 1

Case 3: H̃a de
reases by one, and H̃b does not 
hange. Then:

(a) Families Fδ to the right of Fα (i.e. δ > α) do not 
hange

17

Note that ne
essarily β ≤ α, as if both Na and Nb are internal nodes, then Rule 3 of the Slide proto
ol (together

with the de�nition of how nodes are indexed) guarantees that b < a, and then β ≤ α by Lemma B.6. If Na is the

Sender and/or Nb is the Re
eiver, then β ≤ α 
omes from our 
hoi
e to denote the Sender's family by Fn and the

Re
eiver's family by F0 (see Rule F3 regarding the formation of families).
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(b) For any node Nm with e ≤ m ≤ a, Nm will be in the same family as Na at the start of

round x + 1

(
) For any node Nm with m < e, letting Fx
µ denote Nm's family at the start of round x,

one of the following happens:

i. Fx
µ does not 
hange

ii. Every node in Fx
µ is in the same family as Na at the start of x + 1

Case 4: H̃a de
reases by one, and H̃b in
reases by one. Then:

(a) Families Fδ to the right of Fα (i.e. δ > α) and to the left of Fβ (i.e. δ < β) do not


hange

(b) For any node Nm with e ≤ m ≤ a, Nm will be in the same family as Na at the start of

round x + 1

(
) For any node Nm with b ≤ m ≤ d, Nm will be in the same family as Nb at the start of

round x + 1

(d) For any node Nm with d < m < e, letting Fx
µ denote Nm's family at the start of round

x, one of the following happens:

i. Fx
µ does not 
hange

ii. Every node in Fx
µ is in the same family as Na at the start of x + 1

iii. Every node in Fx
µ is in the same family as Nb at the start of x + 1

iv. Every node in Fx
µ is in the same family as Na AND Nb at the start of x + 1

Proof. That the four 
ases stated in the lemma 
over all possibilities is immediate from the de�nition

of e�e
tive height H̃ (see De�nition (34)). Case 1 follows immediately from the rules F1-F2 for

forming families (see De�nition B.1) sin
e the e�e
tive heights have not 
hanged. We go through

ea
h of the other 
ases, and prove ea
h Statement.

Suppose that we are in Case 2, so that H̃a does not 
hange, and H̃b in
reases by one. For δ < β,


onsider a family Fδ := {Ni, . . . , Nj}, and for the sake of 
ontradi
tion, suppose that Fδ 
hanges in

some way from the start of round x to the start of round x + 1. Without loss of generality, we will

suppose that δ < β is the minimal index for whi
h Fδ 
hanges.

Case A: Fδ Splits. In other words, Ni and Nj are not in the same family at the start of round

x+ 1. Let Fx+1
ι := {Ni, . . . , Nk} denote Ni's new family at the start of x+ 1, where k < j by

assumption.

18

Noti
e that for all i ≤ m ≤ j, the e�e
tive height H̃m will not 
hange between

the start of x and x + 1 (sin
e j < b < a). Therefore:

∑j
l=k+1 H̃l

j − k
≤

∑k
l=i H̃l

k − i + 1
= 〈H̃Fx+1

ι
〉 <

∑j
l=k+1 H̃l

j − k
, (46)

where the �rst inequality is Statement 1 of Lemma B.8 and the last inequality is Statement 2

of Lemma B.8. Clearly (46) is impossible, yielding the desired 
ontradi
tion.

18

Ne
essarily Ni is the smallest-indexed node in Fι by our 
hoi
e of minimality for δ.

31



Case B: Fδ Grows. In other words, at the start of round x + 1 there is some family Fx+1
ι :=

{Ni, . . . , Nk} for k > j. If k < b, then for all i ≤ m ≤ k, the e�e
tive height H̃m will not


hange between the start of x and x + 1, so:

∑j
l=i H̃l

j − i + 1
<

∑k
l=j+1 H̃l

k − j
≤

∑j
l=i H̃l

j − i + 1
, (47)

where the �rst inequality is Statement 2 of Lemma B.8 and the se
ond inequality is Statement

1 of Lemma B.8. Clearly (47) is impossible, yielding the desired 
ontradi
tion. On the other

hand, if k ≥ b, then for all i ≤ m ≤ k and m 6= b, the e�e
tive height H̃m will not 
hange

between the start of x and x + 1, but the e�e
tive height H̃b in
reases by one from the start

of x and x + 1. Therefore (using supers
ripts only when ne
essary to spe
ify the round):

∑j
l=i H̃l

j − i + 1
<

∑k
l=j+1 H̃x

l

k − j
<

∑k
l=j+1 H̃x+1

l

k − j
≤

∑j
l=i H̃l

j − i + 1
, (48)

where the �rst inequality is Statement 2 of Lemma B.8 and the last inequality is Statement 1

of Lemma B.8. Clearly (48) is impossible, yielding the desired 
ontradi
tion.

This proves Statement (a) of Case 2. For Statement (b), �x index m ∈ [b, d] (Statement (b) is

trivially true for m = b, so assume b < m ≤ d). For the sake of 
ontradi
tion, suppose that Nm is

not in the same family as Nb at the start of x + 1. Let Fx+1
β := {Ni, . . . , Nb, . . . , Nj} denote Nb's

new family at the start of x + 1, so by assumption j < m ≤ d, and also c ≤ i by Statement (a) of

Case 2. Noti
e that H̃x
b + 1 = H̃x+1

b , but that for all other i ≤ l ≤ m, H̃l does not 
hange from the

start of x and x + 1. If i = c (using supers
ripts only when ne
essary to spe
ify the round):

∑d
l=j+1 H̃l

d − j
≤

∑j
l=c H̃x

l

j − c + 1
<

∑j
l=c H̃x+1

l

j − c + 1
<

∑d
l=j+1 H̃l

d − j
, (49)

where the �rst inequality is Statement 1 of Lemma B.8 and the last inequality is Statement 2 of

Lemma B.8. Clearly (49) is impossible, yielding the desired 
ontradi
tion. If on the other hand

c < i, then (using supers
ripts only when ne
essary to spe
ify the round):

∑d
l=j+1 H̃l

d − j
≤

∑j
l=c H̃x

l

j − c + 1
= 〈H̃Fx

β
〉

≤

∑i−1
l=c H̃x

l

i − c

<

∑i−1
l=c H̃x+1

l

i − c

< 〈H̃Fx+1
ι

〉 =

∑j
l=i H̃

x+1
l

j − i + 1

<

∑d
l=j+1 H̃l

d − j
, (50)

where the �rst and se
ond inequalities are both Statement 1 of Lemma B.8, the fourth inequality

is Lemma B.10, and the last inequality is Statement 2 of Lemma B.8. Clearly (50) is impossible,

yielding the desired 
ontradi
tion.
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This proves Statement (b) of Case 2. It remains to prove Statement (
). Fix some m > d, and

let Fw
µ = {Nw, . . . , Nm, . . . , Ny} denote Nm's family at the start of x. We prove Statement (
) via

the following two sub
laims:

Sub
laim 1. Fµ does not Split. In other words, Nw and Ny will be in the same family at the

start of round x + 1.

Proof. Suppose not. Let Fx+1
ω = {Ni, . . . , Nw, . . . , Nj} denote Nw's family at the start of

round x+ 1, so c ≤ i ≤ w ≤ j < y (where the �rst inequality is due to Statement (a)). Noti
e

that for every i ≤ l ≤ y, the only possible e�e
tive height H̃l that 
an possibly 
hange in

round x is for l = b, in whi
h 
ase H̃x
b + 1 = H̃x+1

b . If i = w, then (using supers
ripts only

when ne
essary to spe
ify the round):

∑j
l=w H̃l

j − w + 1
<

∑y
l=j+1 H̃l

y − j
≤

∑j
l=w H̃l

j − w + 1
, (51)

where the �rst inequality is Statement 2 of Lemma B.8 and the se
ond is Statement 1 of

Lemma B.8. Clearly, (51) is impossible, yielding the desired 
ontradi
tion. If on the other

hand i < w, then (using supers
ripts only when ne
essary to spe
ify the round):

∑j
l=w H̃l

j − w + 1
≤

∑w−1
l=i H̃x+1

l +
∑j

l=w H̃x
l

j − i + 1
≤

∑y
l=j+1 H̃l

y − j
≤

∑j
l=w H̃l

j − w + 1
, (52)

where the se
ond inequality is Statement 2 of Lemma B.8, the third is Statement 1 of Lemma

B.8, and the �rst 
omes from:

∑j
l=w H̃l

j − w + 1
≤

∑w−1
l=i H̃x+1

l

w − i
⇒

∑j
l=w H̃l

j − w + 1
≤

∑w−1
l=i H̃x+1

l +
∑j

l=w H̃x
l

j − i + 1
, (53)

where the �rst inequality is Statement 1 of Lemma B.8. Clearly, (52) is impossible, yielding

the desired 
ontradi
tion.

Sub
laim 2. If Fµ gets larger, then ne
essarily Nb will be in the same family as Nw and Ny

at the start of round x + 1.

Proof. Suppose not. Let Fx+1
ω = {Ni, . . . , Nw, . . . , Nj} denote Nw's family at the start of

round x + 1, so b < i ≤ w ≤ y ≤ j. Noti
e that for every i ≤ l ≤ y, sin
e b < i, the e�e
tive

height H̃l does not 
hange. If i = w, then sin
e we are assuming Fµ grows, we have j > y,

and:

∑y
l=w H̃l

y − w + 1
<

∑j
l=y+1 H̃l

j − y
≤

∑y
l=w H̃l

y − w + 1
, (54)

where the �rst inequality is Statement 2 of Lemma B.8 and the se
ond is Statement 1 of

Lemma B.8. Clearly, (54) is impossible, yielding the desired 
ontradi
tion. If on the other

hand i < w and j > y, then:

∑w−1
l=i H̃l

w − i
<

∑y
l=w H̃l

y − w + 1
<

∑j
l=y+1 H̃l

j − y
, (55)
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where the �rst inequality is from Lemma B.10, and the se
ond is from Statement 1 of Lemma

B.8. But then (55) implies:

∑w−1
l=i H̃l +

∑y
l=w H̃x

l

y − i + 1
<

∑j
l=y+1 H̃l

j − y
, (56)

whi
h 
ontradi
ts Statement 1 of Lemma B.8. Finally, if i < w and j = y, then:

∑w−1
l=i H̃l

w − i
<

∑y
l=w H̃l

y − w + 1
, (57)

whi
h 
ontradi
ts Statement 1 of Lemma B.8.

Cases 3 and 4 follow analogous arguments. �

B.5 Statement and Proof of Fa
t that Slide has Competitive Ratio 1/n

Lemma B.15. Suppose at the start of round x, there exists nodes {Nx
i , Nx

i+1, . . . , N
x
j } su
h that

Hx
i = · · · = Hx

j . Then under any permutation of the indi
es σ : {i, i + 1, . . . , j} → {i, i + 1, . . . , j},
we have that:

j∑

k=i

H̃x
k =

j∑

k=i

max(0,Hx
k − (k − 1)C/n) =

j∑

k=i

max(0,Hx
σ(k) − (k − 1)C/n) (58)

In parti
ular, the value for

∑j
k=i H̃

x
k will not 
hange if we re-index the nodes {Ni, . . . , Nj} in any

arbitrary manner.

Proof. This is immediate from the hypothesis that Hx
i = Hx

i+1 = · · · = Hx
j . �

Lemma B.16. Suppose that in some round x, Na transfers a pa
ket to Nb in the Slide proto
ol. Let

Fβ denote Nb's family and Fα denote Na's family. Then either there is exa
tly one node Nb′ ∈ Fβ

su
h that ϕb′ in
reases by one, or ϕN does not 
hange for every N ∈ Fβ . Similarly, either there is

exa
tly one node Na′ ∈ Fα su
h that ϕa′
de
reases by one, or ϕN does not 
hange for every N ∈ Fα.

No other node N ∈ G will have ϕN 
hange as a result of this pa
ket transfer.

Proof. If Nb's e�e
tual height H̃b does not in
rease as a result of the pa
ket transfer (e.g. the `0' in

the maximum statement of (34) dominates), then Fβ 's 
umulative e�e
tual height does not 
hange,

and as a result, the potential ϕ of all nodes in Fβ remains un
hanged. If on the other hand B's

e�e
tual height does in
rease, then this will raise the 
umulative e�e
tual height H̃Fβ
by one, and

this will be absorbed by some node in F−
. A similar argument works with respe
t to Na in Fα.

The last statement of the lemma follows from Lemma B.4. �

We are now ready to prove the main lemma that will allow us to argue that the Slide proto
ol

has 
ompetitive ratio 1/n. To �x notation, for any internal node N , let HP ′

N denote the number of

pa
kets p′ ∈ ZP ′

2 that N is 
urrently storing. Re
all the de�nition of Φ (see De�nition B.5); we will

distribute the overall potential Φ between all the families, and show that with the rules regarding


hanges in Φ, the potential of a family is always positive. Namely:

34



Lemma B.17. For every round x and for all families F that are present at the start of x:

Φ ≥
∑

F

max




∑

N∈F−

C − HP ′

N ,
∑

N∈F+

HP ′

N


 ≥ 0 (59)

Proof. We prove this based on indu
tion on the round x. The lemma is 
learly true at the outset of

the proto
ol, when Φ = ΦF = 0, and all nodes are in the same family, sin
e all nodes have height

zero. Suppose that at the start of round x = E(Na, Nb), (59) is satis�ed. We show that no matter

what happens in round x, (59) will remain satis�ed at the start of round x + 1.

Case 1: Neither P nor P ′
transfer a pa
ket. In this 
ase, families will not 
hange (Lemma B.13), and

no pa
kets in ZP ′

2 move, so there will be no 
hanges to either side of (59).

Case 2: P ′
transfers a pa
ket during x, but P does not. If the pa
ket p′ transferred by P ′

is in ZP ′

1 ,

then neither side of (59) will 
hange. So suppose p′ ∈ ZP ′

2 . Note that in Case 1, Na and Nb are in

the same family, 
all it F (Sin
e Slide does not transfer a pa
ket, we have |Ha − Hb| < C/n, and

see Lemma B.12).

• If Na and Nb are in F+
, then ϕa = ϕb, so ϕp′ does not 
hange. In parti
ular, neither side of

(59) 
hanges in this 
ase. The same is true if Na and Nb are both in F−

• If Na ∈ F+
and Nb ∈ F−

, then the 
hange on the left-hand side of (59) is -1 (sin
e ∆ϕp′ = −1),

whi
h mat
hes the 
hange on the right-hand side of (59) (sin
e HP ′

b in
reases by one, and

HP ′

a de
reases by one). If instead Na ∈ F−
and Nb ∈ F+

, then similar reasoning shows that

the 
hange of both sides of (59) is +1.

Case 3: P transfers a pa
ket from Na to Nb in round x. Noti
e that this 
ase is not 
on
erned with

whether or not P ′
also transfers a pa
ket, as su
h a pa
ket would ne
essarily be in ZP ′

1 (by de�nition),

and hen
e this pa
ket movement in P ′
will not a�e
t either side of (59). Also, without loss of

generality Na is the sending node and Nb is the re
eiving node. By Lemma B.14, there are 4 
ases

we must 
onsider:

Case 3A: H̃b and H̃a do not 
hange. Then by Lemma B.14, there will be no re-stru
turing of families

between rounds x and x + 1. Consequently, if Fβ denotes Nb's family and Fα denotes Na's family

(possible α = β), then for all other families, (59) will remain valid. Also, ϕN does not 
hange for

any N ∈ Fβ (similarly for N ∈ Fα) sin
e H̃b and H̃a do not 
hange. Therefore, the right-hand side

of (59) also will not 
hange for Fβ and Fα, and the only 
hange in the left-hand side 
omes from

the in
rease of 4C to Φ (see Rule 2 of De�nition B.5), whi
h 
an be divided arbitrarily among the

families {F}, and this will only help (59).

Case 3B: H̃b in
reases by one, but H̃a does not 
hange. Let Fβ = {Nc, . . . , Nb, . . . , Nd} for some c ≤
b ≤ d. By Lemma B.14, there exist integers r, s ≥ 0 and indi
es {k1, . . . , kr} and {l1, . . . , ls} su
h
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that c ≤ k1 < · · · < kr ≤ b ≤ d < l1 < · · · < ls and:

Families at the start of x Families at the start of x

Fβ = {Nc, . . . , Nb, . . . , Nd} F̂β = {Nc, . . . , Nk1−1}

Fβ+1 = {Nd+1, . . . , Nl1−1} F̂β+1 = {Nk1 , . . . , Nk2−1}

Fβ+2 = {Nl1 , . . . , Nl2−1} F̂β+2 = {Nk2 , . . . , Nk3−1}
.

.

.

.

.

.

Fβ+s = {Nls−1 , . . . , Nls−1} F̂β+r−1 = {Nkr−1 , . . . , Nkr−1}

F̂β+r = {Nkr
, . . . , Nls−1}

and no other families 
hange.

By Lemma B.16, there is only one node N ∈ F−
β for whi
h ϕN in
reases by one as a result

of the pa
ket transfer. Although Fβ will 
hange in the manner des
ribed by the table above, by

Lemma B.4, the number of nodes N ∈ G with ϕN = ⌊〈H̃Fβ
〉⌋ (respe
tively ϕN = ⌊〈H̃Fβ

〉⌋) will not

hange (aside from the single node N ′

for whi
h ϕN ′
in
reases by one, as guaranteed by Lemma

B.16), although the spe
i�
 nodes in F+
and F−

may vary. A simple 
omputation ensures that the

right-hand side of (59) 
hanges in the exa
t same way as the left-hand side of (59) whenever any

two nodes in F swap pla
es (in F+
and F−

). Therefore, we may assume without loss of generality

that there is exa
tly one node N ′ ∈ F−
β for whi
h ϕN ′

in
reases by one as a result of the pa
ket

transfer, and for all other nodes N ∈ G, ϕN does not 
hange between the start of x and x + 1.

For ea
h 0 ≤ i ≤ r and 0 ≤ j ≤ s, de�ne the following quantities:

Families at the start of x Families at the start of x

Xi =
∑

N∈F̂−

β+i

(C − HP ′

N ) Xj =
∑

N∈F−

β+j
(C − HP ′

N )

Yi =
∑

N∈F̂+
β+i

HP ′

N Yj =
∑

N∈F+
β+j

HP ′

N

Ai = |F̂+
β+i| Ai = |F+

β+i|

Bi = |F̂−
β+i| Bi = |F−

β+i|

(60)

Also de�ne F∗ = F̂β+r ∪ Fβ , and:

µ =
∑

N∈F̂−
∗

(C − HP ′

N ) ν =
∑

N∈F+
∗

HP ′

N α = |F̂+
∗ | and β = |F−

∗ | (61)

By the indu
tion hypothesis, we have that at the start of round x:

s∑

j=0

ΦFβ+j
≥

s∑

j=0

(
AjXj + BjYj

Aj + Bj

)
(62)

In addition to the above potential, we also have that Φ in
reases by 4C as a result of the pa
ket

transfer in Slide. Meanwhile, the goal is to show that at the start of round x + 1:

r∑

i=0

Φ
F̂β+i

≥
r∑

i=0

(
AiXi + BiYi

Ai + Bi

)
(63)

Putting all these fa
ts together, we want to show that:

4C +

s∑

j=0

(
AjXj + BjYj

Aj + Bj

)
≥

r∑

i=0

(
AiXi + BiYi

Ai + Bi

)
(64)
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We demonstrate in the remainder of the proof how to show (64) is satis�ed.

First look at the term i = r for the right-hand side of (64):

ArXr + BrYr

Ar + Br
=

(α + 1 +
∑s

j=1 Aj)(µ +
∑s

j=1 Xj − (C − HP ′

N ′))

Ar + Br

+
(β − 1 +

∑s
j=1 Bj)(ν + HP ′

N ′ +
∑s

j=1 Yj)

Ar + Br

=
α + 1

α + β
(µ − (C − HP ′

N ′)) +

s∑

j=1

Xj
Aj

Aj + Bj
+

β − 1

α + β
(ν + HP ′

N ′) +

s∑

j=1

Yj
Bj

Aj + Bj

+ (Y1 −X1)

(
α

∑
Bj − β

∑
Aj

(α + β)(Ar + Br)

)

+ · · · + (Ys −Xs)

(
As(β +

∑
Bj) − Bs(α +

∑
Aj)

(As + Bs)(Ar + Br)

)

< C +
α + 1

α + β
(µ − (C − HP ′

N ′)) +
s∑

j=1

Xj
Aj

Aj + Bj
+

β − 1

α + β
(ν + HP ′

N ′) +
s∑

j=1

Yj
Bj

Aj + Bj

We have used above that (by Lemmas B.8 and Corollary B.9):

α

α + β
<

A1

A1 + B1
< · · · <

As

As + Bs
<

1 + α + A1 + · · · + As

α + β +
∑s

j=1(Aj + Bj)
(65)

Meanwhile, we look at the left-hand side of (64) for the j = 0 term:

A0X0 + B0Y0

A0 + B0
=

(α +
∑r−1

i=0 Ai)(µ +
∑r−1

i=0 Xi

A0 + B0

+
(β +

∑r−1
i=0 Bi)(ν +

∑r−1
i=0 Yi)

A0 + B0

≥ µ

(
α

α + β

)
+ ν

(
β

α + β

)
−

µ +
∑r−1

i=0 Xi

A0 + B0

+

r−1∑

i=0

AiXi + BiYi

Ai + Bi
, (66)

where we have used for the inequality above:

A0

A0 + B0
<

A0

A0 + B0
<

A1

A1 + B1
< · · · <

Ar−1

Ar−1 + Br−1
<

1 + α +
∑r−1

i=0 Ai

α + β +
∑r−1

i=0 (Ai + Bi)
, (67)

with the inequalities following from Lemma B.8 and Corollary B.9. Putting this all together, we

have that:

4C +
s∑

j=0

(
AjXj + BjYj

Aj + Bj

)
≥

r∑

i=0

(
AiXi + BiYi

Ai + Bi

)

whi
h is (64).

The other 
ases are proven similarly. �
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We state as an immediate 
onsequen
e the lemma we needed in the dis
ussion of Se
tion 4:

Lemma B.18. At all times:

|ZP ′

2 | ≤ 2nY P ≤ 2n|ZP | + 2n2C (68)

C Competitive Analysis of the Slide+ Proto
ol

C.1 Des
ription of Slide+

Re
all that we model an asyn
hronous network via a s
heduling adversary that maintains a bu�er

of requests of the form (u, v, p), whi
h is a request from node u to send pa
ket p to node v. The

s
heduling adversary pro
eeds in a sequen
e of honored edges (
alled rounds), whereby we will mean

the following when we talk about an edge E(u, v) being honored by the adversary:

Step 1. From its bu�er of requests, the adversary sele
ts one request of form (u, v, p) and

delivers p to v, and also sele
ts one request of form (v, u, p′) and delivers p′ to u. If there are

no requests (u, v, p) (resp. (v, u, p′)), then the adversary sets p (resp. p′) to ⊥.

Step 2. Node u (resp. v) sends new requests to the adversary of form (u, v, p) (resp. (v, u, p′)).

Note that the two above-mentioned a
tions take pla
e sequentially, so that the requests queued

to the adversary in Step 2 
an depend on the pa
kets re
eived in Step 1, but requests formulated

during Step 2 of some round E(u, v) will not be delivered until edge E(u, v) is honored again (at

the earliest). Sin
e nodes in the network only send/re
eive pa
kets when they are at one end of an

edge 
urrently being honored, nodes will not do anything ex
ept when they are a part of an honored

edge. Thus, in des
ribing Slide+, we need only des
ribe what a node u will do when it is part of an

honored edge E(u, v). Re
all that C denotes the size of ea
h node's memory

19

, and for simpli
ity

we will assume that C/n ∈ N, and also for Slide+, we will require C ≥ 8n2
.

Slide+ Proto
ol Des
ription.

During honored edge E(u, v), let (v, u, (p′, h′)) denote the message that u re
eives from v in Step

1 of the round (via the s
heduling adversary). Also, u has re
orded the request (u, v, (p, h)) that

it made during Step 2 of the previous round in whi
h E(u, v) was honored; note that v will be

re
eiving this message during Step 1 of the 
urrent round.

1. If u is the Sender, then:

(a) If h < C, then u deletes pa
ket p from his input stream {p1, p2, . . . } (and ignores the

re
eived pa
ket p′), and then pro
eeds to Step (
).

(b) If h′ ≥ C, then u keeps p (and ignores the re
eived pa
ket p′), and pro
eeds to Step (
).

(
) The Sender �nds the next pa
ket pi ∈ {p1, p2, . . . } that has not been deleted and is not


urrently an outstanding request already sent to the adversary, and sends the request

(u, v, (pi, C + C
n

+ n)) to the adversary. Also, u will update the fa
t that the 
urrent

message request sent to v is (u, v, (pi, C + C
n

+ n)).

19

For simpli
ity, we assume that all nodes have the same memory bound, although our argument 
an be readily

extended to handle the more general 
ase.
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2. If u is the Re
eiver, then u sends the request (u, v, (⊥, −C
n

− 2n + 1)) to the adversary. Mean-

while, if p′ 6= ⊥, then u stores/outputs p′ as a pa
ket su

essfully re
eived.

3. If u is any internal node, then:

(a) If h ≥ h′ +(C/n+2n), then u will ignore p′, delete p and the �ghost pa
ket asso
iated to

p� (see Step 3d below), and slide down any pa
kets/ghost pa
kets to �ll any gaps 
reated.

Also, u will update his height h = h − 1, and pro
eed to Step 3d below.

(b) If h ≤ h′ − (C/n + 2n), then u will keep p, and also store p′ in the sta
k lo
ation that u

had been storing the �ghost pa
ket� for p (see Step 3d below), deleting the ghost pa
ket

in the pro
ess. Also, u will update his height h = h + 1, and pro
eed to Step 3d below.

(
) If |h − h′| < C/n + 2n, then u will ignore pa
ket p′ and keep p, but delete the �ghost

pa
ket� asso
iated to p, and then pro
eed to Step 3d.

(d) Node u will sear
h its sta
k for the highest pa
ket p′′ (not in
luding ghost pa
kets) that

it has not already 
ommitted in an outstanding request to the adversary. It then sends

the request (u, v, (p′′, h)) to the adversary. Additionally, u will 
reate a �ghost pa
ket

asso
iated to the pa
ket/request p′′� that it has just sent the adversary. This �ghost

pa
ket� will assume the �rst un-�lled spot in u's memory sta
k. Finally, u will update

the fa
t that the 
urrent message request sent to v is (u, v, (p′′, h)).

In the following se
tion, we will prove that the above routing rules are 
ompatible with memory

requirements (e.g. that Steps 3b and 3d do not require a node to store more than C (ghost) pa
kets),

as well as prove that Slide+ enjoys 
ompetitive ratio 1/n.

C.2 Analysis of Slide+

Before providing the full details of the proof that Slide+ enjoys 
ompetitive ratio 1/n, we will

provide a brief high-level des
ription of how the proof works. First, noti
e that the main te
hni
al


hallenge in moving from the semi-asyn
hronous model of Se
tion 4 to the fully asyn
hronous model

is that nodes 
an no longer make routing de
isions based on 
urrent information. Indeed, the 
urrent

state of a node may 
hange drasti
ally from the time it makes a request in Step 2 of some round

E(u, v) and the time the request is �nally sent by the adversary in Step 1 of the next round in

whi
h E(u, v) is honored. Sin
e the Slide proto
ol uses the 
urrent height of a node to make routing

de
isions, the fa
t that the height of a node may 
hange substantially between the time a pa
ket

request is made and the time the re
eiving node re
eives the pa
ket is an issue that must be resolved.

The above des
ribed proto
ol handles this issue by allotting �ghost pa
kets� in Step 3d (this

will ensure there is always room to store a pa
ket sent from an honest neighbor), as well as having

nodes make routing de
isions based on old height 
onsiderations. In parti
ular, Steps 1-3 above

di
tate what u should do based on the height that u and v had during the last time E(u, v) was

honored. Therefore, although this information may have be
ome outdated sin
e the last time u and

v 
ommuni
ated with ea
h other, at least the de
isions will be made 
onsistently, both in the sense

that the heights being 
ompared are syn
hronized (i.e. they are from the same time as ea
h other,

although possible now out-dated), and in the sense that the nodes will know what the other will

do in terms of whether or not it will keep the pa
ket just sent/re
eived. This last fa
t is 
ru
ial to

prevent pa
ket deletion and dupli
ation from o

urring.

The proof will follow the main stru
ture of the proof provided for the semi-asyn
hronous Slide

proto
ol, with one additional 
ategory to a

ount for pa
ket transferring de
isions that were based
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on signi�
antly outdated height information.

Theorem C.1. The Slide+ proto
ol a
hieves 
ompetitive ratio 1/n in any distributed, asyn
hronous,

bounded memory network with dynami
 topology (and no minimal 
onne
tivity assumptions). More

spe
i�
ally, for any adversary/o�-line proto
ol pair (A,P ′), if P denotes the Slide+ proto
ol, C

denotes the 
apa
ity (memory bound) of ea
h node, and ZP
x (resp. ZP ′

x ) denotes the number of

pa
kets re
eived by proto
ol P (resp. P ′) as of round x, then for all rounds x:

ZP ′

x ≤ 8nZP + 8n2C (69)

Proof. Fix any adversary/o�-line proto
ol pair (A,P ′), and let P denote the Slide+ proto
ol and

ZP
x and ZP ′

x as in the statement of the theorem. Motivated by the proof in the semi-asyn
hronous

setting, we imagine a virtual world in whi
h the two proto
ols are run simultaneously in the same

network. We split ZP ′

x into the following three subsets (we will hen
eforth suppress the index

referen
ing the round x):

1. ZP ′

1 
onsists of pa
kets p′ ∈ ZP ′

for whi
h there exists at least one round E(u, v) su
h that

both p′ was transferred by P ′
and some pa
ket p was transferred by P.20

2. ZP ′

2 
onsists of pa
kets p′ ∈ ZP ′

that were never transferred alongside a pa
ket in P as in

1 above, and su
h that every time p′ was transferred between two nodes u and v during a

round E(u, v), the heights H and h that were used by u and v in determining whether to

store/delete the pa
kets delivered by the adversary during Step 1 of E(u, v) (see proto
ol

des
ription above) were ea
h within n of the 
urrent heights of u and v.

3. ZP ′

3 = ZP ′

\ (ZP ′

1 ∪ ZP ′

2 ).

Clearly, |ZP ′

| = |ZP ′

1 | + |ZP ′

2 | + |ZP ′

3 |, and hen
e the theorem follows from Lemmas C.3, C.4, and

C.5 below. �

We will need the following trivial observation, whi
h follows immediately from the des
ription

of the Slide+ proto
ol in Se
tion C.1.

Observation 2. At all times, an internal node u has at most n ghost pa
kets and at most n

outstanding requests (one for ea
h of its edges v).

Proof. Rules 1(
) and 3(d) only allow a node to submit a single request for ea
h round the node

is part of an honored edge, and this request is then delivered by the adversary in Step 1 of the

next round in whi
h the edge is honored. Also, Rules 3(a-
) guarantee that the ghost pa
ket


orresponding to the 
urrent honored edge will be deleted before another one is 
reated in Rule

3(d). �

In order to bound |ZP ′

1 |, we will need to bound the number of times any pa
ket p 
an be

transferred by the Slide+ proto
ol. In the asyn
hronous Slide proto
ol of Se
tion 4, we showed that

any pa
ket p 
ould be transferred at most 2n times, as during every pa
ket transfer in Slide, the

pa
ket must drop in height by at least C/n− 1. At �rst glan
e, it might seem that we 
annot make

the same argument in the fully asyn
hronous setting sin
e the Slide+ proto
ol is making routing

20

Note that we make no 
ondition that the two pa
kets traveled in the same dire
tion.
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de
isions based on (potentially) outdated height information. However, the introdu
tion of �ghost

pa
kets� will allow us to retain this quality. Indeed, the purpose of utilizing ghost pa
kets is to

anti
ipate future pa
ket transfers and reserve spots in a node's memory sta
k at the appropriate

height, allowing us to argue that even if nodes nodes are using out-dated height information, pa
kets

will still ��ow downhill� from Sender to Re
eiver. This is 
aptured in the following lemma.

Lemma C.2. Let Y P
x denote the the set of pa
kets inserted by P as of round x. Also let TP

x denote

the set of pa
ket transfers that have o

urred in P as of round x. Then any pa
ket in the Slide+

proto
ol is transferred at most 2n times.

21

In parti
ular, |TP
x | ≤ 2n|Y P

x | ≤ 2n(|ZP
x | + nC).

Proof. We show that anytime a pa
ket is transferred in the Slide+ proto
ol, the pa
ket's height in

the new bu�er is ne
essarily at least C/n− 4n lower than its height in the old bu�er. Sin
e pa
kets

only move within bu�ers when they are re
eived or sent (or when they slide down as in 3(a)), and

sin
e

22 2n(C/n− 4n) > C, the lemma will follow. Fix a pa
ket p, and 
onsider a round x = E(u, v)

in whi
h p is transferred from u to v. In parti
ular, it must have been that the previous round

x′ < x in whi
h E(u, v) was honored, u sent some request of form (u, v, (p, h)) to the adversary in

Step 2. Noti
e that when u sele
ted p to form a part of its request as in 3(d), sin
e u had height

h and u has at most n − 1 pa
kets already 
ommitted as an outstanding request (Observation 2),

p must have height at least h − n in u's bu�er. Meanwhile, let (v, u, (p′, h′)) denote the request

that v sent to the adversary in Step 2 of round x′
. Noti
e that in 3(d), v reserved a position in its

bu�er (the �ghost pa
ket�), into whi
h p will be inserted when it is re
eived in round x. Sin
e the

ghost pa
ket is assigned the topmost uno

upied (by pa
ket or ghost pa
ket) position in v's bu�er,

we have that p will have height no bigger than h′ + n. Therefore, p will drop in height by at least

(h−n)− (h′ + n) = h−h′ − 2n when it is transferred from u to v. Sin
e the 
riterion for a

epting

a new pa
ket (see 3(d)) demands that h − h′ ≥ C/n − 2n, we have that p will ne
essarily drop in

height by at least C/n − 4n when it is transferred. �

Noti
e that Lemma C.2 is valid regardless of how long a request (u, v, (p, h)) has been queued

in the adversary's bu�er, and also of how u and v's sta
ks may have 
hanged in the meantime. We

are now ready to state and prove the �rst requisite bound:

Lemma C.3. |ZP ′

1 | ≤ 2n|ZP | + 2n2C

Proof. By de�nition, |ZP ′

1 | ≤ |TP |, and the latter is bounded by 2n|ZP |+2n2C by Lemma C.2. �

Lemma C.4. |ZP ′

2 | ≤ 2n|ZP | + 2n2C

Proof. This bound follows the same reasoning as the proof of Lemma B.18. Suppose that pa
ket

p′ ∈ ZP ′

2 is transferred by P ′
from u to v in round x. By de�nition of ZP ′

2 , Slide+ did not transfer

a pa
ket, and thus (with the notation as in Rule 3(d) for Slide+) |h − h′| < C/n − 2n. Also by

de�nition of ZP ′

2 , we have that v's height in round x is within n of h′
, and u's height in round

x is within n of h. Consequently, u's height in round x must be within C/n of v's height. Then

if we de�ne families the same way as in the proof for the semi-syn
hronous Slide proto
ol (see

Se
tion B), by Lemma B.12, u and v must be in the same family at the start of x. Indeed, all

the lemmas and proofs of Se
tion B will remain valid

23

, and hen
e Lemma B.18, whi
h states that

|ZP ′

2 | ≤ 2n|ZP | + 2n2C, remains valid. �

21

This mat
hes the bound for the semi-asyn
hronous Slide proto
ol of Se
tion 4.

22

For Slide+, we have demanded that C > 8n2
.

23

The only ne
essary modi�
ation is to 
onsider the present de�nition of ZP
′

2 instead of the one used in Se
tion B
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Lemma C.5. |ZP ′

3 | ≤ 4n|ZP | + 4n2C

Proof. Fix a pa
ket p′ ∈ ZP ′

3 . By de�nition of ZP ′

3 , there exists some round xp′ = E(u, v) in whi
h

p′ was transferred from u to v, where either u's height or v's height has 
hanged by at least n sin
e

the previous round x′
p′ < x in whi
h E(u, v) was honored. Let Sp′ ⊆ TP

denote n of these pa
ket

transfers, where ea
h pa
ket transfer in Sp′ 
orresponds to a pa
ket sent (or re
eived) by u (or v),

and took pla
e between x′
p′ and xp′ .

Observation. For any pa
ket transfer in Slide+, there are at most 2n pa
kets p′ ∈ ZP ′

3 for

whi
h the pa
ket transfer appears in Sp′ .

Proof. Consider any round x′ = E(u, v) in whi
h a pa
ket is transferred from u to v by Slide+,

and refer to this spe
i�
 pa
ket transfer as tx′
. Then for ea
h edge of u and ea
h edge of v

and for any p′ ∈ ZP ′

3 , there 
an be at most one round xp′ > x′
for whi
h tx′ ∈ Sp′ . After all,

on
e a given edge of u or v, say for example E(u,w), transfers a pa
ket p′ ∈ ZP ′

3 in round

xp′ > x′
, the heights of both u and w are updated, and there 
an never be another p′′ ∈ ZP ′

3

and later round xp′′ > xp′ su
h that xp′′ = E(u,w) and tx′ ∈ Sp′′ . Therefore, tx′

an appear

in at most 2n sets of form Sp′ .

Sin
e |Sp′ | = n for ea
h p′ ∈ ZP ′

3 , we have that:

∑

p′∈ZP′

3

|Sp′ | = n|ZP ′

3 | (70)

Now sin
e for any given pa
ket transfer tx ∈ TP
there 
an be at most 2n di�erent values of p′ ∈ ZP ′

3

su
h that tx ∈ Sp′ , we have that:

⋃

p′∈ZP′

3

Sp′ ≥
n|ZP ′

3 |

2n (71)

But ∪
p′∈ZP′

3
Sp′ ⊆ TP

, so:

|TP | ≥ | ∪
p′∈ZP′

3
Sp′ | ≥

|ZP ′

3 |

2
(72)

In parti
ular, |ZP ′

3 | ≤ 2|TP | ≤ 4nZP + 4n2C, where the se
ond inequality is Lemma C.2. �

D Pseudo-Code and Proofs for Proto
ol Se
ure Against

Mali
ious Adversary

D.1 Pseudo-Code

In this se
tion we present pseudo-
ode for implementing our proto
ol that is se
ure against

a 
oordinated atta
k of the edge-s
heduling and node-
ontrolling adversaries. Formal proofs of

se
urity, referring to line numbers of the pseudo-
ode of the following four �gures, are in the next

se
tion.
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Variable and Notation De�nitions ## Ea
h of the below variables are transmission dependent

C = Capa
ity of ea
h (internal) node's bu�er (i.e. number of 
odeword pa
kets a node 
an store)

B = Capa
ity of ea
h node to hold extraneous (broad
ast) information

D = 4nC
λ

= Number of pa
kets per 
odeword EN = List of Eliminated nodes

Y = Set of pa
kets inserted by sender Z = Set of pa
kets re
eived by re
eiver

Pu,v = Net no. of p's to 
ross E(u, v) [p]
u,v

= Net no. p 
rossed E(u, v)

Φu,v = Net de
rease in potential as a result of pa
ket transfers from u to v
Φu = Total potential drop 
aused by pa
ket transfers a
ross all edges adja
ent to u
Gp = Ghost pa
ket asso
iated to pa
ket p (See Figure Internal Node Create Next Request)

Hu = Height of u's bu�er; i.e. the number of 
odeword pa
kets u is 
urrently storing

BBu = u's Broad
ast Bu�er BLu = u's version of the Bla
klist

DBs = Sender's Data Bu�er, used to store status report par
els that will help eliminate 
orrupt nodes

Figure 1: De�nition of Variables

Routing Rules for Node u ∈ G
01 Input:

02 (v, u, (p′, H ′), (q′1, q
′
2), (α

′, σ(α′))) ## Re
eived From v (via A)

03 (u, v, (p,H), (q1, q2), (α, σ(α))) ## Previous request sent to v (via A)

04 DO:

05 Pro
ess the par
el q′1 as in Pro
ess Par
el below

06 If α = α′
, σ(α′) is valid, and v /∈ (ENu ∪ BLu)

07 If u = s and Ready(v) is true and H ′ < C: ## Insert Pa
ket

08 Delete p from input stream {p1, p2, . . . }
09 In
rease Φs,v by the amount indi
ated by α
10 In
rease Ps,v, [p]s,v , and |Y | by one

11 Else If u = r and Ready(v) is true and p′ 6= ⊥: ## Re
eive Pa
ket

12 Store/output p′
as a pa
ket su

essfully re
eived

13 In
rease Φr,v by the amount indi
ated by α
14 De
rease Pr,v and [p]r,v by one and in
rease |Z| by one

15 Else If u 6= r, s and Ready(v) is true and H ≥ H ′ + (C/n − 2n):## Send Pa
ket

16 Delete p and Gp and Slide ## Slide down (ghost) pa
kets to �ll gaps

17 In
rease Φu,v and Φu by the amount indi
ated by α
18 In
rease Pu,v and [p]r,v by one, and set Hu = Hu − 1
19 Else If u 6= r, s and Ready(v) is true and H ≤ H ′ − (C/n − 2n):## Re
eive Pa
ket

20 Store p′
in lo
ation o

upied by Gp

21 In
rease Φu,v and Φu by the amount indi
ated by α
22 De
rease Pu,v and [p]u,v by one and set Hu = Hu + 1
23 Send to A the returned value of Create Next Request

Figure 2: Routing Rules
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Pro
ess Par
el for Internal Nodes and Re
eiver u
01 Input:

02 (q′1, q
′
2) ## Re
eived From v (via A)

03 DO:

04 Store q′2 in BBu ## q′2 = Φw for some w. Repla
e old value, provided new value is larger

05 Add q′1 to BBu ## Also mark edge E(u, v) as having transmitted this information

06 If q′1 = ΩT

07 Clear outgoing, in
oming, BLu, and BBu (ex
ept status report par
els)

08 Else If q′1 = w /∈ ENu denotes a node to eliminate

09 Add q′1 to ENu

10 Else If q′1 = w denotes a node to bla
klist

11 Add q′1 to BLu

12 If w = u, Sign and Add n − 1 status report par
els to BBu

13 ## Find reason u was bla
klisted from SoT. For ea
h v ∈ G:

14 ## if 
ase F2, add Φu,v, if 
ase F3, add Pu,v, if 
ase (F4, p′), add [p′]u,v

15 If u = r and q′1 indi
ates T− 1 failed due to F2:

16 For ea
h v ∈ G, add Φw to BBr

Pro
ess Par
el for Sender

17 Input:

18 q′1 ## Re
eived From v (via A)

19 DO:

20 Add q′1 to DBs

21 If q′1 is the last missing status report par
el for some w ∈ BLs

22 Remove w from BLs, and add fa
t w /∈ BL to BBs

Figure 3: Rules For Pro
essing Broad
ast Information

D.2 High-Level Proofs Ideas for Competitive Analysis of Throughput

In this se
tion, we sket
h the proof that our proto
ol is n-
ompetitive, leaving the rigorous

details to the next subse
tion. As was done for analysis of Slide and Slide+, we use 
ompetitive

analysis to evaluate the throughput performan
e of our routing proto
ol. To this end, let (A,P ′)

denote an adversary/o�-line proto
ol pair for whi
h we 
ompare our routing proto
ol P.

Theorem D.1. If at any time P ′
has re
eived Θ(xn) messages, then P has re
eived Ω((x − n2))

messages. Thus, if the number of messages x ∈ Ω(n2), then our proto
ol has 
ompetitive ratio 1/n,

whi
h is optimal.

Proof. This follows as an immediate 
orollary to Lemmas D.3 and D.4 below. �

Lemma D.2. If a transmission fails as in F2-F4, as soon as the sender re
eives all of the signed


ommuni
ations between all nodes, he will ne
essarily be able to identify a 
orrupt node.

Proof. Intuitively, a transmission fails as in 
ase F2 when a 
orrupt node is transferring pa
kets

against transfer rules (e.g. from smaller heights to larger heights, or when a 
orrupt node is dupli-


ating pa
kets). Both of these 
an be dete
ted by looking at the node's 
ommuni
ation with ea
h

of its (honest) neighbors, who have re
orded the height di�eren
es 
aused by ea
h pa
ket trans-

fer. If a transmission ends as in 
ase F2, the sender will look for a node whose 
umulative height

drop is negative; this information is available through the Sig. 3 signed 
ommuni
ations (see above

se
tion).
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When a transmission fails as in 
ase F3, this means that there is a 
orrupt node that is deleting

pa
kets. The sender 
an identify su
h a node u when he has re
eived ea
h of the signed 
ommuni
a-

tions (Sig. 1) from ea
h of u's (honest) neighbors. Finally, transmission failure as in 
ase F4 means

there is a 
orrupt node that has dupli
ated some pa
ket p. The sender 
an identify su
h a node u

when he has re
eived ea
h of the signed 
ommuni
ations (Sig. 2, 
orresponding to the pa
ket p)

from ea
h of u's (honest) neighbors.

This lemma is proved rigorously in Appendix D.5. �

Lemma D.3. After a 
orrupt node has been eliminated (or at the outset of the proto
ol) and before

the next 
orrupt node is eliminated, there 
an be at most n − 1 failed transmissions before the next

node 
an be eliminated. In parti
ular, there are at most n2
failed transmissions.

Proof. The intuition for the proof is that the bla
klist for
es 
orrupt nodes to return their signed


ommuni
ation to the sender if they want to further disrupt future transmissions. Then use Lemma

D.2 above to show that with the signed 
ommuni
ation, the sender 
an identify a 
orrupt node. A

rigorous proof is provided in Appendix D.4. �

Lemma D.4. For every message/
odeword transmission, by the time the transmission ends as a

result of S1 or F2-F5, we have that the ideal o�ine proto
ol P ′
has re
eived at most O(n2C) pa
kets.

We will need the following de�nition for the proof:

De�nition D.5. A round t = E(u, v) of a transmission is wasted if u and v are honest nodes, and

they were not allowed to transfer a pa
ket be
ause one (or both) of them was on the bla
klist.

Proof Sket
h of Lemma D.4. Let C ′
denote the number of pa
kets per 
odeword.

24

The stru
ture

of the proof will be to show that if P ′
has re
eived 3nC ′

pa
kets as of some round t, then ne
essarily

S1 or F2-F5 has o

urred. To do this, we follow the proof of the 
ompetitive ratio for Slide and

Slide+ and imagine a virtual world in whi
h P and P ′
are run simultaneously. Let ZP ′

denote

the pa
kets delivered to the re
eiver by P ′
, and let ZP ′

3 denote the subset of pa
kets that travelled

between two nodes during a wasted round. De�ne ZP ′

1 to be the subset of ZP ′

\ ZP ′

3 
onsisting

of pa
kets p′ for whi
h there exists at least one round E(u, v) su
h that both p′ and some pa
ket

p ∈ Y P
were both transferred this round.

25

Set ZP ′

2 = ZP ′

\ (ZP ′

1 ∪ ZP ′

3 ). Also, let TP
t

denote

the number of pa
ket transfers in P between two honest nodes as of round t. We begin with the

following observation, whi
h is analogous to the 
orresponding statements for Slide and Slide+ (see

e.g. Lemmas 4.1 and 4.2), and is proved in Appendix D.4:

Observation. |ZP ′

1 | ≤ TP
t

, |ZP ′

2 | ≤ TP
t

, and |ZP ′

3 | ≤ n4 + 2n3

Noti
e that sin
e TP
t

only takes into a

ount pa
ket transfers between honest nodes, we have that

TP
t

≤ Y P ∗ C/(C/n) = nY P
, sin
e every pa
ket starts at height at most C and drops in height

by at least ≈ C/n every time it is transferred. Therefore, the above observation together with the

assumption that 3nC ′
pa
kets have been re
eived by P ′

say:

3nC ′ = |ZP ′

| = |ZP ′

1 | + |ZP ′

2 | + |ZP ′

3 | ≤ 2TP
t

+ n4 + 2n3 ⇒ TP
t

≥ λn2C2
(73)

24C′ = λnC is a 
onstant multiple of n times the bu�er-size C (the 
onstant λ depends on the error-
orre
tion

rate).

25

Note that we make no 
ondition that the two pa
kets traveled in the same dire
tion.
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where in the last inequality we have used C ′ ≥ n3 + 2n2
and C ′ = λnC. Sin
e ea
h pa
ket transfer


orresponds to a height di�eren
e of at least C/n between the honest nodes ex
hanging the pa
ket,

(73) implies that honest nodes will have re
orded a 
umulative height di�eren
e of λn2C2
, whi
h is

pre
isely the 
ondition for a transmission ending as in 
ase F2. See Appendix D.3 for details. �

D.3 Proof of Lemma D.4

In this se
tion, we prove the following lemma (whi
h is a formal restatement of Lemma D.4).

Before stating and proving this lemma, it will be 
onvenient to introdu
e new terminology and �x

notation:

De�nition D.6. We will say a node N ∈ G parti
ipated in transmission T if there was at least one

round in the transmission for whi
h w was not on the (sender's) bla
klist. The sender's variable

that keeps tra
k of nodes parti
ipating in transmission T will be 
alled the parti
ipating list for

transmission T, denoted by ρT (updated at the end of failed transmissions on line 30 of Figure 4).

Also, we will refer to spe
i�
 line numbers for the pseudo-
ode via (X.YY), where X refers to

the Figure number, and YY refers to the line number. Finally, let D denote the number of pa
kets

per 
odeword, and note that:

D =
nC

λ
, (74)

where λ is the error-rate of the error-
orre
ting 
ode.

Lemma D.7. In any transmission T, |ZP ′

T
| ≤ 3nD. If the transmission was su

essful (i.e. r sent

EoT par
el �S1� on 4.14-15 and 4.20), then |ZP
T
| ≥ (1 − λ)D = O(nC).

We will prove Lemma D.7 via a sequen
e of Lemmas. First, re
all from Se
tion 5 the reasons a

transmission may fail:

S1, F2, F4 Sender re
eives End of Transmission (EoT) par
el from the re
eiver (4.25, 4.28)

F3 Sender has inserted D pa
kets sin
e the end of Ti−1 (4.28)

F5 Sender re
eives enough information to eliminate a new 
orrupt node (4.22)

In order to prove Lemma D.7, we will show that if there is a transmission in whi
h the ideal o�-

line proto
ol P ′
has re
eived at least 3nD pa
kets, then ne
essarily the sender had re
eived the

EoT par
el from R indi
ating �F2,� a 
ontradi
tion (the transmission should have ended). In other

words, we show that if a transmission does not end as on (4.22) or (4.28), then ne
essarily the

transmission will end as on (4.25) before P ′
is able to re
eive more than 3nD pa
kets.

Lemma D.8. If the re
eiver forms any EoT par
el in round t of some transmission and P ′
has

inserted Z = ZP ′

t
pa
kets at this point, then the sender will ne
essarily re
eive EoT before P ′

is able

to re
eive n2C + nC more pa
kets.

Proof. We will show that there 
an be at most n2C pa
ket insertions by P ′
before the EoT par
el

ne
essarily has rea
hed the sender, from whi
h the lemma follows sin
e there 
an be at most nC

pa
kets in the bu�ers of the honest nodes at round t. Thus, the lemma follows immediately from

Lemma D.15 in Appendix D.4. �
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By the above lemma, it remains to show that if at any time t we have that |ZP ′

t
| ≥ 3nD −

n2C − nC, then ne
essarily R will enter lines 16-17 of Figure 4. First, we will split ZP ′

into three

disjoint subsets ZP ′

= ZP ′

1 ∪ZP ′

2 ∪ZP ′

3 , whi
h were des
ribed in Se
tion 5, but are now restated in

terms of the pseudo-
ode.

De�nition D.9. We will say a round t = E(u, v) of a transmission is wasted if u and v are honest

nodes, and Ready(u) returned false for v or Ready(v) returned false for u (see lines 2.15, 2.17, and

4.41-43).

Intuitively, a round is wasted if two honest nodes would have transferred a pa
ket (based on

their relative heights), but they were not allowed to be
ause they had not yet transmitted requisite

broad
ast information a
ross E(u, v), or be
ause one was on the other's bla
klist.

We 
an view the s
heduling adversary A as simply a s
hedule (or order) of edges that the

adversary will honor. We will imagine a virtual world, in whi
h P and P ′
are run simultaneously.

Let ZP ′

3 denote the set of pa
kets in ZP ′

that travelled between two nodes during a wasted round.

De�ne

26 ZP ′

1 to be the subset of ZP ′

\ ZP ′

3 
onsisting of pa
kets p′ for whi
h there exists at least

one round E(u, v) su
h that both p′ and some pa
ket p ∈ Y P
were both transferred this round.

27

Set ZP ′

2 = ZP ′

\ (ZP ′

1 ∪ZP ′

3 ). Also, let TP
t

denote the number of pa
ket transfers in P between two

honest nodes (as on lines 15-22 of Figure 2) as of round t.

Lemma D.10. For any round t: |ZP ′

1,t| ≤ TP
t

and |ZP ′

2,t| ≤ TP
t

Proof. These are Lemmas D.16 and D.17 in Appendix D.4. �

For ea
h pa
ket p′ ∈ ZP ′

3 , we 
an �nd the �rst wasted round tp′ in whi
h p′ was transferred

between two nodes. De�ne W := {tp′ |p
′ ∈ ZP ′

3 }. Clearly, we have:

|ZP ′

3 | = |W| (75)

Lemma D.11. For any transmission: |W| ≤ n4 + 2n3

Proof. This is re-stated in Appendix D.4. �

Lemma D.12. |ZP ′

| ≤ 2TP + n4 + 2n3

Proof. Follows immediately from Lemmas D.16, D.17, and D.11, and (75). �

Noti
e that although every pa
ket transfer in P will 
ause a drop in potential, it may take some

time before a node's 
umulative potential drop for the 
urrent transmission rea
hes the re
eiver,

sin
e only one node's potential is transferred a
ross an edge during a given round (4.08). In order

to a

ount for this, we will utilize the following notation. For any honest node u, let Uu ⊆ ZP ′

denote the set of pa
kets that have rea
hed R (in P ′
) and travelled through u at some point en

route to R. Let Uu,2 ⊆ Uu denote the subset 
onsisting of the (at most) n3
pa
kets that left u (for

the last time) latest (
hronologi
ally), and let Uu,1 = Uu \ Uu,2. If Uu,1 6= ∅, let tu denote the latest

round su
h that some p′ ∈ Uu,1 last left u (otherwise set tu = 0).

Lemma D.13. For any honest node u, R's stored value for Φu is at least as 
urrent as tu.

26

If we wish to emphasize the round, we will write ZP
′

1,t.

27

Note that we make no 
ondition that the two pa
kets traveled in the same dire
tion.

47



Proof. This is re-stated and proved in Appendix D.4. �

We are �nally ready to put all the pie
es together to prove Lemma D.7.

Proof of Lemma D.7. Suppose for the sake of 
ontradi
tion that there is some transmission for

whi
h |ZP ′

| = 3nD and the transmission has not yet ended. By Lemma D.17, we have that if t

denotes the round when |ZP ′

| = 3nD − (n2C + nC), then as of round t:

∑

u∈G

Φu < CD (76)

where Φu denotes the value of this variable stored by R as of round t. Meanwhile, by Lemma D.12,

we have that:

TP
t

≥ (1/2)(|ZP ′

t
| − n4 − 2n3) (77)

Sin
e pa
ket transfers in P 
orrespond to a potential drop of at least C/n, even if we ignore


ontributions to potential drop from the transfers of ea
h of the (up to) n3
pa
kets in Uu,2 for ea
h

u, by Lemma D.13 the re
eiver has re
orded as of round t:

∑

u∈G

Φu ≥ (C/n)(TP
t

)

≥ (C/n)(1/2)((|ZP ′

t
| − n4) − n4 − 2n3)

≥ (C/n)(1/2)((3nD − n2C − nC)− 2n4 − 2n3)

≥ (C/n)(1/2)(3nD − nD)

= CD (78)

where on the se
ond line from ZP ′

t
we have subtra
ted out the up to n4

pa
kets in Uu,2 for ea
h

u, and for the third time we used that nD ≥ n(n + 1)(2n2 + C) (sin
e C ≥ 8n2
, λ ≤ 1/2, and

D = nC
λ
). This 
ontradi
ts (76), 
ompleting the proof. �

D.4 Mis
ellaneous Lemmas and Proofs

We restate and prove the lemmas used in the previous subse
tions. The �rst is a formal re-

statement of Lemma D.3.

Lemma D.14. After a 
orrupt node has been eliminated (or at the outset of the proto
ol) and before

the next 
orrupt node is eliminated, there 
an be at most n−1 failed transmissions {T1, . . . , Tn} before
there is ne
essarily some index 1 ≤ i ≤ n su
h that the sender has the 
omplete status report from

every node on ρTi
.

Proof. We �rst state a simple observation:

Observation. If w ∈ ρT, then the sender is not missing any status report par
el for w for

any transmission prior to transmission T. In other words, there is no transmission T
′ < T su
h

that w was bla
klisted at the end of T
′
(as in Sender Create Next Request), and the sender is

still missing status report information from w at the end of T.
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Proof. Nodes are added to the bla
klist whenever they were parti
ipating in a transmission

that failed (see as in Sender Create Next Request). Nodes are removed from the bla
klist

whenever the sender re
eives all of the status report information he requested of them (3.21-

22), or when a node is eliminated (4.22-24), in whi
h 
ase the sender no longer needs status

reports from nodes for old failed transmissions

28

(and in parti
ular, this 
ase falls outside the

hypotheses of the Lemma). Sin
e ρT is de�ned as non-bla
klisted nodes, the fa
t that w ∈ ρT
implies that w was not on the sender's bla
klist at the end of T (but before BLT is 
reated

on 4.30). Also, noti
e that (4.30) guarantees that all nodes not already on the sender's

bla
klist will be put on the bla
klist if the transmission fails. Therefore, in the 
ase that w

has not been bla
klisted sin
e the last node was eliminated, then there have not been any

failed transmissions, and hen
e the sender is not missing any status reports. Otherwise, let

T
′ < T denote the last time w was put on the bla
klist, as on (4.30). In order for w to be put

on ρT on line (4.30) of transmission T, it must have been removed from the bla
klist at some

point between T
′
and the end of T. In this 
ase, the remarks at the start of the proof of this

observation indi
ate the sender is not missing any status reports from w. �

Suppose now for the sake of 
ontradi
tion that we have rea
hed the end of transmission Tn, whi
h

marks the nth
transmission {T1, . . . , Tn} su
h that for ea
h of these n failed transmissions, the sender

does not have the 
omplete status report from at least one of the nodes that parti
ipated in the

transmission. De�ne the set S to be the set of nodes that were ne
essarily not on ρTn , and initialize

this set to be empty.

Sin
e the sender is missing some node's 
omplete status report that parti
ipated in T1, there is

some node w1 ∈ ρT1 from whi
h the sender is still missing a status report par
el 
orresponding to

T1 by the end of transmission Tn−1. Noti
e by the observation above that w1 will not be on ρT′ for

any T2 ≤ T
′ ≤ Tn−1, so put w1 into the set S. Now looking at T2, there must be some node w2 ∈ ρT2

from whi
h the sender is still missing a status report par
el from T2 by the end of transmission Tn−1.

Noti
e that w2 6= w1 sin
e w1 /∈ ρT2 , and also that w2 /∈ ρTn−1 (both fa
ts follow from the above

observation), so put w2 into S. Continue in this manner, until we have found the (n− 1)st distin
t

node that was put into S due to information the sender was still missing by the end of Tn−1. But

then |S| = n − 1, whi
h implies that all nodes, ex
ept for the sender, are not on ρTn .

We rea
h a 
ontradi
tion by showing that transmission T 
an not be a failed transmission (unless

a 
orrupt node 
an be immediately identi�ed). Re
all that there are 3 ways a transmission 
an fail:

1) F2, i.e. R has stored value

∑
u∈G Φu > CD; 2) F3, sender has inserted D pa
kets; 3) F4, R

has re
eived a dupli
ated pa
ket p. However, ea
h of these 
ases is impossible, sin
e no node is on

the parti
ipating list ρTn , and hen
e no (honest) node should have transferred a pa
ket (ρTn = ∅
implies that all nodes ex
ept S are on the bla
klist), as line 41f of Figure 4 will fail for all honest

nodes. Therefore, no honest nodes will transfer any 
odeword pa
kets during T, so the sender has

not inserted any pa
kets and the re
eiver has not re
eived any pa
kets, and any node u that reports

a non-zero value for Φu is ne
essarily 
orrupt. �

We are now ready to prove Theorem D.1, reserving the proof of Lemma D.19 to the next se
tion.

28

The sender already re
eived enough information to eliminate a node. Even though it is possible that other nodes

a
ted mali
iously and 
aused one of the failed transmissions, it is also possible that the node just eliminated 
aused

all of the failed transmissions. Therefore, the proto
ol does not spend further resour
es attempting to dete
t another


orrupt node, but rather starts anew with a redu
ed network (the eliminated node no longer legally parti
ipates),

and will address future failed transmissions as they arise.
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Proof of Theorem D.1. By Lemma D.7, for every su

essful transmission we have

1
n
|ZP ′

T
| ≤ 8nC ∼

(1 − λ)D = |ZP
T
|, so it remains to show that there are at most n2

failed transmissions. By Lemma

D.14, by the end of at most n− 1 failed transmissions, there will be at least one failed transmission

T su
h that the sender will have all status report par
els from every node on ρT. Then by Lemma

D.19, the sender 
an eliminate a 
orrupt node. At this point, lines (4.22-24) essentially 
all for

the proto
ol to start over, wiping 
lear all bu�ers ex
ept for the eliminated nodes bu�er, whi
h will

now 
ontain the identity of a newly eliminated node. The transmission of the latest 
odeword not

yet transmitted then resumes, and the argument 
an be applied to the new network, 
onsisting of

n− 1 nodes. Sin
e the node-
ontrolling adversary 
an 
orrupt at most n− 2 nodes (the sender and

re
eiver are in
orruptible), this 
an happen at most n − 2 times, yielding the bound of n2
for the

maximum number of failed transmissions. �

Lemma D.15. ∀1 ≤ i ≤ n, if P ′
has inserted (i ·nC) pa
kets sin
e round t, then either the sender

has re
eived the EoT par
el, or there are at least i distin
t (honest) nodes that have re
eived EoT.

Proof. (Indu
tion on i). The sub
laim is 
learly true for i = 1, sin
e R knows EoT as soon as it


reates it in round t. Assume the sub
laim is true for i− 1, and we aim to show it will then be true

for i. If the sender has re
eived EoT after P ′
inserts inC pa
kets (after t), then done. Otherwise,

let Si−1 = {u1, . . . , ui−1} denote the set of (honest) nodes that had EoT as of the (i−1)nCth
pa
ket

inserted after t by P ′
. Now during the next nC insertions by P ′

, sin
e nC ex
eeds the 
apa
ity of

the honest nodes, one of the last nC pa
kets (say p′) just inserted ne
essarily rea
hed the re
eiver.

Let uj denote the �rst (with respe
t to time, not with respe
t to the index ordering within Si−1)

node in Si−1 travelled to en route from S to R (that su
h a node exists is immediate sin
e s /∈ Si−1

but r ∈ Si−1). Let v denote the node that passed p′ to uj . Then in the round when p′ was passed

from v to uj , uj ne
essarily

29

sent v EoT (see lines 02-03 of Figure 4), i nodes will know EoT, as

required. �

Lemma D.16. For any round t:

|ZP ′

1,t| ≤ TP
t

(79)

Proof. This follows immediately from the de�nition of ZP ′

1,t together with the fa
t that P
′
is restri
ted

to transferring pa
kets between honest nodes. �

The following lemma follows dire
tly from Lemma 4.2:

Lemma D.17. For any round t:

|ZP ′

2,t| ≤ TP
t

(80)

Proof. This is Lemma 4.2 of [BO℄ together with Lemma B.17 of [BO℄. Note that even though

the network setting of [BO℄ assumes no mali
ious a
tivity, the proof remains valid be
ause P ′
is

restri
ted to the honest nodes of G. In parti
ular, we may restri
t our graph G (whi
h 
onsists

of honest and 
orrupt nodes) to G′
(
onsisting of only honest nodes), and follow the lemmas and

proofs leading to Lemma B.17 on the subgraph G′
. Sin
e ZP ′

2 ex
ludes ZP ′

3 (the pa
kets of ZP ′

that

travelled during a wasted round), the analysis leading to Lemma B.17 remains valid. �

29P ′
is restri
ted to the sub-graph of G 
onsisting of honest nodes, so there is no danger that v or uj will disobey

proto
ol rules.
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Lemma D.11. For any transmission:

|W| ≤ n4 + 2n3
(81)

Proof. By investigating line 41 of Figure 4, there are 5 reasons a round may be wasted. By Lemma

D.18 below, we need only 
onsider lines 41
, 41d, 41e, and 41f. We bound the number of wasted

rounds for ea
h of these, noting that ea
h edge will only transmit a broad
ast par
el a
ross it on
e:

1. Sin
e there are only 2n par
els total 
omprising the SoT broad
ast and EoT par
el and less

than n2/2 edges, lines 41
-d 
an 
ause at most n3
wasted rounds.

2. A node 
an only be removed from the bla
klist on
e per transmission. Sin
e there are n nodes

that may need to be removed from the bla
klist, and less than n2/2 edges, line 41e 
an 
ause

at most n3
wasted rounds.

3. We will split wasted rounds 
aused by 41f into two 
ategories. In the �rst 
ategory, the node

that is bla
klisted has not yet passed all of its status report par
els a
ross the relevant edge.

Sin
e ea
h node's status report 
onsists of n − 1 par
els, and ea
h edge will only transmit a

status report par
el on
e, this �rst 
ategory 
an 
ause up to (n − 1)n(n2/2) < n4/2 rounds.

In the se
ond 
ategory, the bla
klisted node has already passed all of its status report par
els

a
ross the relevant edge. To bound the number of wasted rounds 
aused by this se
ond


ategory, we fo
us on a single su
h wasted round t = E(u, v) 
aused by pa
ket p′ ∈ ZP ′

3 .

Without loss of generality we may assume that the round was wasted be
ause v was on u's

bla
klist, and sin
e we are in the se
ond 
ategory, u already has all of v's status report par
els.

Sub
laim. v was on BLs when p′ was inserted.

Proof. If v /∈ BLs when p′ was inserted, then S must have re
eived all of v's status

report par
els and removed v from BLs (3.22). Therefore, the broad
ast par
el that

indi
ates that v should be removed from the bla
klist is put into the sender's broad
ast

bu�er when it removes v from BLs (2.38-39). Let w denote the �rst node that p′ travels

to en route from S to u su
h that w does not know that v should be removed from the

bla
klist, and let t
′
denote the round that w re
eived p′. Note that t

′ < t. Also, sin
e

w re
eived p′ from a node that knew v should be removed from the bla
klist, round t
′

must have been wasted (2.41e), whi
h 
ontradi
ts minimality of t.

Thus, for �xed p′ ∈ ZP ′

3 
orresponding to wasted round E(up′ , vp′), we have that vp′ was on

BLs when p′ was inserted (sub
laim above) and up′ had all of vp′ 's status report par
els before

the start of round E(up′ , vp′). Therefore, for ea
h p′ ∈ ZP ′

3 , let wp′ denote the �rst node that p′

travelled to that had vp′ 's 
omplete status report when it re
eived p′. Sin
e wp′ 6= s (otherwise

vp′ /∈ BLs when p′ is inserted), we have that the node that sent p′ to wp′ (in say round tp′)

must not have known vp′ 's 
omplete status report. Sin
e tp′ was not a wasted round, wp′

must have sent a status report par
el (not ne
essarily 
orresponding to vp′) during round tp′ .

Therefore, for every p′ ∈ ZP ′

3 , we 
an asso
iate a round in whi
h a status report par
el was

sent a
ross an edge. Sin
e there are less than n2
total status reports and n2/2 edges, this


ategory of 41f 
an 
ause at most n4/2 wasted rounds.

Adding 
ontributions from 41
-41f, we obtain the lemma. �
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Lemma D.18. For any p′ ∈ ZP ′

3 , the 
orresponding �rst wasted round tp′ ∈ W was wasted as a

result of line 41
, 41d, 41e, or 41f (see Figure 4).

Proof. Fix any tp′ ∈ W, and for notation, let tp′ = t = E(u, v), and without loss of generality,

assume p′ passed from u to v in this round. We will show that ne
essarily u has the full SoT

broad
ast at the start of t, from whi
h the lemma follows. Suppose for the sake of 
ontradi
tion

that u did not have the full SoT broad
ast at the start of t. Let t0 denote the round in whi
h p′

was inserted by the sender (in proto
ol P ′
). Let w denote the �rst node that p′ visited en route

from S to u su
h that w did not have the 
omplete SoT broad
ast, and let w′
denote the node that

sent p′ to w in round t
′
. By 
hoi
e of w, we have that w′

knew the 
omplete SoT broad
ast when

it re
eived p′, and hen
e it had the 
omplete broad
ast by t
′
(when p′ was sent to w). But then

line 41
 should have been true, so round t
′
must have been wasted. Sin
e 
learly t

′ < t, we have

the required 
ontradi
tion. �

Lemma D.13. For any honest node u, R's stored value for Φu is at least as 
urrent as tu.

Proof. We prove the following statement, from whi
h the lemma follows immediately:

For any node u and for any 1 ≤ i ≤ n, if in2
of the n3

pa
kets in Uu,2 have rea
hed R, then

either R has stored a value for Φu that is at least as re
ent as tu, or at least i distin
t (honest)

nodes have stored values for Φu that are at least as re
ent as tu.

We prove the statement via indu
tion on i. For i = 1, there is nothing to show, as 
learly u itself has

a 
urrent value stored for Φu. Let ti−1 denote the round in whi
h the (i − 1)n2
pa
ket in Uu,2 last

left u, and let ti denote the round in whi
h the in2
pa
ket of Uu,2 last left u, so tu < ti−1 < ti. If

as of ti the re
eiver has a stored value for Φu that is at least as re
ent as tu, then done. Otherwise,

the indu
tion hypothesis guarantees that there exists some set Fi−1 = {v1, . . . , vi−1} ⊆ G of honest

nodes that, as of round ti−1, have a stored value of Φu that is at least as re
ent as tu. Let Su

denote the n2
pa
kets in Uu,2 that left u between ti−1 and ti.

Claim. There exists (at least) one pair of honest nodes (vj , vk) ∈ Fi−1 × G \ Fi−1 su
h that

at least n pa
kets in Su were transferred a
ross E(vj , vk) at some point after they left u and

before they rea
hed R.

Proof. Noti
e that ea
h of the n2
pa
kets in Su had not left u for the last time as of round

ti−1. For ea
h p′ ∈ Su, we may therefore �nd the �rst node v′p su
h that vp′ ∈ Fi−1 had a

value for Φu at least as 
urrent as round tu, but the node that vp′ passed p′ to did not (sin
e

P ′
is restri
ted to honest nodes, ne
essarily vp′ is honest). Finding vp′ for ea
h p′ ∈ S and

using an averaging argument, there is (at least) one honest node v ∈ Fi−1 su
h that n pa
kets

in S left from v to a node not in Fi−1. Sin
e the assignment of values Φw to the par
el q2 are

made in a round-robin fashion (see line 08 of Figure 4), v sent his value for Φu to some node

w /∈ Fi−1 during one of these n transfers, thus growing the family of nodes who have a stored

value for Φu (at least as 
urrent as tu) by one.

�

D.5 Proof of Lemma D.2

In this se
tion, we aim to prove the following lemma, whi
h is a restatement of Lemma D.2, and

whi
h states that the sender will be able to eliminate a 
orrupt node if he has the 
omplete status

reports from every node that parti
ipated in some failed transmission T.
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Lemma D.19. Suppose transmission T failed and at some later time (after transmission T but

before any additional nodes have been eliminated) the sender has re
eived all of the status report

par
els from all nodes on ρT. Then the sender 
an eliminate a 
orrupt node.

Re
all that there are three ways a transmission 
an fail:

F2. The sender re
eives EoT par
el indi
ating �F2�

F3. The sender inserted D pa
kets

F4. The sender re
eives EoT par
el indi
ating �(F4, p′)�

We will see that 
ase F2 roughly 
orresponds to pa
ket dupli
ation, sin
e the nodes are reporting

a 
umulative potential drop greater than is possible based on the pa
ket insertions by the sender.

Case F3 roughly 
orresponds to pa
ket deletion, sin
e the D pa
kets the sender inserted do not

rea
h the re
eiver (otherwise the re
eiver 
ould have de
oded by Fa
t 1), and 
ase F4 
orresponds

to a mixed adversarial strategy of pa
ket deletions and dupli
ations. We treat ea
h 
ase separately

in Lemmas D.20, D.21 and D.22 below, thus proving Lemma D.19:

Proof of Lemma D.19. The theorem is proven for ea
h 
ase below in Lemmas D.20, D.21 and D.22.

�

We de
lare on
e-and-for-all that at any time, G will refer to nodes still a part of the network,

i.e. nodes that have not been eliminated by the sender.

Handling Failures as in F2: Pa
ket Dupli
ation

The goal of this se
tion will be to prove the following theorem.

Lemma D.20. Suppose transmission T failed and falls under 
ase F2, and at some later time (after

transmission T but before any additional nodes have been eliminated) the sender has re
eived all of

the status report par
els from all nodes on ρT. Then the sender 
an eliminate a 
orrupt node.

Proof. The idea of the proof is as follows. Case F2 of transmission failure roughly 
orresponds to

pa
ket dupli
ation: there is a node w ∈ G who is jamming the network either by outputting dupli
ate

pa
kets or disobeying transfer rules (e.g. by transferring a pa
ket from a node with small height to

a node with large height). This means that w will be responsible for illegal in
reases in potential.

Using the status reports for 
ase F2, whi
h in
lude nodes' signatures on 
hanges of potential due to

pa
ket transfers, we will 
at
h w by looking for a node who 
aused a greater in
rease in potential

than is possible if it had been a
ting honestly.

More spe
i�
ally, Case F2 means that R had stored potential values su
h that:

∑
u∈G Φu > CD.

Sin
e we are not in Case F3, the sender did not insert D pa
kets. Sin
e ea
h pa
ket insertion 
an


ause an in
rease in potential of at most C, the total (valid) in
rease of potential for the transmission

is at most CD, whi
h is less than the 
laimed potential drop

∑
u∈G Φu of the internal nodes. In

parti
ular, there is an extra potential drop in the network that 
annot be a

ounted for by pa
ket

insertions; i.e. there is a node 
reating dupli
ated pa
kets or lying about height information when

transferring pa
kets. The formal details of how the signed status reports {Φu,v} 
an be used by the

sender to identify a 
orrupt node 
an be found in the proof of Theorem 10.6 of [7℄. �

Handling Failures as in F3: Pa
ket Deletion

The goal of this se
tion will be to prove the following theorem.
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Lemma D.21. Suppose transmission T failed and falls under 
ase F3, and at some later time (after

transmission T but before any additional nodes have been eliminated) the sender has re
eived all of

the status report par
els from all nodes on ρT. Then the sender 
an eliminate a 
orrupt node.

Proof. Case F3 of transmission failure roughly 
orresponds to pa
ket deletion: the sender has in-

serted D pa
kets, and yet the re
eiver has gotten less than D − nC of them (otherwise, R 
ould

de
ode by Fa
t 1, and the transmission would not have failed). Sin
e the total 
apa
ity of the net-

work is only nC, there is (at least) one node w ∈ G who is deleting pa
kets (or storing more than C

pa
kets, whi
h an honest node would not do). Using the status reports for 
ase F3, whi
h in
lude

nodes' signatures on Pu,v (the net number of pa
kets that have passed a
ross ea
h adja
ent edge),

we will 
at
h w by looking for a node who input more pa
kets than it output, and this di�eren
e

is greater than the bu�er 
apa
ity of the node. The formal details of how the signed status reports

{Pu,v} 
an be used by the sender to identify a 
orrupt node 
an be found in the proof of Theorem

10.11 of [7℄. �

Handling Failures as in F4: Pa
ket Dupli
ation + Deletion

The goal of this se
tion will be to prove the following theorem.

Lemma D.22. Suppose transmission T failed and falls under 
ase F4, and at some later time (after

transmission T but before any additional nodes have been eliminated) the sender has re
eived all of

the status report par
els from all nodes on ρT. Then the sender 
an eliminate a 
orrupt node.

Proof. Case F4 of transmission failure roughly 
orresponds to pa
ket dupli
ation and pa
ket dele-

tion: 
learly pa
ket dupli
ation has o

urred sin
e R has re
eived a dupli
ated pa
ket p (whi
h

would not happen if all nodes were a
ting honestly), but the transmission did not fail due to Case

F2, and so likely the adversary is deleting pa
kets as he dupli
ates them so that signatures on po-

tential 
annot 
at
h him. We will use the status reports for 
ase F4, whi
h in
lude nodes' signatures

on [p]u,v (the net number of times p has 
rossed ea
h adja
ent edge), to �nd a 
orrupt node w by

looking for a node who output p more times than it input p. The formal details of how the signed

status reports [p]u,v} 
an be used by the sender to identify a 
orrupt node 
an be found in the proof

of Theorem 10.12 of [7℄. �
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Internal Node Create Next Request for E(u, v)
01 DO:

02 Set q1 to be a par
el from BBu not yet transferred a
ross E(u, v), 
hosen a

ording to priority:

03 1) EoT par
el; 2) SoT par
els; 3) Node to remove from BL; 4) Status report par
el of a node on BLu

04 If q1 6= EoT or SoT par
el and v /∈ (ENu ∪ BLu) ## Okay to send/re
eive p's with v

05 Set new p ## Look in sta
k to �nd highest p not already sent as a request to A

06 Set new Gp ## Reserve the highest non-
ommitted spot of sta
k

07 Else set p = ⊥
08 Set new q2 ## Chosen from u's (
urrent) values of Φw in round-robin fashion

09 Set α = (Pu,v, [p′]
u,v

, Φu,v) ## p′ is pa
ket transferred a
ross E(u, v) the previous round E(u, v) was honored

10 Return (u, v, (p, H), (q1, q2), (α, σ(α))) ## Also remember this request for next time E(u, v) is honored

Re
eiver Create Next Request for E(r, v)
11 DO:

12 If re
'd dupli
ate ## The pa
ket p′ just re
eived had already been re
eived by R

13 Form EoT: q1 = (�F4�, p′
)

14 Else If |Z| = (1 − λ)D ## R now has enough pa
kets to de
ode 
odeword

15 Form EoT: q1 = �S1�

16 Else If

∑
w∈G

Φw ≥ CD ## Too mu
h potential drop: pa
ket dupli
ation has o

urred

17 Form EoT: q1 = �F2�

18 Else set q1 as for Internal Nodes

19 Set p, q2 = ⊥, and set α as for Internal Nodes

20 Return (r, v, (⊥, −C
n

), (q1,⊥), (α, σ(α))) ## Also remember this request for next time E(u, v) is honored

Sender Create Next Request for E(s, v)
21 DO:

22 If S 
an eliminate a node w ## Status report par
el just re
'd allows S to identify 
orrupt node

23 Add w to ENs, 
lear BBs and DBs (in
luding BLs but not EN), re�ll Outgoing bu�er

24 Set ΩT+1 = (|EN |, 0, 0, 0)
25 Else If S re
eived EoT = �S1� ## R was able to de
ode 
odeword

26 Re�ll Outgoing Bu�er

27 Set ΩT+1 = (|EN |, |BT|, F, 0) ## F denotes no. failed trans's sin
e prev. node eliminated

28 Else If |Y | = D or S re
eived EoT = �F2� or (�F4�, p′
) ## Failed Transmission due to mal. a
tivity

29 Re�ll Outgoing Bu�er

30 ∀w /∈ (BLs ∪ ENs): Add w to ρT and then add w to BLs

31 If EoT = (�F4�, p′
), set ΩT+1 = (|EN |, |BT|, F, p′)

32 Else If |Y | = D, set ΩT+1 = (|EN |, |BT|, F, 1)
33 Else If EoT = �F2�, set ΩT+1 = (|EN |, |BT|, F, 2)
34 If transmission just ended ## I.e. line 22, 25, or 28 was true

35 Set SoT to be the following 2n par
els, and add to BBs:

36 1) ΩT+1; 2) ENs; 3) BLs; 4) Reason the prev. n − 1 trans's failed: (�F2�, �F3�, or (�F4�,p′
))

37 Set new p ## Look in sta
k to �nd highest p not already sent as a request to A

38 Set new q1: Choose par
el not yet transferred a
ross E(s, v) by priority:

39 1) SoT par
el; 2) a node w to remove from BL; 3) ⊥
40 Return (s, v, (p, C+

C
n
-1), (q1,⊥), (α, σ(α))) ## Also remember this request for next time E(u, v) is honored

Ready(v) ## Called from node u

41 If






u does not have (ΩT, T) in BBu OR

u has (ΩT, T) with ΩT = (|EN |, |BT|, F, ∗), but has not yet re
'd |EN | par
els as in line 200b,

F par
els as in line 200
, or |BT| par
els as in line 200d OR

u has re
'd the 
omplete SoT broad
ast, but every par
el hasn't yet passed a
ross E(u, v) OR

u has EoT ∈ BBu, but this has not passed a
ross E(u, v) yet OR

u knows some node w to remove from BL, but hasn't yet passed this fa
t a
ross E(u, v) OR

u or v ∈ BLu

42 Return False

43 Else: Return True

Figure 4: Rules For Finding Codeword Pa
ket and Broad
ast Par
el to Send
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