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Abstrat

We demonstrate the feasibility of throughput-e�ient routing in a highly unreliable net-

work. Modeling a network as a graph with verties representing nodes and edges representing

the links between them, we onsider two forms of unreliability: unpreditable edge-failures, and

deliberate deviation from protool spei�ations by orrupt nodes. The �rst form of unpre-

ditability represents networks with dynami topology, whose links may be onstantly going up

and down; while the seond form represents maliious insiders attempting to disrupt ommuni-

ation by deliberately disobeying routing rules, by e.g. introduing junk messages or deleting or

altering messages. We present a robust routing protool for end-to-end ommuniation that is

simultaneously resilient to both forms of unreliability, ahieving provably optimal throughput

performane. Our proof proeeds in three steps: 1) We use ompetitive-analysis to �nd a lower-

bound on the optimal throughput-rate of a routing protool in networks suseptible to only

edge-failures (i.e. networks with no maliious nodes); 2) We prove a mathing upper bound by

presenting a routing protool that ahieves this throughput rate (again in networks with no ma-

liious nodes); and 3) We modify the protool to provide additional protetion against maliious

nodes, and prove the modi�ed protool performs (asymptotially) as well as the original.

Keywords. Network Routing; Fault Loalization; Multi-Party Computation in Presene of

Dishonest Majority; Communiation Complexity; End-to-End Communiation; Competitive

Analysis; Asynhronous Protools

1 Introdution

With the immense range of appliations and the multitude of networks enountered in pra-

tie, there has been an enormous e�ort to study routing in various settings. For the purpose of

developing network models in whih routing protools an be developed and formally analyzed,

networks are typially modelled as a graph with verties representing nodes (proessors, routers,

et.) and edges representing the onnetions between them. Beyond this basi struture, additional

assumptions and restritions are then made in attempt to apture various features that real-world

networks may display. In deiding whih network model is best-suited to a partiular appliation,

developers must make a hoie with respet to eah of the following onsiderations: 1) Synhronous

or Asynhronous; 2) Stati or Dynami Topology; 3) Global Control or Distributed/Loal Control;

4) Connetivity/Liveness Assumptions; 5) Existene of Faulty/Maliious Nodes.

Notie that in eah option above there is an inherent trade-o� between generality/appliability

of the model verses optimal performane within the model. For instane, a protool that assumes a

�xed network topology will likely out-perform a protool designed for a dynami topology setting,

but the former protool may not work in networks subjet to edge-failures. Similarly, a protool that

protets against the existene of faulty or deliberately maliious nodes will likely be out-performed

in networks with no faulty behavior by a protool that assumes all nodes at honestly.
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From both a theoretial and a pratial standpoint, it is important to understand how eah

(ombination) of the above listed fators a�ets routing performane. In this paper, we explore

the feasibility of end-to-end routing in highly unreliable networks, i.e. networks that simultaneously

onsider all of the more general features: Asynhronous, Dynami Topology, Loal Control, no

Connetivity Assumptions, and the existene of deliberately Maliious Nodes. Admittedly, in this

�worst-ase� model it is unlikely that any protool will perform well, and one (or more) stronger

assumption(s) must be made to ahieve a reasonable level of performane. However, understanding

behavior in the worst ase, even with respet to the most basi task of end-to-end ommuniation,

is important to determine how muh (if any) the addition of eah assumption improves optimal

protool performane.

1.1 Previous Work

As mentioned above, development and analysis of routing protools relies heavily on the hoies

made for the network model. To date, all network models have guaranteed at least one (and

more ommonly multiple) �reliability� assumption(s) with respet to the above list of �ve network

harateristis. In this setion, we explore various ombinations of assumptions that have been

made in reent work, highlighting positive and negative results with respet to eah network model,

emphasizing learly whih assumptions are employed in eah ase. Sine our work fouses on

theoretial results, for spae onsiderations we do not disuss below the vast amount of researh

and analysis of routing issues for spei� network systems enountered in pratie, e.g. the Internet.

Even still, the amount of researh regarding network routing and analysis of routing protools is

extensive, and as suh we inlude only a sketh of the most related work, indiating how their

models di�er from ours and providing referenes that o�er more detailed desriptions.

End-to-End Communiation: One of the most relevant researh diretions to our paper is

the notion of End-to-End ommuniation in distributed networks, where two nodes (sender and

reeiver) wish to ommuniate through a network. While there is a multitude of problems that

involve end-to-end ommuniation (e.g. End-to-End Congestion Control, Path-Measurement, and

Admission Control), we disuss here work that onsider networks whose only task is to failitate

ommuniation between sender and reeiver. Some of these inlude a line of work developing the

Slide protool (the starting point of our protool): Afek and Gafni [2℄, Awerbuh et al. [12℄, Afek

et al. [1℄, and Kushilevitz et al. [18℄. The Slide protool (and its variants) have been studied in a

variety of network settings, inluding multi-ommodity �ow (Awerbuh and Leighton [11℄), networks

ontrolled by an online bursty adversary (Aiello et al. [4℄), and networks that allow orruption of

nodes (Amir et al. [7℄). However, prior to our work there was no version of the Slide protool

that onsidered routing in the �worst ase� network setting: only [7℄ onsiders networks in whih

nodes are orruptible, but their network model assumes synhronous ommuniation and demands

minimal onnetivity guarantees.

Fault Detetion and Loalization Protools: There have been a number of papers that

explore the possibility of orrupt nodes that deliberately disobey protool spei�ations in order

to disrupt ommuniation. In partiular, there is a reent line of work that onsiders a network

onsisting of a single path from the sender to the reeiver, ulminating in the reent work of Barak

et al. [13℄ (for further bakground on fault loalization see referenes therein). In this model, the

adversary an orrupt any node (exept the sender and reeiver) in a dynami and maliious manner.
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Sine orrupting any node on the path will sever the honest onnetion between sender and reeiver,

the goal of a protool in this model is not to guarantee that all messages sent are reeived. Instead,

the goal is to detet faults when they our and to loalize the fault to a single edge.

Goldberg et al. [17℄ show that a protool's ability to detet faults relies on the assumption that

One-Way Funtions (OWF) exist, and Barak et al. [13℄ show that the (onstant fator) overhead (in

terms of ommuniation ost) inurred for utilizing ryptographi tools (suh as MACs or Signature

Shemes) is mandatory for any fault-loalization protool. Awerbuh et al. [10℄ also explore routing

in the Byzantine setting, although they do not present a formal treatment of seurity, and indeed a

ounter-example that hallenges their protool's seurity is disussed in the appendix of [13℄.

Fault Detetion and Loalization protools fous on very restritive network models (typially

synhronous networks with �xed topology and some onnetivity assumptions), and throughput-

performane is usually not onsidered when analyzing fault detetion/loalization protools.

Competitive Analysis: Competitive Analysis was �rst introdued by Sleator and Tarjan [21℄

as a mehanism for measuring the worst-ase performane of a protool, in terms of how badly the

given protool may be out-performed by an o�-line protool that has aess to perfet information.

Reall that a given protool has ompetitive ratio 1/λ (or is λ-ompetitive) if an ideal o�-line protool

has advantage over the given protool by at most a fator of λ.

One plae ompetitive analysis has been used to evaluate performane is the setting of distributed

algorithms in asynhronous shared memory omputation, inluding the work of Ajtai et al. [6℄. This

line of work has a di�erent �avor than the problem onsidered in the present paper due to the

nature of the algorithm being analyzed (omputation algorithm verses network routing protool).

In partiular, network topology is not a onsideration in this line of work (and maliious deviation

of proessors is not onsidered).

Competitive analysis is a useful tool for evaluating protools in unreliable networks (e.g. asyn-

hronous networks and/or networks with no onnetivity guarantees), as it provides best-possible

standards (sine absolute performane guarantees may be impossible due to the lak of network

assumptions). For a thorough desription of ompetitive analysis, see [14℄.

Max-Flow and Multi-Commodity Flow: The Max-�ow and multi-ommodity �ow models

assume networks that are synhronous with onnetivity/liveness guarantees and have inorrupt-

ible nodes (max-�ow networks also typially have �xed topology and are global-ontrol). There

has been a tremendous amount of work in these areas, see e.g. Leighton et al. [19℄ for a disussion

of the two models and a list of results, as well as Awerbuh and Leighton [11℄ who show optimal

throughput-ompetitive ratio for the network model in question.

Admission Control and Route Seletion: The admission ontrol/route seletion model

di�ers from the multi-ommodity �ow model in that the goal of a protool is not to meet the de-

mand of all ordered pairs of nodes (s, t), but rather the protool must deide whih requests it

an/should honor, and then designate a path for honored requests. There are numerous models

that are onerned with questions of admission ontrol and route seletion: The Asynhronous

1

Transfer Model (see e.g. Awerbuh et al. [9℄), Queuing Theory (see e.g. Borodin and Kleinberg [15℄

and Andrews et al. [8℄), Adversarial Queuing Theory (see e.g. Broder et al. [16℄ and Aiello et al.

[5℄). For an extensive disussion about these researh areas, see [20℄ and referenes therein.

1

We emphasize that the de�nition of asynhroniity in ATM is di�erent than the one onsidered in this paper. In

partiular, �asynhroniity� in ATM literature is meant to emphasize the fat that the requests are not known ahead

of time, and thus protools fae the added hallenge of handling new requests adaptively.
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The admission ontrol/route seletion model assumes synhronous ommuniation and inor-

ruptible nodes and makes onnetivity/liveness guarantees. Among the other options (�xed or

dynami topology, global or loal ontrol), eah ombination has been onsidered by various au-

thors, see the above referene for further details and results within eah spei� model.

1.2 Our Results

In this paper, we onsider the feasibility of end-to-end routing in unreliable networks. We be-

gin by exploring optimal throughput performane in networks whose nodes are trustworthy, but

otherwise the network represents a �worst-ase� network model. In partiular, we use ompetitive

analysis to prove mathing upper and lower bounds on throughput performane for end-to-end om-

muniation in networks that are asynhronous, loal-ontrol, and have dynami topology with no

onnetivity guarantees.

Theorem 1 (Informal) The best ompetitive-ratio that any protool an ahieve in a distributed

asynhronous network with dynami topology (and no onnetivity assumptions) is 1/n (where n is

the number of nodes). In partiular, given any protool P, there exists an alternative protool P ′
,

suh that P ′
will out-perform P by a fator of at least n.

Theorem 2 (Informal) There exists a protool that ahieves a ompetitive ratio of 1/n in a dis-

tributed asynhronous network with dynami topology (and no onnetivity assumptions).

Next, we move to networks where the nodes are suseptible to orruption and may deviate from the

spei�ed protool in any desired manner to disrupt ommuniation as muh as possible. Somewhat

surprisingly, we show that this inreased level of unreliability does not a�et optimal throughput

performane; indeed, we demonstrate a protool that ahieves 1/n ompetitive ratio, whih mathes

the lower-bound of Theorem 1.

Theorem 3 (Informal) Assuming one-way funtions exist and Publi-Key Infrastruture, there

exists a protool with ompetitive ratio 1/n in a distributed asynhronous network with dynami

topology (and no onnetivity assumptions), even if an arbitrary subset of maliious nodes deliber-

ately disobey the protool spei�ations in order to disrupt ommuniation as muh as possible.

In Setion 2 we de�ne formally the network model(s) and our mehanism for analyzing throughput

performane, then in Setions 3-5 we go through the ideas for Theorems 1-3 (respetively). Rigorous

proofs of all theorems an be found in the Appendix.

2 The Model

In this setion, we desribe formally the model in whih we will be analyzing routing protools.

We begin by modeling the network as a graph G with n verties (or nodes). Two of these nodes are

designated as the sender S and reeiver R, and the sender has a stream of messages {m1,m2, . . . }
that it wishes to transmit through the network to the reeiver.

Asynhronous ommuniation networks vary from synhronous networks in that the transmission

time aross an edge in the network is not �xed (even along the same edge, from one message

transmission to the next). Sine there is no ommon global lok or mehanism to synhronize

events, an asynhronous network is often said to be �message driven,� in that the ations of the

nodes in the network ours exatly (and only) when they have just sent/reeived a message.
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Asynhronous networks are ommonly modelled by introduing a sheduling adversary that on-

trols the edges of the network as follows. Informally, we fous on a single edge E(u, v), and then

a �round� onsists of allowing the edge to deliver a message in both diretions.

2

To model unpre-

ditable delivery times aross eah edge, we have eah node u deide on the next message to send

to v immediately after reeiving a message from v, and this message is then sent to the adversary

who stores the message until the next time the adversary ativates edge E(u, v).

Formally, we de�ne a round to onsist of a single edge E(u, v) in the network hosen by the

adversary in whih two sequential events our: 1a) Among the pakets from u to v that the

adversary is storing, it will hoose one (in any manner it likes) and deliver it to v; 1b) Similarly, the

adversary hooses one of the pakets it is storing from v to u and delivers it to u; 2a) After seeing

the delivered paket, u sends requests of the form (u, v,m) = (sending node, target node, message)

to the adversary, whih will be stored by the adversary and may be delivered the next time E(u, v)

is made a round; 2b) Similarly for v. If e.g. u does not have a paket he wishes to send v in step

(2a), then u an hoose to send nothing here. Similarly, the adversary does not send anything to v

in step (1a) if he is not storing a message from u to v during round E(u, v).

Modelling asynhroniity in this manner aptures the intuition that a node has no idea how

long a message �sent� to an adjaent node will take to arrive, and this de�nition also aptures the

�worst-ase� asynhroniity, in that a (potentially deliberately maliious) adversary ontrols the

sheduling of rounds/edges.

For ease of disussion, we assume that all edges in the network have a �xed bandwidth/apaity,

and that this quantity is the same for all edges in the network. We emphasize that this assumption

does not restrit the validity of our laims in a more general model allowing varying bandwidths,

but is only made for ease of exposition.

Aside from obeying the above spei�ed rules, we plae no restrition on the sheduling adversary.

In other words, it may honor whatever edges it likes (this models the fat our network makes no

onnetivity assumptions), wait inde�nitely long between honoring the same edge twie (modeling

both the dynami and asynhronous features of our network), and do anything else it likes (so long as

it respets steps 1) and 2) above eah time it honors an edge) in attempt to hinder the performane

of a routing protool.

In Setion 5, our model will also allow a polynomially bounded node-ontrolling adversary to

orrupt the nodes in the network. The node-ontrolling adversary is maliious, meaning that he

an take omplete ontrol over the nodes he orrupts, and an therefore fore them to deviate from

any protool in whatever manner he likes. We further assume that the adversary is dynami, whih

means that he an orrupt nodes at any stage of the protool, deiding whih nodes to orrupt

based on what he has observed thus far. We do not impose any �aess-struture� limitations on

the adversary. That is, the adversary may orrupt any nodes it likes (although if the sender and/or

reeiver is orrupt, seure routing between them is impossible). Beause integrity of the messages

reeived by the reeiver is now a onern (as orrupt nodes an delete and/or modify messages), we

will say a routing protool is seure if the reeiver eventually gets all of the messages sent by the

sender, in order and without dupliation or modi�ation.

2

The demand that the adversary deliver messages in both diretions when honoring an edge E(u, v) does not

restrit the power of the adversary. To generalize to the ase where the adversary an deliver messages in only one

diretion, one ould simply de�ne an edge to be �down� until at least one message has been able to travel in eah

diretion. Sine ompetitive analysis an be used to show that aknowledgements of some kind are requisite to ahieve

�nite ompetitive-ratio, it is natural to de�ne a round in suh a way so as to allow ommuniation in both diretions.
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The separation of the adversaries into two distint entities is solely for oneptual reasons.

Note that the sheduling adversary annot be ontrolled or eliminated: edges themselves are not

inherently �good� or �bad,� so identifying an unresponsive edge does not allow us to forever refuse

the protool to utilize this edge. By ontrast, our protool will limit the amount of in�uene the

node-ontrolling adversary has in the network. Spei�ally, we will show that if a node deviates

from the protool in a su�iently destrutive manner (in a well-de�ned sense), then our protool

will be able to identify it as orrupted in a timely fashion. One a orrupt node has been identi�ed,

it will be eliminated from the network by exluding it from all future ommuniation.

Note that our network model is on-line and distributed, in that we do not assume that the nodes

have aess to any information (inluding future knowledge of the adversary's shedule) aside from

the pakets they reeive during a round they are a part of. Also, we insist that nodes have bounded

memory whih is at least Ω(n2).3

The goal of this paper is to analyze the performane of routing protools in a network model that

is: on-line, distributed, asynhronous, dynami with no onnetivity assumptions, and suseptible

to misbehaving nodes. Our mehanism for evaluating protools will be to measure their throughput,

a notion we an now de�ne formally in the ontext of rounds and the sheduling adversary. In

partiular, let fA
P : N → N be a funtion that measures, for a given protool P and adversary A, the

number of pakets that the reeiver has reeived as a funtion of the number of rounds that have

passed. Note that in this paper, we will onsider only deterministi protools, so fA
P is well-de�ned.

The funtion fA
P formalizes our notion of throughput.

As mentioned in the Introdution, we utilize ompetitive analysis to gauge the performane (with

respet to throughput) of a given protool against all possible ompeting protools. In partiular, for

any �xed adversary A, we may onsider the ideal �o�-line� protool P ′
whih has perfet information:

knowledge of all future deisions of the sheduling adversary, as well as knowledge of whih nodes

are/will beome orrupt. That is, for any �xed round x, there exists an ideal o�-line protool

P ′(A, x) suh that fA
P ′(x) is maximal. We demand that the ideal protool P ′

never utilizes orrupt

nodes, one they have been orrupted (this restrition is not only reasonable, it is neessary, as it

an easily be shown that allowing P ′
to utilize orrupt nodes will result in every on-line protool

having ompetitive ratio

1
∞).

De�nition 2.1. We say that a protool P has ompetitive ratio 1/λ (respetively is λ-ompetitive)

if there exists a onstant k and funtion g(n,C) (C is the memory bound per node) suh that for

all possible adversaries A and for all x ∈ N:
4

fA
P ′(x) ≤ (k · λ) · fA

P (x) + g(n,C) (1)

We assume that there is a Publi-Key Infrastruture (PKI) that allows digital signatures. In

partiular, before the protool begins we hoose a seurity parameter l su�iently large and run a

key generation algorithm for a digital signature sheme, produing n = |G| (seret key, veri�ation
key) pairs (sku, vku). As output to the key generation, eah proessor u ∈ G is given its own private

signing key sku and a list of all n signature veri�ation keys vkv for all nodes v ∈ G. In partiular,

this allows the sender and reeiver to sign messages to eah other that annot be forged (exept

with negligible probability in the seurity parameter) by any other node in the system.

3

For simpliity, we assume that all nodes have the same memory bound, although our argument an be readily

extended to handle the more general ase.

4

Typially, λ is a funtion of the number of nodes in the network n, and De�nition 2.1 impliity assumes the

minimal value of λ for whih (1) holds.
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3 Optimal Competitive Ratio in Unrestrited Networks

Due to spae onstraints and the omplexity of the argument, we will only be able to sketh the

proof of Theorem 1 in this setion. At a high level, the idea is to desribe an adversary that shedules

edges based on the given protool's ations suh that the pakets of the protool get �spread out�

among the nodes of the network. Meanwhile, with knowledge of the adversary's shedule, an o�ine

protool an hoose to only move pakets along edges leading to the reeiver. A short desription

is below; the full proof an be found in Appendix A.

The network model assumes that nodes have bounded memory, so let C denote the maximal

number of pakets that any node an store at any time. We will show that for any deterministi

protool P, there exists an adversary A, a protool P ′
, and a sequene of stritly positive integers

{m1,m2, . . . } suh that for any α > 0, by round x =
∑α

i=1 miC:

fA
P ′(x) = αC and fA

P (x) ≤
αC

(n − 2)
≈

αC

n
, (2)

from whih we onlude that the ompetitive ratio of P is at best 1/n.

We begin by desribing the adversary, i.e. a shedule (or order) of edges that will be honored. The

shedule will proeed in yles, with the ith yle lasting miC rounds. Let the height of a node refer

to the number of pakets urrently stored by that node. For the �rst C rounds, the adversary �nds

the internal node A1 with the largest height (ties are broken arbitrarily), and honors edge E(S,A1)

for C rounds (here S denotes the Sender). The protool then proeeds indutively, starting with

j = 2 and Â1 = A1:

1. The adversary �nds node Aj , where Aj is the node in the network losest in height (but

smaller) to Âj−1. If there is no suh node, set Aj to the Reeiver R.

2. The adversary honors edge E(Âj−1, Aj) for C rounds

3. The adversary sets Âj to be whihever node (Âj−1 or Aj) has fewer pakets after the C rounds

of edge E(Âj−1, Aj) has just passed.

The above three steps are ontinued until the end of the C rounds for whih Aj = R.

Notie a few features of the adversarial strategy: 1) The Sender's ability to insert pakets is

hindered by the fat the adversary is hoosing to honor edge E(S,N) for the node N with the

smallest apaity to store more pakets; 2) By seleting in Step 2 the node storing fewer pakets,

the adversary is attempting to minimize the number of pakets that make progress towards the

Reeiver; indeed 3) Among all nodes in the network, the node N that is urrently storing the fewest

pakets will be the one onneted to the Reeiver in the �nal C rounds of the yle. Also, it is lear

that an o�-line protool P ′
with knowledge of all future rounds will be able to deliver C pakets

every yle. Sine a yle onsists of C ∗ m rounds for some positive integer m, we an generate a

sequene of positive integers {mi} oming from the ith yle, yielding the �rst equality of (2), so it

remains to prove the seond bound in (2).

Fix any on-line protool P we wish to analyze. If we ould demonstrate that P delivers at

most C/(n − 2) pakets per yle, then (2) would be immediate. Unfortunately, one an imagine

e.g. the state of the network at the beginning of some yle being suh that all internal nodes are

storing the maximum C allowed pakets. In this ase, P will be able to deliver C pakets this yle.

Therefore, we instead need to argue that if P ever reahes a state where it is able to deliver more

6



than C/(n − 2) pakets in some yle (e.g. all nodes are full), then it must be that P has delivered

fewer than an average of C/(n − 2) pakets per yle in the past.

With this ounter-example in mind, we de�ne a potential funtion Ψα
, whih intuitively measures

the ability of P to deliver pakets in the αth
yle. We will show that whenever P delivers more than

C/(n − 2) pakets, the di�erene Ψα − Ψα+1
will be positive and �su�iently large.� Conversely,

any time Ψα+1 > Ψα
, we will show that neessarily P delivered �signi�antly fewer� than C/(n− 2)

pakets in the αth
yle.

Formally, at the start of any yle α, label the internal nodes as {N1, . . . , Nn−2} in desending

order in terms of how full their bu�ers are at the start of α. Let Hα
i denote the number of pakets

that node Nα
i is storing at the outset of α, and then de�ne:

Ψα =

n−2∑

i=1

(
1

2

)n-i-2

· max

(
0,Hα

i − (n − i − 2)
C

n − 2

)
(3)

Let Zα
denote the number of pakets the Reeiver reeives in the αth

yle. Our main tehnial

result for this setion is then:

Lemma 3.1. For all α ∈ N:

Zα + (Ψα+1 − Ψα) ≤
7C

n − 2
(4)

Proof. See the proof of Lemma A.12 in the Appendix.

With Lemma 3.1 in hand, we obtain the seond inequality of (2) as an immediate orollary:

Lemma 3.2. For any α ∈ N and x = (n − 2)αC:

fA
P (x) ≤

7αC

n − 2
(5)

Proof. Consider the string of inequalities:

fA
P (x) =

∑

β≤α

Zβ ≤
∑

β≤α

(
7C

(n − 2)
− (Ψβ+1 − Ψβ)

)
=

7αC

n − 2
+ Ψ1 − Ψα+1 ≤

7αC

n − 2
, (6)

where the last inequality follows from the fat that Ψα+1 ≥ 0 and Ψ1 = 0 (the latter is true sine

at the outset of the protool, all nodes are not storing any pakets).

4 Optimal On-line Loal Control Protool

In this setion we present an on-line protool that enjoys ompetitive ratio 1/n. The protool

is a basi implementation of the �Slide� protool (or gravitational-�ow), whih was �rst introdued

by Afek, Gafni, and Rosén [3℄, and further developed in a series of work [1℄ and [18℄. We hose to

analyze the performane of this protool in our �unrestrited� network model beause its inherent

message-driven protool is well-suited for the asynhronous network, and it has also been shown

to out-perform more naive andidates for asynhronous routing protools (e.g. broadast) when

stronger network assumptions are made [7℄.

Beause the Slide protool has nodes make routing deisions based on their urrent height (how

many pakets they are urrently storing), it will be easier to work in a simpli�ed model for asyn-

hroniity over the one presented in Setion 2. In partiular, for the remainder of this setion, we

assume a semi-asynhronous model, de�ned as follows:
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1′ The adversary does not maintain a bu�er of requests of pakets from nodes and must instead

satisfy them immediately as spei�ed in 3′ below

2′ The adversary proeeds in the same manner as before, by seleting an edge E(u, v) to honor

aording to the same guidelines as in Setion 2

3′ During a round E(u, v), the adversary �rst �awakens� u and v to alert them they are a part of

the urrent round. Nodes u and v may now submit their request, onsisting only of a paket

plus ontrol information, to the adversary who must diretly deliver the paket p to v during

this round (similarly the paket p′ that v submitted is delivered to u).

Comparing this to the fully asynhronous model de�ned in Setion 2, the di�erene is that here the

pakets that u and v deliver to eah other, with their height information inluded, are urrent; in

the model of Setion 2, the pakets and height information delivered in some round E(u, v) were

atually set the previous time E(u, v) was honored. This slightly ompliates things for routing

protools in the fully asynhronous model, as the nodes are fored to make routing deisions based

on outdated information.

It turns out that proving our protool enjoys a ertain ompetitive-ratio in the semi-asynhronous

setting is the hard part, and it is not di�ult to extend the proof to work in the fully asynhronous

setting. Indeed, all of the major ideas ome from onsidering only the semi-asynhronous setting.

In the next subsetion we desribe our protool in the semi-asynhronous setting, and then sketh a

proof that it enjoys ompetitive-ratio 1/n. The formal details of the proof are presented in Appendix

B, and a desription of the protool extended to the fully asynhronous setting, together with formal

proofs that it has the same ompetitive ratio, are provided in Appendix C.

4.1 Desription of the Protool

There are numerous instantiations of the Slide protool that vary slightly between one another,

but the basi priniple is always the same. Due to spae onstraints, we will not provide a de-

tailed desription of the protool, but refer the reader to [3℄ for the original protool, and [1℄, [18℄,

and [7℄ for various modi�ations. Below, we present a basi implementation of the Slide protool,

and then go on to prove that the basi Slide protool ahieves ompetitive ratio 1/n in the re-

strited semi-asynhronous model of 1′ − 3′ desribed above. Somewhat surprisingly, even though

the Slide protool has been in existene for over a deade, no throughput ompetitive analysis for

the asynhronous (or even semi-asynhronous) model has ever been performed.

The network model assumes that nodes have bounded memory, so let C denote the maximal

number of pakets that any node an store at any time. Also, we will assume C/n ∈ N and in

partiular that C/n ≥ 2 (the former assumption is not neessary but will make the exposition

easier; the latter is neessary for the Slide protool to work). Within the ontext of the semi-

asynhronous network model (1′ − 3′ above), we desribe the request that a node u will make to

the adversary when it is �awakened,� and also how this node u will respond to the paket it reeives

from v:

1. If u is the Sender, then u �nds the next paket pi ∈ {p1, p2, . . . } that has not yet been deleted (see

1a below), and forms the paket to send to the adversary: p := (pi, C + C
n
− 1). Meanwhile, when u

reeives (in the same round) the paket (pj , h):

(a) If h < C, then u deletes paket pi from his input stream {p1, p2, . . . } (and ignores the reeived

paket pj)

(b) If h ≥ C, then u keeps pi (and ignores the reeived paket pj)
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2. If u is the Reeiver, then u forms the paket to send p := (⊥, −C
n

). Meanwhile, when u reeives a

paket of form (pj , h), if pj 6= ⊥, u stores/outputs pj as a paket suessfully reeived.

3. If u is an internal node (not Sender or Reeiver) and u urrently has height H , then u �nds the last

5

paket pi that it has reeived, and sets the paket to send to the adversary: p := (pi, H) (if H = 0,
then set pi = ⊥). Meanwhile, when u reeives (in the same round) a paket of form (pj , h):

(a) If H ≥ h + C/n, then u will delete pi (and ignore the paket pj)

(b) If H ≤ h − C/n, then u will keep pi, and also store pj (as the most reent paket reeived)

() If |H − h| < C/n, then u will keep pi and ignore paket pj

Notie that rules 1-3 essentially state that internal nodes will always aept pakets from the

Sender (if they have room), always send pakets to the Reeiver (if they have any to send), and will

transfer a paket to a neighboring internal node if and only if they are urrently storing at least

C/n more pakets than that neighbor.

4.2 Competitive Analysis of Slide in the Semi-Asynhronous Model

Due to spae onstraints, we provide here only a very brief sketh of the proof that the above

desribed Slide protool enjoys ompetitive ratio 1/n. The full proof an be found in Appendix B.

Reall that we wish to show that there exists a onstant k and funtion g(n,C) suh that for

any round x and against any adversary A (see (1)):

fA
P ′(x) ≤ (kn) · fA

P (x) + g(n,C) (7)

Above (and through the remainder of this setion), P will denote the Slide protool, and for �xed

hoie of adversary A and round x, P ′(A, x) will denote the ideal o�-line protool (sine we will be

�xing x and A, we will usually write simply P ′
). We will show that (7) will be true for all rounds x

and all adversaries A for k = 4 and g(n,C) = 4n2C. We proeed by �xing an arbitrary adversary

A and round x ∈ N, and showing that for these (arbitrary) hoies, (7) will be satis�ed. Let Y P ′

(resp. ZP ′

) denote the pakets that have been inserted (resp. reeived) by the Sender (resp. the

Reeiver) for protool P ′
as of round x (de�ne Y P

and ZP
analogously). Notie that fA

P ′(x), the

left-hand-side of (7), is equal to |ZP ′

| (we will oasionally write ZP ′

when we really mean |ZP ′

|;
the meaning will be lear from ontext). We split ZP ′

into two disjoint subsets ZP ′

= ZP ′

1 ∪ ZP ′

2 ,

whih we now desribe.

We an view the adversary A as simply a shedule (or order) of edges that the adversary

will honor. We will imagine a virtual world, in whih the two protools (Slide and the ideal o�-line

protool) are run simultaneously in the same network. De�ne ZP ′

1 to be the subset of ZP ′

onsisting

of pakets p′ for whih there exists at least one round E(u, v) suh that both p′ and some paket

p ∈ Y P
were both transferred this round.

6

Set ZP ′

2 = ZP ′

\ ZP ′

1 .

Lemma 4.1. |ZP ′

1 | ≤ n|ZP | + n2C

Proof Sketh. Sine every paket in ZP ′

1 travelled at the same time as a paket transfer in P, we
an bound |ZP ′

1 | by the number of paket transfers in P. Sine any �xed paket drops in height

at least C/n eah time it is transferred, the total number of paket transfers is at most n|Y P |.
Finally, sine the maximal number of pakets that an be stored in all internal bu�ers is nC, we

have |Y P | ≤ |ZP | + nC. �

5

The Slide protool typially utilizes FILO storage bu�ers, and then uses error-orreting odes to ompensate

the pakets that get �stuk� in a node's storage.

6

Note that we make no ondition that the two pakets traveled in the same diretion.
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Lemma 4.2. |ZP ′

2 | ≤ 2n|Y P | ≤ 2n|ZP | + 2n2C

Proof Sketh. Consider a �xed paket p′ ∈ ZP ′

2 . When this paket was �rst inserted by P ′
, say

into some node u's bu�er, sine P did not insert a paket in this round (by de�nition of ZP ′

2 ), we

have that u's bu�er must have been full (rule 1(a)). Meanwhile, when the reeiver reeived p′ from

some node v, sine P did not transfer a paket this round, it must have been that v had an empty

bu�er during this round. Thus, p′ travelled from a node with a ompletely full bu�er to one with

a ompletely empty bu�er. In Appendix B we show how to use this fat to bound |ZP ′

2 | by the

number of paket transfers in P, whih an then be bounded by 2n|Y P | as in Lemma 4.1. �

5 Protool Seure Against Maliious Adversary

We now move to the network setting that allows both unreliable edges ontrolled by the shedul-

ing adversary and unreliable nodes orrupted by the node-ontrolling adversary (see Setion 2 for a

formal disussion of the network model and these two adversaries). Below is a high-level desription

of the protool and a statement of the main result. Pseudo-ode of the protool, as well as rigorous

proofs of seurity and throughput performane, an be found in Appendix D.

5.1 High Level Desription

Our strategy in developing a protool that routes e�etively in this highly unreliable network

setting will be to start with the Slide+ protool, whih has optimal ompetitive ratio in terms

of throughput, and add elements from ryptography to provide extra seurity against the node-

ontrolling adversary. Spei�ally, we will modify the Slide+ protool by using digital signatures in

the following two ways:

1. The sender signs every paket, so that honest nodes do not waste resoures on modi�ed or

junk pakets, and so that pakets the reeiver gets are unmolested

2. Communiation between nodes will be signed by eah node. This information will then be

used later by the sender (if there has been maliious ativity) to hold nodes aountable for

their ations, and ultimately eliminate orrupt nodes

The routing rules for eah internal node are the same as in the Slide+ protool, exept that whenever

a node u sends a paket to a neighbor v, there will be four parts to this ommuniation:

(a) The paket itself, i.e. one of the pakets from the sender intended for the reeiver

(b) The urrent height of u, i.e. how many pakets u is urrently storing

() A signature on the ommuniation that u has had so far with v, to be desribed shortly

(d) Signatures from other nodes that the sender has requested, to be desribed shortly

The �rst two parts of eah ommuniation are idential to the Slide+ protool, so it remains to

disuss the seond two items, whih are used for the identi�ation of orrupt nodes. Note that the

seond two items eah onsist of a signature on some quantity; for this reason we will require that

the bandwidth of eah edge is large enough to allow for simultaneous transmission of two signatures

(plus the paket itself).

7

The signature that u inludes on his ommuniations with v for Item ()

above pertains to the following four items:

7

This assumption on bandwidth is not unreasonable: for a signature sheme with seurity parameter k, eah
signature requires only O(k) bits. Also, the requirement that bandwidth is large enough to allow two signatures is

made for onveniene of exposition; our protool an be modi�ed to handle the ase of smaller bandwidth, although

this is not pursued here.
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Sig. 1. The total number of pakets u has sent to v so far

Sig. 2. The total number of times the previous paket p that was exhanged between them

has rossed the edge E(u, v) (in general, the same paket may ross the same edge multiple

times)

Sig. 3. The umulative di�erene in u and v's heights, measured from eah time u and v

exhanged a paket

Sig. 4. An index representing how many times E(u, v) has been honored, to serve as a

time-stamp on the above three items

It remains to explain Item (d) from above, for whih it will be useful to �rst desribe from a high-

level how our protool handles maliious ativity by orrupt nodes. We �rst note that if either the

sender or reeiver is orrupted by the node-ontrolling adversary, then seure routing is impossible

(indeed it is not lear what is even meant by �seure routing� in this ase). We will therefore assume

that the sender and reeiver are inorruptible, and they will be responsible for regulation of the

network (e.g. identifying and eliminating orrupt nodes). Also, beause our de�nition of seurity

(see Setion 2) requires that the reeiver gets all of the pakets sent by the sender, it is no longer

enough to simply measure throughput in terms of number of pakets reeived (as was done for

the Slide and Slide+ protools above). Instead, we will use error-orretion and �rst expand the

messages into odewords so that the reeiver an reonstrut eah message if he has a onstant

fration of the odeword pakets. See e.g. [7℄ for a spei� desription of how this an be done.

We note that beause the de�nition of throughput only ares about asymptoti performane (i.e.

onstants are absorbed in the k that appears in De�nition 1), the use of error-orretion will not

a�et the throughput of our protool.

From a high-level, the protool attempts to transfer one message (odeword), onsisting of O(nC)

bits, at a time. The sender will ontinue inserting pakets orresponding to the same odeword until

one of the following ours:

S1 The sender gets a message from the reeiver indiating he ould deode the urrent odeword

F2 The sender gets a message from the reeiver indiating inonsistenies in height di�erenes

F3 The sender has inserted all pakets orresponding to the urrent odeword

F4 The sender gets a message from the reeiver indiating the reeiver got the same paket twie

F5 The sender is able to identify a orrupt node

In the ase of S1, the message/odeword was delivered suessfully, and the sender will begin inserting

pakets orresponding to the next message/odeword. In the ase of F5, the sender will eliminate the

identi�ed node (i.e. alert all nodes in the network to never trust or utilize the orrupt node again),

and begin anew transmitting pakets orresponding to the urrent odeword. The other three ases

all orrespond to failed attempts to transfer the urrent message/odeword due to orrupt nodes

disobeying protool rules, and in eah ase the sender will use the signed information from Item ()

above to identify a orrupt node.

In ases F2-F4, the sender will begin anew transmitting pakets orresponding to the urrent

odeword. Before nodes are allowed to partiipate in transferring the odeword pakets, they must

�rst learn that the last transmission failed, the reason for failure (F2-F4), and the sender must

reeive all of the signatures the node was storing from its neighbors (i.e. all signed information from

Item () above). Note that the network itself is the only medium of ommuniation available for

relaying the signatures a node is storing to the sender, and hene part of the bandwidth of eah

edge (and part of the storage apaity of eah node) is devoted to returning these piees of signed

information to the sender (this is Item (d) from the above list). The spei� rules regarding storing
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and transferring other nodes' signatures bak to the sender an be found in the pseudo-ode in

Appendix D.

Until the sender has reeived all of a node's information orresponding to a failed transmission,

that node will remain on the blaklist. That is, no honest node u will transfer any odeword

pakets to another node v until u obtains veri�ation from the sender that the sender has reeived

all signatures from v. In Appendix D, we prove rigorously our main theorem:

Theorem 3. If at any time P ′
has reeived Θ(xn) messages, then P has reeived Ω((x − n2))

messages. Thus, if the number of messages x ∈ Ω(n2), then our protool has ompetitive ratio 1/n.
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Appendix

A Formal Proof of Throughput Bound

In this setion, we go through the rigorous details of the proof of Theorem 1, whih was skethed

in Setion 3. We will use the same notation introdued there for the remainder of this setion. In

partiular, reall that there is some �xed protool P that we wish to analyze, and we are onsidering

a sheduling adversary A that proeeds in yles.

We begin with a redution of the given protool P to a virtual protool P ′
, whih will be operating

with respet to a di�erent sheduling adversary A′
than P. The shedule of edges honored by A′

will be (in general) di�erent than those honored by A, but A′
will also proeed in yles. For any

yle α in P ′
's world, de�ne Ψ′α

and Z ′α
analogous to Ψα

and Zα
that were de�ned for P in Setion

3. We emphasize that the two worlds of P and P ′
are di�erent, and we are not attempting to apply

ompetitive analysis to these two protools. Rather, the property that P ′
will satisfy is:

∀α ∈ N : Ψα = Ψ′α
and Zα = Z ′α

(8)

Then given that (8) holds for all yles α, if we an show for all α (subjet to A′
's shedule):

Z ′α + (Ψ′α+1 − Ψ′α) ≤
7C

n − 2
, (9)

then the equivalent statement will be true for P, whih is Lemma 3.1 in Setion 3, and thus the

proof will be omplete.

We now explain the alternate sheduling adversary A′
, whih will be de�ned in terms of any

arbitrary protool attempting to route in a network ontrolled by A′
. As mentioned above, the

shedule of A′
will proeed in yles, eah of whih will last (n − 1)C rounds. At the beginning of
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any yle α, A′
labels the internal nodes by {Nα

1 , Nα
2 , . . . , Nα

n−2}, so that for all 1 ≤ i ≤ n − 3,

node Nα
i is storing more pakets than Nα

i+1 at the outset of yle α (note that the labels/indies of

the internal nodes will hange every yle). For the �rst C rounds of the yle, the adversary will

honor edge E(S,N1) (here S denotes the Sender). We desribe the remaining rounds in this yle

indutively (starting below for i = 1, and Ñα
1 = Nα

1 ):

1. The adversary honors edge E(Ñα
i , Nα

i+1) for C rounds

2. After the �rst (i + 1)C rounds of yle α have passed (i.e. edge E(Ñα
i , Nα

i+1) has just been

honored C times), let Ñα
i+1 ∈ {Ñα

i , Nα
i+1} denote the node storing fewer pakets than the

other.

Steps 1-2 are repeated through i = n− 3, so that E(Ñα
n−3, N

α
n−2) has just ompleted, and Ñα

n−2 has

been de�ned. Then for the last C rounds of yle α, the adversary honors edge E(Ñα
n−2, R).

Lemma A.1. Given protool P routing in a network ontrolled by A (whose shedule was desribed

in Setion 3), there exists a protool P ′
ompeting against A′

, suh that with respet to eah protool's

own yle, (8) is valid.

Proof. Sine we are onsidering only deterministi protools, we an de�ne what P ′
will do in any

round based on what P is doing. We will atually demonstrate something slightly stronger than

(8), that is:

Indution Hypothesis. Up to permutation of the internal nodes, the heights of eah

of the internal nodes in both worlds is the same at the start/end of any yle, as is the

number of pakets delivered in any yle.

We proeed by indution on the yle. In partiular, �x some yle α, and assume that the indution

hypothesis is true for all yles β < α. In the �rst C rounds of α in P's world, A opens edge E(S,A1),

where A1 is the internal node urrently storing the most pakets. Similarly, in the �rst C rounds,

A′
opens edge E(S,A′

1), where A′
1 is the internal node urrently storing the most pakets in P ′

's

world. By the indution hypothesis, although the labels of node A1 verses A′
1 may be di�erent, the

node that label represents will have the same height in the two worlds, and we de�ne P ′
to do the

same thing that P does in these �rst C rounds.

Let A2 denote the node for whih the adversary A will honor edge E(A1, A2) for the next C

rounds, and similarly for A′
2 with respet to A′

. Note that by the indution hypothesis together

with the de�nition of P ′
(so far) for the �rst C rounds of yle α, we have that the height of A1

equals the height of A′
1, and similarly the heights of A2 and A′

2 math. Now de�ne P ′
to do in

the C rounds E(A′
1, A

′
2) whatever P does in the C rounds E(A1, A2).

8

Thus, after 2C rounds have

passed, the two networks are still idential (up to permutation of the nodes).

Let Ã2 denote the node among {A1, A2} that is storing fewer pakets after the C rounds of

E(A1, A2). Now in P's world, the adversary will searh for the node A3 with height losest to (but

smaller than) Ã2, and the adversary A will next honor edge E(Ã2, A3) for C rounds. Notie that, if

e.g. P had A2 transfer all its pakets to A1 during the C rounds of E(A1, A2), it is possible that A3

8

In order to preserve Fat 1 below, we demand that after the C rounds of E(A′
1, A

′
2), A′

2 is storing fewer pakets

than A′
1. Therefore, if this is not the ase for E(A1, A2), then de�ne P ′

to end in a symmetri state as P , i.e. so that
the pair of nodes (A1, A2) have the same height as the pair of nodes (A′

1, A
′
2), but in the latter pair, neessarily A′

1

is storing at least as many pakets as A′
2 after the C rounds of E(A′

1, A
′
2).
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is not the node that had the third highest height at the start of yle α (indeed, its even possible

that A3 = R).

By the indution hypothesis, there is some node A′
i (i ≥ 3) in P ′

's world suh that at the start

of α, the height of A3 equals the height of A′
i (if A3 = R, then i = n − 1, i.e. set A′

i = R). Notie

that in ontrast to P's world, the shedule of A′
will neessarily go through every internal node at

least one. Indeed, for any 2 ≤ m ≤ n − 2, the node in P ′
's world that started yle α as the mth

fullest node will neessarily be a part of rounds mC through (m + 1)C − 1. Therefore, for eah

3 ≤ m ≤ i, ditate that during rounds mC through (m + 1)C − 1, protool P ′
will have the two

nodes swap �nal states. In partiular, for any 3 ≤ m ≤ i, if H ′
m denotes the height of A′

m at the

start of yle α, then we ditate that P ′
transfers enough pakets from A′

m to A′
m−1 during the C

rounds of E(A′
m−1, A

′
m) suh that the height of A′

m−1 at the end of the C rounds is equal to H ′
m.

In this manner, it is lear that by the time the virtual world of P ′
reahes the end of iC yles

(reall that i is de�ned so that the height of A3 equals the height of A′
i), the state of the networks

in the two worlds will be idential (up to permutation of the nodes). Furthermore, during the next

C rounds of eah yle, the adversaries A and A′
will honor an edge between two nodes (E(A2, A3)

verses E(A′
i−1, A

′
i)) suh that at the moment the C rounds start, the height of A2 equals A′

i−1, and

the height of A3 equals A′
i. Therefore, this proess may be repeated iteratively through the end of

the yle in eah respetive world, and it is lear that the indution hypothesis will remain valid by

the end of yle α. �

For the remainder of the setion, we will seek to prove (9) for the protool P ′
. To simplify

notation, it will be onvenient to de�ne m = n − 2. At the outset of every yle α, we label the

internal (i.e. exluding the Sender and Reeiver) nodes {Nα
1 , Nα

2 , . . . , Nα
m}, suh that if i < j, then

node Nα
i is storing more (or an equal number of) pakets at the start of yle α than Nα

j . For all

α, let Nα
0 = S and Nα

n−1 = R. For any 1 ≤ i ≤ n − 2, let Hα
i denote the height the node had at

the outset of α. We emphasize that while the heights of nodes may hange through the ourse of

yle α, the labeling {Nα
i } and the quantities {Hα

i } will remain �xed throughout the yle. Indeed,

the following fat implies that the labeling of nodes is independent of α (and in fat is �xed for all

time):

Fat 1. For all α ∈ N and all 1 ≤ i ≤ m: Nα
i = Nα+1

i

Fat 2. For any yle α, node Ni is a part of 2C rounds of the yle: �rst for C rounds

with E(Ni−1, Ni), and then for C rounds with E(Ni, Ni+1)

These fats, along with the following observations, all follow from the de�nition/onstrution of P ′

in the proof of Lemma A.1 above. To �x notation, for eah 0 ≤ i ≤ m let Aα
i denote the number

of pakets sent from Ai to Ai+1 during the C rounds E(Ni, Ni+1) of yle α. Note that Aα
i may be

negative if the net paket �ow during E(Ni, Ni+1) was towards Ni.

Lemma A.2. For any yle α and for any 1 ≤ i ≤ m:

1) Aα
i ≤

Aα
i−1 + Hα

i − Hα
i+1

2
(10)

2) Aα
i ≤ Hα+1

i − Hα
i+1 (11)
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Proof. Statement 1 follows from the two fats above as follows. Note that after the C rounds

E(Ni−1, Ni) but before the next C rounds, node Ni will have height Aα
i−1 + Hα

i . Now by de�nition

of protool P ′
, at the end of the C rounds of E(Ni, Ni+1), Nα

i will have a greater (or equal) number

of pakets than Nα
i+1. In partiular, sine there are Aα

i−1 + Hα
i + Hα

i+1 total pakets between the

two nodes at the start of the C rounds E(Nα
i , Nα

i+1), it must be that at the end of these C rounds,

Nα
i is storing at least half of these. Sine the number of pakets stored by Nα

i after the C rounds

of E(Nα
i , Nα

i+1) is given by Aα
i−1 + Hα

i − Aα
i , Statement 1 follows.

Also, again sine protool P ′
spei�es that Nα

i must have more (or an equal number of) pakets

as Nα
i+1 immediately after the C rounds of E(Nα

i , Nα
i+1), and by Fat 2 the height of Nα

i will not

hange through the remainder of yle α, Statement 2 follows. �

Statement 1 above immediately implies the following, whih we state separately for later use:

Corollary A.3. For any yle α and for any 1 ≤ i ≤ m:

Aα
i ≤

Aα
i−1 + Hα

i − min
(
Hα

i+1,
C
m

(m − i − 1)
)

2

We are interested in the potential funtion:

Ψ′α =
m∑

i=1

(
1

2

)m−i

· max

(
0,Hα

i − (m − i)
C

m

)
(12)

For eah 1 ≤ i ≤ m, de�ne:

δα
i =

{
1 if the 2nd

term of the max statement in (12) dominates

0 otherwise

(13)

Also, for any pair of indies 1 ≤ i < j ≤ m, de�ne:

(Ψ′α+1−Ψ′α)i,j =

j∑

k=i

(
1

2

)m−k

·

[
max

(
0,Hα+1

k − (m − k)
C

m

)
− max

(
0,Hα

k − (m − k)
C

m

)]
(14)

Claim A.4. For any index 1 ≤ i ≤ m and any yle α:

Hα+1
i = Hα

i + Aα
i−1 − Aα

i (15)

Proof. Notie Nα+1
i = Nα

i (Fat 1) and Ni is a part of exatly 2C rounds for the αth
yle (Fat 2).

In the �rst C rounds, Hi hanges by Aα
i−1, and in the seond C rounds it hanges by −Aα

i . Sine

Ni began the yle with height Hα
i , we have that its height at the start of the (α + 1)th yle will

be Hα
i + Aα

i−1 − Aα
i . �

It will be onvenient to introdue the following notation:

De�nition A.5. For any 1 ≤ i ≤ m and any yle α, de�ne:

να
i := max

(
0, Hα

i − (m − i)
C

m

)
and ωα

i := min

(
0, Hα

i − (m − i)
C

m

)
(16)
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Claim A.6. For any index 1 ≤ i ≤ m and any yle α:

1) If δα+1
i = 1, then: (Ψ′α+1 − Ψ′α)i,i =

1

2m−i
(Aα

i−1 − Aα
i + ωα

i )

2) If δα+1
i = 0, then: (Ψ′α+1 − Ψ′α)i,i =

1

2m−i
να

i (17)

Proof. If δα+1 = 1, then onsider the equalities:

(Ψ′α+1 − Ψ′α)i,i =
1

2m−i

[
max

(
0,Hα+1

i − (m − i)
C

m

)
− max

(
0,Hα

i − (m − i)
C

m

)]

=
1

2m−i

[
(Aα

i−1 − Aα
i + Hα

i ) − (m − i)
C

m
− max

(
0,Hα

i − (m − i)
C

m

)]

=
1

2m−i
(Aα

i−1 − Aα
i ) +

{
0 if Hα

i ≥ (m − i) C
m

1
2m−i

(
Hα

i − (m−i)C
m

)
if Hα

i < (m − i) C
m

=
1

2m−i
(Aα

i−1 − Aα
i + ωα

i )

where the seond equality is from Claim A.4 together with the assumption that δα+1 = 1. Otherwise,

if δα+1 = 0, then Statement 2 is immediate. �

Lemma A.7. For any pair of indies 1 ≤ i < j < m for whih δα+1
k = 1 for every i ≤ k ≤ j:9

(Ψ′α+1
�Ψ′α)i,j +

Aj

2m−j−1
−

j∑

k=i

ωk

2m−k
≤

Ai−1

2m−i
+

(j-i+1)

2m−i+1
(Ai−1+Hi) −

Hj+1

2m−j+1
+

j−1∑

k=i+1

(j − k)

2m−k+2
Hk

Proof. This follows via an indutive argument on j − i together with Lemma A.2 and Claim A.6:

Base Case: j = i + 1: First onsider the right-hand-side of the inequality of Lemma A.7 with

j = i + 1:

RHS A.7 =
Ai−1

2m−i
+

2

2m−i+1
(Ai−1 + Hi) −

Hi+2

2m−i

=
Ai−1

2m−i
+

1

2m−i
(Ai−1 + Hi) −

Hi+2

2m−i

=
Ai−1

2m−i−1
+

1

2m−i
(Hi − Hi+2) (18)

9

Unless expliity written otherwise, assume all supersripts are α, whih we have suppressed for notational on-

veniene.
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Meanwhile, for j = i + 1, the left-hand-side of the inequality of Lemma A.7 is:

LHS A.7 = (Ψ′α+1
�Ψ′α)i,i+1 +

Ai+1

2m−i−2
−

i+1∑

k=i

ωk

2m−k

= (Ψ′α+1
�Ψ′α)i,i + (Ψ′α+1

�Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i

ωk

2m−k

=
1

2m−i
(Ai−1 − Ai + ωi) +

1

2m−i−1
(Ai − Ai+1 + ωi+1) +

Ai+1

2m−i−2
−

i+1∑

k=i

ωk

2m−k

=
1

2m−i−1
Ai+1 +

1

2m−i
(Ai + Ai−1)

≤
1

2m−i
((Ai + Hi+1 − Hi+2) + (Ai + Ai−1))

=
1

2m−i
(Ai−1 + Hi+1 − Hi+2) +

1

2m−i−1
Ai

≤
1

2m−i
(Ai−1 + Hi+1 − Hi+2) +

1

2m−i
(Ai−1 + Hi − Hi+1)

=
Ai−1

2m−i−1
+

1

2m−i
(Hi − Hi+2) (19)

where the third equality is due to Claim A.6, the �rst inequality is Statement 1 of Lemma A.2

(applied to Ai+1), and the seond inequality is Statement 1 of Lemma A.2 (applied to Ai). Notie

(18) mathes (19), as required.
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Indution Step: Consider the string of inequalities:

(Ψ′α+1
�Ψ′α)i,j +

Aj

2m−j−1
−

j∑

k=i

ωk

2m−k
= (Ψ′α+1

�Ψ′α)i,i + (Ψ′α+1
�Ψ′α)i+1,j +

Aj

2m−j−1
−

j∑

k=i

ωk

2m−k

≤
Ai−1 − Ai

2m−i
+

Ai

2m−i−1
+

j − i

2m−i
(Ai + Hi+1)

−
Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

=
Ai−1 − Ai

2m−i
+

Ai

2m−i−1
+

j − i + 1

2m−i
(Ai + Hi+1)

−
Ai + Hi+1

2m−i
−

Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

≤
Ai−1 − Ai

2m−i
+

Ai

2m−i−1
+

j − i + 1

2m−i+1
(Ai−1 + Hi + Hi+1)

−
Ai + Hi+1

2m−i
−

Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

=
Ai−1

2m−i
+

j − i + 1

2m−i+1
(Ai−1 + Hi) +

j − i − 1

2m−i+1
(Hi+1)+

2

2m−i+1
(Hi+1) −

Hi+1

2m−i
−

Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

=
Ai−1

2m−i
+

j − i + 1

2m−i+1
(Ai−1 + Hi) −

Hj+1

2m−j+1
+

j−1∑

k=i+i

(j − k)

2m−k+2
Hk

where the �rst inequality is by the indution hypothesis together with Claim A.6 and the seond

inequality is by Statement 1 of Lemma A.2. �

Lemma A.8. For any pair of indies 1 ≤ i < i + 1 < j ≤ m for whih δα+1
j = 1 but δα+1

k = 0 for

every i < k < j:10

(Ψ′α+1 − Ψ′α)i+1,j−1 +
Aj−1

2m−j
−

j−1∑

k=i+1

ωk

2m−k
≤

Ai

2m−i−1
+

Hi+1

2m−i
−

Hj

2m−j+1
+

j−1∑

k=i+1

Hk

2m−k+1

Proof. This follows via an indutive argument on j − i together with Lemma A.2:

Base Case: j − i = 2: Looking at the right-hand-side of the inequality of Lemma A.8 for j = i+2:

RHS A.8 =
Ai

2m−i−1
+

Hi+1

2m−i
−

Hi+2

2m−i−1
+

Hi+1

2m−i

=
Ai + Hi+1 − Hi+2

2m−i−1
(20)

10

On the right-hand side of the inequality of Lemma A.7, all supersripts are α, whih we have suppressed for

notational onveniene.
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Meanwhile, looking at the left-hand-side of the inequality of Lemma A.8 for j = i + 2:

LHS A.8 = (Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

ωi+1

2m−i−1

=
Ai+1

2m−i−2

≤
Ai + Hi+1 − Hi+2

2m−i−1
, (21)

where the seond equality is from Claim A.6 (sine δα+1
i+1 = 0) and the inequality is Statement 1 of

Lemma A.2. Notie (20) mathes (21), as required.

Indution Step: Consider the string of inequalities:

(Ψ′α+1
�Ψ′α)i+1,j−1+

Aj−1

2m−j
−

j−1∑

k=i+1

ωk

2m−k
= (Ψ′α+1

�Ψ′α)i+1,i+1 + (Ψ′α+1
�Ψ′α)i+2,j−1+

Aj−1

2m−j
−

j−1∑

k=i+1

ωk

2m−k

≤
Ai+1

2m−i−2
+

Hi+2

2m−i−1
−

Hj

2m−j+1
+

j−1∑

k=i+2

Hk

2m−k+1

≤
Ai

2m−i−1
+

Hi+1

2m−i
−

Hj

2m−j+1
+

j−1∑

k=i+1

Hk

2m−k+1

where the �rst inequality is by the indution hypothesis together with Claim A.6 and the last

inequality is by Statement 1 of Lemma A.2. �

Lemma A.9. For any yle α and any index 1 ≤ i < m− 1, if δα+1
i = 1, δα+1

i+1 = 0, and δα+1
i+2 = 1,

then:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
≤

Ai

2m−i−1
+

1

2m−i−1

C

m
(22)

Proof. Consider:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
=

Ai+1

2m−i−2

≤
Ai + Hi+1 − Hi+2

2m−i−1

≤
Ai

2m−i−1
+

1

2m−i−1

C

m

where the �rst equality is Statement 2 of Lemma A.6, the �rst inequality is Statement 1 of A.2, and

the last inequality follows from the fat that δα+1
i+1 =0, and δα+1

i+2 =1 implies that Hi+1−Hi+2 ≤ C
m
. �

Lemma A.10. For any yle α and any index 1 ≤ i < m−2, if δα+1
i = 0, δα+1

i+1 = 1, and δα+1
i+2 = 0,

then:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
≤

Ai

2m−i−1
+

1

2m−i−1

C

m
(23)
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Proof. Consider:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
=

Ai

2m−i−1
+

Ai+1

2m−i−1

≤
Ai + Hα+1

i+1 − Hα
i+2

2m−i−1

≤
Ai

2m−i−1
+

1

2m−i−1

C

m

where the �rst equality is Statement 1 of Lemma A.6, the �rst inequality is Statement 2 of A.2,

and the last inequality follows from the fat that δα+1
i = 0, δα+1

i+1 = 1, and δα+1
i+2 = 0 implies that

Hα+1
i+1 −Hα

i+2

2m−i−1 ≤ 1
2m−i−1

C
m
. �

Claim A.11. For any yle α, we have:

Zα + (Ψ′α+1 − Ψ′α)m,m ≤ Aα
m−1 (24)

Proof. Sine (Hα+1
m − (m − m) C

m
) = Hα+1

m ≥ 0, we have that the seond term of min(0,Hα+1
m −

(m − m) C
m

) always dominates, and hene for all yles, δα+1
m = 1. Therefore, applying Claim A.6

(for i = m):

(Ψ′α+1 − Ψ′α)m,m = Aα
m−1 − Aα

m + ωα
m

≤ Aα
m−1 − Aα

m

= Aα
m−1 − Zα

(25)

where the inequality follows sine ωα
i ≤ 0 for all yles α and nodes i, and the last equality is

beause Nm is the node that will be onneted to the Reeiver in the last C rounds of α, so by

de�nition Aα
m = Zα

. �

We are now ready to prove the main result of this setion, namely that (9) is satis�ed for all

yles α:

Lemma A.12. For all yles α, the following is always true:

Z ′α + (Ψ′α+1 − Ψ′α) ≤ 7
C

m
,

Proof. Fix yle α, and onsider the string of bits {δα+1
i }m

i=1:

(δα+1
1 , δα+1

2 , . . . , δα+1
m−1, δ

α+1
m ) (26)

By Claim A.11, we have:

Zα + Ψ′α+1 − Ψ′α = Zα + (Ψ′α+1 − Ψ′α)1,m ≤ (Ψ′α+1 − Ψ′α)1,m−1 + Aα
m−1 (27)

We now use Lemmas A.7, A.8, A.9, and A.10 on the appropriate indies (based on the form of

{δα+1
i }), whih yields:

11

11

We ombine these lemmas by starting at the far right index i = m − 1, and working our way down through

smaller indies by using the appropriate lemma. Notie that the �rst term on the RHS of the inequality of eah

lemma is exatly the term needed on the LHS of the next lemma.
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1. For the smallest index i suh that δα+1
i = 1, we have leading term:

Ai−1

2m−i
(28)

2. For any indies (i, j) falling under Lemma A.7, we have ontributions:

j − i + 1

2m−i+1
(Ai−1 + Hi) +

j−1∑

k=i+1

(j − k + 1)(m − i)

2m−k+2
(29)

3. For any indies (i, j) falling under Lemma A.8, we have ontribution:

j∑

k=i

m − i

2m−k+1
(30)

4. For any indies (i, j) falling under Lemma A.9 or A.10, we have ontribution:

1

2m−i−1

C

m
(31)

Notie that in terms of the ontributions from (29), (Ai−1 + Hi) ≤ (m−i−1)C
m

by Statement 2 of

Lemma A.2 together with the fat that δα+1
i−1 = 0 implies Hα+1

i−1 < (m−i+1)C
m

. The theorem now

follows immediately from the fats:

1. For any 1 ≤ i < j < ∞,
∑j

k=i
1
2k ≤

∑∞
k=1

1
2k = 1

2. For any 1 ≤ i < j < ∞,
∑j

k=i
k
2k ≤

∑∞
k=1

k
2k = 2

3. For any 1 ≤ i < j < ∞,
∑j

k=i
k(k−1)

2k ≤
∑∞

k=1
k(k−1)

2k = 4
�

The remainder of the proof that the optimal ompetitive ratio is 1/n was presented in Setion 3.

B Rigorous Proof of Competitive Ratio of Slide

The high-level ideas of the proof of Theorem 2 were skethed in Setion 4.2, and we enourage

the reader to re-read that setion before proeeding here. In this Setion, we begin by providing in

Setion B.1 a deeper explanation of the proof than was provided in Setion 4.2, but still does not

go into the details of the proofs. Then in Setions B.2-B.5 we rigorously prove all the lemmas and

theorems.
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B.1 Motivation and De�nitions

In what follows, unless stated otherwise, all notation is as de�ned in Setion 4.2. Reall from

Setion 4.2 that we wish to onstrut two potential funtions. The �rst one, denoted by ϕp′ , will be

assoiated to every paket p′ ∈ ZP ′

2 . However, ϕp′ will not be exatly as de�ned in Setion 4.2, so

we provide now the motivation to explain how ϕp′ is atually de�ned, and why we need to slightly

hange what it represents.

Our �rst attempt employed in Setion 4.2 was to de�ne ϕp′ to be the height, with respet to

P, of the node in whih p′ was urrently being stored. We state one-and-for-all that when

referening the height of a node, we will mean its height with respet to the Slide

protool P. As noted in Setion 4.2, if we de�ne ϕp′ this way, then for every p′ ∈ ZP ′

2 , ϕp′ will be

initially set to C (when P ′
�rst inserts p′), and ϕp′ will be zero when p′ is delivered to the Reeiver.

Thus, there is a net hange of −C to ϕp′ from the time of insertion by the Sender to the time of

reeption by the Reeiver. The goal was then to de�ne a seond overall network potential funtion

Φ, whih inreases by C every time P transfers a paket, and suh that any time ϕp′ hanges for

any p′ ∈ ZP ′

2 , the umulative hanges of

∑
p′∈ZP′

2
ϕp′ will be mimiked by Φ. Sine Φ inreases by C

when there is a paket transfer in P, one (good) way to think of this approah is that for eah drop

in ϕp′ , we would like to �nd a paket transfer in P that an be �harged,� i.e. this paket transfer

�allowed� ϕp′ to derease.

Unfortunately, with the simplisti de�nition of ϕp′ equal to the height of the node it is urrently

stored in, we enounter a problem. To larify the problem, as well as to set notation, at the very

beginning of eah round x, we will label the internal nodes (i.e. not the Sender or Reeiver) as:

{Nx
1 , Nx

2 , . . . , Nx
n−2}, where the labeling respets heights, so that at the start of the round x, Nx

i+1

is storing at least as many pakets as Nx
1 (ties are broken arbitrarily). Letting Hx

i denote the height

of Nx
i at the start of x (i.e. the number of pakets Nx

i is storing with respet to P), we may restate

the riterion for labeling nodes at the start of eah round by writing: Hx
1 ≤ Hx

2 ≤ · · · ≤ Hx
n−2. Note

that nodes may hange labels from one round to the next, i.e. we may have Nx
i 6= Nx+1

i . When the

round is unimportant, we will suppress the supersript x. Let S denote the Sender and R denote

the Reeiver.

We may now explain why the simplisti de�nition of ϕp′ above will not be adequate. De�ne

Q := C−n
n

, and onsider the following two senarios that may be present at the start of some round

x:

Senario 1: Hn−2 = C Hn−3 = C . . . H3 = C H2 = C H1 = (n − 3)Q

Senario 2: Hn−2 = (n − 3)Q Hn−3 = (n − 4)Q . . . H3 = 2Q H2 = Q H1 = 0

In Senario 1, onsider a paket p′ ∈ ZP ′

2 that begins round x in node N1, so that ϕp′ = (n − 3)Q.

Notie that if the adversary honors the edge E(N1, R), the Slide protool will transfer a paket to

the Reeiver (Rules 2 and 3a of Setion 4.1). Now by de�nition of being in the set ZP ′

2 , in order for

p′ to be delivered to the Reeiver via node

12 N1, node N1 must have height zero when the adversary

honors edge E(N1, R). Therefore, there must be exatly (n − 3)Q transfers in P (to drain N1)

before p′ an be delivered to R via N1. Thus, loosely speaking, we an �harge� the resulting drop

in ϕp′ from (n − 3)Q to 0 to these (n − 3)Q transfers in P.

12

Of ourse there is no reason to assume that p′
must be transferred to R via N1, but for the sake of the example,

we imagine this is the ase.
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Now instead imagine we are in Senario 2, and again �x a paket p′ ∈ ZP ′

2 suh that ϕp′ =

(n − 3)Q at the start of round x, so p′ ∈ Nn−2. In this ase, notie that p′ has a way to reah

R without any pakets being transferred in P. In partiular, the adversary ould honor edge

E(Nn−2, Nn−3) in round x, and then E(Nn−3, Nn−4) in round x + 1, and so forth. Sine the

di�erene in heights between adjaent nodes is less than C/n, the Slide protool will not transfer

any pakets during these rounds. Meanwhile, protool P ′
may ditate that p′ is transferred eah

of these rounds, all the way to the Reeiver. Thus, in this senario, ϕp′ was able to derease from

(n − 3)Q to zero without any pakets being transferred in P. Beause we are trying to assoiate

drops in ϕp′ to paket transfers in P, this is problemati.

Notie that the problem in Senario 2 is that there exists a �bridge� between Nn−2 and R. That

is, even though Nn−2 has a relatively large height, there is still a way for pakets p′ ∈ ZP ′

2 that

are in Nn−2 to reah R without P being able to transfer any pakets. In ontrast, in Senario 1,

p′ ∈ N1 will also have ϕp′ = (n− 3)Q, but now there must be (n− 3)Q transfers in P before p′ an

reah R (again, sine p′ ∈ ZP ′

2 requires that p′ is never transferred at the same time as a paket in

P). In summary, one might say that even though node N1 in Senario 1 has the same height as

node Nn−2 from Senario 2, these two nodes have di�erent �e�etual� heights.

Considering the above two Senarios, we were enouraged to modify our de�nition of ϕp′ as

follows:

- For node Ni, de�ne the node's e�etual height:
13 H̃i := max(0,Hi − (i − 1)C

n
)

- For any p′ ∈ ZP ′

2 that is urrently in Ni, de�ne its potential: ϕp′ := H̃i

This is almost the atual de�nition we eventually make for ϕ, but we will need to �rst �smooth-out�

this de�nition. To motivate the need to smooth the de�nition, onsider the following events, whih

represent the only ways that ϕp′ an hange (based on the new de�nition of ϕp′):

Case 1. p′ is transferred from Ni to Nj in some round E(Ni, Nj)

Case 2. p′ ∈ Ni when Ni hanges height due to a paket transfer in P, but this paket transfer
does not ause a re-indexing of nodes

Case 3. p′ is in some node Ni when a paket transfer in P auses Ni to hange index to Nj

(i.e. this node moves from the ith fullest node to the jth
fullest node)

Sine we are only onerned with p′ ∈ ZP ′

2 , we note that whenever ϕp′ hanges as by 1) above,

neessarily P did not transfer a paket this round. In partiular, this means that |Hi −Hj| < C/n.

In order to ontrol hanges to ϕp′ that are a result of Case 1, we would therefore like for H̃i ≈ H̃j

whenever Hi ≈ Hj. Although the de�nition of e�etual height H̃i above almost aptures this, there

is neessarily a �jump� of C/n between the values H̃i and H̃j. This is one of the reasons we will

want to �smooth-out� the de�nition of ϕp′ .

Changes to ϕp′ that ome from Case 2 above are okay, sine in suh ases ϕp′ will hange by

one, and this an be �harged� to the fat that there has been a paket transfer in P. Lastly, notie
that ϕp′ an only hange as in Case 3 above if there are two nodes at the outset of some round x, Ni

and Ni+1, suh that a paket transfer during round x auses them to swith plaes (e.g. before the

transfer, Hi = Hi+1, and then Ni reeives a paket in round x). Beause there has been a paket

13

The �maximum� is added to prevent the e�etual height of a node from being negative.
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transfer in P, we an �harge� some of the hanges in ϕp′ to this paket transfer, but again the fat

that there will be a �jump� of C/n to hanges in ϕ will enourage a �smoothing� of the de�nition

of ϕ.

This leads to the notion of a family of nodes. In partiular, we will partition the internal nodes

into families. Intuitively, two nodes will be in the same family if they are relatively lose to eah

other in height (or more generally, if there is a �bridge� onneting them, as in Senario 2 above).

Then within eah family, we will distribute the umulative e�etual height of the nodes in that family

evenly among all nodes in the family. Formally, for a family of nodes

14 F = {Ni, Ni+1, . . . , Nj},
de�ne the umulative e�etual height HF of the family F by:

H̃F :=

j∑

k=i

H̃k =

j∑

k=i

max

(
0,Hk − (k − 1)

C

n

)

For any p′ ∈ ZP ′

2 suh that p′ is urrently in some node of family F , we will de�ne ϕp′ to be the

average e�etual height of the family, i.e.:

ϕp′ :=
H̃F

|F|

Of ourse, H̃F may not divide evenly among the nodes in the family F , and then to fore ϕp′ ∈ N,

we will distribute the exess weight (the remainder) to the nodes with higher indies. Based on this

de�nition of ϕp′ , note that if p′ transfers between two nodes of the same family, ϕp′ an hange by

at most one.

We re-visit the three ways ϕp′ may hange, explaining in eah ase how we an �nd a paket

transfer in P to �harge� for the hange in ϕp′ . In terms of hanges to ϕp′ resulting from Case

1 above, we reall that neessarily |Hi − Hj| < C/n. We show in Lemma B.12 that anytime

|Hi − Hj| < C/n, Ni and Nj are neessarily in the same family, in whih ase our de�nition of ϕ

now guarantees that ϕp′ an hange by at most one when p′ is transferred between nodes. Changes

to ϕp′ due to Case 2 will be at most one (sine the umulative e�etual height of the family will

hange by at most one, and this hange will be distributed among nodes in the family), and we an

�harge� suh hanges to the paket transfer in P that aused Case 2 to our. Finally, for Case 3,

if p′ ∈ Ni when Ni's index hanges but Ni remains in the same family, then sine ϕ is distributed

evenly among nodes in the family, the hange in index will be irrelevant (i.e. this will not ause

ϕp′ to hange). On the other hand, we will show that whenever a node Ni swithes families as a

result of a paket transfer in P, the average e�etual height of its new family will di�er by at most

one from the average e�etual height of its old family. Thus, in this ase the hange in ϕp′ is also

bounded by one, and we an �harge� this hange to the paket transfer that aused families to

re-align.

De�ning how to partition nodes into families so that the families behave the way we want (e.g.

so that: 1) nodes with height within C/n of eah other are in the same family; 2) Families an only

re-align during a round in whih P transfers a paket; and 3) When families re-align, the average

e�etual height of any node before and after the re-alignment di�ers by at most one) requires a

little thought, and it is done preisely in the following setion. One we have the formal de�nition

of a family, we would like to formalize the notion of �harging a hange in ϕp′ to a paket transfer in

14

We will show in the next setion that nodes within the same family will always have adjaent indies.
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P.� Namely, as mentioned in Setion 4.2, we de�ne a seond network potential Φ that will inrease

by C every time there is a paket transfer in P, and that will also mirror the umulative hanges of

ϕp′ for eah p′ ∈ ZP ′

2 . In order to prove Φ is always positive, we will distribute the total network

potential between the families:

Φ = ΦF1 + · · · + ΦFl
(32)

and then show in Lemma B.17 that within eah family F :

ΦF ≥ 0. (33)

The areful de�nition of families and the preise de�nition of the potential ϕ and the network

potential Φ is presented below in Setion B.2. The main lemma and proof of the fat that at all

times Φ ≥ 0 an be found in Setion B.5.

B.2 Formal De�nition of �Family� and Potential of a Paket (ϕp′)

We begin by de�ning formally the notion of a family introdued in the previous setion. Note

that families will in general re-align during a round when there is a paket transfer in P, so we use

the notation Fx
to denote some family F that was in existene at the start of round x. Reall that

at the start of eah round x, the internal nodes are indexed aording to their heights with respet

to P: {N1, N2, . . . , Nn−2}, so that Hi ≤ Hj if i < j (ties are broken arbitrarily). Also reall from

the previous setion the de�nition of the e�etual height H̃i of node Ni:

H̃i := max

(
0,Hi − (i − 1)

C

n

)
(34)

At the start of eah round, we will partition the internal nodes into families indutively (starting

from the emptiest nodes), so that the average e�etual height of eah family is minimized. In

partiular:

De�nition B.1. At the start of round x, internal nodes will be partitioned into families {Fx
i } as

follows. Starting at i = 1 and k0 = 0:

F1 Find index ki−1 < ki ≤ n − 2 suh that the following quantity is minimal:

ki∑

j=k(i−1)+1

H̃j

(ki − ki−1)

(35)

In ase there are multiple values for ki that ahieve the same minimum, de�ne ki to be the

largest of all possibilities. Then de�ne

15

family Fx
i := {Nx

k(i−1)+1, . . . , N
x
ki
}.

F2 Set i = i + 1 and repeat Step F1 until all internal nodes are in some family.

F3 The Sender and Reeiver will form their own, separate, families. Denote the Sender's family

by Fn and the Reeiver's family by F0.
16

15

When the round x is unimportant, we will suppress the supersript in our notation.

16

The only reason we plae the Sender and Reeiver in a family at all is to make the terminology easier in the

lemmas that follow. In partiular, the notation we use for the Sender's family ensures that it will have a higher index

than all other nodes (there will be a gap between the index of the largest indexed family of internal nodes and the

Sender's family, whih is unimportant), and onversely the Reeiver's family will have a smaller index than all other

nodes.
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De�nition B.2. The umulative e�etual height H̃F of a family F is the sum of the e�etual heights

of eah of the nodes in the family. The average e�etual height 〈H̃F 〉 of a family is the umulative

e�etual height divided by the size of the family. Suintly, if F := {Ni, Ni+1, . . . , Nj}:

H̃F :=

j∑

k=i

H̃k and 〈H̃F 〉 :=
H̃F

|F|
=

j∑

k=i

H̃k

j − i + 1

(36)

Notie that by onstrution (see Rules F1 and F2), families are reated so that the average

e�etual height of (the lowest indexed) families is minimized.

With the formal de�nition of families in hand, we are ready to formally de�ne the �rst kind of

potential, ϕ. Reall that this potential will be assoiated to pakets p′ ∈ ZP ′

2 , and if p′ ∈ Ni ∈ F at

the start of some round, then ϕp′ will (roughly) represent the average e�etual height 〈H̃F 〉. More

preisely, we will asribe to eah node Ni ∈ F a potential ϕi equal to the average e�etual height,

exept that the potential for some nodes in the family will be one bigger to aount for the ase

that

H̃F

|F| /∈ Z. Formally:

De�nition B.3. Let F = {Ni, Ni+1, . . . , Nj}. Then the potential ϕk of a node Nk ∈ F will be

either 〈H̃F 〉 or 〈H̃F 〉 + 1. More preisely, writing:

H̃F = ⌊〈H̃F 〉⌋ ∗ |F| + r (37)

Then de�ne subsets of F :

F− := {Ni, Ni+1, . . . , Nj−r} and F+ := {Nj−r+1, . . . , Nj} (38)

Then for nodes Nk ∈ F+
, de�ne ϕk = ⌊〈H̃F 〉⌋ + 1. For nodes Nk ∈ F−

, de�ne ϕk = ⌊〈H̃F 〉⌋.
Finally, if p′ ∈ ZP ′

2 and p′ is urrently being stored in Nk, then de�ne the potential ϕp′ to be the

potential of Nk, i.e. ϕp′ := ϕk.

One immediate onsequene of the above de�nition that we will need later is:

Lemma B.4. At the beginning of any round x and for any family Fx
, the sum of the potentials for

the nodes in F equals the umulative e�etual height of the family:

∑

N∈F

ϕN = H̃F (39)

De�nition B.5. The network potential Φ is an integer satisfying the following properties:

1. Φ begins the protool equal to zero.

2. Φ inreases by 4C every time a paket is transferred in protool P

3. For any paket p′ ∈ ZP ′

2 , any time ϕp′ hanges, Φ hanges by the same amount.

27



B.3 Preliminary Lemmas

In this setion, we state and prove the basi properties that follow from the de�nitions of the

previous setion.

Lemma B.6. At all times, all families onsist of nodes with adjaent indies. In partiular, if at

the start of any round x there are l families, then there exist indies k1 < k2 < · · · < kl−1 suh that:

F1 = {N1, . . . , Nk1}, F2 = {Nk1+1, . . . , Nk2}, . . . , Fl = {Nkl−1+1, . . . , Nn−2} (40)

Proof. This follows immediately from the rules regarding the onstrution of families (see F1 and

F2 in the previous setion). �

Lemma B.7. Fix some round x and some pair of nodes Nx
i and Nx

j for i < j. Then:

1. If Hx
i ≥ Hx

j − C/n, then H̃x
i ≥ H̃x

j .

2. If Hx
i < Hx

j − (j − i)C/n and H̃j > 0, then H̃x
i < H̃x

j .

Proof. Consider the following string of inequalities:

H̃i − H̃j = max(0,Hi − (i − 1)C/n) − max(0,Hj − (j − 1)C/n)

≥ max(0,Hi − (i − 1)C/n) − max(0, (Hi + C/n) − (j − 1)C/n)

≥ max(0,Hi − (i − 1)C/n) − max(0, (Hi + C/n) − ((i + 1) − 1)C/n)

= max(0,Hi − (i − 1)C/n) − max(0, (Hi − (i − 1)C/n)

= 0

This proves Statement 1. For Statement 2, if H̃i = 0, then it is immediate. Otherwise, onsider the

inequalities:

H̃j − H̃i = Hj − (j − 1)C/n − (Hi − (i − 1)C/n)

= Hj − Hi + ((i − 1) − (j − 1))C/n

> (j − i)C/n + (i − j)C/n

= 0 �

We state a trivial observation regarding frations of positive numbers that will be useful in proving

the lemmas below.

Observation 1. For any positive numbers a, b, c, d ∈ N:

1.

a
b

< c
d

⇒ a
b

< a+c
b+d

< c
d

2.

a
b

= c
d

⇒ a
b

= a+c
b+d

= c
d

Lemma B.8. Let x be any round, and suppose that at the outset of the round there is some family

Fx
α = {Ni, Ni+1, . . . , Nj}. Then the following statements are all true at the outset of round x:

1) For any i ≤ k < j :

∑k
m=i H̃m

k − i + 1
≥ 〈H̃Fα〉 ≥

∑j
m=k+1 H̃m

j − k

2) For any j < k ≤ n − 2 : 〈H̃Fα〉 <

∑k
m=j+1 H̃m

k − j

3) 〈H̃Fα〉 < 〈H̃Fα+1〉
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Proof. The fat that

∑k
m=i H̃m

k−i+1 ≥
∑j

m=k+1 H̃m

j−k
follows immediately from Observation 1 together with

the rules regarding the onstrution of families (see Rule F1 from the previous setion), and in

partiular the fat that indies are found by minimizing (35). Statement 1 now follows from Ob-

servation 1. Statement 2 also follows immediately from Rule F1 and Observation 1, and Statement

3 follows immediately from Statement 2. �

Statement 3 of Lemma B.8 an be immediately extended:

Corollary B.9. Let x be any round, and suppose that at the outset of the round there are l families.

Then:

〈H̃F1〉 < 〈H̃F2〉 < · · · < 〈H̃Fl
〉

Lemma B.10. Let x be any round, and suppose that at the outset of the round there is some family

Fx
α = {Ni, Ni+1, . . . , Nj}. Then:

For any 1 ≤ k < i :

∑i−1
m=k H̃m

i − k
< 〈H̃Fα〉 (41)

Proof. Sine k < i, neessarily Nk is in some family Fβ with index β < α. Then:

∑i−1
m=k H̃m

i − k
≤ 〈H̃Fβ

〉 < 〈H̃Fβ+1
〉 < . . . < 〈H̃Fα−1〉 < 〈H̃Fα〉, (42)

where the �rst inequality is from Statement 1 of Lemma B.8 and the other inequalities are from

Corollary B.9. �

Lemma B.11. If at the start of some round x we have that H̃x
j+1 ≤ H̃x

j , then Nj and Nj+1 are in

the same family at the start of round x.

Proof. Suppose for the sake of ontradition that they are not in the same family at the start of

round x. Let Fx
denote Nj 's family at the start of the round. By Lemma B.6 and the fat that j

and j +1 are adjaent indies, we must have that Fx = {Ni, Ni+1, . . . , Nj} for some i ≤ j. The key

observation is that:

H̃j+1

1
≤

H̃j

1
⇒

H̃j+1

1
≤

H̃j+1 + H̃j

2
≤

H̃j

1
(43)

If i = j, then (43) ontradits Statement 2 of Lemma B.8 (set k = j + 1). If i < j, then de�ne:

A : =

j−1∑

l=i

H̃l and B := j − i (44)

Then by Lemma B.8:

H̃j+1

1
≤

H̃j

1
≤

A

B
⇒

H̃j+1 + H̃j + A

B + 2
≤

H̃j + A

B + 1
= 〈H̃F 〉, (45)

whih ontradits Statement 1 of Lemma B.8. �

Lemma B.12. If at the outset of any round x, we have that |Hx
i −Hx

j | ≤ C/n for any pair of nodes

Nx
i and Nx

j , then neessarily the nodes are in the same family at the start of round x.
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Proof. Suppose for the sake of ontradition that there exists some round x and some pair of nodes

Nx
i and Nx

j for whih |Hx
i − Hx

j | ≤ C/n, but these nodes are in di�erent families. Sine families

onsist of adjaent indies (Lemma B.6) and nodes are indexed aording to their heights at the

start of the round, we may assume without loss of generality that i and j are adjaent (i.e. that

j = i+1). By de�nition of indexing, we must have Hi ≤ Hi+1, whih ombined with the hypothesis

of the lemma implies that Hi+1 − C/n ≤ Hi. But then H̃i ≥ H̃i+1 by Lemma B.7, and then Nx
i

and Nx
i+1 in di�erent families ontradits Lemma B.11. �

B.4 Lemmas Regarding the Re-struturing of Families

In this setion, we disuss all possible hanges between how families are arranged at the beginning

of one round and the next.

Lemma B.13. Families an only re-align during rounds E(Na, Nb) during whih there is a paket

transfer in P from Na to Nb.

Proof. This is immediate from the rules regarding onstruting families, sine the values of {H̃i}
(34) an only hange if there is a paket transfer in P, and thus the analysis in Rule F1 (35) will

not hange if there has been no paket transfer in P. �

Lemma B.14. Suppose that in some round x = E(Na, Nb), the Slide protool transfers a paket from

Na to Nb. Let Fα := {Ne, . . . , Na, . . . , Nf} denote Na's family at the start of round x (e ≤ a ≤ f),

and Fβ := {Nc, . . . , Nb, . . . , Nd} denote Nb's family

17

at the start of x (c ≤ b ≤ d). The following

desribes all possible hanges to the way families are organized between the start of round x and the

next round:

Case 1: H̃a and H̃b do not hange. Then the families at the start of round x + 1 are

idential the arrangement of families at the start of x.

Case 2: H̃a does not hange, and H̃b inreases by one. Then:

(a) Families Fδ to the left of Fβ (i.e. δ < β) do not hange

(b) For any node Nm with b ≤ m ≤ d, Nm will be in the same family as Nb at the start of

round x + 1

() For any node Nm with d < m, letting Fx
µ denote Nm's family at the start of round x,

one of the following happens:

i. Fx
µ does not hange

ii. Every node in Fx
µ is in the same family as Nb at the start of x + 1

Case 3: H̃a dereases by one, and H̃b does not hange. Then:

(a) Families Fδ to the right of Fα (i.e. δ > α) do not hange

17

Note that neessarily β ≤ α, as if both Na and Nb are internal nodes, then Rule 3 of the Slide protool (together

with the de�nition of how nodes are indexed) guarantees that b < a, and then β ≤ α by Lemma B.6. If Na is the

Sender and/or Nb is the Reeiver, then β ≤ α omes from our hoie to denote the Sender's family by Fn and the

Reeiver's family by F0 (see Rule F3 regarding the formation of families).
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(b) For any node Nm with e ≤ m ≤ a, Nm will be in the same family as Na at the start of

round x + 1

() For any node Nm with m < e, letting Fx
µ denote Nm's family at the start of round x,

one of the following happens:

i. Fx
µ does not hange

ii. Every node in Fx
µ is in the same family as Na at the start of x + 1

Case 4: H̃a dereases by one, and H̃b inreases by one. Then:

(a) Families Fδ to the right of Fα (i.e. δ > α) and to the left of Fβ (i.e. δ < β) do not

hange

(b) For any node Nm with e ≤ m ≤ a, Nm will be in the same family as Na at the start of

round x + 1

() For any node Nm with b ≤ m ≤ d, Nm will be in the same family as Nb at the start of

round x + 1

(d) For any node Nm with d < m < e, letting Fx
µ denote Nm's family at the start of round

x, one of the following happens:

i. Fx
µ does not hange

ii. Every node in Fx
µ is in the same family as Na at the start of x + 1

iii. Every node in Fx
µ is in the same family as Nb at the start of x + 1

iv. Every node in Fx
µ is in the same family as Na AND Nb at the start of x + 1

Proof. That the four ases stated in the lemma over all possibilities is immediate from the de�nition

of e�etive height H̃ (see De�nition (34)). Case 1 follows immediately from the rules F1-F2 for

forming families (see De�nition B.1) sine the e�etive heights have not hanged. We go through

eah of the other ases, and prove eah Statement.

Suppose that we are in Case 2, so that H̃a does not hange, and H̃b inreases by one. For δ < β,

onsider a family Fδ := {Ni, . . . , Nj}, and for the sake of ontradition, suppose that Fδ hanges in

some way from the start of round x to the start of round x + 1. Without loss of generality, we will

suppose that δ < β is the minimal index for whih Fδ hanges.

Case A: Fδ Splits. In other words, Ni and Nj are not in the same family at the start of round

x+ 1. Let Fx+1
ι := {Ni, . . . , Nk} denote Ni's new family at the start of x+ 1, where k < j by

assumption.

18

Notie that for all i ≤ m ≤ j, the e�etive height H̃m will not hange between

the start of x and x + 1 (sine j < b < a). Therefore:

∑j
l=k+1 H̃l

j − k
≤

∑k
l=i H̃l

k − i + 1
= 〈H̃Fx+1

ι
〉 <

∑j
l=k+1 H̃l

j − k
, (46)

where the �rst inequality is Statement 1 of Lemma B.8 and the last inequality is Statement 2

of Lemma B.8. Clearly (46) is impossible, yielding the desired ontradition.

18

Neessarily Ni is the smallest-indexed node in Fι by our hoie of minimality for δ.
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Case B: Fδ Grows. In other words, at the start of round x + 1 there is some family Fx+1
ι :=

{Ni, . . . , Nk} for k > j. If k < b, then for all i ≤ m ≤ k, the e�etive height H̃m will not

hange between the start of x and x + 1, so:

∑j
l=i H̃l

j − i + 1
<

∑k
l=j+1 H̃l

k − j
≤

∑j
l=i H̃l

j − i + 1
, (47)

where the �rst inequality is Statement 2 of Lemma B.8 and the seond inequality is Statement

1 of Lemma B.8. Clearly (47) is impossible, yielding the desired ontradition. On the other

hand, if k ≥ b, then for all i ≤ m ≤ k and m 6= b, the e�etive height H̃m will not hange

between the start of x and x + 1, but the e�etive height H̃b inreases by one from the start

of x and x + 1. Therefore (using supersripts only when neessary to speify the round):

∑j
l=i H̃l

j − i + 1
<

∑k
l=j+1 H̃x

l

k − j
<

∑k
l=j+1 H̃x+1

l

k − j
≤

∑j
l=i H̃l

j − i + 1
, (48)

where the �rst inequality is Statement 2 of Lemma B.8 and the last inequality is Statement 1

of Lemma B.8. Clearly (48) is impossible, yielding the desired ontradition.

This proves Statement (a) of Case 2. For Statement (b), �x index m ∈ [b, d] (Statement (b) is

trivially true for m = b, so assume b < m ≤ d). For the sake of ontradition, suppose that Nm is

not in the same family as Nb at the start of x + 1. Let Fx+1
β := {Ni, . . . , Nb, . . . , Nj} denote Nb's

new family at the start of x + 1, so by assumption j < m ≤ d, and also c ≤ i by Statement (a) of

Case 2. Notie that H̃x
b + 1 = H̃x+1

b , but that for all other i ≤ l ≤ m, H̃l does not hange from the

start of x and x + 1. If i = c (using supersripts only when neessary to speify the round):

∑d
l=j+1 H̃l

d − j
≤

∑j
l=c H̃x

l

j − c + 1
<

∑j
l=c H̃x+1

l

j − c + 1
<

∑d
l=j+1 H̃l

d − j
, (49)

where the �rst inequality is Statement 1 of Lemma B.8 and the last inequality is Statement 2 of

Lemma B.8. Clearly (49) is impossible, yielding the desired ontradition. If on the other hand

c < i, then (using supersripts only when neessary to speify the round):

∑d
l=j+1 H̃l

d − j
≤

∑j
l=c H̃x

l

j − c + 1
= 〈H̃Fx

β
〉

≤

∑i−1
l=c H̃x

l

i − c

<

∑i−1
l=c H̃x+1

l

i − c

< 〈H̃Fx+1
ι

〉 =

∑j
l=i H̃

x+1
l

j − i + 1

<

∑d
l=j+1 H̃l

d − j
, (50)

where the �rst and seond inequalities are both Statement 1 of Lemma B.8, the fourth inequality

is Lemma B.10, and the last inequality is Statement 2 of Lemma B.8. Clearly (50) is impossible,

yielding the desired ontradition.
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This proves Statement (b) of Case 2. It remains to prove Statement (). Fix some m > d, and

let Fw
µ = {Nw, . . . , Nm, . . . , Ny} denote Nm's family at the start of x. We prove Statement () via

the following two sublaims:

Sublaim 1. Fµ does not Split. In other words, Nw and Ny will be in the same family at the

start of round x + 1.

Proof. Suppose not. Let Fx+1
ω = {Ni, . . . , Nw, . . . , Nj} denote Nw's family at the start of

round x+ 1, so c ≤ i ≤ w ≤ j < y (where the �rst inequality is due to Statement (a)). Notie

that for every i ≤ l ≤ y, the only possible e�etive height H̃l that an possibly hange in

round x is for l = b, in whih ase H̃x
b + 1 = H̃x+1

b . If i = w, then (using supersripts only

when neessary to speify the round):

∑j
l=w H̃l

j − w + 1
<

∑y
l=j+1 H̃l

y − j
≤

∑j
l=w H̃l

j − w + 1
, (51)

where the �rst inequality is Statement 2 of Lemma B.8 and the seond is Statement 1 of

Lemma B.8. Clearly, (51) is impossible, yielding the desired ontradition. If on the other

hand i < w, then (using supersripts only when neessary to speify the round):

∑j
l=w H̃l

j − w + 1
≤

∑w−1
l=i H̃x+1

l +
∑j

l=w H̃x
l

j − i + 1
≤

∑y
l=j+1 H̃l

y − j
≤

∑j
l=w H̃l

j − w + 1
, (52)

where the seond inequality is Statement 2 of Lemma B.8, the third is Statement 1 of Lemma

B.8, and the �rst omes from:

∑j
l=w H̃l

j − w + 1
≤

∑w−1
l=i H̃x+1

l

w − i
⇒

∑j
l=w H̃l

j − w + 1
≤

∑w−1
l=i H̃x+1

l +
∑j

l=w H̃x
l

j − i + 1
, (53)

where the �rst inequality is Statement 1 of Lemma B.8. Clearly, (52) is impossible, yielding

the desired ontradition.

Sublaim 2. If Fµ gets larger, then neessarily Nb will be in the same family as Nw and Ny

at the start of round x + 1.

Proof. Suppose not. Let Fx+1
ω = {Ni, . . . , Nw, . . . , Nj} denote Nw's family at the start of

round x + 1, so b < i ≤ w ≤ y ≤ j. Notie that for every i ≤ l ≤ y, sine b < i, the e�etive

height H̃l does not hange. If i = w, then sine we are assuming Fµ grows, we have j > y,

and:

∑y
l=w H̃l

y − w + 1
<

∑j
l=y+1 H̃l

j − y
≤

∑y
l=w H̃l

y − w + 1
, (54)

where the �rst inequality is Statement 2 of Lemma B.8 and the seond is Statement 1 of

Lemma B.8. Clearly, (54) is impossible, yielding the desired ontradition. If on the other

hand i < w and j > y, then:

∑w−1
l=i H̃l

w − i
<

∑y
l=w H̃l

y − w + 1
<

∑j
l=y+1 H̃l

j − y
, (55)
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where the �rst inequality is from Lemma B.10, and the seond is from Statement 1 of Lemma

B.8. But then (55) implies:

∑w−1
l=i H̃l +

∑y
l=w H̃x

l

y − i + 1
<

∑j
l=y+1 H̃l

j − y
, (56)

whih ontradits Statement 1 of Lemma B.8. Finally, if i < w and j = y, then:

∑w−1
l=i H̃l

w − i
<

∑y
l=w H̃l

y − w + 1
, (57)

whih ontradits Statement 1 of Lemma B.8.

Cases 3 and 4 follow analogous arguments. �

B.5 Statement and Proof of Fat that Slide has Competitive Ratio 1/n

Lemma B.15. Suppose at the start of round x, there exists nodes {Nx
i , Nx

i+1, . . . , N
x
j } suh that

Hx
i = · · · = Hx

j . Then under any permutation of the indies σ : {i, i + 1, . . . , j} → {i, i + 1, . . . , j},
we have that:

j∑

k=i

H̃x
k =

j∑

k=i

max(0,Hx
k − (k − 1)C/n) =

j∑

k=i

max(0,Hx
σ(k) − (k − 1)C/n) (58)

In partiular, the value for

∑j
k=i H̃

x
k will not hange if we re-index the nodes {Ni, . . . , Nj} in any

arbitrary manner.

Proof. This is immediate from the hypothesis that Hx
i = Hx

i+1 = · · · = Hx
j . �

Lemma B.16. Suppose that in some round x, Na transfers a paket to Nb in the Slide protool. Let

Fβ denote Nb's family and Fα denote Na's family. Then either there is exatly one node Nb′ ∈ Fβ

suh that ϕb′ inreases by one, or ϕN does not hange for every N ∈ Fβ . Similarly, either there is

exatly one node Na′ ∈ Fα suh that ϕa′
dereases by one, or ϕN does not hange for every N ∈ Fα.

No other node N ∈ G will have ϕN hange as a result of this paket transfer.

Proof. If Nb's e�etual height H̃b does not inrease as a result of the paket transfer (e.g. the `0' in

the maximum statement of (34) dominates), then Fβ 's umulative e�etual height does not hange,

and as a result, the potential ϕ of all nodes in Fβ remains unhanged. If on the other hand B's

e�etual height does inrease, then this will raise the umulative e�etual height H̃Fβ
by one, and

this will be absorbed by some node in F−
. A similar argument works with respet to Na in Fα.

The last statement of the lemma follows from Lemma B.4. �

We are now ready to prove the main lemma that will allow us to argue that the Slide protool

has ompetitive ratio 1/n. To �x notation, for any internal node N , let HP ′

N denote the number of

pakets p′ ∈ ZP ′

2 that N is urrently storing. Reall the de�nition of Φ (see De�nition B.5); we will

distribute the overall potential Φ between all the families, and show that with the rules regarding

hanges in Φ, the potential of a family is always positive. Namely:
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Lemma B.17. For every round x and for all families F that are present at the start of x:

Φ ≥
∑

F

max




∑

N∈F−

C − HP ′

N ,
∑

N∈F+

HP ′

N


 ≥ 0 (59)

Proof. We prove this based on indution on the round x. The lemma is learly true at the outset of

the protool, when Φ = ΦF = 0, and all nodes are in the same family, sine all nodes have height

zero. Suppose that at the start of round x = E(Na, Nb), (59) is satis�ed. We show that no matter

what happens in round x, (59) will remain satis�ed at the start of round x + 1.

Case 1: Neither P nor P ′
transfer a paket. In this ase, families will not hange (Lemma B.13), and

no pakets in ZP ′

2 move, so there will be no hanges to either side of (59).

Case 2: P ′
transfers a paket during x, but P does not. If the paket p′ transferred by P ′

is in ZP ′

1 ,

then neither side of (59) will hange. So suppose p′ ∈ ZP ′

2 . Note that in Case 1, Na and Nb are in

the same family, all it F (Sine Slide does not transfer a paket, we have |Ha − Hb| < C/n, and

see Lemma B.12).

• If Na and Nb are in F+
, then ϕa = ϕb, so ϕp′ does not hange. In partiular, neither side of

(59) hanges in this ase. The same is true if Na and Nb are both in F−

• If Na ∈ F+
and Nb ∈ F−

, then the hange on the left-hand side of (59) is -1 (sine ∆ϕp′ = −1),

whih mathes the hange on the right-hand side of (59) (sine HP ′

b inreases by one, and

HP ′

a dereases by one). If instead Na ∈ F−
and Nb ∈ F+

, then similar reasoning shows that

the hange of both sides of (59) is +1.

Case 3: P transfers a paket from Na to Nb in round x. Notie that this ase is not onerned with

whether or not P ′
also transfers a paket, as suh a paket would neessarily be in ZP ′

1 (by de�nition),

and hene this paket movement in P ′
will not a�et either side of (59). Also, without loss of

generality Na is the sending node and Nb is the reeiving node. By Lemma B.14, there are 4 ases

we must onsider:

Case 3A: H̃b and H̃a do not hange. Then by Lemma B.14, there will be no re-struturing of families

between rounds x and x + 1. Consequently, if Fβ denotes Nb's family and Fα denotes Na's family

(possible α = β), then for all other families, (59) will remain valid. Also, ϕN does not hange for

any N ∈ Fβ (similarly for N ∈ Fα) sine H̃b and H̃a do not hange. Therefore, the right-hand side

of (59) also will not hange for Fβ and Fα, and the only hange in the left-hand side omes from

the inrease of 4C to Φ (see Rule 2 of De�nition B.5), whih an be divided arbitrarily among the

families {F}, and this will only help (59).

Case 3B: H̃b inreases by one, but H̃a does not hange. Let Fβ = {Nc, . . . , Nb, . . . , Nd} for some c ≤
b ≤ d. By Lemma B.14, there exist integers r, s ≥ 0 and indies {k1, . . . , kr} and {l1, . . . , ls} suh
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that c ≤ k1 < · · · < kr ≤ b ≤ d < l1 < · · · < ls and:

Families at the start of x Families at the start of x

Fβ = {Nc, . . . , Nb, . . . , Nd} F̂β = {Nc, . . . , Nk1−1}

Fβ+1 = {Nd+1, . . . , Nl1−1} F̂β+1 = {Nk1 , . . . , Nk2−1}

Fβ+2 = {Nl1 , . . . , Nl2−1} F̂β+2 = {Nk2 , . . . , Nk3−1}
.

.

.

.

.

.

Fβ+s = {Nls−1 , . . . , Nls−1} F̂β+r−1 = {Nkr−1 , . . . , Nkr−1}

F̂β+r = {Nkr
, . . . , Nls−1}

and no other families hange.

By Lemma B.16, there is only one node N ∈ F−
β for whih ϕN inreases by one as a result

of the paket transfer. Although Fβ will hange in the manner desribed by the table above, by

Lemma B.4, the number of nodes N ∈ G with ϕN = ⌊〈H̃Fβ
〉⌋ (respetively ϕN = ⌊〈H̃Fβ

〉⌋) will not
hange (aside from the single node N ′

for whih ϕN ′
inreases by one, as guaranteed by Lemma

B.16), although the spei� nodes in F+
and F−

may vary. A simple omputation ensures that the

right-hand side of (59) hanges in the exat same way as the left-hand side of (59) whenever any

two nodes in F swap plaes (in F+
and F−

). Therefore, we may assume without loss of generality

that there is exatly one node N ′ ∈ F−
β for whih ϕN ′

inreases by one as a result of the paket

transfer, and for all other nodes N ∈ G, ϕN does not hange between the start of x and x + 1.

For eah 0 ≤ i ≤ r and 0 ≤ j ≤ s, de�ne the following quantities:

Families at the start of x Families at the start of x

Xi =
∑

N∈F̂−

β+i

(C − HP ′

N ) Xj =
∑

N∈F−

β+j
(C − HP ′

N )

Yi =
∑

N∈F̂+
β+i

HP ′

N Yj =
∑

N∈F+
β+j

HP ′

N

Ai = |F̂+
β+i| Ai = |F+

β+i|

Bi = |F̂−
β+i| Bi = |F−

β+i|

(60)

Also de�ne F∗ = F̂β+r ∪ Fβ , and:

µ =
∑

N∈F̂−
∗

(C − HP ′

N ) ν =
∑

N∈F+
∗

HP ′

N α = |F̂+
∗ | and β = |F−

∗ | (61)

By the indution hypothesis, we have that at the start of round x:

s∑

j=0

ΦFβ+j
≥

s∑

j=0

(
AjXj + BjYj

Aj + Bj

)
(62)

In addition to the above potential, we also have that Φ inreases by 4C as a result of the paket

transfer in Slide. Meanwhile, the goal is to show that at the start of round x + 1:

r∑

i=0

Φ
F̂β+i

≥
r∑

i=0

(
AiXi + BiYi

Ai + Bi

)
(63)

Putting all these fats together, we want to show that:

4C +

s∑

j=0

(
AjXj + BjYj

Aj + Bj

)
≥

r∑

i=0

(
AiXi + BiYi

Ai + Bi

)
(64)
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We demonstrate in the remainder of the proof how to show (64) is satis�ed.

First look at the term i = r for the right-hand side of (64):

ArXr + BrYr

Ar + Br
=

(α + 1 +
∑s

j=1 Aj)(µ +
∑s

j=1 Xj − (C − HP ′

N ′))

Ar + Br

+
(β − 1 +

∑s
j=1 Bj)(ν + HP ′

N ′ +
∑s

j=1 Yj)

Ar + Br

=
α + 1

α + β
(µ − (C − HP ′

N ′)) +

s∑

j=1

Xj
Aj

Aj + Bj
+

β − 1

α + β
(ν + HP ′

N ′) +

s∑

j=1

Yj
Bj

Aj + Bj

+ (Y1 −X1)

(
α

∑
Bj − β

∑
Aj

(α + β)(Ar + Br)

)

+ · · · + (Ys −Xs)

(
As(β +

∑
Bj) − Bs(α +

∑
Aj)

(As + Bs)(Ar + Br)

)

< C +
α + 1

α + β
(µ − (C − HP ′

N ′)) +
s∑

j=1

Xj
Aj

Aj + Bj
+

β − 1

α + β
(ν + HP ′

N ′) +
s∑

j=1

Yj
Bj

Aj + Bj

We have used above that (by Lemmas B.8 and Corollary B.9):

α

α + β
<

A1

A1 + B1
< · · · <

As

As + Bs
<

1 + α + A1 + · · · + As

α + β +
∑s

j=1(Aj + Bj)
(65)

Meanwhile, we look at the left-hand side of (64) for the j = 0 term:

A0X0 + B0Y0

A0 + B0
=

(α +
∑r−1

i=0 Ai)(µ +
∑r−1

i=0 Xi

A0 + B0

+
(β +

∑r−1
i=0 Bi)(ν +

∑r−1
i=0 Yi)

A0 + B0

≥ µ

(
α

α + β

)
+ ν

(
β

α + β

)
−

µ +
∑r−1

i=0 Xi

A0 + B0

+

r−1∑

i=0

AiXi + BiYi

Ai + Bi
, (66)

where we have used for the inequality above:

A0

A0 + B0
<

A0

A0 + B0
<

A1

A1 + B1
< · · · <

Ar−1

Ar−1 + Br−1
<

1 + α +
∑r−1

i=0 Ai

α + β +
∑r−1

i=0 (Ai + Bi)
, (67)

with the inequalities following from Lemma B.8 and Corollary B.9. Putting this all together, we

have that:

4C +
s∑

j=0

(
AjXj + BjYj

Aj + Bj

)
≥

r∑

i=0

(
AiXi + BiYi

Ai + Bi

)

whih is (64).

The other ases are proven similarly. �
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We state as an immediate onsequene the lemma we needed in the disussion of Setion 4:

Lemma B.18. At all times:

|ZP ′

2 | ≤ 2nY P ≤ 2n|ZP | + 2n2C (68)

C Competitive Analysis of the Slide+ Protool

C.1 Desription of Slide+

Reall that we model an asynhronous network via a sheduling adversary that maintains a bu�er

of requests of the form (u, v, p), whih is a request from node u to send paket p to node v. The

sheduling adversary proeeds in a sequene of honored edges (alled rounds), whereby we will mean

the following when we talk about an edge E(u, v) being honored by the adversary:

Step 1. From its bu�er of requests, the adversary selets one request of form (u, v, p) and

delivers p to v, and also selets one request of form (v, u, p′) and delivers p′ to u. If there are

no requests (u, v, p) (resp. (v, u, p′)), then the adversary sets p (resp. p′) to ⊥.

Step 2. Node u (resp. v) sends new requests to the adversary of form (u, v, p) (resp. (v, u, p′)).

Note that the two above-mentioned ations take plae sequentially, so that the requests queued

to the adversary in Step 2 an depend on the pakets reeived in Step 1, but requests formulated

during Step 2 of some round E(u, v) will not be delivered until edge E(u, v) is honored again (at

the earliest). Sine nodes in the network only send/reeive pakets when they are at one end of an

edge urrently being honored, nodes will not do anything exept when they are a part of an honored

edge. Thus, in desribing Slide+, we need only desribe what a node u will do when it is part of an

honored edge E(u, v). Reall that C denotes the size of eah node's memory

19

, and for simpliity

we will assume that C/n ∈ N, and also for Slide+, we will require C ≥ 8n2
.

Slide+ Protool Desription.

During honored edge E(u, v), let (v, u, (p′, h′)) denote the message that u reeives from v in Step

1 of the round (via the sheduling adversary). Also, u has reorded the request (u, v, (p, h)) that

it made during Step 2 of the previous round in whih E(u, v) was honored; note that v will be

reeiving this message during Step 1 of the urrent round.

1. If u is the Sender, then:

(a) If h < C, then u deletes paket p from his input stream {p1, p2, . . . } (and ignores the

reeived paket p′), and then proeeds to Step ().

(b) If h′ ≥ C, then u keeps p (and ignores the reeived paket p′), and proeeds to Step ().

() The Sender �nds the next paket pi ∈ {p1, p2, . . . } that has not been deleted and is not

urrently an outstanding request already sent to the adversary, and sends the request

(u, v, (pi, C + C
n

+ n)) to the adversary. Also, u will update the fat that the urrent

message request sent to v is (u, v, (pi, C + C
n

+ n)).

19

For simpliity, we assume that all nodes have the same memory bound, although our argument an be readily

extended to handle the more general ase.
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2. If u is the Reeiver, then u sends the request (u, v, (⊥, −C
n

− 2n + 1)) to the adversary. Mean-

while, if p′ 6= ⊥, then u stores/outputs p′ as a paket suessfully reeived.

3. If u is any internal node, then:

(a) If h ≥ h′ +(C/n+2n), then u will ignore p′, delete p and the �ghost paket assoiated to

p� (see Step 3d below), and slide down any pakets/ghost pakets to �ll any gaps reated.

Also, u will update his height h = h − 1, and proeed to Step 3d below.

(b) If h ≤ h′ − (C/n + 2n), then u will keep p, and also store p′ in the stak loation that u

had been storing the �ghost paket� for p (see Step 3d below), deleting the ghost paket

in the proess. Also, u will update his height h = h + 1, and proeed to Step 3d below.

() If |h − h′| < C/n + 2n, then u will ignore paket p′ and keep p, but delete the �ghost

paket� assoiated to p, and then proeed to Step 3d.

(d) Node u will searh its stak for the highest paket p′′ (not inluding ghost pakets) that

it has not already ommitted in an outstanding request to the adversary. It then sends

the request (u, v, (p′′, h)) to the adversary. Additionally, u will reate a �ghost paket

assoiated to the paket/request p′′� that it has just sent the adversary. This �ghost

paket� will assume the �rst un-�lled spot in u's memory stak. Finally, u will update

the fat that the urrent message request sent to v is (u, v, (p′′, h)).

In the following setion, we will prove that the above routing rules are ompatible with memory

requirements (e.g. that Steps 3b and 3d do not require a node to store more than C (ghost) pakets),

as well as prove that Slide+ enjoys ompetitive ratio 1/n.

C.2 Analysis of Slide+

Before providing the full details of the proof that Slide+ enjoys ompetitive ratio 1/n, we will

provide a brief high-level desription of how the proof works. First, notie that the main tehnial

hallenge in moving from the semi-asynhronous model of Setion 4 to the fully asynhronous model

is that nodes an no longer make routing deisions based on urrent information. Indeed, the urrent

state of a node may hange drastially from the time it makes a request in Step 2 of some round

E(u, v) and the time the request is �nally sent by the adversary in Step 1 of the next round in

whih E(u, v) is honored. Sine the Slide protool uses the urrent height of a node to make routing

deisions, the fat that the height of a node may hange substantially between the time a paket

request is made and the time the reeiving node reeives the paket is an issue that must be resolved.

The above desribed protool handles this issue by allotting �ghost pakets� in Step 3d (this

will ensure there is always room to store a paket sent from an honest neighbor), as well as having

nodes make routing deisions based on old height onsiderations. In partiular, Steps 1-3 above

ditate what u should do based on the height that u and v had during the last time E(u, v) was

honored. Therefore, although this information may have beome outdated sine the last time u and

v ommuniated with eah other, at least the deisions will be made onsistently, both in the sense

that the heights being ompared are synhronized (i.e. they are from the same time as eah other,

although possible now out-dated), and in the sense that the nodes will know what the other will

do in terms of whether or not it will keep the paket just sent/reeived. This last fat is ruial to

prevent paket deletion and dupliation from ourring.

The proof will follow the main struture of the proof provided for the semi-asynhronous Slide

protool, with one additional ategory to aount for paket transferring deisions that were based
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on signi�antly outdated height information.

Theorem C.1. The Slide+ protool ahieves ompetitive ratio 1/n in any distributed, asynhronous,

bounded memory network with dynami topology (and no minimal onnetivity assumptions). More

spei�ally, for any adversary/o�-line protool pair (A,P ′), if P denotes the Slide+ protool, C

denotes the apaity (memory bound) of eah node, and ZP
x (resp. ZP ′

x ) denotes the number of

pakets reeived by protool P (resp. P ′) as of round x, then for all rounds x:

ZP ′

x ≤ 8nZP + 8n2C (69)

Proof. Fix any adversary/o�-line protool pair (A,P ′), and let P denote the Slide+ protool and

ZP
x and ZP ′

x as in the statement of the theorem. Motivated by the proof in the semi-asynhronous

setting, we imagine a virtual world in whih the two protools are run simultaneously in the same

network. We split ZP ′

x into the following three subsets (we will heneforth suppress the index

referening the round x):

1. ZP ′

1 onsists of pakets p′ ∈ ZP ′

for whih there exists at least one round E(u, v) suh that

both p′ was transferred by P ′
and some paket p was transferred by P.20

2. ZP ′

2 onsists of pakets p′ ∈ ZP ′

that were never transferred alongside a paket in P as in

1 above, and suh that every time p′ was transferred between two nodes u and v during a

round E(u, v), the heights H and h that were used by u and v in determining whether to

store/delete the pakets delivered by the adversary during Step 1 of E(u, v) (see protool

desription above) were eah within n of the urrent heights of u and v.

3. ZP ′

3 = ZP ′

\ (ZP ′

1 ∪ ZP ′

2 ).

Clearly, |ZP ′

| = |ZP ′

1 | + |ZP ′

2 | + |ZP ′

3 |, and hene the theorem follows from Lemmas C.3, C.4, and

C.5 below. �

We will need the following trivial observation, whih follows immediately from the desription

of the Slide+ protool in Setion C.1.

Observation 2. At all times, an internal node u has at most n ghost pakets and at most n

outstanding requests (one for eah of its edges v).

Proof. Rules 1() and 3(d) only allow a node to submit a single request for eah round the node

is part of an honored edge, and this request is then delivered by the adversary in Step 1 of the

next round in whih the edge is honored. Also, Rules 3(a-) guarantee that the ghost paket

orresponding to the urrent honored edge will be deleted before another one is reated in Rule

3(d). �

In order to bound |ZP ′

1 |, we will need to bound the number of times any paket p an be

transferred by the Slide+ protool. In the asynhronous Slide protool of Setion 4, we showed that

any paket p ould be transferred at most 2n times, as during every paket transfer in Slide, the

paket must drop in height by at least C/n− 1. At �rst glane, it might seem that we annot make

the same argument in the fully asynhronous setting sine the Slide+ protool is making routing

20

Note that we make no ondition that the two pakets traveled in the same diretion.
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deisions based on (potentially) outdated height information. However, the introdution of �ghost

pakets� will allow us to retain this quality. Indeed, the purpose of utilizing ghost pakets is to

antiipate future paket transfers and reserve spots in a node's memory stak at the appropriate

height, allowing us to argue that even if nodes nodes are using out-dated height information, pakets

will still ��ow downhill� from Sender to Reeiver. This is aptured in the following lemma.

Lemma C.2. Let Y P
x denote the the set of pakets inserted by P as of round x. Also let TP

x denote

the set of paket transfers that have ourred in P as of round x. Then any paket in the Slide+

protool is transferred at most 2n times.

21

In partiular, |TP
x | ≤ 2n|Y P

x | ≤ 2n(|ZP
x | + nC).

Proof. We show that anytime a paket is transferred in the Slide+ protool, the paket's height in

the new bu�er is neessarily at least C/n− 4n lower than its height in the old bu�er. Sine pakets

only move within bu�ers when they are reeived or sent (or when they slide down as in 3(a)), and

sine

22 2n(C/n− 4n) > C, the lemma will follow. Fix a paket p, and onsider a round x = E(u, v)

in whih p is transferred from u to v. In partiular, it must have been that the previous round

x′ < x in whih E(u, v) was honored, u sent some request of form (u, v, (p, h)) to the adversary in

Step 2. Notie that when u seleted p to form a part of its request as in 3(d), sine u had height

h and u has at most n − 1 pakets already ommitted as an outstanding request (Observation 2),

p must have height at least h − n in u's bu�er. Meanwhile, let (v, u, (p′, h′)) denote the request

that v sent to the adversary in Step 2 of round x′
. Notie that in 3(d), v reserved a position in its

bu�er (the �ghost paket�), into whih p will be inserted when it is reeived in round x. Sine the

ghost paket is assigned the topmost unoupied (by paket or ghost paket) position in v's bu�er,

we have that p will have height no bigger than h′ + n. Therefore, p will drop in height by at least

(h−n)− (h′ + n) = h−h′ − 2n when it is transferred from u to v. Sine the riterion for aepting

a new paket (see 3(d)) demands that h − h′ ≥ C/n − 2n, we have that p will neessarily drop in

height by at least C/n − 4n when it is transferred. �

Notie that Lemma C.2 is valid regardless of how long a request (u, v, (p, h)) has been queued

in the adversary's bu�er, and also of how u and v's staks may have hanged in the meantime. We

are now ready to state and prove the �rst requisite bound:

Lemma C.3. |ZP ′

1 | ≤ 2n|ZP | + 2n2C

Proof. By de�nition, |ZP ′

1 | ≤ |TP |, and the latter is bounded by 2n|ZP |+2n2C by Lemma C.2. �

Lemma C.4. |ZP ′

2 | ≤ 2n|ZP | + 2n2C

Proof. This bound follows the same reasoning as the proof of Lemma B.18. Suppose that paket

p′ ∈ ZP ′

2 is transferred by P ′
from u to v in round x. By de�nition of ZP ′

2 , Slide+ did not transfer

a paket, and thus (with the notation as in Rule 3(d) for Slide+) |h − h′| < C/n − 2n. Also by

de�nition of ZP ′

2 , we have that v's height in round x is within n of h′
, and u's height in round

x is within n of h. Consequently, u's height in round x must be within C/n of v's height. Then

if we de�ne families the same way as in the proof for the semi-synhronous Slide protool (see

Setion B), by Lemma B.12, u and v must be in the same family at the start of x. Indeed, all

the lemmas and proofs of Setion B will remain valid

23

, and hene Lemma B.18, whih states that

|ZP ′

2 | ≤ 2n|ZP | + 2n2C, remains valid. �

21

This mathes the bound for the semi-asynhronous Slide protool of Setion 4.

22

For Slide+, we have demanded that C > 8n2
.

23

The only neessary modi�ation is to onsider the present de�nition of ZP
′

2 instead of the one used in Setion B
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Lemma C.5. |ZP ′

3 | ≤ 4n|ZP | + 4n2C

Proof. Fix a paket p′ ∈ ZP ′

3 . By de�nition of ZP ′

3 , there exists some round xp′ = E(u, v) in whih

p′ was transferred from u to v, where either u's height or v's height has hanged by at least n sine

the previous round x′
p′ < x in whih E(u, v) was honored. Let Sp′ ⊆ TP

denote n of these paket

transfers, where eah paket transfer in Sp′ orresponds to a paket sent (or reeived) by u (or v),

and took plae between x′
p′ and xp′ .

Observation. For any paket transfer in Slide+, there are at most 2n pakets p′ ∈ ZP ′

3 for

whih the paket transfer appears in Sp′ .

Proof. Consider any round x′ = E(u, v) in whih a paket is transferred from u to v by Slide+,

and refer to this spei� paket transfer as tx′
. Then for eah edge of u and eah edge of v

and for any p′ ∈ ZP ′

3 , there an be at most one round xp′ > x′
for whih tx′ ∈ Sp′ . After all,

one a given edge of u or v, say for example E(u,w), transfers a paket p′ ∈ ZP ′

3 in round

xp′ > x′
, the heights of both u and w are updated, and there an never be another p′′ ∈ ZP ′

3

and later round xp′′ > xp′ suh that xp′′ = E(u,w) and tx′ ∈ Sp′′ . Therefore, tx′
an appear

in at most 2n sets of form Sp′ .

Sine |Sp′ | = n for eah p′ ∈ ZP ′

3 , we have that:

∑

p′∈ZP′

3

|Sp′ | = n|ZP ′

3 | (70)

Now sine for any given paket transfer tx ∈ TP
there an be at most 2n di�erent values of p′ ∈ ZP ′

3

suh that tx ∈ Sp′ , we have that:

⋃

p′∈ZP′

3

Sp′ ≥
n|ZP ′

3 |

2n (71)

But ∪
p′∈ZP′

3
Sp′ ⊆ TP

, so:

|TP | ≥ | ∪
p′∈ZP′

3
Sp′ | ≥

|ZP ′

3 |

2
(72)

In partiular, |ZP ′

3 | ≤ 2|TP | ≤ 4nZP + 4n2C, where the seond inequality is Lemma C.2. �

D Pseudo-Code and Proofs for Protool Seure Against

Maliious Adversary

D.1 Pseudo-Code

In this setion we present pseudo-ode for implementing our protool that is seure against

a oordinated attak of the edge-sheduling and node-ontrolling adversaries. Formal proofs of

seurity, referring to line numbers of the pseudo-ode of the following four �gures, are in the next

setion.
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Variable and Notation De�nitions ## Eah of the below variables are transmission dependent

C = Capaity of eah (internal) node's bu�er (i.e. number of odeword pakets a node an store)

B = Capaity of eah node to hold extraneous (broadast) information

D = 4nC
λ

= Number of pakets per odeword EN = List of Eliminated nodes

Y = Set of pakets inserted by sender Z = Set of pakets reeived by reeiver

Pu,v = Net no. of p's to ross E(u, v) [p]
u,v

= Net no. p rossed E(u, v)

Φu,v = Net derease in potential as a result of paket transfers from u to v
Φu = Total potential drop aused by paket transfers aross all edges adjaent to u
Gp = Ghost paket assoiated to paket p (See Figure Internal Node Create Next Request)

Hu = Height of u's bu�er; i.e. the number of odeword pakets u is urrently storing

BBu = u's Broadast Bu�er BLu = u's version of the Blaklist

DBs = Sender's Data Bu�er, used to store status report parels that will help eliminate orrupt nodes

Figure 1: De�nition of Variables

Routing Rules for Node u ∈ G
01 Input:

02 (v, u, (p′, H ′), (q′1, q
′
2), (α

′, σ(α′))) ## Reeived From v (via A)

03 (u, v, (p,H), (q1, q2), (α, σ(α))) ## Previous request sent to v (via A)

04 DO:

05 Proess the parel q′1 as in Proess Parel below

06 If α = α′
, σ(α′) is valid, and v /∈ (ENu ∪ BLu)

07 If u = s and Ready(v) is true and H ′ < C: ## Insert Paket

08 Delete p from input stream {p1, p2, . . . }
09 Inrease Φs,v by the amount indiated by α
10 Inrease Ps,v, [p]s,v , and |Y | by one

11 Else If u = r and Ready(v) is true and p′ 6= ⊥: ## Reeive Paket

12 Store/output p′
as a paket suessfully reeived

13 Inrease Φr,v by the amount indiated by α
14 Derease Pr,v and [p]r,v by one and inrease |Z| by one

15 Else If u 6= r, s and Ready(v) is true and H ≥ H ′ + (C/n − 2n):## Send Paket

16 Delete p and Gp and Slide ## Slide down (ghost) pakets to �ll gaps

17 Inrease Φu,v and Φu by the amount indiated by α
18 Inrease Pu,v and [p]r,v by one, and set Hu = Hu − 1
19 Else If u 6= r, s and Ready(v) is true and H ≤ H ′ − (C/n − 2n):## Reeive Paket

20 Store p′
in loation oupied by Gp

21 Inrease Φu,v and Φu by the amount indiated by α
22 Derease Pu,v and [p]u,v by one and set Hu = Hu + 1
23 Send to A the returned value of Create Next Request

Figure 2: Routing Rules
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Proess Parel for Internal Nodes and Reeiver u
01 Input:

02 (q′1, q
′
2) ## Reeived From v (via A)

03 DO:

04 Store q′2 in BBu ## q′2 = Φw for some w. Replae old value, provided new value is larger

05 Add q′1 to BBu ## Also mark edge E(u, v) as having transmitted this information

06 If q′1 = ΩT

07 Clear outgoing, inoming, BLu, and BBu (exept status report parels)

08 Else If q′1 = w /∈ ENu denotes a node to eliminate

09 Add q′1 to ENu

10 Else If q′1 = w denotes a node to blaklist

11 Add q′1 to BLu

12 If w = u, Sign and Add n − 1 status report parels to BBu

13 ## Find reason u was blaklisted from SoT. For eah v ∈ G:

14 ## if ase F2, add Φu,v, if ase F3, add Pu,v, if ase (F4, p′), add [p′]u,v

15 If u = r and q′1 indiates T− 1 failed due to F2:

16 For eah v ∈ G, add Φw to BBr

Proess Parel for Sender

17 Input:

18 q′1 ## Reeived From v (via A)

19 DO:

20 Add q′1 to DBs

21 If q′1 is the last missing status report parel for some w ∈ BLs

22 Remove w from BLs, and add fat w /∈ BL to BBs

Figure 3: Rules For Proessing Broadast Information

D.2 High-Level Proofs Ideas for Competitive Analysis of Throughput

In this setion, we sketh the proof that our protool is n-ompetitive, leaving the rigorous

details to the next subsetion. As was done for analysis of Slide and Slide+, we use ompetitive

analysis to evaluate the throughput performane of our routing protool. To this end, let (A,P ′)

denote an adversary/o�-line protool pair for whih we ompare our routing protool P.

Theorem D.1. If at any time P ′
has reeived Θ(xn) messages, then P has reeived Ω((x − n2))

messages. Thus, if the number of messages x ∈ Ω(n2), then our protool has ompetitive ratio 1/n,

whih is optimal.

Proof. This follows as an immediate orollary to Lemmas D.3 and D.4 below. �

Lemma D.2. If a transmission fails as in F2-F4, as soon as the sender reeives all of the signed

ommuniations between all nodes, he will neessarily be able to identify a orrupt node.

Proof. Intuitively, a transmission fails as in ase F2 when a orrupt node is transferring pakets

against transfer rules (e.g. from smaller heights to larger heights, or when a orrupt node is dupli-

ating pakets). Both of these an be deteted by looking at the node's ommuniation with eah

of its (honest) neighbors, who have reorded the height di�erenes aused by eah paket trans-

fer. If a transmission ends as in ase F2, the sender will look for a node whose umulative height

drop is negative; this information is available through the Sig. 3 signed ommuniations (see above

setion).
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When a transmission fails as in ase F3, this means that there is a orrupt node that is deleting

pakets. The sender an identify suh a node u when he has reeived eah of the signed ommunia-

tions (Sig. 1) from eah of u's (honest) neighbors. Finally, transmission failure as in ase F4 means

there is a orrupt node that has dupliated some paket p. The sender an identify suh a node u

when he has reeived eah of the signed ommuniations (Sig. 2, orresponding to the paket p)

from eah of u's (honest) neighbors.

This lemma is proved rigorously in Appendix D.5. �

Lemma D.3. After a orrupt node has been eliminated (or at the outset of the protool) and before

the next orrupt node is eliminated, there an be at most n − 1 failed transmissions before the next

node an be eliminated. In partiular, there are at most n2
failed transmissions.

Proof. The intuition for the proof is that the blaklist fores orrupt nodes to return their signed

ommuniation to the sender if they want to further disrupt future transmissions. Then use Lemma

D.2 above to show that with the signed ommuniation, the sender an identify a orrupt node. A

rigorous proof is provided in Appendix D.4. �

Lemma D.4. For every message/odeword transmission, by the time the transmission ends as a

result of S1 or F2-F5, we have that the ideal o�ine protool P ′
has reeived at most O(n2C) pakets.

We will need the following de�nition for the proof:

De�nition D.5. A round t = E(u, v) of a transmission is wasted if u and v are honest nodes, and

they were not allowed to transfer a paket beause one (or both) of them was on the blaklist.

Proof Sketh of Lemma D.4. Let C ′
denote the number of pakets per odeword.

24

The struture

of the proof will be to show that if P ′
has reeived 3nC ′

pakets as of some round t, then neessarily

S1 or F2-F5 has ourred. To do this, we follow the proof of the ompetitive ratio for Slide and

Slide+ and imagine a virtual world in whih P and P ′
are run simultaneously. Let ZP ′

denote

the pakets delivered to the reeiver by P ′
, and let ZP ′

3 denote the subset of pakets that travelled

between two nodes during a wasted round. De�ne ZP ′

1 to be the subset of ZP ′

\ ZP ′

3 onsisting

of pakets p′ for whih there exists at least one round E(u, v) suh that both p′ and some paket

p ∈ Y P
were both transferred this round.

25

Set ZP ′

2 = ZP ′

\ (ZP ′

1 ∪ ZP ′

3 ). Also, let TP
t

denote

the number of paket transfers in P between two honest nodes as of round t. We begin with the

following observation, whih is analogous to the orresponding statements for Slide and Slide+ (see

e.g. Lemmas 4.1 and 4.2), and is proved in Appendix D.4:

Observation. |ZP ′

1 | ≤ TP
t

, |ZP ′

2 | ≤ TP
t

, and |ZP ′

3 | ≤ n4 + 2n3

Notie that sine TP
t

only takes into aount paket transfers between honest nodes, we have that

TP
t

≤ Y P ∗ C/(C/n) = nY P
, sine every paket starts at height at most C and drops in height

by at least ≈ C/n every time it is transferred. Therefore, the above observation together with the

assumption that 3nC ′
pakets have been reeived by P ′

say:

3nC ′ = |ZP ′

| = |ZP ′

1 | + |ZP ′

2 | + |ZP ′

3 | ≤ 2TP
t

+ n4 + 2n3 ⇒ TP
t

≥ λn2C2
(73)

24C′ = λnC is a onstant multiple of n times the bu�er-size C (the onstant λ depends on the error-orretion

rate).

25

Note that we make no ondition that the two pakets traveled in the same diretion.
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where in the last inequality we have used C ′ ≥ n3 + 2n2
and C ′ = λnC. Sine eah paket transfer

orresponds to a height di�erene of at least C/n between the honest nodes exhanging the paket,

(73) implies that honest nodes will have reorded a umulative height di�erene of λn2C2
, whih is

preisely the ondition for a transmission ending as in ase F2. See Appendix D.3 for details. �

D.3 Proof of Lemma D.4

In this setion, we prove the following lemma (whih is a formal restatement of Lemma D.4).

Before stating and proving this lemma, it will be onvenient to introdue new terminology and �x

notation:

De�nition D.6. We will say a node N ∈ G partiipated in transmission T if there was at least one

round in the transmission for whih w was not on the (sender's) blaklist. The sender's variable

that keeps trak of nodes partiipating in transmission T will be alled the partiipating list for

transmission T, denoted by ρT (updated at the end of failed transmissions on line 30 of Figure 4).

Also, we will refer to spei� line numbers for the pseudo-ode via (X.YY), where X refers to

the Figure number, and YY refers to the line number. Finally, let D denote the number of pakets

per odeword, and note that:

D =
nC

λ
, (74)

where λ is the error-rate of the error-orreting ode.

Lemma D.7. In any transmission T, |ZP ′

T
| ≤ 3nD. If the transmission was suessful (i.e. r sent

EoT parel �S1� on 4.14-15 and 4.20), then |ZP
T
| ≥ (1 − λ)D = O(nC).

We will prove Lemma D.7 via a sequene of Lemmas. First, reall from Setion 5 the reasons a

transmission may fail:

S1, F2, F4 Sender reeives End of Transmission (EoT) parel from the reeiver (4.25, 4.28)

F3 Sender has inserted D pakets sine the end of Ti−1 (4.28)

F5 Sender reeives enough information to eliminate a new orrupt node (4.22)

In order to prove Lemma D.7, we will show that if there is a transmission in whih the ideal o�-

line protool P ′
has reeived at least 3nD pakets, then neessarily the sender had reeived the

EoT parel from R indiating �F2,� a ontradition (the transmission should have ended). In other

words, we show that if a transmission does not end as on (4.22) or (4.28), then neessarily the

transmission will end as on (4.25) before P ′
is able to reeive more than 3nD pakets.

Lemma D.8. If the reeiver forms any EoT parel in round t of some transmission and P ′
has

inserted Z = ZP ′

t
pakets at this point, then the sender will neessarily reeive EoT before P ′

is able

to reeive n2C + nC more pakets.

Proof. We will show that there an be at most n2C paket insertions by P ′
before the EoT parel

neessarily has reahed the sender, from whih the lemma follows sine there an be at most nC

pakets in the bu�ers of the honest nodes at round t. Thus, the lemma follows immediately from

Lemma D.15 in Appendix D.4. �
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By the above lemma, it remains to show that if at any time t we have that |ZP ′

t
| ≥ 3nD −

n2C − nC, then neessarily R will enter lines 16-17 of Figure 4. First, we will split ZP ′

into three

disjoint subsets ZP ′

= ZP ′

1 ∪ZP ′

2 ∪ZP ′

3 , whih were desribed in Setion 5, but are now restated in

terms of the pseudo-ode.

De�nition D.9. We will say a round t = E(u, v) of a transmission is wasted if u and v are honest

nodes, and Ready(u) returned false for v or Ready(v) returned false for u (see lines 2.15, 2.17, and

4.41-43).

Intuitively, a round is wasted if two honest nodes would have transferred a paket (based on

their relative heights), but they were not allowed to beause they had not yet transmitted requisite

broadast information aross E(u, v), or beause one was on the other's blaklist.

We an view the sheduling adversary A as simply a shedule (or order) of edges that the

adversary will honor. We will imagine a virtual world, in whih P and P ′
are run simultaneously.

Let ZP ′

3 denote the set of pakets in ZP ′

that travelled between two nodes during a wasted round.

De�ne

26 ZP ′

1 to be the subset of ZP ′

\ ZP ′

3 onsisting of pakets p′ for whih there exists at least

one round E(u, v) suh that both p′ and some paket p ∈ Y P
were both transferred this round.

27

Set ZP ′

2 = ZP ′

\ (ZP ′

1 ∪ZP ′

3 ). Also, let TP
t

denote the number of paket transfers in P between two

honest nodes (as on lines 15-22 of Figure 2) as of round t.

Lemma D.10. For any round t: |ZP ′

1,t| ≤ TP
t

and |ZP ′

2,t| ≤ TP
t

Proof. These are Lemmas D.16 and D.17 in Appendix D.4. �

For eah paket p′ ∈ ZP ′

3 , we an �nd the �rst wasted round tp′ in whih p′ was transferred

between two nodes. De�ne W := {tp′ |p
′ ∈ ZP ′

3 }. Clearly, we have:

|ZP ′

3 | = |W| (75)

Lemma D.11. For any transmission: |W| ≤ n4 + 2n3

Proof. This is re-stated in Appendix D.4. �

Lemma D.12. |ZP ′

| ≤ 2TP + n4 + 2n3

Proof. Follows immediately from Lemmas D.16, D.17, and D.11, and (75). �

Notie that although every paket transfer in P will ause a drop in potential, it may take some

time before a node's umulative potential drop for the urrent transmission reahes the reeiver,

sine only one node's potential is transferred aross an edge during a given round (4.08). In order

to aount for this, we will utilize the following notation. For any honest node u, let Uu ⊆ ZP ′

denote the set of pakets that have reahed R (in P ′
) and travelled through u at some point en

route to R. Let Uu,2 ⊆ Uu denote the subset onsisting of the (at most) n3
pakets that left u (for

the last time) latest (hronologially), and let Uu,1 = Uu \ Uu,2. If Uu,1 6= ∅, let tu denote the latest

round suh that some p′ ∈ Uu,1 last left u (otherwise set tu = 0).

Lemma D.13. For any honest node u, R's stored value for Φu is at least as urrent as tu.

26

If we wish to emphasize the round, we will write ZP
′

1,t.

27

Note that we make no ondition that the two pakets traveled in the same diretion.
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Proof. This is re-stated and proved in Appendix D.4. �

We are �nally ready to put all the piees together to prove Lemma D.7.

Proof of Lemma D.7. Suppose for the sake of ontradition that there is some transmission for

whih |ZP ′

| = 3nD and the transmission has not yet ended. By Lemma D.17, we have that if t

denotes the round when |ZP ′

| = 3nD − (n2C + nC), then as of round t:

∑

u∈G

Φu < CD (76)

where Φu denotes the value of this variable stored by R as of round t. Meanwhile, by Lemma D.12,

we have that:

TP
t

≥ (1/2)(|ZP ′

t
| − n4 − 2n3) (77)

Sine paket transfers in P orrespond to a potential drop of at least C/n, even if we ignore

ontributions to potential drop from the transfers of eah of the (up to) n3
pakets in Uu,2 for eah

u, by Lemma D.13 the reeiver has reorded as of round t:

∑

u∈G

Φu ≥ (C/n)(TP
t

)

≥ (C/n)(1/2)((|ZP ′

t
| − n4) − n4 − 2n3)

≥ (C/n)(1/2)((3nD − n2C − nC)− 2n4 − 2n3)

≥ (C/n)(1/2)(3nD − nD)

= CD (78)

where on the seond line from ZP ′

t
we have subtrated out the up to n4

pakets in Uu,2 for eah

u, and for the third time we used that nD ≥ n(n + 1)(2n2 + C) (sine C ≥ 8n2
, λ ≤ 1/2, and

D = nC
λ
). This ontradits (76), ompleting the proof. �

D.4 Misellaneous Lemmas and Proofs

We restate and prove the lemmas used in the previous subsetions. The �rst is a formal re-

statement of Lemma D.3.

Lemma D.14. After a orrupt node has been eliminated (or at the outset of the protool) and before

the next orrupt node is eliminated, there an be at most n−1 failed transmissions {T1, . . . , Tn} before
there is neessarily some index 1 ≤ i ≤ n suh that the sender has the omplete status report from

every node on ρTi
.

Proof. We �rst state a simple observation:

Observation. If w ∈ ρT, then the sender is not missing any status report parel for w for

any transmission prior to transmission T. In other words, there is no transmission T
′ < T suh

that w was blaklisted at the end of T
′
(as in Sender Create Next Request), and the sender is

still missing status report information from w at the end of T.
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Proof. Nodes are added to the blaklist whenever they were partiipating in a transmission

that failed (see as in Sender Create Next Request). Nodes are removed from the blaklist

whenever the sender reeives all of the status report information he requested of them (3.21-

22), or when a node is eliminated (4.22-24), in whih ase the sender no longer needs status

reports from nodes for old failed transmissions

28

(and in partiular, this ase falls outside the

hypotheses of the Lemma). Sine ρT is de�ned as non-blaklisted nodes, the fat that w ∈ ρT
implies that w was not on the sender's blaklist at the end of T (but before BLT is reated

on 4.30). Also, notie that (4.30) guarantees that all nodes not already on the sender's

blaklist will be put on the blaklist if the transmission fails. Therefore, in the ase that w

has not been blaklisted sine the last node was eliminated, then there have not been any

failed transmissions, and hene the sender is not missing any status reports. Otherwise, let

T
′ < T denote the last time w was put on the blaklist, as on (4.30). In order for w to be put

on ρT on line (4.30) of transmission T, it must have been removed from the blaklist at some

point between T
′
and the end of T. In this ase, the remarks at the start of the proof of this

observation indiate the sender is not missing any status reports from w. �

Suppose now for the sake of ontradition that we have reahed the end of transmission Tn, whih

marks the nth
transmission {T1, . . . , Tn} suh that for eah of these n failed transmissions, the sender

does not have the omplete status report from at least one of the nodes that partiipated in the

transmission. De�ne the set S to be the set of nodes that were neessarily not on ρTn , and initialize

this set to be empty.

Sine the sender is missing some node's omplete status report that partiipated in T1, there is

some node w1 ∈ ρT1 from whih the sender is still missing a status report parel orresponding to

T1 by the end of transmission Tn−1. Notie by the observation above that w1 will not be on ρT′ for

any T2 ≤ T
′ ≤ Tn−1, so put w1 into the set S. Now looking at T2, there must be some node w2 ∈ ρT2

from whih the sender is still missing a status report parel from T2 by the end of transmission Tn−1.

Notie that w2 6= w1 sine w1 /∈ ρT2 , and also that w2 /∈ ρTn−1 (both fats follow from the above

observation), so put w2 into S. Continue in this manner, until we have found the (n− 1)st distint

node that was put into S due to information the sender was still missing by the end of Tn−1. But

then |S| = n − 1, whih implies that all nodes, exept for the sender, are not on ρTn .

We reah a ontradition by showing that transmission T an not be a failed transmission (unless

a orrupt node an be immediately identi�ed). Reall that there are 3 ways a transmission an fail:

1) F2, i.e. R has stored value

∑
u∈G Φu > CD; 2) F3, sender has inserted D pakets; 3) F4, R

has reeived a dupliated paket p. However, eah of these ases is impossible, sine no node is on

the partiipating list ρTn , and hene no (honest) node should have transferred a paket (ρTn = ∅
implies that all nodes exept S are on the blaklist), as line 41f of Figure 4 will fail for all honest

nodes. Therefore, no honest nodes will transfer any odeword pakets during T, so the sender has

not inserted any pakets and the reeiver has not reeived any pakets, and any node u that reports

a non-zero value for Φu is neessarily orrupt. �

We are now ready to prove Theorem D.1, reserving the proof of Lemma D.19 to the next setion.

28

The sender already reeived enough information to eliminate a node. Even though it is possible that other nodes

ated maliiously and aused one of the failed transmissions, it is also possible that the node just eliminated aused

all of the failed transmissions. Therefore, the protool does not spend further resoures attempting to detet another

orrupt node, but rather starts anew with a redued network (the eliminated node no longer legally partiipates),

and will address future failed transmissions as they arise.
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Proof of Theorem D.1. By Lemma D.7, for every suessful transmission we have

1
n
|ZP ′

T
| ≤ 8nC ∼

(1 − λ)D = |ZP
T
|, so it remains to show that there are at most n2

failed transmissions. By Lemma

D.14, by the end of at most n− 1 failed transmissions, there will be at least one failed transmission

T suh that the sender will have all status report parels from every node on ρT. Then by Lemma

D.19, the sender an eliminate a orrupt node. At this point, lines (4.22-24) essentially all for

the protool to start over, wiping lear all bu�ers exept for the eliminated nodes bu�er, whih will

now ontain the identity of a newly eliminated node. The transmission of the latest odeword not

yet transmitted then resumes, and the argument an be applied to the new network, onsisting of

n− 1 nodes. Sine the node-ontrolling adversary an orrupt at most n− 2 nodes (the sender and

reeiver are inorruptible), this an happen at most n − 2 times, yielding the bound of n2
for the

maximum number of failed transmissions. �

Lemma D.15. ∀1 ≤ i ≤ n, if P ′
has inserted (i ·nC) pakets sine round t, then either the sender

has reeived the EoT parel, or there are at least i distint (honest) nodes that have reeived EoT.

Proof. (Indution on i). The sublaim is learly true for i = 1, sine R knows EoT as soon as it

reates it in round t. Assume the sublaim is true for i− 1, and we aim to show it will then be true

for i. If the sender has reeived EoT after P ′
inserts inC pakets (after t), then done. Otherwise,

let Si−1 = {u1, . . . , ui−1} denote the set of (honest) nodes that had EoT as of the (i−1)nCth
paket

inserted after t by P ′
. Now during the next nC insertions by P ′

, sine nC exeeds the apaity of

the honest nodes, one of the last nC pakets (say p′) just inserted neessarily reahed the reeiver.

Let uj denote the �rst (with respet to time, not with respet to the index ordering within Si−1)

node in Si−1 travelled to en route from S to R (that suh a node exists is immediate sine s /∈ Si−1

but r ∈ Si−1). Let v denote the node that passed p′ to uj . Then in the round when p′ was passed

from v to uj , uj neessarily

29

sent v EoT (see lines 02-03 of Figure 4), i nodes will know EoT, as

required. �

Lemma D.16. For any round t:

|ZP ′

1,t| ≤ TP
t

(79)

Proof. This follows immediately from the de�nition of ZP ′

1,t together with the fat that P
′
is restrited

to transferring pakets between honest nodes. �

The following lemma follows diretly from Lemma 4.2:

Lemma D.17. For any round t:

|ZP ′

2,t| ≤ TP
t

(80)

Proof. This is Lemma 4.2 of [BO℄ together with Lemma B.17 of [BO℄. Note that even though

the network setting of [BO℄ assumes no maliious ativity, the proof remains valid beause P ′
is

restrited to the honest nodes of G. In partiular, we may restrit our graph G (whih onsists

of honest and orrupt nodes) to G′
(onsisting of only honest nodes), and follow the lemmas and

proofs leading to Lemma B.17 on the subgraph G′
. Sine ZP ′

2 exludes ZP ′

3 (the pakets of ZP ′

that

travelled during a wasted round), the analysis leading to Lemma B.17 remains valid. �

29P ′
is restrited to the sub-graph of G onsisting of honest nodes, so there is no danger that v or uj will disobey

protool rules.
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Lemma D.11. For any transmission:

|W| ≤ n4 + 2n3
(81)

Proof. By investigating line 41 of Figure 4, there are 5 reasons a round may be wasted. By Lemma

D.18 below, we need only onsider lines 41, 41d, 41e, and 41f. We bound the number of wasted

rounds for eah of these, noting that eah edge will only transmit a broadast parel aross it one:

1. Sine there are only 2n parels total omprising the SoT broadast and EoT parel and less

than n2/2 edges, lines 41-d an ause at most n3
wasted rounds.

2. A node an only be removed from the blaklist one per transmission. Sine there are n nodes

that may need to be removed from the blaklist, and less than n2/2 edges, line 41e an ause

at most n3
wasted rounds.

3. We will split wasted rounds aused by 41f into two ategories. In the �rst ategory, the node

that is blaklisted has not yet passed all of its status report parels aross the relevant edge.

Sine eah node's status report onsists of n − 1 parels, and eah edge will only transmit a

status report parel one, this �rst ategory an ause up to (n − 1)n(n2/2) < n4/2 rounds.

In the seond ategory, the blaklisted node has already passed all of its status report parels

aross the relevant edge. To bound the number of wasted rounds aused by this seond

ategory, we fous on a single suh wasted round t = E(u, v) aused by paket p′ ∈ ZP ′

3 .

Without loss of generality we may assume that the round was wasted beause v was on u's

blaklist, and sine we are in the seond ategory, u already has all of v's status report parels.

Sublaim. v was on BLs when p′ was inserted.

Proof. If v /∈ BLs when p′ was inserted, then S must have reeived all of v's status

report parels and removed v from BLs (3.22). Therefore, the broadast parel that

indiates that v should be removed from the blaklist is put into the sender's broadast

bu�er when it removes v from BLs (2.38-39). Let w denote the �rst node that p′ travels

to en route from S to u suh that w does not know that v should be removed from the

blaklist, and let t
′
denote the round that w reeived p′. Note that t

′ < t. Also, sine

w reeived p′ from a node that knew v should be removed from the blaklist, round t
′

must have been wasted (2.41e), whih ontradits minimality of t.

Thus, for �xed p′ ∈ ZP ′

3 orresponding to wasted round E(up′ , vp′), we have that vp′ was on

BLs when p′ was inserted (sublaim above) and up′ had all of vp′ 's status report parels before

the start of round E(up′ , vp′). Therefore, for eah p′ ∈ ZP ′

3 , let wp′ denote the �rst node that p′

travelled to that had vp′ 's omplete status report when it reeived p′. Sine wp′ 6= s (otherwise

vp′ /∈ BLs when p′ is inserted), we have that the node that sent p′ to wp′ (in say round tp′)

must not have known vp′ 's omplete status report. Sine tp′ was not a wasted round, wp′

must have sent a status report parel (not neessarily orresponding to vp′) during round tp′ .

Therefore, for every p′ ∈ ZP ′

3 , we an assoiate a round in whih a status report parel was

sent aross an edge. Sine there are less than n2
total status reports and n2/2 edges, this

ategory of 41f an ause at most n4/2 wasted rounds.

Adding ontributions from 41-41f, we obtain the lemma. �
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Lemma D.18. For any p′ ∈ ZP ′

3 , the orresponding �rst wasted round tp′ ∈ W was wasted as a

result of line 41, 41d, 41e, or 41f (see Figure 4).

Proof. Fix any tp′ ∈ W, and for notation, let tp′ = t = E(u, v), and without loss of generality,

assume p′ passed from u to v in this round. We will show that neessarily u has the full SoT

broadast at the start of t, from whih the lemma follows. Suppose for the sake of ontradition

that u did not have the full SoT broadast at the start of t. Let t0 denote the round in whih p′

was inserted by the sender (in protool P ′
). Let w denote the �rst node that p′ visited en route

from S to u suh that w did not have the omplete SoT broadast, and let w′
denote the node that

sent p′ to w in round t
′
. By hoie of w, we have that w′

knew the omplete SoT broadast when

it reeived p′, and hene it had the omplete broadast by t
′
(when p′ was sent to w). But then

line 41 should have been true, so round t
′
must have been wasted. Sine learly t

′ < t, we have

the required ontradition. �

Lemma D.13. For any honest node u, R's stored value for Φu is at least as urrent as tu.

Proof. We prove the following statement, from whih the lemma follows immediately:

For any node u and for any 1 ≤ i ≤ n, if in2
of the n3

pakets in Uu,2 have reahed R, then

either R has stored a value for Φu that is at least as reent as tu, or at least i distint (honest)

nodes have stored values for Φu that are at least as reent as tu.

We prove the statement via indution on i. For i = 1, there is nothing to show, as learly u itself has

a urrent value stored for Φu. Let ti−1 denote the round in whih the (i − 1)n2
paket in Uu,2 last

left u, and let ti denote the round in whih the in2
paket of Uu,2 last left u, so tu < ti−1 < ti. If

as of ti the reeiver has a stored value for Φu that is at least as reent as tu, then done. Otherwise,

the indution hypothesis guarantees that there exists some set Fi−1 = {v1, . . . , vi−1} ⊆ G of honest

nodes that, as of round ti−1, have a stored value of Φu that is at least as reent as tu. Let Su

denote the n2
pakets in Uu,2 that left u between ti−1 and ti.

Claim. There exists (at least) one pair of honest nodes (vj , vk) ∈ Fi−1 × G \ Fi−1 suh that

at least n pakets in Su were transferred aross E(vj , vk) at some point after they left u and

before they reahed R.

Proof. Notie that eah of the n2
pakets in Su had not left u for the last time as of round

ti−1. For eah p′ ∈ Su, we may therefore �nd the �rst node v′p suh that vp′ ∈ Fi−1 had a

value for Φu at least as urrent as round tu, but the node that vp′ passed p′ to did not (sine

P ′
is restrited to honest nodes, neessarily vp′ is honest). Finding vp′ for eah p′ ∈ S and

using an averaging argument, there is (at least) one honest node v ∈ Fi−1 suh that n pakets

in S left from v to a node not in Fi−1. Sine the assignment of values Φw to the parel q2 are

made in a round-robin fashion (see line 08 of Figure 4), v sent his value for Φu to some node

w /∈ Fi−1 during one of these n transfers, thus growing the family of nodes who have a stored

value for Φu (at least as urrent as tu) by one.

�

D.5 Proof of Lemma D.2

In this setion, we aim to prove the following lemma, whih is a restatement of Lemma D.2, and

whih states that the sender will be able to eliminate a orrupt node if he has the omplete status

reports from every node that partiipated in some failed transmission T.
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Lemma D.19. Suppose transmission T failed and at some later time (after transmission T but

before any additional nodes have been eliminated) the sender has reeived all of the status report

parels from all nodes on ρT. Then the sender an eliminate a orrupt node.

Reall that there are three ways a transmission an fail:

F2. The sender reeives EoT parel indiating �F2�

F3. The sender inserted D pakets

F4. The sender reeives EoT parel indiating �(F4, p′)�

We will see that ase F2 roughly orresponds to paket dupliation, sine the nodes are reporting

a umulative potential drop greater than is possible based on the paket insertions by the sender.

Case F3 roughly orresponds to paket deletion, sine the D pakets the sender inserted do not

reah the reeiver (otherwise the reeiver ould have deoded by Fat 1), and ase F4 orresponds

to a mixed adversarial strategy of paket deletions and dupliations. We treat eah ase separately

in Lemmas D.20, D.21 and D.22 below, thus proving Lemma D.19:

Proof of Lemma D.19. The theorem is proven for eah ase below in Lemmas D.20, D.21 and D.22.

�

We delare one-and-for-all that at any time, G will refer to nodes still a part of the network,

i.e. nodes that have not been eliminated by the sender.

Handling Failures as in F2: Paket Dupliation

The goal of this setion will be to prove the following theorem.

Lemma D.20. Suppose transmission T failed and falls under ase F2, and at some later time (after

transmission T but before any additional nodes have been eliminated) the sender has reeived all of

the status report parels from all nodes on ρT. Then the sender an eliminate a orrupt node.

Proof. The idea of the proof is as follows. Case F2 of transmission failure roughly orresponds to

paket dupliation: there is a node w ∈ G who is jamming the network either by outputting dupliate

pakets or disobeying transfer rules (e.g. by transferring a paket from a node with small height to

a node with large height). This means that w will be responsible for illegal inreases in potential.

Using the status reports for ase F2, whih inlude nodes' signatures on hanges of potential due to

paket transfers, we will ath w by looking for a node who aused a greater inrease in potential

than is possible if it had been ating honestly.

More spei�ally, Case F2 means that R had stored potential values suh that:

∑
u∈G Φu > CD.

Sine we are not in Case F3, the sender did not insert D pakets. Sine eah paket insertion an

ause an inrease in potential of at most C, the total (valid) inrease of potential for the transmission

is at most CD, whih is less than the laimed potential drop

∑
u∈G Φu of the internal nodes. In

partiular, there is an extra potential drop in the network that annot be aounted for by paket

insertions; i.e. there is a node reating dupliated pakets or lying about height information when

transferring pakets. The formal details of how the signed status reports {Φu,v} an be used by the

sender to identify a orrupt node an be found in the proof of Theorem 10.6 of [7℄. �

Handling Failures as in F3: Paket Deletion

The goal of this setion will be to prove the following theorem.
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Lemma D.21. Suppose transmission T failed and falls under ase F3, and at some later time (after

transmission T but before any additional nodes have been eliminated) the sender has reeived all of

the status report parels from all nodes on ρT. Then the sender an eliminate a orrupt node.

Proof. Case F3 of transmission failure roughly orresponds to paket deletion: the sender has in-

serted D pakets, and yet the reeiver has gotten less than D − nC of them (otherwise, R ould

deode by Fat 1, and the transmission would not have failed). Sine the total apaity of the net-

work is only nC, there is (at least) one node w ∈ G who is deleting pakets (or storing more than C

pakets, whih an honest node would not do). Using the status reports for ase F3, whih inlude

nodes' signatures on Pu,v (the net number of pakets that have passed aross eah adjaent edge),

we will ath w by looking for a node who input more pakets than it output, and this di�erene

is greater than the bu�er apaity of the node. The formal details of how the signed status reports

{Pu,v} an be used by the sender to identify a orrupt node an be found in the proof of Theorem

10.11 of [7℄. �

Handling Failures as in F4: Paket Dupliation + Deletion

The goal of this setion will be to prove the following theorem.

Lemma D.22. Suppose transmission T failed and falls under ase F4, and at some later time (after

transmission T but before any additional nodes have been eliminated) the sender has reeived all of

the status report parels from all nodes on ρT. Then the sender an eliminate a orrupt node.

Proof. Case F4 of transmission failure roughly orresponds to paket dupliation and paket dele-

tion: learly paket dupliation has ourred sine R has reeived a dupliated paket p (whih

would not happen if all nodes were ating honestly), but the transmission did not fail due to Case

F2, and so likely the adversary is deleting pakets as he dupliates them so that signatures on po-

tential annot ath him. We will use the status reports for ase F4, whih inlude nodes' signatures

on [p]u,v (the net number of times p has rossed eah adjaent edge), to �nd a orrupt node w by

looking for a node who output p more times than it input p. The formal details of how the signed

status reports [p]u,v} an be used by the sender to identify a orrupt node an be found in the proof

of Theorem 10.12 of [7℄. �
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Internal Node Create Next Request for E(u, v)
01 DO:

02 Set q1 to be a parel from BBu not yet transferred aross E(u, v), hosen aording to priority:

03 1) EoT parel; 2) SoT parels; 3) Node to remove from BL; 4) Status report parel of a node on BLu

04 If q1 6= EoT or SoT parel and v /∈ (ENu ∪ BLu) ## Okay to send/reeive p's with v

05 Set new p ## Look in stak to �nd highest p not already sent as a request to A

06 Set new Gp ## Reserve the highest non-ommitted spot of stak

07 Else set p = ⊥
08 Set new q2 ## Chosen from u's (urrent) values of Φw in round-robin fashion

09 Set α = (Pu,v, [p′]
u,v

, Φu,v) ## p′ is paket transferred aross E(u, v) the previous round E(u, v) was honored

10 Return (u, v, (p, H), (q1, q2), (α, σ(α))) ## Also remember this request for next time E(u, v) is honored

Reeiver Create Next Request for E(r, v)
11 DO:

12 If re'd dupliate ## The paket p′ just reeived had already been reeived by R

13 Form EoT: q1 = (�F4�, p′
)

14 Else If |Z| = (1 − λ)D ## R now has enough pakets to deode odeword

15 Form EoT: q1 = �S1�

16 Else If

∑
w∈G

Φw ≥ CD ## Too muh potential drop: paket dupliation has ourred

17 Form EoT: q1 = �F2�

18 Else set q1 as for Internal Nodes

19 Set p, q2 = ⊥, and set α as for Internal Nodes

20 Return (r, v, (⊥, −C
n

), (q1,⊥), (α, σ(α))) ## Also remember this request for next time E(u, v) is honored

Sender Create Next Request for E(s, v)
21 DO:

22 If S an eliminate a node w ## Status report parel just re'd allows S to identify orrupt node

23 Add w to ENs, lear BBs and DBs (inluding BLs but not EN), re�ll Outgoing bu�er

24 Set ΩT+1 = (|EN |, 0, 0, 0)
25 Else If S reeived EoT = �S1� ## R was able to deode odeword

26 Re�ll Outgoing Bu�er

27 Set ΩT+1 = (|EN |, |BT|, F, 0) ## F denotes no. failed trans's sine prev. node eliminated

28 Else If |Y | = D or S reeived EoT = �F2� or (�F4�, p′
) ## Failed Transmission due to mal. ativity

29 Re�ll Outgoing Bu�er

30 ∀w /∈ (BLs ∪ ENs): Add w to ρT and then add w to BLs

31 If EoT = (�F4�, p′
), set ΩT+1 = (|EN |, |BT|, F, p′)

32 Else If |Y | = D, set ΩT+1 = (|EN |, |BT|, F, 1)
33 Else If EoT = �F2�, set ΩT+1 = (|EN |, |BT|, F, 2)
34 If transmission just ended ## I.e. line 22, 25, or 28 was true

35 Set SoT to be the following 2n parels, and add to BBs:

36 1) ΩT+1; 2) ENs; 3) BLs; 4) Reason the prev. n − 1 trans's failed: (�F2�, �F3�, or (�F4�,p′
))

37 Set new p ## Look in stak to �nd highest p not already sent as a request to A

38 Set new q1: Choose parel not yet transferred aross E(s, v) by priority:

39 1) SoT parel; 2) a node w to remove from BL; 3) ⊥
40 Return (s, v, (p, C+

C
n
-1), (q1,⊥), (α, σ(α))) ## Also remember this request for next time E(u, v) is honored

Ready(v) ## Called from node u

41 If






u does not have (ΩT, T) in BBu OR

u has (ΩT, T) with ΩT = (|EN |, |BT|, F, ∗), but has not yet re'd |EN | parels as in line 200b,

F parels as in line 200, or |BT| parels as in line 200d OR

u has re'd the omplete SoT broadast, but every parel hasn't yet passed aross E(u, v) OR

u has EoT ∈ BBu, but this has not passed aross E(u, v) yet OR

u knows some node w to remove from BL, but hasn't yet passed this fat aross E(u, v) OR

u or v ∈ BLu

42 Return False

43 Else: Return True

Figure 4: Rules For Finding Codeword Paket and Broadast Parel to Send
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