
Commuting Signatures and Verifiable Encryption
and an Application to Non-Interactively Delegatable Credentials

Georg Fuchsbauer

École normale supérieure, CNRS - INRIA, Paris, France
http://www.di.ens.fr/∼fuchsbau

Abstract

Verifiable encryption allows to encrypt a signature and prove that the plaintext is valid. We introduce a new
primitive called commuting signature that extends verifiable encryption in multiple ways: a signer can encrypt
both signature and message and prove validity; more importantly, given a ciphertext, a signer can create a
verifiably encrypted signature on the encrypted message; thus signing and encrypting commute. We instantiate
commuting signatures using the proof system by Groth and Sahai (EUROCRYPT ’08) and the automorphic
signatures by Fuchsbauer (ePrint report 2009/320). As an application, we give an instantiation of delegatable
anonymous credentials, a powerful primitive introduced by Belenkiy et al. (CRYPTO ’09). Our instantiation
is arguably simpler than theirs and it is the first to provide non-interactive issuing and delegation, which is
a standard requirement for non-anonymous credentials. Moreover, the size of our credentials and the cost of
verification are less than half of those of the only previous construction, and efficiency of issuing and delegation
is increased even more significantly. All our constructions are proved secure in the standard model.

1 Introduction

A verifiably-encrypted-signature scheme [BGLS03] enables a signer to make a digital signature on a message,
encrypt the signature under a third party’s encryption key, and produce a proof asserting that the ciphertext contains
a valid signature. Suppose the message is only available as an encryption. The signer cannot make a signature on
it, as this would contradict the security of the encryption scheme (given two messages and the encryption of one of
them, a signature on the plaintext could be used to decide which message was encrypted). However, the following
does not seem a priori impossible: given an encryption, instead of producing a signature on the plaintext, the signer
produces a verifiably encrypted signature on it.

We show that—surprisingly—such a functionality is feasible and moreover give a practical instantiation of it.
We then use this new primitive to build the first non-interactively delegatable anonymous credential scheme: given
an encrypted public key, a delegator can make an encrypted certificate on the key together with a proof of validity.

Delegatable Anonymous Credentials. Access control that respects users’ privacy concerns is a challenging prob-
lem in security. To gain access to resources, a participant must prove to possess the required credential issued by
an authority. To increase manageability of the system, the authority does usually not issue credentials directly to
each user, but relies on intermediate layers in the hierarchy. Belenkiy et al. [BCC+09] give the following example:
a system administrator issues credentials for webmasters to use his server. The latter are entitled to create forums
and delegate rights to moderators, who in turn can give posting privileges to users.

In the real world delegation of rights is realized by certifying the public key of the delegated user. Consecutive
delegation leads to a credential chain, consisting of public keys and certificates linking them, starting with the
original issuer of the credential and ending with a user, say Alice. To delegate her credential to Bob, Alice simply
extends the length of the chain by one by appending a certificate on Bob’s public key under hers.

Anonymous credentials [Cha85, Dam90, LRSW00, Bra99, CL01, CL02, CL04, BCKL08] aim to provide a
similar functionality while at the same time not revealing information about the user’s identity when obtaining
or showing a credential. However, the goal of reconciling delegatability and anonymity remained elusive—until

1

6

6

?

6

������������9
���

���
���

���:

��
���

���
���

�:
XXXXXXXXXz

`̀ `̀ `̀ XXz%%

���
���

���
���

���
�XXXXXXXXXXz

���
���

���
���

���
�XXXXXXXXXXz

M, Σ

M

CM

CM , Σ, π̄

M, cΣ, eπ

CM , cΣ, π

Sign(sk, ·)

XX(sk, ·)

ComM,Prove

ComM

Com,Prove

Com,AdPrC

AdPrDC(ρΣ, ·)

ComM,AdPrCM

AdPrDCM(ρM , ·)

SigCom(sk, ·)

Figure 1: Commuting signatures

recently. Chase and Lysyanskaya [CL06] give delegatable anonymous credentials for which the size of a creden-
tial is exponential in its length (i.e., the number of delegations), which makes them impractical. In [BCC+09]
Belenkiy et al. introduce a new approach using a non-interactive zero-knowledge (NIZK) proof system [BFM88]
with randomizable proofs: a credential is a non-interactive proof of knowledge of a certification chain that can be
randomized before being re-delegated or shown; this guarantees anonymity and unlinkability.

The functionality of the system can be sketched as follows: each user holds a secret key which she uses to
produce multiple pseudonyms Nym. A user A can be known to user O as Nym(O)

A and to B as Nym(B)

A . Given a
credential issued by O for Nym(O)

A , A can transform it into a credential for Nym(B)

A and show it to B. Moreover A
can delegate the credential to user C, known to A as Nym(A)

C . C can then show a credential from O for Nym(D)

C to
user D (without revealing neither Nym(C)

A nor Nym(A)

C), or redelegate it, and so on.
Delegation preserves anonymity, i.e., delegator and delegatee learn nothing more about each other than their

respective pseudonyms. In the instantiation of [BCC+09] (BCCKLS), the delegation protocol is fairly complex
and highly interactive—as opposed to (non-anonymous) credentials, where it suffices to know a user’s public key
in order to issue or delegate a credential to her. We correct this shortcoming by giving an instantiation of the
BCCKLS model that enables non-interactive delegation: pseudonyms are encryptions of the public key; given a
pseudonym Nym, the delegator can produce a credential for the holder of Nym without any interaction, since she
can make a proof of knowledge of a signature on a public key given to her as an encryption Nym. We note that,
as for the BCCKLS instantiation, abuse prevention mechanisms such as anonymity revocation [CL01] or limited
show [CHK+06] can be added to our construction.

Commuting Signatures and Verifiable Encryption. Our main building block to instantiate non-interactively
delegatable anonymous credentials will be a new primitive we call commuting signature which we sketch in the
following and formally define in Sect. 4. Assume we have a digital signature scheme and an encryption scheme
combined with a proof system with the following properties: given a verification key, a message and a signature on
it valid under the key, we can encrypt any subset of {key, message, signature}, and make a proof that the plaintexts
constitute a triple of a key, a message and a valid signature. We also require that the proof does not leak any more
information about the encrypted values besides validity.

For consistency with our instantiation using the Groth-Sahai methodology [GS08], we will say commitment
instead of encryption. Note that the commitments we use are extractable, and therefore constitute an encryption
scheme (see below). We denote committing to signatures by Com and committing to messages by ComM. Besides
allowing to prove validity of committed values, a commuting-signature scheme provides the following additional
functionalities (sketched in Figure 1). Note that none of them requires the extraction (decryption) key.

SigCom. Given a commitment CM to a message M and a signing key sk, SigCom produces a commitment cΣ to
a signature Σ on M under sk, and a proof π that the content of cΣ is a valid signature on the content of CM .

2

AdPrC (“adapt proof when committing”). Given a commitment CM to M , a signature Σ on M and a proof π̄
of validity of Σ on the content of CM , we can make a commitment cΣ to Σ using randomness ρΣ and run
algorithm AdPrC on CM ,Σ, ρΣ and π̄. Its output is a proof π that the content of cΣ is a valid signature
on the content of CM . AdPrDC (“adapt proof when decommitting”) does the converse: given a committed
message CM , a committed signature cΣ together with the used randomness ρΣ, and a proof π, AdPrDC
outputs a proof π̄ of validity of the signature Σ on the committed message.

AdPrCM. Analogously we define algorithms for proof adaptation when committing and decommitting to the mes-
sage. Given a message M , a commitment cΣ to a signature on M and a proof of validity π̃, AdPrCM
transforms the proof to the case when the message is committed as well. AdPrDCM is given commitments
CM and cΣ to a signature and a message M , the randomness ρM for CM and a proof π. It adapts π to a
proof π̃ that the content of cΣ is a valid signature on M .

AdPrCK. Finally, we can also adapt proofs when committing or decommitting to the verification key. Given
commitments CM and cΣ to a message and a signature, a proof of validity π, the verification key vk and
randomness ρvk, AdPrCK outputs a proof π̂ that the content of cΣ is a signature on the content of CM valid
under the key vk given as a commitment cvk with randomness ρvk. AdPrDCK is given (vk, ρvk,CM , cΣ) and
adapts a proof π̂ for (cvk,CM , cΣ) to a proof for (vk,CM , cΣ).

We require that committing, signing and the functionalities above commute with each other, that is, it does not
matter in which order we execute them; e.g. signing a message, committing to the message and the signature and
proving validity yields the same as committing to the message and then running SigCom. Thus, the diagram in
Fig. 1 commutes. Note that due to the argument given in the beginning there cannot exist a functionality XX that
given a commitment CM to a message M and a secret key sk outputs a signature Σ on M .

Instantiating Commuting Signatures. In [Fuc09], Fuchsbauer gave the first efficient implementation of blind sig-
natures [Cha82] with round-optimal issuing [Fis06]: this means that the user who wants to obtain a blind signature
sends one message to signer, who replies with one message from which the user can construct the blind signature.
The scheme can be sketched as follows: the user randomizes the message by multiplying it with a random term,
makes an (extractable) commitment to the message and the randomness and adds a witness-indistinguishable (WI)
proof that the commitments contain the correct values. The signer therefore learns nothing about the message.
Using the randomized message, the signer can fabricate a “pre-signature”, from which, knowing the random-
izer, the user can retrieve an actual signature. To prevent the signer from linking the resulting signature to the
signing session, the actual blind signature is a proof of knowledge (PoK) of the signature. The PoK consists
of extractable commitments to the signature components and a WI proof that the committed values satisfy the
signature-verification equation on the message, in other words, a verifiably encrypted signature.

We observe that the values sent from the user to the signer can be seen as a commitment to (or an encryption of)
the message. We show that this commitment can be used by the signer to directly construct a proof of knowledge of
a signature on the committed message (that is, extractable commitments to the signature components and a proof
that the committed values constitute a valid signature on the committed message). As in [Fuc09], the commitments
and WI proofs are instantiated with the Groth-Sahai methodology for committing to elements from a bilinear group
and constructing proofs that they satisfy pairing-product equations. These commitments are extractable, thus the
extraction key acts as the decryption key and witness indistinguishability implies semantic security (cf. Sect. 3.1).
We will use the notions encryption and extractable commitment interchangeably. An extractable commitment to
a signature together with a proof of validity is a verifiably encrypted signature (VES) and can also be interpreted
as a proof of knowledge of a signature (since by decryption, the signature can be extracted). Our instantiation of
commuting signatures is given in Sect. 6.

Instantiating Delegatable Anonymous Credentials. Belenkiy et al. [BCC+09] show that Groth-Sahai proofs
can be randomized and combine them with an authentication scheme for secret keys to construct delegatable
credentials. A pseudonym Nym is a commitment to the user’s secret key and a credential is a proof of knowledge
of an authentication chain. Such a proof consists of commitments to secret keys, commitments to authenticators
between the keys, and proofs of validity. To issue or delegate, the issuer and the user jointly compute a proof of
knowledge of an authenticator on the content of the user’s pseudonym. In the case of delegation, the issuer prepends

3

her own credential, which she randomizes before. The authors note that secret keys cannot be extracted from the
commitments, and that an adversary against the authentication scheme must be allowed to ask for authenticators
on as well as under the attacked key. They therefore give an F-unforgeable certification-secure authentication
scheme.

We avoid this notion and interactivity of delegation by replacing the authenticators on secret keys by signatures
on public keys, in particular we use the automorphic signatures from [Fuc09]. (Automorphic signatures are Groth-
Sahai compatible signatures whose verification keys lie in the message space.) A credential is then a chain of
public keys and certificates (as in the non-anonymous case), which are all given as commitments completed with
proofs of validity. Commuting signatures enable non-interactive delegation (and issuing, which is a special case
of delegation): given a pseudonym (i.e., a commitment to the public key) of a user, the issuer can produce a
commitment cΣ to a signature on the committed user key and a proof π of validity using SigCom. If it is a
delegation, the issuer then randomizes her own credential credI , yielding a credential credI ′ on a new pseudonym
NymI

′ that is unlinkable to credI . Finally, running AdPrCK, she adapts the proof π to a proof π̂ of validity of the
content of cΣ on the content of the user pseudonym under the content of the issuer’s new pseudonym NymI

′. The
credential for the user is then credI ′ ‖NymI

′ ‖ (cΣ, π̂).
Replacing the authenticators from [BCC+09], which consist of 11 group elements and are verified by 8 pairing-

product equations (PPE), with automorphic signatures (consisting of 5 group elements and satisfying 3 PPEs) more
than doubles efficiency of the scheme. More importantly, our delegation (and issuing) protocol outperforms theirs
significantly (see Sect. 5.3 for a more detailed comparison).

Automorphic signatures were combined with Groth-Sahai proofs in [Fuc09] to construct anonymous proxy
signatures [FP08]. This primitive is related to anonymous credentials in that it considers proving rights in an
anonymous way; but it does not achieve mutual anonymity between the delegator and the delegated user. Note
that if in our credential scheme we give the extraction key for the commitments to a tracing authority, and if
we define a proxy signing algorithm which works like delegation but produces a committed signature on a clear
message rather than a committed user key, we get an instantiation of anonymous proxy signatures with mutually
anonymous delegation, a feature not considered so far.

Overview. We start with giving an overview of our notation. In Sect. 3, we define extractable commitments
and randomizable witness-indistinguishable proofs for them. We also define digital signatures and discuss how
they can be combined with extractable commitments and proofs to verifiably encrypted signatures. In Sect. 4 we
formally define commuting signatures and give some immediate black-box results, such as blind signatures. In
Sect. 5 we recall the model for delegatable credentials from [BCC+09] and describe our instantiation providing
non-interactive delegation. We prove security and conclude with a comparison to the BCCKLS instantiation in
Sect. 5.3. In Sect. 6, we give the instantiations of the primitives defined in Sect. 3: Groth-Sahai proofs and
automorphic signatures. In Sect. 7 we state and prove 5 lemmas about properties of Groth-Sahai proofs which
are used in Sect. 8, where we instantiate our commuting-signature scheme. In Sect. 9 we give a variant of the
automorphic signatures from [Fuc09] which enables a more efficient instantiation of delegatable credentials. In
Sect. 10 we discuss some issues of simulatability of Groth-Sahai proofs that arise when they are used to instantiate
delegatable credentials satisfying a simulation-based anonymity definition. The discussion concerns the BCCKLS
instantation as well as ours. Finally, in Appendix C, we give some complementary results. In particular, we
describe how to extend commuting signatures when several messages are to be signed at once.

2 Notation

Since we are going to combine quite a few concepts we give a guideline on notation. We tried to stick to our
framework, but deviated sometimes for the sake of consistency with other work such as Groth and Sahai’s.

• Capital Roman letters denote elements of a bilinear group. Diffie-Hellman pairs of group elements are
mostly two consecutive letters of the alphabet.

• Lower-case Roman letters denote integers. Mostly they correspond to the logarithm of the corresponding
capital letter in a common basis, e.g. M = Gm.

4

• Greek letters denote the randomness used in the commitments to a group element that is denoted by the
corresponding Roman letter, e.g. cM = Com(ck,M, µ).

• M, V , R and C denote spaces for messages, values, randomness and commitments, respectively; E denotes
a class of equations,H a hash function, G denotes a group, Z denotes integers and N non-negative integers.

• Special cases:

– p denotes a prime, e denotes a bilinear map (pairing) and E denotes a generic equation;
– φ and θ denote the components of Groth-Sahai proofs, whereas π denotes generic proofs;
– ~u, ~v and their components uij and vij are the keys for Groth-Sahai commitments;
– c,d and C denote commitments;
– tT denotes an element from the target group GT ;
– Γ and Z denote matrices in with entries γij and zij in Zp, respectively.

• In a bilinear group, we denote the group operation by “ · ”. For vectors of group elements, “ ◦· ” denotes
applying the group operation componentwise.

• By “:=”, we denote either a definition—with the definiens on the right-hand side (RHS) and the definiendum
on the left-hand side (LHS)—or an assignment of the value on the RHS to the variable on the LHS.

• “←” denotes a random assignment. If the RHS is a set it denotes choosing a value from it uniformly and
assigning it to the LHS. If the RHS is a probabilistic algorithm it denotes choosing its random tape uniformly
and assigning the outcome to the LHS.

3 Preliminaries

We recall the definitions and security requirements of a number of primitives from the literature, which we will
combine to a system of commuting signatures and verifiable encryption in Sect. 4.

3.1 Commitments

A (non-interactive) randomizable extractable commitment scheme Com is composed of the algorithms Setup,
Com, RdCom, ExSetup, Extr, and WISetup, which define V , the space of “committable” values, R, the random-
ness space and C the space of commitments. Setup outputs a commitment key ck, and Com, on inputs ck, a message
M ∈ V and randomness ρ ∈ R outputs a commitment c ∈ C. ExSetup outputs (ck, ek), where ck is distributed as
the output of Setup, and ek is the extraction key. We require the following:

• The scheme is perfectly binding, i.e., for any commitment c ∈ C there exists exactly one M ∈ V s.t.
c = Com(ck,M, ρ) for some ρ. Moreover, Extr(ek, c) extracts that value M from c.

• The scheme is computationally hiding, in particular, WISetup outputs keys ck∗ that are computationally
indistinguishable from those output by Setup, and which generate perfectly hiding commitments, i.e., for
every c and M ∈ V there exists a ρ ∈ R s.t. c = Com(ck∗,M, ρ).

• The scheme is randomizable, i.e., RdCom takes as input a commitment c and fresh randomness ρ′ ←
R and outputs a randomized commitment c′. If ρ′ is chosen uniformly from R then c′ is distributed as
Com(ck,M, ρ) where ρ is picked uniformly fromR.

(In particular we have RdCom(ck,Com(ck,M, ρ), ρ′) = Com(ck,M, ρ+ ρ′).)

A commitment scheme with the above properties is actually a lossy encryption scheme [BHY09]; in particular, it
satisfies the IND-CPA definition of semantic security.1

1Consider the security game for IND-CPA for encryption schemes. The challenger creates a key pair, gives the encryption key to the
adversary, who outputs two messages, gets an encryption of one of them and has to guess which one. Replacing the key by a “lossy”
encryption key output by WISetup is indistinguishable; and then the encryption is independent of the message.

5

We write Com also when we commit to a vector in Vn: if M = (M1, . . . ,Mn) and ρ = (ρ1, . . . , ρn)
then Com(ck,M, ρ) :=

(
Com(ck,M1, ρ1), . . . ,Com(ck,Mn, ρn)

)
. Likewise, we define Extr(ck, (c1, . . . , cn)) :=(

Extr(ck, c1), . . . ,Extr(ck, cn)
)
.

3.2 Proofs for Committed Values

A randomizable witness-indistinguishable proof system Proof for a commitment scheme Com for a class E of
equations E consists of the algorithms Prove, Verify and RdProof. Given values M1, . . . ,Mn ∈ V satisfying an
equation E ∈ E , the algorithm Prove, on input ck, (M1, . . . ,Mn) and ρ1, . . . , ρn ∈ R, outputs a proof π. On
inputs ck, E, c1, . . . , cn and π, Verify outputs 0 or 1, indicating acceptance or rejection of a proof. We require that
the system satisfies the following:

• Completeness. For all (M1, . . . ,Mn) satisfying E, and ρ1, . . . , ρn ∈ R we have

Verify
(
ck,E,Com(ck,M1, ρ1), . . . ,Com(ck,Mn, ρn),Prove(ck,E, (M1, ρ1), . . . , (Mn, ρn))

)
= 1 .

• Soundness. Let (ck, ek) ← ExSetup, E ∈ E , and c1, . . . , cn ∈ C. If Verify(ck,E, c1, . . . , cn, π) = 1 for
some π, then letting Mi := Extr(ek, ci), we have that (M1, . . . ,Mn) satisfy E.

• Witness indistinguishability. Let ck∗ ← WISetup, and M1, . . . ,Mn,M
′
1, . . . ,M

′
n ∈ V be such that both

(M1, . . . ,Mn) and (M ′1, . . . ,M
′
n) satisfy an equation E. Let ρ1, . . . , ρn, ρ

′
1, . . . , ρ

′
n ∈ R be such that for

all i, Com(ck∗,Mi, ρi) = Com(ck∗,M ′i , ρ
′
i). Then the outputs of Prove(ck∗,E, (M1, ρ1), . . . , (Mn, ρn))

and Prove(ck∗,E, (M ′1, ρ
′
1), . . . , (M ′n, ρ

′
n)) are equally distributed.

• Randomizability. Given commitments c1, . . . , cn, a proof π for (c1, . . . , cn) and E, and ρ′1, . . . , ρ
′
n ∈ R,

algorithm RdProof outputs a proof π′ for the randomized commitments c′i := RdCom(ck, ci, ρ′i). For all i,
let Mi be the value committed in ci and let ρi be such that ci = Com(ck,Mi, ρi). If ρ′1, . . . , ρ

′
n are chosen

uniformly, then π′ and (c′i)
n
i=1 are distributed as the output of Prove

(
ck,E, (M1, ρ̂1), . . . , (Mn, ρ̂n)

)
and(

Com(ck,Mi, ρ̂i)
)n
i=1

with ρ̂i chosen uniformly fromR.

If E is the conjunction of equations E1, . . . ,Ek over variables M1, . . . ,Mn then for M = (M1, . . . ,Mn) and
ρ = (ρ1, . . . , ρn) we define Prove(ck,E, (M,ρ)) :=

(
Prove(ck,Ej , (Mi, ρi)ni=1)

)k
j=1

. For π = (π1, . . . , πk) we

define Ver(ck,E, (ci)ni=1, π) :=
∧k
j=1 Ver(ck,Ej , (ci)ni=1, πj).

3.3 Digital Signatures

A digital signature scheme Sig consists of the following algorithms: SetupS outputs public parameters pp and
defines a message space M. On input pp, KeyGenS outputs a pair (vk, sk) of verification and signing key.
Sign(sk,M), for M ∈ M outputs a signature Σ, which is verified by Ver(vk,M,Σ). We require that Sig sat-
isfies the following:

• Strong unforgeability (under chosen message attack). No probabilistic polynomial-time (p.p.t.) adversary,
given vk and an oracle for adaptive signing queries on messages of its choice can output a pair (M,Σ), s.t.
Ver(vk,M,Σ) = 1 and (M,Σ) 6= (Mi,Σi) for all i; where Mi are the queried messages and Σi the oracle
responses.

• Compatibility with Com and Proof . The verification keys and signatures are composed of values in V , the
value space of Com, and signature verification consists of checking equations from E , the class of equations
for Proof .

For our application in Sect. 5 we require furthermore that Sig is automorphic, that is, besides being compatible,
its verification keys have to lie inM.

6

3.4 Verifiably Encrypted Signatures

The triple (Com,Proof ,Sig) constitutes a verifiable encryption scheme satisfying the definitions of Rückert and
Schröder [RS09], who revisited those of Boneh et al. [BGLS03]—if a proof that a committed signature satisfies
Ver(vk,M, ·) can be simulated (see Sect. 10). This is the case for our instantiations2, given in Sect. 6.

Definition 1 (Verifiably encrypted signatures (VES)). A verifiably encrypted signature scheme is defined as the
tuple (Kg,AdjKg,Sig,Vf,Create,VesVf). Kg outputs a signature key pair (vk, sk), Sig and Vf produce and verify
signatures. AdjKg outputs a key pair (apk, ask) for the adjudicator. Create(sk, apk,M) returns a VES ω which is
verified by VesVf(apk, vk, ω,M) and Adj(ask, apk, vk, ω,M) returns a signature σ on M under vk. The security
notions from [RS09] are the following:

• Unforgeability means that no adversary given the public keys and access to a Create and Adj oracle can
output a VES on a message M that it has never queried to its oracles.

• Abuse freeness states that no malicious adjudicator provided with a Create oracle can output a valid VES
for a message it never queried.

• Extractability means that no malicious signer that can create its own vk and has access to a Adj oracle can
output a valid VES from which cannot be extracted a valid signature.

• Opacity means that no adversary given vk and ck and access to oracles Create and Adj for messages of its
choice, can output a valid pair (M,Σ) if it has never queried Adj on M .

A Straightforward Instantiation. Based on (Com,Proof ,Sig) we instantiate a VES scheme as follows: we
define the signer’s key generation, the adjudicator’s key generation, signing and verification as Kg := KeyGenS,
AdjKg := ExSetup, Sig := Sign, Vf := Ver. Create(sk, ck,M) creates a VES on M by setting Σ ← Sign(sk,M),
choosing ρ ← R and returning ω :=

(
cΣ := Com(ck,Σ, ρ), π̃ ← Prove(ck,EVer(vk,M,·), (Σ, ρ))

)
. Verification

VesVf(ck, vk, (cΣ, π̃),M) is defined as Verify(ck,EVer(vk,M,·), cΣ, π̃). Finally, Adj(ek, ck, vk, ω,M) checks if ω =
(cΣ, π̃) is valid and if so returns Extr(ek, cΣ).

The scheme (Kg,AdjKg, Sig,Vf,Create,VesVf,Adj) satisfies the security notions from Def. 1 The first three
notions are reduced to unforgeability of Sig and soundness of Proof in a straightforward manner; note in partic-
ular that Groth-Sahai proofs are perfectly sound, so no adversary even when given the extraction key can make a
proof of a false statement.

Opacity can be proved by a reduction with a security loss that is exponential in the number of Adj calls:3 Let
Game 0 be the original game. In Game 1 we abort if the adversary makes an Adj query for a message it never
queried Create for; or if it makes an Adj query for (cΣ, π̃) such that the committed value Σ was never used to
answer one of the Create queries. By strong unforgeability of Sig and soundness of Proof , the probability of
aborting is negligible. In Game 2, when queried OAdj(ek,ck,vk,·,·)((cΣ, π̃),M), instead of extracting the signature
committed to in cΣ, we return the signature produced when answering OCreate(sk,ck,·)(M); if there have been more
such calls then we guess randomly. (If, in the worst case, the adversary queries Create qC times and Adj qA times on
the same message then the probability of correctly simulating Game 2 is 1/qqAC .) Game 3 is Game 2 but replacing ck
by ck∗ output by WISetup. Game 3 can now be simulated by a challenger playing the unforgeability game against
Sig: Given the trapdoor for Groth-Sahai proofs in the WI setting, the challenger simulates the commitments and
proofs to answer Create queries, i.e., without using signatures. When queried Adj on a message M , it asks its own
Sign oracle for a signature on M and returns it (or returns a signature it had already returned, depending on the
guess). A successful adversary outputs a signature on M for which it has never queried Adj (and thus never made
the challenger query Sign for it) and can therefore be used to break strong unforgeability of Sig.

A Fully Secure Instantiation. The security reduction for opacity can be made tight if outputs of Create are
non-malleable (i.e., from an ω returned by Create on M , one cannot produce a different valid ω′ for M): the

2Groth-Sahai proofs for pairing-product equations can be simulated if the equations only contain elements from G1 and G2 but not from
GT . This is the case for the equations in (9), which constitute Ver of our instantiation.

3If the adversary is only allowed a constant number of Adj queries, this suffices (see also Remark 1).

7

adversary can then make Adj queries only for ω’s received from a Create query, and in the reduction the challenger
need not guess the correct signature for a certain message. Non-malleability can be achieved by replacing ω by
(ω,Sign(sk, ω)) in the definition of Create and adding a check of the second component to VesVf. (This relies on
the fact that Sig is strongly unforgeable.)

Remark 1. In our application to delegatable credentials, we require somewhat different properties from the triple
(Com,Proof ,Sig). On the one hand, we do not require opacity, since no adversary can query extraction of
committed values—the exponential reduction of the straightforward instantiation is thus irrelevant.

On the other hand, we require that the verification keys are in M (i.e., Sig is automorphic) and that we
can commit to messages and verification keys (for which we will introduce a commitment scheme ComM) and
prove validity of an encrypted signature, possibly on an encrypted message or under an encrypted key; we also
require that two verifiably encrypted signatures are indistinguishable. The last property is implied by witness-
indistinguishability of Proof , and is not required for VES.

4 Commuting Signatures and Verifiable Encryption

4.1 Definition

Recall the primitives introduced in Sect. 3. Let Com = (Setup,Com,RdCom,ExSetup,Extr,WISetup) be an
extractable commitment scheme with value space V; let Proof = (Prove,Verify,RdProof) be a randomizable
WI proof system for Com; let Sig = (SetupS,KeyGenS, Sign,Ver) be an strongly unforgeable signature scheme
with message spaceM that is compatible with (Com,Proof). We extend (Com,Proof ,Sig) by the following
functionalities presented in the introduction and formally defined in Def. 2:

• ComM is a randomizable extractable commitment scheme whose message space is that of Sig.

• AdPrC and AdPrCM are algorithms that, given a message/signature pair of which one is verifiably encrypted,
produce a proof of validity when both are encrypted.

• AdPrDC and AdPrDCM are algorithms that, given a verifiably encrypted message/signature pair and the
randomness for one of them, return an adapted proof; in particular, AdPrDC returns a proof that a signature
is valid on a committed message and AdPrDCM returns a proof that a committed signature is valid on a
given message.

• SigCom takes a ComM commitment and a signing key, and produces a verifiably encrypted signature on
the committed value.

• AdPrCK is given a proof of validity for a committed signature and a committed message and adapts it to a
proof for when the verification key is also committed. AdPrDCK, given the randomness of the committed
verification key adapts a proof to when the key is given in the clear.

Definition 2. A system of commuting signatures and verifiable encryption consists of an extractable commit-
ment scheme Com, a (randomizable) WI proof system Proof for Com, a compatible signature scheme Sig and
the functionalities ComM,AdPrC,AdPrDC,AdPrCM,AdPrDCM,AdPrCK,AdPrDCK,SigCom, and SmSigCom
defined below.

ComM On input pp = (ck, ppS) returned by Setup and SetupS, respectively, a message M ∈ M and µ ∈ RM,
algorithm ComM outputs a commitment C ∈ CM, the space of commitments. RdComM takes inputs C,
µ′ ← RM and outputs a randomized commitment C′. On input ek output by ExSetup, and C, ExtrM
outputs the committed value M .

We require that ComM := (Setup,ComM,RdComM,ExSetup,ExtrM,WISetup) is a randomizable ex-
tractable commitment scheme that is perfectly binding and computationally hiding as defined in Sect. 3.1.
Moreover, it must be compatible with Proof , i.e.,M⊆ V , Prove and RdProof accept inputs fromRM and
Verify accepts ComM commitments as inputs.

In the following we assume that ck← Setup, ppS ← SetupS, (vk, sk)← KeyGenS(pps), M ∈M and µ ∈ RM.

8

AdPrC(ck, vk,C, (Σ, ρ), π̄). If Verify(ck,EVer(vk,·,Σ),C, π̄) = 1 then the algorithm outputs π that is distributed as[
Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ)

)]
,

where M and µ are such that C = ComM(ck,M, µ).

AdPrDC(ck, vk,C, (Σ, ρ), π). If Verify(ck,EVer(vk,·,·),C,Com(ck,Σ, ρ), π) = 1, the algorithm outputs π̄ which is
distributed as [

Prove(ck,EVer(vk,·,Σ), (M,µ))
]
,

where M and µ are such that C = ComM(ck,M, µ).

AdPrCM(ck, vk, (M,µ), cΣ, π̃). If Verify(ck,EVer(vk,M,·), cΣ, π̃) = 1 then it outputs π which is distributed as[
Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))

]
,

where Σ and ρ are such that cΣ = Com(ck,Σ, ρ).

AdPrDCM(ck, vk, (M,µ), cΣ, π). If Verify(ck,EVer(vk,·,·),ComM(ck,M, µ), cΣ, π) = 1, the algorithm outputs π̃
which is distributed as [

Prove(ck,EVer(vk,M,·), (Σ, ρ))
]
,

where Σ and ρ are such that cΣ = Com(ck,Σ, ρ).

AdPrCK(ck, (vk, ξ),C, cΣ, π). If Verify(ck,EVer(vk,·,·),C, cΣ, π) = 1, the algorithm outputs π̂ which is distributed
as [

Prove(ck,EVer(·,·,·), (vk, ξ), (M,µ), (Σ, ρ))
)]

,

where M,µ,Σ and ρ are such that C = ComM(ck,M, µ) and cΣ = Com(ck,Σ, ρ).

AdPrDCK(ck, (vk, ξ),C, cΣ, π̂). If Verify(ck,EVer(·,·,·),Com(ck, vk, ξ),C, cΣ, π̂) = 1, the algorithm outputs π
which is distributed as [

Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))
)]

,

where M,µ,Σ and ρ are such that C = ComM(ck,M, µ) and cΣ = Com(ck,Σ, ρ).

SigCom(ck, sk,C). If C ∈ CM then the algorithm outputs a commitment to a signature and a proof of validity
(cΣ, π) which is distributed as[

Σ← Sign(sk,M); ρ← R :
(
Com(ck,Σ, ρ), Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))

)]
,

where M and µ are such that C = ComM(ck,M, µ).

SmSigCom(ck, ek, vk,C,Σ). Assume (ck, ek) ← ExSetup. If Ver(vk,ExtrM(ek,C),Σ) = 1 then the algorithm
outputs (cΣ, π) which is distributed as[

ρ← R :
(
Com(ck,Σ, ρ), Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))

)]
,

where M and µ are such that C = ComM(ck,M, µ). (4)

Remark 2. When we verify a signature Σ on a message M running Ver(vk,M,Σ), we implicitly assume that
Verify also checks whether M ∈ M. Analogously, we assume that when verifying a proof of validity by running
Verify on EVer and C, it checks whether C ∈ CM, too.

Def. 2 implies that running ComM on M and then SigCom yields the same output as running Σ ← Sign(sk,M)
and then ComM on M , Com on Σ and Prove for EVer(vk,·,·); or running Sign, then ComM on M and Prove for
EVer(vk,·,Σ), and then Com on Σ and AdPrC; or running Sign, then Com on Σ and Prove for EVer(vk,M,·), and
then ComM on M and AdPrCM. And similar statements hold for sequences of algorithm executions including
decommitments and proof adaptation. This means that the diagram in Fig. 1 commutes.

4Note that SmSigCom is not trivial: given ek it might recover the message M but not the randomness µ used for C. The difference to
AdPrC is that SmSigCom does not get π̄ as input but ek instead.

9

4.2 Black-Box Results

Security notions for commuting signatures follow from the security of the used building blocks and the fact that
all algorithms perfectly commute.

Unforgeability. Extractability of Com and ComM, perfect soundness of Proof , strong unforgeability of Sig and
commutativity of SigCom with signing and verifiably encrypting implies unforgeability, defined as the intractability
for a p.p.t. adversary A of winning the following game:

Run (ck, ek)← ExSetup and (vk, sk)← KeyGenS(SetupS); provide A with (ck, ek, vk) and access to
a SigCom oracle that on input C, a commitment to a message, outputs SigCom(ck, sk,C). Let Ci be
the value submitted in the i-th oracle call and (ci, πi) be the response; defineMi := ExtrM(ek,Ci) and
Σi := Extr(ek, ci). ThenAwins if it outputs (C∗, c∗, π∗) such that Verify(ck,EVer(vk,·,·),C∗, c∗, π∗) =
1 and

(
ExtrM(ek,C∗),Extr(ek, c∗)

)
/∈
{

(M1,Σ1), . . . , (Mn,Σn)
}

.

This unforgeability notion is reduced to strong unforgeability of Sig. On receiving vk, run (ck, ek) ← ExSetup
and give (ck, ek, vk) to the adversary. Answer a query for C as follows: using ek, extract M , query it to the
signing oracle to receive Σ; then run (cΣ, π) ← SmSigCom(ck, ek, vk,C,Σ) and return (cΣ, π). Since by Def. 2,
SmSigCom and SigCom both commute with ComM, Com and Prove, this perfectly simulates the adversary’s
oracle. If the adversary wins the game, we return ExtrM(ek,C∗) and Extr(ek, c∗) which yields a valid forgery
(M,Σ) by perfect soundness of Proof .

Indistinguishability. The message in C remains hidden to a signer running SigCom, in a computational sense:
replacing ck by ck∗ ← WISetup is computationally indistinguishable and results in perfectly hiding outputs of
Com and ComM.

Blind Signatures. Given a system of commuting signatures and verifiable encryption, we can easily build a blind-
signature scheme in a black-box way. To get a signature on a messageM , the user chooses µ← RM and sends the
commitment C := ComM(ck,M, µ) to the signer. The latter uses SigCom to produce and send (cΣ, π), a commit-
ted signature on M and a proof of validity. The user can produce a proof π̃ ← AdPrDCM(ck, vk, (M,µ), cΣ, π),
which asserts validity of the committed signature on M . The blind signature is defined as (cΣ, π̃) and is verified
by Verify(ck,EVer(vk,M,·), cΣ, π̃).

This yields a generically more efficient construction than that from [Fis06], in which, besides cΣ and π, the
blind signature contains C and a proof that C opens to M .

5 Application: Non-Interactively Delegatable Anonymous Credentials.

Our main application of commuting signatures and verifiable encryption is a black-box construction of a delegat-
able anonymous credential scheme with a non-interactive delegation protocol. Our scheme borrows the idea of
combining Groth-Sahai proofs and automorphic signatures from the instantiation of anonymous proxy signatures
from [Fuc09]. This primitive is similar in that it enables to prove knowledge of a certification chain, but there is
no mutual anonymity of the users in the (non-interactive) delegation protocol. Commuting signatures now allow to
define a delegation protocol where both delegator and delegatee remain anonymous w.r.t. each other. Moreover, the
protocol is non-interactive, that is, a user can publish a pseudonym, which can be used by the delegator to produce
a credential for the user—as it would be in the non-anonymous case with public keys instead of pseudonyms.

We start by presenting the model for delegatable credentials defined in [BCC+09]. In Sect. 5.2 we give our
instantiation of it, and compare it to that from [BCC+09] in the subsequent section.

5.1 The BCCKLS Model

The system parameters are set up by a trusted party. Every user holds a secret key sk, of which she can publish
pseudonyms Nym. Any user can be an originator of a credential by publishing a pseudonym NymO as the pub-
lic key. If user A was issued a credential for pseudonym NymA, she can transform it into a credential for any

10

other pseudonym Nym′A. Moreover, credentials can be delegated to other users. A (non-interactively) delegatable
anonymous credential system consists of the following algorithms:5

SetupC(1λ) outputs the system parameters pp

KeyGenC(pp) creates a user secret key sk

NymGen(pp, sk) outputs a new pseudonym Nym and auxiliary information aux related to Nym

Issue(pp,NymO, skI ,NymI , auxI , cred,NymU , L) : skI ,NymI and auxI are the issuer’s secret key, pseudonym and
auxiliary information. cred is a level L credential for the issuer rooted at NymO, and NymU is the pseudonym
of the delegated user. If L = 0 then cred = ∅. The algorithm outputs credproof .

Obtain(pp,NymO, skU ,NymU , auxU ,NymI , L, credproof) : skU ,NymU and auxU are the user’s secret key, pseudo-
nym and auxiliary information. NymO and NymI are the originator’s and the issuer’s pseudonym, and
credproof is the output of Issue. The algorithm outputs a credential cred.

CredProve(pp,NymO, cred, sk,Nym, aux, L) takes a level L credential from NymO, and sk,Nym and aux, and out-
puts a credproof for Nym.

CredVerify(pp,NymO, credproof,Nym, L) verifies a level L credproof for a pseudonym Nym rooted at NymO.

Security is defined by correctness, anonymity and unforgeability, which we sketch below. For a formal security
definition we refer to Appendix A of the full version of [BCC+09].

Correctness. A credential is proper if for all user pseudonyms, CredProve outputs a proof that is accepted by
CredVerify. Run honestly, Issue and Obtain must produce a proper credential.

Anonymity. There exists a simulator (SimSetupC,SimCredProve,SimIssue, SimObtain) with the following prop-
erties: SimSetupC outputs parameters that are indistinguishable from those produced by Setup and a trapdoor sim.
Under theses parameters the outputs Nym of NymGen are distributed independently of sk.

SimCredProve gets sim instead of cred, sk and aux and outputs credproof that is indistinguishable from outputs
of CredProve. SimIssue has input sim instead of skI , auxI and cred and cannot be distinguished from Issue by an
adversary interacting with it. SimObtain gets sim instead of skU and auxU and cannot be distinguished from Obtain
by an adversary interacting with it.

Note that for the case of non-interactive delegation, this means: SimIssue produces credproof that is indistin-
guishable from outputs of Issue. And SimObtain is obsolete, since the issuer does not interact with it.

Unforgeability. (I) There exists ExSetupC that outputs parameters pp (distributed as those from SetupC) and an
extraction key ek. Under pp pseudonyms are perfectly binding for sk and ExtractC using ek outputs the chain of L
identities from a level L credproof .

(II) No adversary A can output a valid credential from which can be extracted an unauthorized chain of
identities. This means that A is given the parameters and has oracles to add honest users, request pseudonyms
from them, request issuings between honest users, request proofs and it can run Issue and Obtain with the
simulator. When A requests Issue for (NymO,NymI ,NymU , cred, L), the simulator extracts vkO, vkI , vkU from
the pseudonyms and adds (vkO, L + 1, vkI , vkU) to a list ValidCredentialChains. The adversary wins if it out-
puts a valid triple (NymO, credproof ,Nym), from which can be extracted (vk0, . . . , vkL) s.t. (vk0, i, vki−1, vki) /∈
ValidCredentialChains for some i and vki−1 is an honest user key.

5.2 Our Instantiation

In the instantiation from [BCC+09] the system parameters are a Groth-Sahai (GS) commitment key and parameters
for an authentication scheme. Each user holds a secret key x for the authentication scheme. A pseudonym is made
up of two GS commitments to Hx and Ux (from which x cannot be extracted), respectively, for parameters H and
U . To issue and delegate, the issuer and the user jointly compute a proof of knowledge of an authenticator on the
user’s secret key, which is valid under the issuer’s secret key. The authors define a complex interactive two-party

5Since, as opposed to [BCC+09], we consider non-interactive delegation, Issue and Obtain are non-interactive algorithms; the output
of Issue is credproof which is an additional input for Obtain.

11

protocol for this. A credential is then a chain of pseudonyms and committed authenticators with GS proofs of
validity.

We replace the authentication scheme by an automorphic signature scheme. A non-anonymous credential for
vkL rooted at vk0 is a chain of public keys and signatures (Σ1, vk1,Σ2 . . . , vkL−1,ΣL), where Σi is a signature on
vki under vki−1. To achieve anonymity, the public keys and signatures in the credential are committed to and proofs
of validity are added. Using commuting signatures, given a commitment to a public key, the issuer can directly
make a commitment to a signature on it and a validity proof. This is what enables non-interactive delegation.

Commuting Signatures with Partially Public Messages. To instantiate credentials, merely signing user public
keys does not suffice. The issuer of a credential might want to add public information to the credential, such as
attributes. For delegatable credentials it is also required to include the originator’s pseudonym and the delegation
level in each certificate to prevent combining different credentials and changing the order within a credential.

In Sect. 9.1, we give an automorphic signature scheme Sig′′, where in addition to the message, the signer can
specify some public value. The message space of Sig′′ is Zp×M. Our scheme only extends the parameters of pp
by one group element, but is otherwise as efficient as Sig, in particular, Sig- and Sig′′ signatures have the same
size. We also define VK that on input a signing key outputs the corresponding verification key, which allows us to
comply with the formal definition of credentials in [BCC+09]. In Sect. 9.2, we define SigCom′′, which is SigCom
adapted to Sig′′ and thus has the public part of the message as additional input. Moreover, we show that all other
algorithms defined in Def. 2 and instantiated in Sect. 8 work equally for Sig and Sig′′.

For our instantiation, we assume a collision-resistant hash functionH : CM × N→ Zp.

More Intuition. We informally describe how our algorithms work. SetupC generates a key for Com and param-
eters for Sig′′, KeyGenC outputs a secret key for Sig′′, and given a secret key, NymGen outputs a commitment to
the corresponding public key and the used randomness as auxiliary information. A level L credential from Nym0

to NymL has the form
cred = (c1, π1,Nym1, c2, π2, . . . ,NymL−1, cL, πL) , (1)

where ci is a commitment to a signature Σi on the public value H(Nym0, i) and the key committed in Nymi, valid
under the key committed in Nymi−1; and πi is a proof of validity of Σi. We call it a credential if it is valid on a
trivial NymL, i.e., when NymL = Com(ck, vkL, 0), and speak of a credential proof otherwise.

CredProve takes a credential and turns it into a credential proof by randomizing all its components, using
aux s.t. NymL = Com(ck,VK(sk), aux) for the last component. CredVerify verifies a credproof by checking the
proofs contained in it. Given a level L credential, Issue extends it by one level to a credential for NymL+1: if it
is not an original issuing, it first makes a credproof for the issuer’s pseudonym NymI ; using SigCom′′ it produces
(cL+1, πL+1) for NymL+1, and turns the proof into a proof for the committed verification key NymI by running
AdPrCK on randomness auxI . Obtain turns this credproof into a cred by adapting the randomness to make it valid
for a trivial NymL.

Algorithm Specification. We now formally define the algorithms of our scheme Cred.

SetupC(1λ). Run ck← Setup; ppS ← Setup′′S; return pp := (ck, ppS)

KeyGenC(pp). Parse pp (ck, ppS); run (vk, sk)← KeyGen′′S(ppS); return sk

NymGen(pp, sk). Choose aux← RM; return
(
Nym :=ComM(pp,VK(sk), aux), aux

)
Issue(pp,NymO, skI ,NymI , auxI , cred,NymU , L).
• If L = 0, and cred 6= ∅ or NymO 6= NymI then abort;

if L > 0 then set credproof ← CredProve(pp,NymO, cred, skI ,NymI , auxI , L) and abort if it fails

• Parse cred as in (1); if NymL := NymI 6= ComM(pp,VK(skI), aux) or NymU /∈ CM(pp) then abort

• (cL+1, πL+1)← SigCom′′(pp, sk,H(NymO, L+ 1),NymU)

π′L+1 ← AdPrCK
(
pp, (VK(skI), auxI),NymU , cL+1, πL+1

)
• Return credproof ‖(NymI , cL+1, π

′
L+1)

12

Obtain(pp,NymO, skU ,NymU , auxU ,NymI , L; credproof ′).
• Parse pp (ck, ppS); parse credproof ′ credproofL′ ‖(Nym′I , c

′
L+1, π

′
L+1). If NymI 6= Nym′I or

NymU 6= ComM(pp,VK(skU), auxU) or CredVerify(pp,NymO, credproof ′,NymU , L+ 1) = 0 then abort

• πL+1 ← RdProof
(
ck,EVer′′ppS

(·,H(NymO,L+1),·,·), (NymI , 0), (NymU ,−auxU), (cL+1, 0), π′L+1

)
• Return credproofL′ ‖(Nym′I , c

′
L+1, πL+1)

CredProve(pp,NymO, cred, sk,Nym, aux, L).
• Parse pp (ck, ppS) and cred as in (1)

• If Nym 6=ComM(pp,VK(sk), aux) or CredVerify
(
pp,NymO, cred,ComM(pp,VK(sk), 0), L

)
= 0 then abort

• For i = 1 . . . L, pick νi ← RM, γi ← R. Set Nym0 :=NymO, ν0 :=0, NymL :=NymU , νL :=aux

• For i = 1 . . . L do

Nym′i := RdComM(pp,Nymi, νi); c′i := RdCom(ck, ci, γi)
π′i ← RdProof

(
ck,EVer′′ppS

(·,H(NymO,i),·,·), (Nymi−1, νi−1), (Nymi, νi), (ci, γi), πi
)

• Return (c′1, π
′
1,Nym′1, c

′
2, π
′
2, . . . ,Nym′L−1, c

′
L, π

′
L)

CredVerify(pp,NymO, credproof,Nym, L)
• Parse pp (ck, ppS), credproof (c1, π1,Nym1, . . . , cL, πL), let Nym0 := NymO,NymL := Nym

• If ∀ 1 ≤ i ≤ L : Verify
(
ck,EVer′′ppS

(·,H(NymO,i),·,·),Nymi−1,Nymi, ci, πi
)

= 1 and Nymi ∈ CM(pp), return 1

Theorem 1. Let (Com,Proof) be a randomizable, extractable, composable zero-knowledge non-interactive
proof-of-knowledge system, let Sig′′ be a strongly unforgeable automorphic signature scheme, and let H be colli-
sion resistant. Then Cred as defined above is a secure anonymous delegatable credential scheme.

Proof sketch. We refer to the full version of [BCC+09] for the formal definition of the model, which is quite
involved. Since the overall construction of our scheme is similar to the BCCKLS construction, in particular the
use of (randomizable and simulatable) Groth-Sahai proofs to commit to a delegation chain and prove validity,
our scheme is proved to satisfy the security definitions analogously. Our proof is a lot simpler though, since our
certificates are on public keys and one can extract a complete certification chain from our credentials, avoiding
thus partial-extractability notions. Moreover, our construction does not make use of interactive secure two-party
protocols. We give a sketch of the security proof, highlighting the differences.

CORRECTNESS. Correctness of our scheme follows from a straightforward argument using the correctness of the
underlying building blocks.

ANONYMITY. A witness-indistinguishability based definition of anonymity is an immediate consequence of
perfectly hiding commitments and proofs, when ck is produced by WISetup: pseudonyms Nym information-
theoretically hide the committed value and the proofs in cred do not contain information either. We thus define
SimSetupC using WISetup. The algorithms CredProve, Issue and Obtain can be simulated without knowledge
of any private information; this follows from the zero-knowledge property of Groth-Sahai proofs; in particular,
in the witness-indistinguishable (WI) setting, given the simulation trapdoor sim of GS proofs, we can make per-
fectly hiding commitments and proofs for any equation with certain properties—which are satisfied by ours. (See
Sect. 10.)

Our simulator SimCredProve is the exact analogue of SimProve, defined in the anonymity proof of the BC-
CKLS scheme: it constructs a simulated certificate chain from NymO to NymI of length L, by simulating the
intermediate pseudonyms, i.e., the ComM commitments (cf. Sect. 10.2), the commitments in ci, and the proofs
πi. SimIssue is defined as SimCredProve for L+1 except that it sets NymL as NymI . Since Obtain does not interact
with the issuer, SimObtain is the empty algorithm. Our proof is considerably simpler than that of [BCC+09], due
to the fact that Issue readily outputs a credential rather than engaging in a two-party protocol with Obtain. All
we need to do is simulate GS commitments and proofs. We refer to Sect. 10 for a discussion on how to actually
simulate such proofs.

13

UNFORGEABILITY. Soundness and extractability of GS proofs, unforgeability of Sig′′ and simulatability of
SigCom′′ imply that our scheme is unforgeable in the sense of [BCC+09]: (I) For ExSetupC, we substitute Setup
by ExSetup in SetupC. This generates an identically distributed key ck (which leads to perfectly binding com-
mitments) and an extraction key ek that allows to extract the committed chain of public keys (“identities”) and
certificates from a credential.

The notion defined in (II) is reduced to unforgeability of Sig: given a verification key vk and a signing ora-
cle, we simulate the game as follows: we guess which honest user the adversary will “frame”; we compute the
parameters with ExSetupC, and use extraction, the signing oracle and SmSigCom to simulate Issue for that user.
Let (Nym0, credproof ,NymL) be a successful forgery, thus when we extract (vk0,Σ1, vk1, . . . ,ΣL, vkL) from it
then for some i: (vk0, i, vki−1, vki) /∈ ValidCredentialChains and vki−1 is honest. If we guessed correctly (i.e.,
vki−1 = vk) then we can return the Sig′′ forgery (vki,Σi), since (by collision resistance of H) we have never
queried our signing oracle on (H(Nym, i), vki) for any Nym of vk0.

Optimizing the Black-Box Construction for Concrete Commuting Signatures. When using our implementa-
tion of commuting signatures (Sect. 6 and 8), we can make the following optimizations. In the instantiation we
have M ⊆ G1 × G2 for an asymmetric bilinear group. A ComM commitment to a message (M,N) ∈ M is
defined as cM := Com(ck,M, µ), cN := Com(ck, N, ν), πN ← Prove(ck,EDH, (M,µ), (N, ν)) and additional
components which enable the signer to make a committed signature on (M,N) and a proof of validity by running
SigCom. These additional components are however not required for the Nym’s contained in the credential, where
giving (cM , cN , πM) is sufficient. Moreover, when issuing a new credential, the “public key” used to verify it can
be given in the clear, i.e., as (X,Y) ∈M, rather than as a commitment.

5.3 A Comparison to the BCCKLS Instantiation

The key building block of a delegatable-credential scheme is a certification scheme signing (or authenticating)
user keys and some public information. The certificates (or “authenticator”) on user secret keys in the BCCKLS
instantiation [BCC+09] are in G8

1×G3
2 and are verified by evaluating 16 pairings. Our certificates on a user public

key (and a public value) are in G3
1 × G2

2 and verified by evaluating 7 pairings. Proving validity of a committed
certificate requires Groth-Sahai proofs (which are in G2×2

1 ×G2×2
2 for the SXDH instantiation) for 8 equations for

the BCCKLS instantiation and 3 equations for ours. The pseudonyms in [BCC+09] consist of two Groth-Sahai
commitments and one proof, and are thus in G6

1 × G6
2, as are the pseudonyms contained in our credentials. The

pseudonyms enabling non-interactive delegation are the size of two optimized pseudonyms and 3 G1 elements.6

A tuple (ci, πi,Nymi) contained in a warrant is thus in G50
1 × G40

2 for the BCCKLS instantiation, whereas it is in
G20

1 ×G18
2 for ours.7 We conclude that the size of our credentials is less than half the size of BCCKLS credentials.

Most importantly, issuing and delegation in our scheme is substantially more efficient than in the BCCKLS
scheme. In the latter the issuer and the user run a secure two-party protocol to jointly compute a proof of knowledge
of an authenticator on the user’s secret key. This protocol uses homomorphic encryption and interactive ZK proofs
asserting that certain blinding values are in the correct ranges. Since these tools are not made explicit it is not clear
how many rounds the protocol requires nor what amount of data needs to be sent in each of them. In contrast, in
our instantiation the issuer simply rerandomizes his credential and runs SigCom and AdPrCK. She then sends a
ready credential to the user.

Concerning the assumptions on which security is based, they are both non-interactive, “q-type” assumptions
and part of the generalized “Uber-Assumption” family [Boy08]. What is more, both are comparable variants of the
strong Diffie-Hellman assumption [BB04], as was argued in [Fuc09] (cf. the discussion in Appendix C.1, ibid.).

6Note that if the size of pseudonyms is to be minimized, user could publish Nym = (cM , cN , πM) and send the remaining elements
(cP , cQ, πP , U, πUS) as a first step in Obtain (see Sect. 10.2).

7This analysis is for the case when Groth-Sahai proofs are applied in a straightforward way and not considering simulatability. To make
inhomogeneous equations simulatable, a Groth-Sahai proof is augmented by one commitment in G2

1, one commitment in G2
2 and one proof

from G4
1 ×G2

2 (see Sect. 10.2). Of our 3 equations only 1 is inhomogeneous, the size of a triple (ci, πi,Nymi) is thus augmented by 6 G1

elements and 4 G2 elements. We note that the 8 equations for BCCKLS authenticators contain 3 inhomogeneous equations.

14

6 Instantiation of the Building Blocks

In this section we give instantiations of the building blocks Com,Proof and Sig (Sect. 6.2, 6.3 and 6.4, respec-
tively) on which we base our commuting signatures. We start with introducing bilinear groups and the assumptions
under which our instantiations are secure.

6.1 Bilinear Groups and Assumptions

A bilinear group (cf. e.g. [GPS08]) is a tuple grp = (p,G1,G2,GT , e,G1, G2) where G1,G2 and GT are cyclic
groups of prime order p, G1 and G2 generate G1 and G2, respectively, and e : G1 × G2 → GT is an efficient
non-degenerate bilinear map, i.e., ∀X ∈ G1 ∀Y ∈ G2 ∀ a, b ∈ Z : e(Xa, Y b) = e(X,Y)ab, and e(G1, G2)
generates GT . We assume that there exists a probabilistic polynomial-time algorithm GrpGen that on input 1λ

outputs a bilinear group grp for which p is a λ-bit prime.

Assumption 1 (SXDH). The Symmetric External Diffie-Hellman Assumption states that given (Gr1, G
s
1, G

t
1) for

random r, s ∈ Zp, it is hard to decide whether t = rs or t is random; moreover, given (Gr
′

2 , G
s′
2 , G

t′
2) for random

r′, s′ ∈ Zp, it is hard to decide whether t′ = r′s′ or t′ is random.

The q-Asymmetric Double Hidden Strong Diffie-Hellman assumption was introduced in [Fuc09] and is a variant
of q-HSHD [BW07] in asymmetric bilinear groups. It was shown in [FPV09] that under the q-SDH assumption
[BB04], given q − 1 tuples ((K ·Gvi)1/(x+ci), ci, vi) for random ci, vi ← Zp, it is hard to produce a new tuple
of this form. The assumption below states that if ci and vi are given in a hidden form (F ci , Hci) and (Gvi , Hvi),
respectively, it is intractable to produce a new tuple ((K ·Gv)1/(x+c), F c, Hc, Gv, Hv).

Assumption 2 (q-ADHSDH). Given (G,F,K,X=Gx; H,Y =Hx)← G4
1 ×G2

2,(
Ai = (K ·Gvi)

1
x+ci , Bi = F ci , Vi = Gvi , Di = Hci , Wi = Hvi

)q−1

i=1
, for ci, vi ← Zp,

it is hard to output a new tuple (A,B, V,D,W) ∈ G3
1 ×G2

2 of this form, i.e., a tuple that satisfies

e(A, Y ·D) = e(K ·V,H) e(B,H) = e(F,D) e(V,H) = e(G,W) (2)

The next assumption was also introduced in [Fuc09] and is the weakest variant of the various flexible CDH
assumptions, adapted to asymmetric bilinear groups. It states that given G,Ga and H , it is hard to output
(Gr, Gra, Hr, Hra) for an arbitrary r 6= 0.

Assumption 3 (AWFCDH). Given random generators G ∈ G1 and H ∈ G2, and A = Ga for a← Zp, it is hard
to output (Gr, Gra, Hr, Hra) ∈ (G∗1)2 × (G∗2)2, i.e., a tuple (R,M,S,N) that satisfies

e(A,S) = e(M,H) e(M,H) = e(G,N) e(R,H) = e(G,S) (3)

Throughout the paper, we will assume two fixed generators G and H of G1 and G2, respectively. We call a pair
(A,B) ∈ G1 × G2 a Diffie-Hellman pair (w.r.t. (G,H)), if there exists a ∈ Zp such that A = Ga and B = Ha.
Using the bilinear map e, such pairs are efficiently decidable by checking

EDH(A;B) : e(G−1, B) e(A,H) = 1 .

We let DH := {(Ga, Ha) | a ∈ Zp} denote the set of DH pairs and implicitly assume them to be w.r.t. G and H .

6.2 SXDH Commitments.

We instantiate Com, defined in Sect. 3.1, by the commitment scheme based on SXDH given in [GS08].

Setup, on input (p,G1,G2,GT , e,G1, G2) chooses α1, α2, t1, t2 ← Zp and returns ck = (grp,u1,u2,v1,v2) with

u1 := (G1, G
α1
1) u2 := (Gt11 , G

α1t1
1) v1 := (G2, G

α2
2) v2 := (Gt22 , G

α2t2
2)

Value and random space are defined as V := G1 ∪G2 andR := Z2
p.

15

Com(ck, X, r) is defined as follows: for X ∈ G1, Com(ck, X, r) := (ur11,1 ·u
r2
2,1, X ·u

r1
1,2 ·u

r2
2,2); for X ∈ G2,

Com(ck, X, r) := (vr11,1 ·v
r2
2,1, X ·v

r1
1,2 ·v

r2
2,2).

RdCom(ck, c, r′) returns c ◦· Com(ck, 1, r′) = (c1 ·u
r′1
1,1 ·u

r′2
2,1, c2 ·u

r′1
1,2 ·u

r′2
2,2), when c ∈ G2

1 and similarly for the
case when c ∈ G2

2. (“ ◦· ” denotes component-wise multiplication.)

ExSetup constructs ck as in Setup and in addition outputs the extraction key ek := (α1, α2).

Extr(ek, c) is defined as follows. If c ∈ G2
1 then set output c2 ·c−α1

1 ; if c ∈ G2
2 then output c2 ·c−α2

1

WISetup produces ck as Setup, but sets u2,2 and v2,2 as Gα1t1−1
1 and Gα2t2−1

2 , respectively (which is indistin-
guishable by SXDH). This results in perfectly hiding commitments.

Remark 3. Com commitments are homomorphic: Com(ck, X, r) ◦· Com(ck, X ′, r′) = Com(ck, X ·X ′, r + r′);
therefore if c = Com(ck, X, r) then RdCom(ck, c, r′) = Com(ck, X, r + r′).

Security. The scheme is perfectly binding, computationally hiding and randomizable as defined in Sect. 3.1.

6.3 SXDH Groth-Sahai Proofs for Pairing-Product Equations

In order to instantiate Proof , defined in Sect. 3.2, we use the proof system introduced in [GS08]. The class of
equations E for our proof system are pairing-product equations (PPE). A PPE over variables X1, . . . , Xm ∈ G1

and Y1, . . . , Yn ∈ G2 is an equation of the form

E(X1, . . . , Xm; Y1, . . . , Yn) :
n∏
i=1

e(Ai, Yi)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j = tT , (4)

defined by Aj ∈ G1, Bi ∈ G2, γi,j ∈ Zp, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and tT ∈ GT .

Proofs. We define Prove
(
ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1

)
for Xi ∈ G1, Yj ∈ G2 and ri, sj ∈ Z2

p, and equation E
given by the values

(
(Aj)nj=1, (Bi)

m
i=1, (γi,j)i,j ∈ Zm×np , tT ∈ GT

)
. For notational convenience, let us first define

the following two shortcuts for Z = (zij)ij ∈ Z2×2
p , ~u ∈ G2×2

1 , ~v ∈ G2×2
2 .

Z ⊗ ~u :=

[
uz11

11 u
z12
21 uz11

12 u
z12
22

uz21
11 u

z22
21 uz21

12 u
z22
22

]
Z ⊗	 ~v :=

[
v−z11

11 v−z21
21 v−z11

12 v−z21
22

v−z12
11 v−z22

21 v−z12
12 v−z22

22

]
(5)

Prove chooses Z = ((z11, z12), (z21, z22))> ← Z2×2
p and defines

t11 :=
∑n

j=1

∑m
i=1 ri1γijsj1

t21 :=
∑n

j=1

∑m
i=1 ri2γijsj1

t12 :=
∑n

j=1

∑m
i=1 ri1γijsj2

t22 :=
∑n

j=1

∑m
i=1 ri2γijsj2

(6)

The output (φ, θ) ∈ G2×2
2 ×G2×2

1 of Prove is then defined as:

φ :=

vt11
11 v

t12
21

(∏m
i=1B

ri1
i

)(∏n
j=1 Y

Pm
i=1 ri1γij

j

)
vt11

12 v
t12
22

vt21
11 v

t22
21

(∏m
i=1B

ri2
i

)(∏n
j=1 Y

Pm
i=1 ri2γij

j

)
vt21

12 v
t22
22

 ◦· (Z ⊗	 ~v)

θ :=

1
(∏n

j=1A
sj1
j

)(∏m
i=1X

Pn
j=1 sj1γij

i

)
1

(∏n
j=1A

sj2
j

)(∏m
i=1X

Pn
j=1 sj2γij

i

)
 ◦· (Z ⊗ ~u)

(7)

We write Prove
(
ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1; Z

)
if we want to make the internal randomness Z ∈ Z2×2

p explicit.

Randomization. Randomization of a commitment c = Com(ck, X, r) via RdCom(ck, c, r′) replaces randomness
r by randomness r + r′; and similarly for d = Com(ck, Y, s). Adaptation of a proof by RdProof must thus

16

do the same to a proof π = (φ, θ). We formally define RdProof
(
ck,E, (ci, ri)mi=1, (dj , sj)

n
j=1, π

)
: choose Z =

((z11, z12), (z21, z22))> ← Z2×2
p , define (t11, t12, t21, t22) as in (6) and output (φ′, θ′) ∈ G2×2

2 ×G2×2
1 defined as:

φ′ := φ ◦·

(∏n
j=1 d

Pm
i=1 ri1γij

j1

)
vt11

11 v
t12
21

(∏m
i=1B

ri1
i

)(∏n
j=1 d

Pm
i=1 ri1γij

j2

)
vt11

12 v
t12
22(∏n

j=1 d
Pm
i=1 ri2γij

j1

)
vt21

11 v
t22
21

(∏m
i=1B

ri2
i

)(∏n
j=1 d

Pm
i=1 ri2γij

j2

)
vt21

12 v
t22
22

 ◦· (Z ⊗	 ~v)

θ′ := θ ◦·

(∏m
i=1 c

Pn
j=1 sj1γij

i1

) (∏n
j=1A

sj1
j

)(∏m
i=1 c

Pn
j=1 sj1γij

i2

)(∏m
i=1 c

Pn
j=1 sj2γij

i1

) (∏n
j=1A

sj2
j

)(∏m
i=1 c

Pn
j=1 sj2γij

i2

)
 ◦· (Z ⊗ ~u)

which has the same distribution as the output of Prove
(
ck,E, (Xi, r

′
i + ri)mi=1, (Yj , s

′
j + sj)nj=1

)
, where r′i and s′j

are such that ci = Com(ck, Xi, r
′
i) and dj = Com(ck, Yj , s′j), as we will show now.

Remark 4. In additive notation, the commitments and proofs can be written as follows (cf. the full version of
[GS08]), when the cumulated randomness for all variables is R = (rik) ∈ Zm×2

p and S = (sjk) ∈ Zn×2
p , and we

set Γ = (γij) ∈ Zm×np and define ιi(~X) := [~0 | ~X].

~c = ι(~X) +R~u φ = R>ι(~B) +R>Γι(~Y) + (R>ΓS − Z>)~v
~d = ι(~Y) + S~v θ = S>ι(~A) + S>Γ>ι(~X) + Z~u

To randomize the commitments and proofs, choose R̂← Zm×2
p , Ŝ ← Zn×2

p , Ẑ ← Z2×2
p and set

~c′ := ~c + R̂~u = ι(~X) + (R+ R̂)~u ~d′ := ~d + Ŝ~v = ι(~Y) + (S + Ŝ)~v

φ′ := φ+ R̂>ι(~B) + R̂>Γ~d + (R̂>ΓŜ − Ẑ>)~v

=
[
R>ι(~B) +R>Γι(~Y) + (R>ΓS − Z>)~v

]
+ R̂>ι(~B) + R̂>Γ

[
ι(~Y) + S~v

]
+ (R̂>ΓŜ − Ẑ>)~v

= (R+ R̂)>ι(~B) + (R+ R̂)>Γι(~Y) +
[
(R+ R̂)>Γ(S + Ŝ)− (Z> + Ẑ> +R>ΓŜ)︸ ︷︷ ︸

=(Z+Ẑ+Ŝ>Γ>R)>=:(Z′)>

]
~v

θ′ := θ + Ŝ>ι(~A) + Ŝ>Γ>~c + Ẑ~u

=
[
S>ι(~A) + S>Γ>ι(~X) + Z~u

]
+ Ŝ>ι(~A) + Ŝ>Γ>

[
ι(~X) +R~u

]
+ Ẑ~u

= (S + Ŝ)>ι(~A) + (S + Ŝ)>Γ>ι(~X) + (Z + Ẑ + Ŝ>Γ>R)︸ ︷︷ ︸
=Z′

~u

The output of RdProof
(
ck,E, (ci, r̂i)mi=1, (cj , ŝj)

n
j=1, π

)
using randomness ((ẑ11, ẑ12), (ẑ21, ẑ22))> is therefore

the same as that of Prove
(
ck,E, (Xi, ri + r̂i)mi=1, (Yj , sj + ŝj)

)
when the randomness used is[

z11 + ẑ11 +
∑∑

ŝj1γijri1 z12 + ẑ12 +
∑∑

ŝj1γijri2

z21 + ẑ21 +
∑∑

ŝj2γijri1 z22 + ẑ22 +
∑∑

ŝj2γijri2

]
, (8)

which is uniformly distributed over Z2×2
p if Ẑ is.

Verification. Let ck = (u1,u2,v1,v2) ∈ G2×2
1 × G2×2

2 be a commitment key, let ~c ∈ Gm×2
1 , ~d ∈ Gn×2

2 be
vectors of commitments, and let (φ, θ) ∈ G2×2

2 ×G2×2
1 be a proof for an equation E given by ~A ∈ Gn

1 , ~B ∈ Gm
2 ,

Γ = (γi,j)i,j ∈ Zm×np , and tT ∈ GT . Verify(ck,E,~c, ~d, (φ, θ)) outputs 1 if and only if the following 4 equations
hold. ∏m

i=1 e
(
ci,1,

∏n
j=1 d

γi,j
j,1

)
= e(u1,1, φ1,1) e(u2,1, φ2,1) e(θ1,1, v1,1) e(θ2,1, v2,1)∏m

i=1 e
(
ci,1, Bi

∏n
j=1 d

γi,j
j,2

)
= e(u1,1, φ1,2) e(u2,1, φ2,2) e(θ1,1, v1,2) e(θ2,1, v2,2)∏n

j=1 e
(
Aj
∏m
i=1 c

γi,j
i,2 , dj,1

)
= e(u1,2, φ1,1) e(u2,2, φ2,1) e(θ1,2, v1,1) e(θ2,2, v2,1)∏n

j=1 e(Aj , dj,2)
∏m
i=1 e

(
ci,2, Bi

∏n
j=1 d

γi,j
j,2

)
= tT e(u1,2, φ1,2) e(u2,2, φ2,2) e(θ1,2, v1,2) e(θ2,2, v2,2)

17

Remark 5. Blazy et al. [BFI+10] show that by using techniques of batch verification, the number of pairing
computations can be reduced from 4m+ n+ 16 to 2m+ n+ 8.

Security. It follows from the results of [GS08] and Remark 4 that (Prove,Verify,RdProof) is a randomizable
witness-indistinguishable proof system for Com from Sect. 6.2, as defined in Sect. 3.2.

6.4 Automorphic Signatures

We instantiate the signature scheme Sig = (SetupS,KeyGenS,Sign,Ver) with the scheme from [Fuc09]. It is
compatible since signature components are in V = G1 ∪ G2, the space for committed values, and the verification
equations are pairing-product equations, thus in E . It is moreover automorphic since the verification keys lie in the
message space.

Scheme 1 (Sig). SetupS has input grp = (p,G1,G2,GT , e,G,H) and outputs grp and additional generators
F,K, T ← G1. The message space is DH := {(Gm, Hm) |m ∈ Zp}.

KeyGenS chooses x← Zp and outputs (vk = (Gx, Hx), sk = x).

Sign has inputs a secret key x and a message (M,N) ∈ DH. It chooses random c, r ← Zp and outputs(
A := (K ·T r ·M)

1
x+c , B := F c, D := Hc, R := Gr, S := Hr

)
Ver on inputs a public key (X,Y) ∈ DH, a message (M,N) ∈ DH and a signature (A,B,D,R, S) outputs 1

(and 0 otherwise) iff the following hold:

e(A, Y ·D) = e(K ·M,H) e(T, S) e(B,H) = e(F,D) e(R,H) = e(G,S) (9)

Security. Under q-ADHSDH and AWFCDH, Sig is strongly existentially unforgeable against adversaries making
up to q − 1 adaptive chosen-message queries [Fuc09].

Automorphic Signatures on Two Messages. Fuchsbauer [Fuc09] shows how to transform the above construction
into an automorphic signature scheme that signs two messages at once—if we restrict the message space toDH∗ :=
{(Gm, Hm) |m ∈ Zp \ {0}}. Sign∗(sk, (V,W), (M,N)) for (V,W), (M,N) ∈ DH∗ is defined as follows: pick
a key pair (vk∗, sk∗)← KeyGenS and output8(

vk∗, Sign(sk, vk∗), Sign(sk∗, (M,N)), Sign(sk∗, (V,W) ◦· (M,N)), Sign(sk∗, (V,W)3 ◦· (M,N))
)
.

Ver∗
(
vk, (V,W), (M,N),Σ

)
parses Σ as (vk∗,Σ0,Σ1,Σ2,Σ3) and outputs

Ver(vk, vk∗,Σ0) · Ver(vk∗, (M,N),Σ1) · Ver(vk∗, (V,W) ◦· (M,N),Σ2) · Ver(vk∗, (V,W)3 ◦· (M,N),Σ3) .

Sig∗ = (SetupS,KeyGenS, Sign∗,Ver∗) is strongly unforgeable under ADHSDH and AWFCDH [Fuc09].
In Sect. 9.1, we give a variant of the scheme Sig with messages in Zp × DH (required by our application to

credentials in Sect. 5) which does not increase the size of a signature.

7 Additional Properties of Groth-Sahai Proofs

We identify five properties of Groth-Sahai proofs that will allow us to instantiate commuting signatures. The first
is that proofs are constructed independently of the right-hand side of the equation; if the equation is linear, i.e., if
γij = 0 for all i, j, then they are even independent of the committed values. Given two independent (i.e., with no
common variables) equations and commitments and proofs for them then the product of the proofs is a proof of
the “product of the equations” and the concatenated vectors of commitments. The fourth property states that if we
change a committed value by exponentiation then we can adapt the proof. And lastly, given commitments and a
proof for an equation, if we commit to a constant of the equation then we can turn the proof into one for the set of
commitments extended by the new commitment and the equation where the constant is now a variable.

8Exponentiation of a DH pair is defined componentwise: (M,N)k := (Mk, Nk).

18

7.1 Independence of Proofs

In general, proofs are independent of the right-hand side of the equation; moreover, proofs for linear equations are
independent of the committed values.

Lemma 1. Consider equation E from (4). Then the output of Prove(·,E, ·, ·) is independent of tT .

Proof. The result follows by inspection of the proof definition in (7), or, more generally, the one in Remark 4,
which also encompasses other instantiations of Groth-Sahai proofs.

For concreteness, we will give the proofs of the next lemmas for the SXDH instantiation, but we note that they
also hold for the other instantiations.

Lemma 2. Linear proofs depend only on the randomness of the commitments, but not on the committed values.

Proof. For an equation E for which γij = 0 for all i and j the proof simplifies to

φ :=

[
1

∏m
i=1B

ri1
i

1
∏m
i=1B

ri2
i

]
◦· (Z ⊗	 ~v) θ :=

[
1

∏n
j=1A

sj1
j

)
1

∏n
j=1A

sj2
j

)] ◦· (Z ⊗ ~u)

which does not contain values Xi and Yj .

7.2 Proofs for Composed Equations

Groth-Sahai proofs are homomorphic w.r.t. the equations in the following sense. Given equations

E :
n∏
i=1

e(Ai, Yi)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j = tT

E′ :
n′∏
i=1

e(A′i, Y
′
i)

m′∏
i=1

e(X ′i, B
′
i)

m′∏
i=1

n′∏
j=1

e(X ′i, Y
′
j)γ
′
i,j = t′T

and a proof π for commitments (~c, ~d) for equation E and a proof π′ for commitments (~c′, ~d′) for equation E′, then
π′′ := π ◦· π′ is a proof for commitments ((~c,~c′), (~d, ~d′)) and equation E′′ (for arbitrary t′′T ∈ GT):

E′′ :
n∏
i=1

e(Ai, Yi)
n′∏
i=1

e(A′i, Y
′
i)

m∏
i=1

e(Xi, Bi)
m′∏
i=1

e(X ′i, B
′
i)

m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j
m′∏
i=1

n′∏
j=1

e(X ′i, Y
′
j)γ
′
i,j = t′′T

Lemma 3. If π = Prove(ck,E, (Xi, ri)mi=1, (Yj , sj)
n
j=1; Z) and π′ = Prove(ck,E′, (X ′i, r

′
i)
m′
i=1, (Y

′
j , s
′
j)
n′
j=1; Z ′)

then π ◦· π′ = Prove(ck,E′′, (Xi, ri)mi=1, (X
′
i, r
′
i)
m′
i=1, (Yj , sj)

n
j=1, (Y

′
j , s
′
j)
n′
j=1; Z + Z ′)

Proof. Equation E′′ over (X1, . . . , Xm, X
′
1, . . . , X

′
m′ ; Y1, . . . , Yn, Y

′
1 , . . . , Y

′
n′) is determined by the constants

~A′′ := (~A, ~A′), ~B′′ := (~B, ~B′) and Γ′′ :=
[
Γ 0
0 Γ′

]
. The proof π′′ = π ◦· π′ looks as follows (with t′′ij := tij + t′ij)

φ′′ :=

vt′′11
11 v

t′′12
21

(∏m
i=1B

ri1
i

)(∏m′

i=1(B′i)
r′i1
)(∏n

j=1 Y
Pm
i=1 ri1γij

j

)(∏n′

j=1(Y ′j)
Pm′
i=1 r

′
i1γ
′
ij
)
v
t′′11
12 v

t′′12
22

v
t′′21
11 v

t′′22
21

(∏m
i=1B

ri2
i

)(∏m′

i=1(B′i)
r′i2
)(∏n

j=1 Y
Pm
i=1 ri2γij

j

)(∏n′

j=1(Y ′j)
Pm′
i=1 r

′
i2γ
′
ij
)
v
t′′21
12 v

t′′22
22

◦· ((Z + Z ′) ⊗	 ~v)

θ′′ :=

1
(∏n

j=1A
sj1
j

)(∏n′

j=1(A′j)
s′j1
)(∏m

i=1X
Pn
j=1 sj1γij

i

)(∏m′

i=1(X ′i)
Pn′
j=1 s

′
j1γ
′
ij
)

1
(∏n

j=1A
sj2
j

)(∏n′

j=1(A′j)
s′j2
)(∏m

i=1X
Pn
j=1 sj2γij

i

)(∏m′

i=1(X ′i)
Pn′
j=1 s

′
j2γ
′
ij
)
 ◦· ((Z + Z ′)⊗ ~u)

which is a proof for (~c,~c′, ~d, ~d′) for E′′ with internal randomness Z + Z ′.

19

7.3 Changing the Committed Value and Adapting Proofs

We give a special case which we require to randomize commitments to non-trivial messages in Appendix C.1.
We start with some notation. Let ~w ∈ Gm×n, Z ∈ Zm×np and k ∈ Zp. Then by ~wk we denote componentwise
exponentiation, and by k ·Z we denote standard scalar multiplication, i.e.,

if ~w = (wij)1≤i≤m
1≤j≤n

then ~wk = (wkij)1≤i≤m
1≤j≤n

if Z = (zij)1≤i≤m
1≤j≤n

then k ·Z = (kzij)1≤i≤m
1≤j≤n

Consider equation E∗ : e(X,Y) = tT ; then given a proof π for E∗, Com(ck, X, r) and Com(ck, Y, s), πk is a
proof for e(X,Y) = tkT and Com(ck,Xk, k ·r) and Com(ck, Y, s).

Lemma 4. If π = Prove
(
ck,E∗, (X, r), (Y, s); Z

)
then πk = Prove

(
ck,E∗, (Xk, k ·r), (Y, s); k ·Z

)
.

Proof. By (5), we have (Z ⊗ ~u)k = (k·Z)⊗ ~u and (Z ⊗	 ~v)k = (k·Z) ⊗	 ~v for Z ∈ Z2×2
p and k ∈ Zp. The proof

Prove(ck,E∗, (X, r), (Y, s); Z) is defined as

π1 =

[
vr1s111 vr1s221 Y r1vr1s112 vr1s222

vr2s111 vr2s221 Y r2vr2s112 vr2s222

]
◦· (Z ⊗	 ~v) π2 =

[
1 Xs1

1 Xs2

]
◦· (Z ⊗ ~u)

so we have

πk1 =

[
vkr1s111 vkr1s221 Y kr1vkr1s112 vkr1s222

vkr2s111 vkr2s221 Y kr2vkr2s112 vkr2s222

]
◦·
(
(k ·Z) ⊗	 ~v

)
πk2 =

[
1 (Xk)s1

1 (Xk)s2

]
◦·
(
(k ·Z)⊗ ~u

)
which is the definition of Prove

(
ck,E∗, (Xk, k ·r), (Y, s); k ·Z

)
.

7.4 Committing to Constants and Adapting Proofs

Given a proof for an equation, one can commit to one of the constants and adapt the proof. Consider an equa-
tion E(X1, . . . , Xm; Y1, . . . , Yn) as in (4) and a proof (φ, θ) for commitments (c1, . . . , cm; d1, . . . ,dn). Some
calculation shows that (φ, θ) is also a proof for equation

E′(~X,Ak; ~Y) :
n∏
i=1
i 6=k

e(Ai, Yi)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j e(Ak, Yk) = tT

and commitments (c1, . . . , cm,Com(ck, Ak, 0); d1, . . . ,dn). This yields the following result.

Lemma 5. Let π ← Prove
(
ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1

)
and for all i, j let ci = Com(ck, Xi, ri) and dj =

Com(ck, Yj , sj). Then RdProof
(
ck,E′, (ci, 0)mi=1, (Com(ck, Ak, 0), r), (dj , 0)nj=1, π

)
yields a proof that is dis-

tributed as the output of Prove
(
ck,E′, (Xi, ri)mi=1, (Ak, r), (Yj , sj)

n
j=1

)
. An analogous result holds for committing

to a constant Bk ∈ G2.

8 Instantiation of Commuting Signatures

In [Fuc09], a blind signature scheme is constructed from the scheme Sig (Sect. 6.4) as follows. The user, who
wishes to obtain a signature on a message (M,N) ∈ DH, chooses a random t ← Zp and blinds the first message
component by the factor T t. The user then sends the following: U := T t ·M , commitments cM and cN to M
and N , respectively, and commitments cP and cQ to Gt and Ht, respectively; moreover, proofs πM , πP and πU of
well-formedness of (M,N), (P,Q) and U , respectively. The signer replies with a “pre-signature” on U (which is
constructed as a signature on U , but on a message that lacks the second component):

A := (K ·T r ·U)
1
x+c B := F c D := Hc R′ := Gr S′ := Hr

20

Knowing t, the user can fabricate an actual signature on (M,N) from this “pre-signature” by setting R := R′ ·Gt
and S := S′·Ht. Then (A,B,D,R, S) is a signature with randomness (c, r+ t) because A = (K·T r·U)1/(x+c) =
(K ·T r+t ·M)1/(x+c), R = Gr+t, and S = Hr+t. To prevent linking a signature to the signing session, the blind
signature is defined as a Groth-Sahai proof of knowledge of the signature. Now to turn this into a commuting
signature, there are two key observations.

1. The values (cM , cN , πM , cP , cQ, πP , U, πU) which the user sends to the signer can actually be considered
as a commitment to the message (M,N), which is extractable and randomizable, and which perfectly hides
the message when the values are produced using a key ck∗ ←WISetup.

2. Since Com is homomorphic, the values cP and cQ can be used to produce commitments on the actual
signature components R and S. Moreover, we show how πP and πU can be used to produce a proof of
validity of the committed values using the results from Lemmas 1, 2, 3 and 5.

For the blind signature scheme in [Fuc09], the values cp, cQ, πP and πU are mainly used in the proof of unforge-
ability, when the simulator needs to extract the message, query it to its signing oracle and then use the values P
and Q to turn the signature into a pre-signature. We show that all these values can be directly used by the signer to
produce commitments to the signature components and even a proof of validity.

Our exposition will use Groth-Sahai proofs and the results from Sect. 7 in a black-box manner. We refer to
Appendix A for a detailed and self-contained presentation of the instantiations.

8.1 Commitments to Messages

We define a commitment on a message (M,N) ∈ DH as the values C = (cM , cN , πM , cP , cQ, πP , U, πU) the
user sends to the signer in the issuing protocol for blind signatures from [Fuc09]. We then show how to randomize
a commitment and how to extract the committed value. Since the committed values are the messages of Sig, the
algorithms also get the parameters ppS as input.

ComM has inputs pp = (ck, grp, F,K, T), (M,N) ∈ DH and (t, µ, ν, ρ, σ) ∈ Z9
p =: RM. We define the

following equations:

EDH(M,N) : e(G−1, N) e(M,H) = 1 (10)

EU (M,Q) : e(T−1, Q) e(M,H−1) = e(U,H)−1 (11)

ComM(pp, (M,N), (t, µ, ν, ρ, σ)) defines P = Gt and Q = Ht, computes

cM := Com(ck,M, µ) cN := Com(ck, N, ν) πM ← Prove
(
ck,EDH, (M,µ), (N, ν)

)
cP := Com(ck, P, ρ) cQ := Com(ck, Q, σ) πP ← Prove

(
ck,EDH, (P, ρ), (Q, σ)

)
U := T t ·M πU ← Prove

(
ck,EU , (M,µ), (Q, σ)

)
and returns C = (cM , cN , πM , cP , cQ, πP , U, πU) ∈ CM(pp).

RdComM, on input (ck, ppS), C and randomness (t′, µ′, ν ′, ρ′, σ′), first defines ĉP := cP ◦· Com(ck, Gt
′
, 0),

ĉQ := cQ ◦· Com(ck, Ht′ , 0) and U ′ := U ·T t′ . Then it sets

c′M := RdCom(ck, cM , µ′) π′M ← RdProof(ck,EDH, (cM , µ′), (cN , ν ′), πM)
c′N := RdCom(ck, cN , ν ′) π′P ← RdProof(ck,EDH, (ĉP , ρ′), (ĉQ, σ′), πP)
c′P := RdCom(ck, ĉP , ρ′) π′U ← RdProof(ck,EU , (cM , µ′), (ĉQ, σ′), πU)
c′Q := RdCom(ck, ĉQ, σ′)

and returns C′ = (c′M , c
′
N , π

′
M , c

′
P , c

′
Q, π

′
P , U

′, π′U) ∈ CM(pp). Randomness (t, µ, ν, ρ, σ) was thus re-
placed by (t+ t′, µ+ µ′, ν + ν ′, ρ+ ρ′, σ + σ′).

ExtrM has inputs ek and C. It returns
(
Extr(ek, cM),Extr(ek, cN)

)
.

21

CM(pp), the space of valid ComM commitments under parameters pp = (ck, ppS) is defined as

CM(pp) :=
{

(cM , cN , πM , cP , cQ, πP , U, πU) ∈ G17
1 ×G16

2 | Verify(ck,EDH, cM , cN , πM)
∧ Verify(ck,EDH, cP , cQ, πP) ∧ Verify(ck,EU , cM , cQ, πU)

}
.

See Appendix A.1 for a proof that ComM is a randomizable extractable commitment scheme that is perfectly
binding and computationally hiding.

8.2 Making Committents to a Signature on a Committed Message and a Proof of Validity

We show how the signer can use the values in C to produce a proof of knowledge

(cA, cB, cD, cR, cS , πA, πB, πR) ∈ G18
1 ×G16

2

of a signature (A,B,D,R, S), where πA, πB and πR are proofs that the committed values satisfy the equations
in (9), respectively, i.e.,

EA(A,M ; S,D) : e(T−1, S) e(A, Y)e(M,H−1) e(A,D) = e(K,H)

EB(B; D) : e(F−1, D) e(B,H) = 1

ER(R; S) : e(G−1, S) e(R,H) = 1

(12)

In the blind signature from [Fuc09], on receiving C, the signer checks the proofs contained in it, and then produces
a pre-signature by choosing c, r ← Zp and computing

A := (K ·T r ·U)
1
x+c B := F c D := Hc R′ := Gr S′ := Hr

Knowing t s.t. U = T t·M , these values are turned into a signature by settingR := R′·Gt and S := S′·Ht. Since the
commitments are homomorphic, the signer can—without knowledge of the values P = Gt and Q = Ht—make
commitments to R and S:

cR := cP ◦· Com(ck, R′, 0) = Com(ck, R, ρ) cS := cQ ◦· Com(ck, S′, 0) = Com(ck, S, σ)

The signer also chooses α, β, δ ← Z2
p, and makes the remaining commitments:

cA := Com(ck, A, α) cB := Com(ck, B, β) cD := Com(ck, D, δ) (13)

The vector ~cΣ := (cA, cB, cD, cR, cS) is thus a commitment on the actual signature Σ = (A,B,D,R, S). It
remains to construct proofs πA, πB and πR that the committed values satisfy the 3 equations in (12)—without
knowledge of µ, ρ and σ, the randomness of the commitments cM , cR and cS , respectively! This can be done
using the following observations:

1. Equation ER(R; S) is actually EDH(R; S) from (10). Since cR and cP have the same randomness ρ, and
cS and cQ have the same randomness σ, and since by Lemma 2, the proof for the linear equation EDH is
independent of the committed values, we can set πR := πP .

2. Lemmas 1 and 2 state that linear proofs only depend on the randomness of the commitments. Since cS =
Com(ck, S, σ) and cQ = Com(ck, Q, σ) have the same randomness, πU is a proof for EU (M ;S) for cM and
cS . Moreover, define

EA†(A; D) : e(A, Y) e(A,D) = 1 (14)

and let πA† ← Prove(ck,EA† , (A,α), (D, δ)). Since the product of the left-hand sides of EU (M ;S) and
EA†(A;D) is the left-hand side of EA(A,M ; S,D), by Lemma 3 we have πA := πU ◦· πA† .

22

SigCom(ck, sk,C) Parse C as (cM , cN , πM , cP , cQ, πP , U, πU) and sk as x. If πM , πP and πU are valid then
choose c, r ← Zp and α, β, δ, ρ′, σ′ ← Z2

p and compute the following values:

A := (K ·T r ·U)
1

x+c cB := Com(ck, F c, β) cR := cP ◦· Com(ck, Gr, ρ′)
cA := Com(ck, A, α) cD := Com(ck, Hc, δ) cS := cQ ◦· Com(ck, Hr, σ′)

π′A ← πU ◦· Prove(ck,EA† , (A,α), (Hc, δ)) (with EA† being Equation (14))
πA ← RdProof(ck,EA, (cA, 0), (cD, 0), (cM , 0), (cS , σ′), π′A)
πR ← RdProof(ck,ER, (cR, ρ′), (cS , σ′), πP) πB ← Prove(ck,EDH, (F c, β), (Hc, δ))

Return (cA, cB , cD, cR, cS , πA, πB , πR).

Figure 2: Making commitments to a signature and proving knowledge.

The remaining proof πB can be constructed regularly, since randomness (β, δ) is known to the signer. Finally, to
get a random proof of knowledge, the signer randomizes all commitments and proofs using RdCom and RdProof
as defined in Sect. 6.3. Algorithm SigCom is summarized in Fig. 2. In Appendix A.2, we formally prove that the
output of SigCom distributed as required by Def. 2.

Instantiation of SmSigCom. This algorithm is similar to SigCom but instead of the signing key sk it is directly
given a signature (A,B,D,R, S). It proceeds like SigCom but starting from a signature instead of producing a
pre-signature: choose α, β, δ ← R and set cA, cB and cD as in (13); use ek to extract P and Q from C and set

cR := cP ◦· Com(ck, R·P−1, 0) = Com(ck, R, ρ) cS := cQ ◦· Com(ck, S ·Q−1, 0) = Com(ck, S, σ)

Now πA, πB and πR can be computed as in SigCom (see Fig. 2).

8.3 Instantiations of Proof Adaptation for Committing and Decommitting

We define equations E eA and EĀ and recall EA:

EA(A,M ; S,D) : e(T−1, S) e(A, Y)e(M,H−1) e(A,D) = e(K,H)

E eA(A; S,D) : e(T−1, S) e(A, Y) e(A,D) = e(K ·M,H)

EĀ(M) : e(M,H−1) = e(A, Y ·D)−1e(K,H) e(T, S)

Recall equations EB and ER from (12). Then we have

EVerify((X,Y), · , ·)((M,N), (A,B,D,R, S)) ≡ EA(A,M ; S,D) ∧ EB(B; D) ∧ ER(R; S)

EVerify((X,Y),(M,N), ·)(A,B,D,R, S) ≡ E eA(A; S,D) ∧ EB(B; D) ∧ ER(R; S)

EVerify((X,Y), · ,(A,B,D,R,S))(M,N) ≡ EĀ(M)

Since the product of the left-hand sides of E eA and EĀ is the left-hand side of EA, by Lemma 3 we have

πA = π eA ◦· πĀ ,

which allows us to implement the algorithms AdPrC, AdPrCM, AdPrDC and AdPrDCM as follows:

AdPrC(pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π̄). The proof π̄ is a proof for equation EĀ. The algorithm sets

π eA ← Prove(ck,E eA, (A,α), (S, σ), (D, δ))
πB ← Prove(ck,EB, (B, β), (D, δ))
πR ← Prove(ck,ER, (R, ρ), (S, σ))

for EB and ER as defined in (12). It then returns π := (π eA ◦· πĀ, πB, πR).

23

AdPrCM(pp, vk, ((M,N), (t, µ, ν, ρ, σ)), cΣ, π̃). The proof π̃ is of the form (π eA, πB, πR). The algorithm sets
πĀ ← Prove(ck,EĀ, (M,µ)) and returns a randomization of π := (π eA ◦· πĀ, πB, πR).

AdPrDC(pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π). The proof π is of the form (πA, πB, πR). The algorithm
sets π eA ← Prove(ck,E eA, (A,α), (S, σ), (D, δ)) and returns π̄ := πA�π eA (where “�” denotes component-
wise division, that is: replace all the components of the second argument by their inverses and then multiply
them with those of the first argument).

AdPrDCM(pp, vk, ((M,N), (t, µ, ν, ρ, σ)), cΣ, π). The proof π is of the form (πA, πB, πR). The algorithm pro-
duces πĀ ← Prove(ck,EĀ, (M,µ)) and returns a randomization of π̃ := (πA � πĀ, πB, πR).

Instantiation of AdPrCK and AdPrDCK. In applications (such as the credentials in Sect. 5) where the signer
wants to remain anonymous, she makes a commitment

cvk :=
(
cX = Com(ck, X, ξ), cY = Com(ck, Y, ψ), πX = Prove(ck,EDH, (X, ξ), (Y, ψ))

)
to her public key vk = (X,Y) ∈ DH and wishes to prove that the values in cΣ are a valid signature on the value
(M,N) in C under the public key that is committed in cvk. The first equation of verification is thus

E bA(A,M ; S, Y,D) : e(T−1, S) e(M,H−1) e(A, Y)e(A,D) = e(K,H) ,

whereas EB and ER remain unchanged. Given a commitment C to a message, cΣ = (cA, cB, cD, cR, cS), a
commitment to a signature, and a proof π = (πA, πB, πR) of validity, πA can be adapted to π bA using Lemma 5 from
Sect. 7: set π bA ← RdProof

(
ck,E bA, (cA, 0), (cM , 0), (cS , 0), (Com(ck, Y, 0), ψ), (cD, 0), πA

)
. (See Appendix A.3

for the details.) To adapt to a decommitment of cvk, we have to reset the randomness of cY to 0. AdPrDCK does
thus the converse: it sets πA ← RdProof

(
ck,E bA, (cA, 0), (cM , 0), (cS , 0), (Com(ck, Y, 0),−ψ), (cD, 0), π bA).

9 Commuting Signatures with Partially Public Messages

9.1 Automorphic Signatures on an Integer and a Message

The scheme Sig from Sect. 6.4 can be adapted to sign a value from Zp and an element from DH at the same time,
as it is required for our application to delegatable credentials. Note that while this requires one extra element in
the parameters it does not increase the size of a signature.

Intuition. ADHSDH states that given “weak signatures” ((K·V)
1
x+c , F c, Hc) on random messages (V,W) ∈ DH,

it is hard to forge such a signature on a new message. Now to turn this into a CMA secure scheme, Fuchsbauer
[Fuc09] implicitly defines a trapdoor commitment TCom((M,N), r) := M·T r with opening (Gr, Hr). The actual
signature is then a weak signature on TCom((M,N), r) together with the opening (Gr, Hr). AWFCDH implies
that it is hard to open a TCom commitment in two different ways, thus TCom is computationally binding.

In order to sign a message pair consisting of an integer value v and a DH-pair (M,N), we replace TCom
by TCom′′ having an additional parameter L: TCom′′(v, (M,N), r) := Lv ·M ·T r, which is also computa-
tionally binding by AWFCDH: consider an adversary producing (v, (M,N), (R,S)) and (v′, (M ′, N ′), (R′, S′)
with TCom′′(v, (M,N), r) = TCom′′(v′, (M ′, N ′), r′); then the case r 6= r′ is reducible to AWFCDH—as for
TCom—and r = r′ is reducible to CDH, which is implied by AWFCDH.

Scheme 2 (Sig′′). Setup′′S has input grp = (p,G1,G2,GT , e,G,H) and outputs grp and additional generators
F,K,L, T ← G1. The message space is DH := {(Gm, Hm) |m ∈ Zp}.

KeyGen′′S chooses x← Zp and outputs (vk = VK(x), sk = x), with VK(x) := (Gx, Hx)

Sign′′ has inputs a secret key x and a message (v, (M,N)) ∈ Zp×DH. It chooses random c, r ← Zp and outputs(
A := (K ·Lv ·M ·T r)

1
x+c , B := F c, D := Hc, R := Gr, S := Hr

)
.

24

Ver′′ on inputs a public key (X,Y) ∈ DH, a message (v, (M,N)) ∈ Zp × DH and a signature (A,B,D,R, S)
outputs 1 (and 0 otherwise) iff the following hold:

e(A, Y ·D) = e(K ·Lv ·M,H) e(T, S) e(B,H) = e(F,D) e(R,H) = e(G,S) (15)

Theorem 2. Assuming q-ADHSDH and AWFCDH, SigA is strongly existentially unforgeable against adversaries
making at most q − 1 adaptive chosen-message queries.

A formal proof of Theorem 2 can be found in Appendix B.

9.2 Verifiably Encrypting a Signature on a Public Integer and a Committed Message

A commitment to a signature on an integer v and a message committed in C is of the form (cA, cB, cD, cR, cS)
and a proof of validity is (πA′′ , πB, πR) for equations EB and ER as in (12) and EA′′ defined as

EA′′(A,M ; S,D) : e(T−1, S) e(A, Y)e(M,H−1) e(A,D) = e(K ·Lv, H) (16)

By Lemma 1, proofs are independent of the right-hand side of the equation, thus πA′′ is defined like πA. This also
holds for proofs about all other equations such as E eA,EĀ and E bA and their variants for Sig′′, since going from
Sig to Sig′′ only affects the right-hand sides of the equations.

Proofs for EVer(···) and EVer′′(···) are thus the same for all combinations of keys, messages and signatures
given as commitments or in the clear. This means that the proof-adaptation algorithms AdPrC,AdPrCM,AdPrCK,
AdPrDC,AdPrDCM and AdPrDCK defined in Sect. 8.3 can all be used for proofs about committed Sig′′ signatures
as well. The only functionality that has to be slightly adapted is SigCom. We define SigCom′′(ck, sk, v,C) as
SigCom in Fig. 2, except that A is defined as A := (K ·Lv ·T r ·U). We do not need to modify SmSigCom, since Σ
is given as input to it.

Note that if in the construction of a blind signature in Sect. 4.2 we replace Sig and SigCom by Sig′′ and
SigCom′′, respectively, we obtain partially blind signatures [AF96], where the signer controls part of the message.

10 A Note on Simulatability of Proofs

Groth and Sahai [GS08] show that pairing-product equations with a right-hand side tT of the form

tT = e(P1, Q1) · · · e(Pn, Qn) (17)

can be simulated: in the witness-indistinguishability setting (i.e., when ck∗ ← WISetup; cf. Sect. 6.2), given as
simulation trapdoor sim the values (α1, t1, α2, t2) used to construct ck∗ one can construct commitments and proofs
of validity for an equation of the above form without knowing a witness, i.e., elements that satisfy the equation.

Equations with right-hand side 1 (“homogeneous equations”) can be simulated directly, since they have a triv-
ial witness. Equations with a non-trivial right-hand side as in (17) must be transformed to a new set of equations
to be simulatable: in the original equation the values Pi are replaced by variables Vi (which makes the equation
homogeneous) and for each i we add the multi-scalar multiplication equation9 V d

i · P
−d
i = 1, where the commit-

ment for d will be a trivial commitment to 1 (Since the randomness for the commitment of d is 0, we can check
that the committed value is 1, which gives us Vi = Pi from the additional equations, and thus soundness of the
construction.) In the simulation, we can now set all variables from G1 and G2 to 1 (which is a satisfying witness
for our transformed PPE), and can thus give commitments and proofs. The additional equations can be simulated,
since given the trapdoor sim, the commitment to d can be trapdoor-opened to 0 (see [GS08] for the details).

In Sect. 10.2 we show that modifying our verification equations for commuting signatures does not interfere
with its functionality; thus we get simulatability, as required for anonymity of our credentials.

9An equation of the form E(X1, . . . , Xm; y1, . . . , yn) :
Qn
i=1 A

yi
i

Qm
i=1 X

bi
i

Qm
i=1

Qn
j=1 X

γij·yj

i = T , over Xi ∈ G1 and yj ∈ Zp,
is called multi-scalar-multiplication equation in G1. [GS08] show how to construct WI proofs for this type of equation.

25

10.1 Simulating Proofs of Knowledge with Given Commitments.

Groth and Sahai show that given sim in the WI setting, for any simulatable PPE, a simulator can produce commit-
ments and a proof of validity. However, they do not consider the case where some of the commitments are given
to the simulator, i.e., it cannot produce them itself and in particular, it does not know their randomness.

In [BCC+09], to prove anonymity, simulations of this kind are required (see, e.g. the definition of SimProve
in Appendix B of the full version). However, the authors do not explain how to achieve such simulation. We will
show that the proofs used in our construction can all be simulated even when some of the commitments are fixed
in advance.

Lemma 6. Let E be as in (4) with tT = 1 and Aj = 1 for indices j ∈ J ⊆ {1, . . . , n}. Given commitments dj for
j ∈ J , we can simulate c1, . . . , cm and dj for j /∈ J and a proof π for E and (c1, . . . , cm,d1, . . . ,dm) if we are
given the simulation trapdoor sim for ck∗. A symmetric result holds for ci and dj interchanged, and Aj replaced
with Bi.

Proof. If the simulator can choose all the commitments ci and dj , it sets the committed values to 1. Since these
values satisfy an homogeneous equation, the simulator can make an honest proof using the randomness for the
commitments. But if the commitments (dj)j∈J are fixed and given to the simulator, it does not know the random-
ness sj s.t. dj = Com(ck∗, 1, sj) for all j ∈ J! We show that the proof can nontheless be construct. Let us look at
the definition of Prove

(
ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1; Z

)
in (7). For the case when Xi = 1 = Yj we have

t11 :=
∑n

j=1

∑m
i=1 ri1γijsj1

t21 :=
∑n

j=1

∑m
i=1 ri2γijsj1

φ :=

[
vt11

11 v
t12
21

(∏m
i=1B

ri1
i

)
vt11

12 v
t12
22

vt21
11 v

t22
21

(∏m
i=1B

ri2
i

)
vt21

12 v
t22
22

]
◦· (Z ⊗	 ~v)

t12 :=
∑n

j=1

∑m
i=1 ri1γijsj2

t22 :=
∑n

j=1

∑m
i=1 ri2γijsj2

θ :=

[
1

(∏n
j=1A

sj1
j

)
1

(∏n
j=1A

sj2
j

)] ◦· (Z ⊗ ~u)

which has to be constructed without knowledge of (sj)j∈J , i.e., the values satisfying dj = Com(ck∗, 1, sj). Let
the simulation trapdoor sim = (α1, α2, β1, β2) be s.t. v1 = (G2, G

α2
2) and v2 = (Gβ2

2 , G
α2β2−1
2) (see Sect. 6.2).

Let (kj , lj) be the (unknown) logarithms of dj , i.e., dj,1 = G
kj
2 and dj,2 = G

lj
2 . Then we have

(Gkj2 , G
lj
2) = dj = Com(ck∗, 1, sj) = (vsj111 v

sj2
21 , v

sj1
12 v

sj2
22) = (Gsj1+β1sj2

2 , G
α2sj1+α2β2sj2−sj2
2)

Solving for sj1 and sj2 we get sj1 = kj − α2β2kj + β2lj and sj2 = α2kj − lj . The simulator can thus compute

G
sj1
2 = d(1−α2β2)

j1 ·dβ2
j2 G

sj2
2 = dα2

j1 ·d
−1
j2 (18)

and use these values to compute φ, since it knows the logarithms of all vij as well as all rij and γij , and θ, e.g.

vt22
22 = v

Pn
j=1 sj2

Pm
i=1 ri2γij

22 =
(
G

Pn
j=1 sj2

Pm
i=1 ri2γij

2

)α2β2−1 =
∏n
j=1(Gsj22)(α2β2−1)

Pm
i=1 ri2γij

=
(∏

j∈J(dα2
j1 ·d

−1
j2)(α2β2−1)

Pm
i=1 ri2γij

)(∏
j /∈J G

sj2(α2β2−1)
Pm
i=1 ri2γij

2

)
.

Since Aj = 1 for j ∈ J , it is straightforward to compute θ.

The above lemma lets us simulate a committed message, a committed signature and a proof of validity for a
given committed public key (since in E bA′′S given in (19) below, the (implicit) constant that is paired with Y is 1,
thus the premise of the lemma is satisfied). To prove anonymity of our construction of a delegatable-credential
scheme in Sect. 5 we moreover need to simulate a verifiably encrypted signature on a given committed message;
this requires simulation of a proof for equation E bA′′S , where the constant (H−1) that is paired with the value whose
commitment is given (M) is not trivial; however, its logarithm −1 is known to the simulator.

We give a strengthening of Lemma 6, where the Aj are of the form G
aj
1 with aj known to the simulator.

26

Lemma 7. Let E be as in (4) with tT = 1 and Aj = G
aj
1 (with aj known) for indices j ∈ J . Given commitments

dj for j ∈ J , we can simulate c1, . . . , cn and dj for j /∈ J and a proof π for E and (c1, . . . , cm,d1, . . . ,dm) if we
are given the simulation trapdoor sim for ck∗. A symmetric result holds for ci and dj interchanged, and Aj = G

aj
1

replaced with Bi = Gbi2 .

Proof. For simplicity, we give a proof in the additive notation of Remark 4. Since ~X = (0, . . . , 0)> = ~Y , we have

~c = R~u φ = R>ι(~B) + (R>ΓS − Z>)~v
~d = S~v θ = S>ι(~A) + Z~u

Let us denote by ~A′ the vector ~A where all Aj with j /∈ J are replaced by 0, and by ~A′′ the vector ~A where all Aj
with j ∈ J are replaced by 0, and let S′ and S′′ be defined analogously. We have ~A = ~A′ + ~A′′ and S = S′ + S′′,
and moreover S>ι(~A) = (S′)>ι(~A′) + (S′′)>ι(~A′′). Note that the simulator only knows the logarithms of ~A′ and
the values in S′′.

Since in the WI setting the matrix ~u is invertible, there exists Ω ∈ Z2×2
p s.t. ι(~A′) = Ω~u. The logarithms of

ι(~A′) and ~u being known to the simulator, it can efficiently compute Ω. We now show how the simulator computes
the proof (φ, θ): it chooses Ẑ ← Z2×2

p and (knowing the values in S′′) computes θ := (S′′)>ι(~A′′) + Ẑ~u =
S>ι(~A) − (S′)>ι(~A′) + Ẑ~u, which is a proof θ = S>ι(~A) + Z~u with Z := Ẑ − (S′)>Ω. The first part of the
proof is then

φ = R>ι(~B) + (R>ΓS − Ẑ> + Ω>S′) ~v ,

which can be constructed using the techniques of the proof of Lemma 6: it suffices to construct the elements in
(18) and use the known logarithms of ~v as well as the known values R and Ω.

10.2 Making the Equations for Ver′′ Simulatable

In our application in Sect. 5.2 we have to simulate proofs for the equations of EVer′′(·,v,·,·)(vk, (M,N),Σ), when
the commitments for vk = (X,Y) or (M,N) (or both!) are given to the simulator.

While EB and ER from (12) have a trivial right-hand side, we replace EA′′ from (16) by the equations

EA′′S (A; W,S,N,D) : e(K ·Lv,W) e(T−1, S) e(G−1, N) e(A, Y) e(A,D) = 1

EdS (d; W) : W d ·H−d = 1

where, besides transforming EA′′ into a homogeneous equation and a multi-scalar multiplication equation10 as
described by [GS08], we replaced e(M,H−1) by e(G−1, N) which by EM (M ;N) is equal. Accordingly, we
replace EU by

EUS (Q,N) : e(T−1, Q) e(G−1, N) = e(U,H)−1

which, together with EM and EP , still asserts that U = T t ·M . Note that in addition, this equation is linear in the
sense of Groth-Sahai and a proof πUS thus reduces to an element from G2

1, whereas πU ∈ G4
1 ×G4

2.
Next, we show how to adapt SigCom′′ (which is the algorithm in Fig. 2 with A defined as (K ·Lv ·T r ·U)

1
x+c at

the beginning). All that needs to be done to define SigCom′′S is replacing EA† by

E
A†S

(A; W,D) : e(K ·Lv,W) e(A, Y) e(A,D) = 1 .

Setting π′AS ← πUS ◦· Prove(ck,E
A†S
, (A,α), (W,ω), (Hc, δ)) in Fig. 2 yields thus a proof for EA′′S by Lemma 3,

since the product of the left-hand sides of E
A†S

and EUS is the left-hand side of EA′′S . The proof for the additional
(multi-scalar multiplication) equation can be produced by the signer herself.

We demonstrated how our instantiation of commuting signatures based on Sig′′ can be adapted to make the
equations for Ver′′ simulatable. Below, we show that they can even be simulated when commitments to the verifi-
cation key and/or the message are given to the simulator.

10We chose to turn H into a variable, since proofs for equations in G2 are in G4
1 ×G2

2 and thus smaller than proofs for equations in G1.

27

Simulating ComM. When the simulator needs to simulate a ComM commitment it does the following: set cM and
cN to commitments to 1. This enables simulation of other proofs for equations about M (such as those in Ver′′).
Since ComM also contains the value U = T t ·M , the simulator has to choose t randomly, which defines P and Q.
Now the simulator can produce cP , cQ, πM , πP , πU honestly. Note that the fact that cP and cQ were not produced
as commitments to 1 is not a problem, as they are never used outside of a ComM commitment.

Simulating Ver′′(·, ·, ·) for Fixed Commitments. In the proof of anonymity of our credential scheme, we have to
construct algorithms SimCredProve and SimIssue that output Groth-Sahai proofs without being given witnesses.
The proofs are for validity of certificates contained in credentials, thus about the equations in Ver′′ from Scheme 2.
The only equation that contains parts of a verification key or the message of is the following

E bA′′S (A; W,S,N, Y,D) : e(K ·Lv,W) e(T−1, S) e(G−1, N) e(A, Y) e(A,D) = 1 . (19)

Corollary 1. Given commitments cvk and C, the simulator can produce (cΣ, π̂) that is distributed as[
Σ← Sign′′(sk, v, (M,N)); ρ← R :(

Com(ck∗,Σ, ρ), Prove
(
ck∗,EVer′′(·,v,·,·), ((X, ξ), (Y, ψ)), ((M,µ), (N, ν)), (Σ, ρ))

)]
,

where vk = (X,Y) and (ξ, ψ) are such that cvk = Com(ck∗, vk, (ξ, ψ)), sk is such that vk = VK(sk), and M,N, µ
and ν are such that C = (Com(ck∗,M, µ),Com(ck∗, N, ν), . . .).

Proof. Simulating Ver′′ means simulating E bA′′S ,EdS ,EB and ER. The simulator makes commitments cΣ to
(1, . . . , 1). Proofs πB and πR are computed honestly and the first equation satisfies the premises of Lemma 7:
the constants (the “Aj” in (4)) that are paired with N and Y are G−1 and 1, respectively, and thus have known
logarithms. π bA′′S can thus be simulated. πdS is simulated by opening cd := Com(ck∗, 1, 0) to 0, as described in
[GS08].

11 Conclusions

In this paper we defined and instantiated a new primitive we call commuting signatures. They allow users to encrypt
different components of a triple consisting of a verification key, a message and a signature, and prove validity of
the encrypted values. Most importantly, they enable signers that are given an encrypted message to produce an
encryption of a signature on it together with a proof of validity.

We showed that this primitive enables the first instantiation of delegatable anonymous credentials with non-
interactive issuing and delegation. Moreover, using our instantiation, the efficiency of the credential scheme im-
proves significantly compared to the (only) previous instantiation. We believe that commuting signatures are an
important tool in the construction of privacy-preserving primitives and that they will find further applications.

Acknowledgments

This work was supported by EADS, the French ANR 07-TCOM-013-04 PACE Project, and the European Com-
mission through the ICT Program under Contract ICT-2007-216646 ECRYPT II.

References
[AF96] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In Kwangjo Kim and Tsutomu Matsumoto,

editors, ASIACRYPT’96, volume 1163 of LNCS, pages 244–251. Springer, November 1996.
[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan Camenisch,

editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer, May 2004.

28

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav
Shacham. Randomizable proofs and delegatable anonymous credentials. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer, August 2009. Full version available at
http://eprint.iacr.org/2008/428.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 356–374. Springer,
March 2008.

[BFI+10] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and Damien Vergnaud.
Batch Groth-Sahai. Cryptology ePrint Archive, Report 2010/040, 2010. http://eprint.iacr.org/.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications. In STOC,
pages 103–112. ACM Press, 1988.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 416–432. Springer, May
2003.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryption and com-
mitment secure under selective opening. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 1–35. Springer, April 2009.

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and Kenneth G. Paterson,
editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer, September 2008.

[Bra99] Stefan Brands. Rethinking public key infrastructure and digital certificates—building privacy. PhD thesis,
Eindhoven Inst. of Tech., The Netherlands, 1999.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures. In Tatsuaki
Okamoto and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages 1–15. Springer, April 2007.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203, 1982.
[Cha85] David Chaum. Security without identification: Transaction systems to make big brother obsolete. Commun.

ACM, 28(10):1030–1044, 1985.
[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira Meyerovich. How to

win the clonewars: Efficient periodic n-times anonymous authentication. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 06, pages 201–210. ACM Press, October / November
2006.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
93–118. Springer, May 2001.

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio Cimato,
Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS, pages 268–289. Springer,
September 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer, August 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia Dwork, editor, CRYPTO 2006,
volume 4117 of LNCS, pages 78–96. Springer, August 2006.

[Dam90] Ivan Damgård. Payment systems and credential mechanisms with provable security against abuse by individuals.
In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 328–335. Springer, August 1990.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, August 2006.

[FP08] Georg Fuchsbauer and David Pointcheval. Anonymous proxy signatures. In Rafail Ostrovsky, Roberto De
Prisco, and Ivan Visconti, editors, SCN 08, volume 5229 of LNCS, pages 201–217. Springer, September 2008.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable constant-size fair e-cash. In Juan A.
Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS 09, volume 5888 of LNCS, pages 226–247. Springer,
December 2009. Full version available at http://eprint.iacr.org/2009/146.

[Fuc09] Georg Fuchsbauer. Automorphic signatures in bilinear groups. Cryptology ePrint Archive, Report 2009/320,
2009. http://eprint.iacr.org/.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 2008.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, April 2008. Full version available
at http://eprint.iacr.org/2007/155.

[LRSW00] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In Howard M. Heys
and Carlisle M. Adams, editors, SAC 1999, volume 1758 of LNCS, pages 184–199. Springer, August 2000.

29

[RS09] Markus Rückert and Dominique Schröder. Security of verifiably encrypted signatures and a construction without
random oracles. In Hovav Shacham and Brent Waters, editors, PAIRING 2009, volume 5671 of LNCS, pages
17–34. Springer, August 2009.

A Details and Proofs of our Commuting-Signature Instantiation

A.1 Commitments on Messages

We define a commitment on a message (M,N) ∈ DH as the values C = (cM , cN , πM , cP , cQ, πP , U, πU) that the
user sends to the signer in the issuing protocol for blind signatures from [Fuc09]. We then show how to randomize
a commitment and how to extract the committed value. Since the committed values are the messages of Sig, the
algorithms also get the parameters ppS as input.

ComM has inputs pp = (ck, grp, F,K, T), (M,N) ∈ DH and (t, µ, ν, ρ, σ) ∈ Z9
p =: RM. Recall that ck is

composed of ~u = (u1,u2) ∈ G2×2
1 and ~v = (v1,v2) ∈ G2×2

2 . We define the following equations:

EDH(M,N) : e(G−1, N) e(M,H) = 1 (20)

EU (M,Q) : e(T−1, Q) e(M,H−1) = e(U,H)−1 (21)

ComM(pp, (M,N), (t, µ, ν, ρ, σ)) defines P = Gt and Q = Ht, computes

cM := Com(ck,M, µ) = (uµ1
11u

µ2
21 ,Muµ1

12u
µ2
22) cN := Com(ck, N, ν) = (vν1

11v
ν2
21, Nv

ν1
12v

ν2
22)

cP := Com(ck, P, ρ) = (uρ1
11u

ρ2
21, Pu

ρ1
12u

ρ2
22) cQ := Com(ck, Q, σ) = (vσ1

11v
σ2
21 , Qv

σ1
12v

σ2
22)

πM ← Prove
(
ck,EDH, (M,µ), (N, ν)

)
πP ← Prove

(
ck,EDH, (P, ρ), (Q, σ)

)
U := T t ·M πU ← Prove

(
ck,EU , (M,µ), (Q, σ)

)
and returns C = (cM , cN , πM , cP , cQ, πP , U, πU) ∈ CM.

RdComM on input (ck, ppS), C and (t′, µ′, ν ′, ρ′, σ′), the algorithm first defines ĉP := cP ◦· (1, Gt
′
), ĉQ :=

cQ ◦· (1, Ht′) and U ′ := U ·T t′ . It sets

c′M := RdCom(ck, cM , µ′) π′M ← RdProof(ck,EDH, (cM , µ′), (cN , ν ′), πM)
c′N := RdCom(ck, cN , ν ′) π′P ← RdProof(ck,EDH, (ĉP , ρ′), (ĉQ, σ′), πP)
c′P := RdCom(ck, ĉP , ρ′) π′U ← RdProof(ck,EU , (cM , µ′), (ĉQ, σ′), πU)
c′Q := RdCom(ck, ĉQ, σ′)

and returns C′ = (c′M , c
′
N , π

′
M , c

′
P , c

′
Q, π

′
P , U

′, π′U) ∈ CM.

ExtrM has inputs ek and C. It returns
(
Extr(ek, cM),Extr(ek, cN)

)
.

C ∈ CM is efficiently verifiable by parsing it as (cM , cN , πM , cP , cQ, πP , U, πU) and checking the proofs πM , πP
and πU .

Theorem 3. ComM is a randomizable extractable commitment scheme that is perfectly binding and computa-
tionally hiding.

Proof. The commitment C = (cM , cN , πM , cP , cQ, πP , U, πU) is binding by the corresponding property of
SXDH commitments. A correctly constructed commitment contains valid proofs; in particular, we have e(U,H) =
e(T t, H) e(M,H) = e(T,Q) e(M,H), thus (21) is satisfied.

The scheme is computationally hiding as defined Sect. 3.1: let ck∗ ←WISetup. Then for every (M,N) ∈ DH
there exists t s.t. U = T t ·M . Moreover there exist µ, ν, ρ and σ s.t. cM = Com(ck,M, µ), cN := Com(ck, N, ν),
cP := Com(ck, Gt, ρ), and cQ := Com(ck, Ht, σ). So for every C and every (M,N) ∈ DH there exists r :=
(t, µ, ν, ρ, σ) ∈ RM s.t. C = ComM(ck∗, (M,N), r).

30

Moreover, RdComM randomizes a commitment. When (U, cP , cQ) is replaced by (U ′, ĉP , ĉQ) in the first step,
t is replaced by t + t′ (since the commitments are homomorphic, ĉP is a commitment to P ·Gt′ and c′Q commits
to Q·Ht′ ; note that πP and πU do not depend on t but only on the randomness of the commitments—which is not
changed in the first step.) In the second step, (µ, ν, ρ, σ) is replaced by (µ+ µ′, ν + ν ′, ρ+ ρ′, σ + σ′).

A.2 Making Committents to a Signature and a Proof of Validity

We show how the signer can use the values in C to produce a proof of knowledge

(cA, cB, cD, cR, cS , πA, πB, πR) ∈ G18
1 ×G16

2

of a signature (A,B,D,R, S) where πA, πB and πR are proofs that the committed values satisfy the equations
in (9), respectively, i.e.

EA(A,M ; S,D) : e(T−1, S) e(A, Y)e(M,H−1) e(A,D) = e(K,H)

EB(B; D) : e(F−1, D) e(B,H) = 1

ER(R; S) : e(G−1, S) e(R,H) = 1

(22)

Instantiating the formulas from Sect. 6.3, for equations EDH and EU (as defined in (20) and (21)), the proofs
πM , πP and πU are computed by choosing random ZM , ZP , ZU ← Z2×2

p and (using the notation defined in (5))
setting

πM,1 =
[
1 Hµ1

1 Hµ2

]
◦· (ZM ⊗	 ~v)

πM,2 =
[
1 G−ν1

1 G−ν2

]
◦· (ZM ⊗ ~u)

πP,1 =
[
1 Hρ1

1 Hρ2

]
◦· (ZP ⊗	 ~v)

πP,2 =
[
1 G−σ1

1 G−σ2

]
◦· (ZP ⊗ ~u)

πU,1 =
[
1 H−µ1

1 H−µ2

]
◦· (ZU ⊗	 ~v)

πU,2 =
[
1 T−σ1

1 T−σ2

]
◦· (ZU ⊗ ~u)

(23)

In the blind signature from [Fuc09], on receiving C, the signer checks the proofs contained in it, and then produces
a pre-signature by choosing c, r ← Zp and computing

A := (K ·T r ·U)
1
x+c B := F c D := Hc R′ := Gr S′ := Hr

Knowing t s.t. U = T t ·M , these values can be turned into a signature on (M,N) by setting R := R′ ·Gt and
S := S′ ·Ht. (Because A = (K ·T r ·U)1/(x+c) = (K ·T r+t ·M)1/(x+c), R = Gr+t, and S = Hr+t.) Since the
commitments are homomorphic, the signer can—without knowledge of the values P = Gt and Q = Ht—make
commitments on R and S:

cR := cP ◦· Com(ck, R′, 0) = Com(ck, R, ρ) cS := cQ ◦· Com(ck, S′, 0) = Com(ck, S, σ)

The signer also chooses α, β, δ ← Z2
p, and makes the remaining commitments:

cA := Com(ck, A, α) cC := Com(ck, B, β) cD := Com(ck, D, δ)

The vector ~cΣ := (cA, cB, cD, cR, cS) are thus commitments on the actual signature Σ = (A,B,D,R, S). It
remains to construct proofs πA, πB and πR that the committed values satisfy the 3 equations in (22). Instantiating
the proofs given in (7) for the concrete equations, we get the following:

πA,1 =

[
vα1δ1

11 vα1δ2
21 (Y D)α1H−µ1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2H−µ2vα2δ1
12 vα2δ2

22

]
◦· (ZA ⊗	 ~v)

πA,2 =

[
1 T−σ1Aδ1

1 T−σ2Aδ2

]
◦· (ZA ⊗ ~u)

πR,1 =

[
1 Hρ1

1 Hρ2

]
◦· (ZR ⊗	 ~v)

πR,2 =

[
1 G−σ1

1 G−σ2

]
◦· (ZR ⊗ ~u)

(24)

31

ComSig(ck, sk,C) Parse C as (cM , cN , πM , cP , cQ, πP , U, πU) and sk as x. If πM , πP and πU are valid then
choose c, r ← Zp and α, β, δ, ρ′, σ′ ← Z2

p and compute the following values.

cA := Com(ck, (K ·T r ·U)
1

x+c , α) cB := Com(ck, F c, β) cD := Com(ck, Hc, δ)
cR := cP ◦· Com(ck, Gr, ρ′) cS := cQ ◦· Com(ck, Hr, σ′)

π′A,1 := πU,1 ◦·

[
vα1δ1

11 vα1δ2
21 (Y D)α1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2vα2δ1
12 vα2δ2

22

]
π′A,2 := πU,2 ◦·

[
1 Aδ1

1 Aδ2

]

πA ← RdProof(ck,EA, (cA, 0), (cD, 0), (cM , 0), (cS , σ′), π′A) πB ← Prove(ck,EDH, (F c, β), (Hc, δ))
πR ← RdProof(ck,ER, (cR, ρ′), (cS , σ′), πP)

Return (cA, cB , cD, cR, cS , πA, πB , πR).

Figure 3: Making commitments to a signature and proving knowledge.

and πB = Prove(ck,EDH, (B, β), (D, δ)), which is built analogously to πR. The signer must produce all these
proofs without knowledge of µ, ρ and σ. He can do so by recycling the proofs in C given in (23). In particular, he
sets

πA,1 := πU,1 ◦·

[
vα1δ1

11 vα1δ2
21 (Y D)α1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2vα2δ1
12 vα2δ2

22

]
πA,2 = πU,2 ◦·

[
1 Aδ1

1 Aδ2

]
(25)

which is πA using randomness ZA := ZU . Moreover, he produces πB , for which he knows the values β and δ, and
sets πR := πP (both πR and πP are proofs for commitments with the same randomness ρ and σ, and the proofs
are such that they do not depend on the committed value). Finally, to get a random proof of knowledge, the signer
randomizes all commitments and proofs using RdCom and RdProof as defined in Sect. 6.3. The final proof of
knowledge of a signature is (c′A, c

′
B, c

′
D, c

′
R, c

′
S , π

′
A, π

′
B, π

′
R). See Fig. 3 for a formal description of SigCom.

Theorem 4. SigCom, as defined in Fig. 3 (and Fig. 2), is commuting.

Proof. The algorithm SigCom optimizes the steps discussed informally above by constructing and randomizing
cR and cS in one step. Moreover, cA, cB and cD need not be randomized since SigCom chooses their randomness;
in addition, being produced “freshly”, πB need not be randomized either.

We formally prove that the output of the algorithm is correctly distributed. Recall that by Prove(. . . ;Z) we
denote the output of Prove when Z ∈ Z2×2

p is the randomness used.
Let C = (cM , cN , πM , cP , cQ, πP , U, πU) and let (M,N) ∈ DH and rand := (t, µ, ν, ρ, σ) be such that

C = ComM(ck, (M,N), rand); in particular, since ComM is perfectly binding, we have U = T t ·M and

cM = Com(ck,M, µ) cN = Com(ck, N, ν) cP = Com(ck, Gt, ρ) cQ = Com(ck, Ht, σ)

Let moreover ZM , ZP and ZU be such that

πM := Prove
(
ck,EDH, (M,µ), (N, ν); ZM

)
πU := Prove

(
ck,EU , (M,µ), (Ht, σ); ZU

)
πP := Prove

(
ck,EDH, (Gt, ρ), (Ht, σ); ZP

)
CORRECTNESS. Let c, r, α, β, δ, ρ′, σ′ be the values chosen by SigCom. We have

cA = Com(ck, (K ·T r+t ·M)
1
x+c , α) cB = Com(ck, F c, β) cD = Com(ck, Hc, δ)

cR = Com(ck, Gt+r, ρ+ ρ′) cS = Com(ck, Ht+s, σ + σ′)

32

where the first equation follows from the definition of U and the last two from the homomorphic property of Com.
Note that values (A,B,D,R, S) committed in (cA, cB, cD, cR, cS) compose a valid signature, in particular

(A,B,D,R, S) = Sign(x, (M,N); (c, r + t)) .

Define π′A as in Fig. 3 and let π′R := πP . In the discussion above we showed the following:

π′A = Prove
(
ck,EA, (A,α), (M,µ), (S, σ), (D, δ); ZU

)
π′R := Prove

(
ck,EDH, (P, ρ), (Q, σ); ZP

)
Let ZA, ZB and ZR be the randomness used by RdProof (or Prove) in the construction of πA, πB and πR, respec-
tively. By the properties of RdProof (cf. Remark 4) we have the following:

πA := Prove(ck,EA, (A,α), (M,µ), (S, σ + σ′), (D, δ); ZU + ZA + Z ′)
πR := Prove(ck,ER, (R, ρ+ ρ′), (S, σ + σ′); ZP + ZR + Z ′′)
πB := Prove(ck,EDH, (B, β), (D, δ); ZB)

where the Z ′ is defined by α, µ and σ′ and Z ′′ is defined by ρ and σ (cf. equation (8) in Remark 4).
The resulting output (cA, cB, cD, cR, cS , πA, πB, πR) of SigCom is thus the same as the values constructed

the following way:

(A,B,D,R, S) := Σ = Sign(x, (M,N), (ĉ, r̂))

(cA, cB, cD, cR, cS) := Com(ck, (A,B,D,R, S), (α̂, β̂, δ̂, ρ̂, σ̂))

πA := Prove
(
ck,EA, (A, α̂), (M,µ), (S, σ̂), (D, δ̂); ẐA

)
πB := Prove

(
ck,EB, (B, β̂), (D, δ̂); ẐB

)
πR := Prove

(
ck,ER, (R, ρ̂), (S, σ̂); ẐR

)
when (α̂, β̂, δ̂, ρ̂, σ̂, ẐA, ẐB, ẐR) are defined as

ĉ = c r̂ = r + t α̂ = α β̂ = β δ̂ = δ

ρ̂ = ρ+ ρ′ σ̂ = σ + σ′ ẐA = ZU + ZA + Z ′ ẐB = ZB ẐR = ZP + ZR + Z ′′

All these values are uniformly random since c, r, α, β, δ, ρ′, σ′, ZA, ZB, and ZR are chosen uniformly and inde-
pendently at random by SigCom.

Instantiation of SmSigCom. This algorithm does what SigCom does but instead of being given the signing key
sk, it is directly given a signature. It proceeds similarly to SigCom but starting from a signature instead of a pre-
signature. It first uses ek to extract P and Q from C. It then chooses α, β, δ ← R and sets cA := Com(ck, A, α),
cB := Com(ck, B, β), and cD := Com(ck, D, δ). It moreover sets

cR := cP ◦· Com(ck, R·P−1, 0) = Com(ck, R, ρ) cS := cQ ◦· Com(ck, S ·Q−1, 0) = Com(ck, S, σ)

It can now define πA as in (25) and πR as πP from C, and produce πB using β and δ. Randomize everything and
output (cA, cB, cD, cR, cS , πA, πB, πR).

A.3 Instantiations of Proof Adaptation for Committing and Decommitting

Adaptation of Proofs for Committing and Decommitting to Signatures and Messages. In Fig. 4 we rewrote the
proofs contained in a commitment C and the proofs for the first verification relation of the signatures, depending
on which elements are committed. πA is the proof when both signature and message are committed, π eA when only
the signature is committed and πĀ for when only the message is committed. We also give πA† , a proof for when
only the elements A and D of a signature are committed.

33

C Proofs contained in a ComM commitment, for equations EP = EM = EDH(M,N) : e(G−1, N) e(M,H) = 1
and EU (M,Q) : e(T−1, Q)e(M,H−1) = e(U,H)−1

πM,1 =
[
1 Hµ1

1 Hµ2

]
◦· (ZM ⊗	 ~v) πP,1 =

[
1 Hρ1

1 Hρ2

]
◦· (ZP ⊗	 ~v) πU,1 =

[
1 H−µ1

1 H−µ2

]
◦· (ZU ⊗	 ~v)

πM,2 =
[
1 G−ν1

1 G−ν2

]
◦· (ZM ⊗ ~u) πP,2 =

[
1 G−σ1

1 G−σ2

]
◦· (ZP ⊗ ~u) πU,2 =

[
1 T−σ1

1 T−σ2

]
◦· (ZU ⊗ ~u)

πA Proof for equation EA(A,M ; S,D) : e(T−1, S) e(A, Y)e(M,H−1) e(A,D) = e(K,H)

πA,1 =
[
vα1δ1

11 vα1δ2
21 (Y D)α1H−µ1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2H−µ2vα2δ1
12 vα2δ2

22

]
◦· (ZA ⊗	 ~v) πA,2 =

[
1 T−σ1Aδ1

1 T−σ2Aδ2

]
◦· (ZA ⊗ ~u)

π eA Proof for equation E eA(A; S,D) : e(T−1, S) e(A, Y) e(A,D) = e(K ·M,H)

π eA,1 =
[
vα1δ1

11 vα1δ2
21 (Y D)α1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2vα2δ1
12 vα2δ2

22

]
◦· (Z eA ⊗	 ~v) π eA,2 =

[
1 T−σ1Aδ1

1 T−σ2Aδ2

]
◦· (Z eA ⊗ ~u)

πA† Proof for equation EA†(A; D) : e(A, Y) e(A,D) = e(K ·M,H) e(T, S)

πA†,1 =
[
vα1δ1

11 vα1δ2
21 (Y D)α1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2vα2δ1
12 vα2δ2

22

]
◦· (ZA† ⊗	 ~v) πA†,2 =

[
1 Aδ1

1 Aδ2

]
◦· (ZA† ⊗ ~u)

πĀ Proof for equation EĀ(M) : e(M,H−1) = e(A, Y ·D)−1e(K,H) e(T, S)

πĀ,1 =
[
1 H−µ1

1 H−µ2

]
◦· (ZĀ ⊗	 ~v) πĀ,2 =

[
1 1
1 1

]
◦· (ZĀ ⊗ ~u)

Figure 4: Overview of different variants of the proof for the first verification equation.

The reason for πA† is to illustrate how the proof πA in SigCom is actually constructed. What the signer does
is to produce πA† (for which he knows the randomness (α, δ)) and then set πA := πU ◦· πA† in (25). In particular,
we observe that the following relations hold between the proofs:

πA = πU ◦· πA†
πA = π eA ◦· πĀ

The last equation allows us to implement the algorithms AdPrC, AdPrCM, AdPrDC and AdPrDCM.

AdPrC(pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π̄). The proof π̄ is a proof for equation EĀ. The algorithm sets

π eA ← Prove(ck,E eA, (A,α), (S, σ), (D, δ))
πB ← Prove(ck,EB, (B, β), (D, δ))
πR ← Prove(ck,ER, (R, ρ), (S, σ))

for EB and ER as defined in (22). It then returns π := (π eA ◦· πĀ, πB, πR).

AdPrCM(pp, vk, ((M,N), (t, µ, ν, ρ, σ)), cΣ, π̃). The proof π̃ is of the form (π eA, πB, πR). The algorithm sets
πĀ ← Prove(ck,EĀ, (M,µ)) and returns a randomization of π := (π eA ◦· πĀ, πB, πR).

AdPrDC(pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π). The proof π is of the form (πA, πB, πR). The algorithm
sets π eA ← Prove(ck,E eA, (A,α), (S, σ), (D, δ)) and returns π̄ := πA�π eA (where “�” denotes component-
wise division, that is: replace all the components of the second argument by their inverses and then multiply
them with those of the first argument).

34

AdPrDCM(pp, vk, ((M,N), (t, µ, ν, ρ, σ)), cΣ, π). The proof π is of the form (πA, πB, πR). The algorithm pro-
duces πĀ ← Prove(ck,EĀ, (M,µ)) and returns a randomization of π̃ := (πA � πĀ, πB, πR).

Instantiation of Proof Adaptation when Committing to the Verification Key In some applications (such as the
one discussed in Sect. 5), in order to remain anonymous, the signer makes a commitment(

cX = Com(ck, X, ξ), cY = Com(ck, Y, ψ), πX = Prove(ck,EDH, (X, ξ), (Y, ψ))
)

to his public key and wishes to prove that the values in ~cΣ are a valid signature on the values (M,N) in C under
the public key that is committed in (cX , cY , πX). The first equation of verification is thus

E bA(A,M ; S, Y,D) : e(T−1, S) e(M,H−1) e(A, Y)e(A,D) = e(K,H) ,

for which, by (7), the proof is

π bA,1 :=

[
v
α1(ψ1+δ1)
11 v

α1(ψ2+δ2)
21 (Y D)α1H−µ1v

α1(ψ1+δ1)
12 v

α1(ψ2+δ2)
22

v
α2(ψ1+δ1)
11 v

α2(ψ2+δ2)
21 (Y D)α2H−µ2v

α2(ψ1+δ1)
12 v

α2(ψ2+δ2)
22

]
◦· (Z bA ⊗	 ~v)

π bA,2 :=
[
1 T−σ1Aψ1+δ1

1 T−σ2Aψ2+δ2

]
◦· (Z bA ⊗ ~u)

(26)

whereas EB and ER do not change. Given a commitment C to a message, a commitment cΣ = (cA, cB, cD, cR, cS)
to a signature and a proof π = (πA, πB, πR) of validity, πA can be adapted to π bA using the technique discussed in
Sect. 7.4. Using the randomness ψ for cY , choose Z ′ ∈ Z2×2

p and set

π bA,1 := πA,1 ◦· (Z ′ ⊗	 ~v)

π bA,2 := πA,2 ◦·

[
cψ1

A,1 cψ1

A,2

cψ2

A,1 cψ2

A,2

]
◦· (Z ′ ⊗ ~u)

We show why this yields a proof for E bA. Let Z ∈ Z2×2
p denote the randomness used in πA. Set

Ẑ :=

[
z11 + z′11 + α1ψ1 z12 + z′12 + α2ψ1

z21 + z′21 + α1ψ2 z22 + z′22 + α2ψ2

]
.

Then, using the definition of πA from (24), we have

π bA,1 :=

[
vα1δ1

11 vα1δ2
21 (Y D)α1H−µ1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2H−µ2vα2δ1
12 vα2δ2

22

]
◦·

[
vα1ψ1

11 vα1ψ2
21 vα1ψ1

12 vα1ψ2
22

vα2ψ1
11 vα2ψ2

21 vα2ψ1
12 vα2ψ2

22

]
◦· (Ẑ ⊗	 ~v)

π bA,2 :=

[
1 T−σ1Aδ1

1 T−σ2Aδ2

]
◦·

[
(uα1

11u
α2
21)ψ1 (Auα1

12u
α2
22)ψ1

(uα1
11u

α2
21)ψ2 (Auα1

12u
α2
22)ψ2

]
◦· ((Z + Z ′)⊗ ~u) =

[
1 T−σ1Aδ1+ψ1

1 T−σ2Aδ2+ψ2

]
◦· (Ẑ ⊗ ~u)

which is a proof for equation E bA as detailed in (26) when Z bA := Ẑ.

B Proof of Theorem 2

Consider an adversary that after receiving parameters (G,F,K,L, T,H) and public key (X,Y) is allowed to ask
for q − 1 signatures (Ai, Bi, Di, Ri, Si) on messages (ui, (Mi, Ni)) ∈ Zp × DH of its choice and then outputs
(u, (M,N)) ∈ Zp × DH and a valid signature (A,B,D,R, S) on it, such that either (u, (M,N)) was never

35

queried, or (u, (M,N)) = (ui, (Mi, Ni)) and (A,B,D,R, S) 6= (Ai, Bi, Di, Ri, Si). We distinguish three kinds
of forgers: An adversary is called of Type I if its output satisfies the following

∀ 1 ≤ i ≤ q − 1 :
[
e(T, S ·S−1

i) 6= e(Lui ·Mi ·L−u ·M−1, H) ∨ B 6= Bi
]

(27)

An adversary is called of Type IIa if its output satisfies

∃ 1 ≤ i ≤ q − 1 :
[
e(T, S ·S−1

i) = e(Lui ·Mi ·L−u ·M−1, H) ∧ B = Bi ∧ S 6= Si
]

(28)

otherwise it is called of Type IIb. We will use the first type to break q-ADHSDH, Type IIa to break AWFCDH and
Type IIb to break CDH, which is implied by AWFCDH.

Type I Let
(
G,F,K,X,H, Y, (Ai, Bi, Vi, Di,Wi)

q−1
i=1

)
be a q-ADHSDH challenge. It satisfies thus

e(Ai, Y ·Di) = e(K ·Vi, H) e(Bi, H) = e(F,Di) e(Vi, H) = e(G,Wi) (29)

Let A be a forger of Type I. Choose t, l ← Zp and give parameters (G,F,K,L :=Gl, T :=Gt, H) and the
public key (X,Y) to A. The i-th signing query for (u, (Mi, Ni)) ∈ Zp ×DH is answered as(

Ai, Bi, Di, Ri := (Vi ·G−l·ui ·M−1
i)

1
t , Si = (Wi ·H−l·ui ·N−1

i)
1
t

)
.

It is easily verified that it satisfies (15); and it is correctly distributed since vi = logG Vi is uniformly random
in the ADHSDH instance. If the adverseray produces a valid pair

(
(A,B,D,R, S), (u, (M,N))

)
then by

the last 2 equations of (15), there exist c, r s.t. B = F c, D = Hc, R = Gr, S = Hr, and

e(A, Y ·D) = e(K ·Lu ·M,H) e(T, S) . (30)

The tuple (A,B,D, V := Gl·u ·M ·Rt,W := H l·u ·N ·St) satisfies (2), since (B,D) and (V,W) are Diffie-

Hellman pairs and e(K·V,H) = e(K·Lu·M·(Gr)t, H) = e(K·Lu·M,H) e(T, S) (30)= e(A, Y ·D). Moreover,
it is a solution for the ADHSDH instance, since it is a new tuple: assume that for some iwe haveB = Bi and
W = Wi, that isH l·u·N·St = H l·ui·Ni·Sti . Since (M,N), (Mi, Ni) ∈ DH, we have e(T, S) e(Lu·M,H) =
e(T, S) e(G,H l·u ·N) = e(G,H l·u ·N ·St) = e(G,H l·ui ·Ni ·Sti) = e(T, Si) e(G,H l·ui ·Ni) = e(T, Si)
e(Lui ·Mi, H). We have thus e(T, S ·S−1

i) = e(Lui ·Mi ·L−u ·M−1, H) and B = Bi which contradicts (27)
and thus the fact that A is of Type I.

Type IIa Let (G,H, T = Gt) be an AWFCDH instance; let A be a forger of Type IIa. Pick F,K ← G1

and l, x ← Zp, set X := Gx, Y := Hx and give the adversary parameters (G,F,K,L := Gl, T,H)
and public key (X,Y). Answer a signing query on (ui, (Mi, Ni)) ∈ Zp × DH by returning a signa-
ture (Ai, Bi, Di, Ri, Si) produced by SignA(x, ·). Suppose A returns

(
(A,B,D,R, S), (u, (M,N))

)
sat-

isfying (15) s.t. e(T, S ·S−1
i) = e(Lui ·Mi ·L−u ·M−1, H), B = Bi and S 6= Si for some i. Then

(M∗ := Lui ·Mi ·L−u ·M−1, N∗ := H l·ui ·Ni ·H−l·u ·N−1, R∗ := R ·R−1
i , S∗ := S ·S−1

i) is a AWFCDH
solution: (S∗,M∗), (M∗, N∗) and (R∗, S∗) satisfy the respective equations in (3), and since S 6= Si it is
non-trivial.

Type IIb Let (G,H,L :=Gl) be a CDH instance, i.e., we have to produceH l. LetA be a forger of Type IIb. Pick
F,K, T ← G1 and x← Zp, set X := Gx, Y := Hx and give the adversary parameters (G,F,K,L, T,H)
and public key (X,Y). Answer a signing query on (ui, (Mi, Ni)) ∈ Zp × DH by returning a signature
(Ai, Bi, Di, Ri, Si) produced by SignA(x, ·). Suppose A returns

(
(A,B,D,R, S), (u, (M,N))

)
satisfy-

ing (15) of Type IIa, i.e., e(T, S ·S−1
i) = e(Lui ·Mi ·L−u ·M−1, H), B = Bi and S = Si for some i; which

implies Lui ·Mi = Lu ·M .
We first show that u 6= ui: Suppose u = ui; then by the above we have M = Mi, and moreover B = Bi
and S = Si. Since these values completely determine A,D,R and N , we have (A,B,D,R, S, u,M,N) =
(Ai, Bi, Di, Ri, Si, ui,Mi, Ni), which means that A did not break strong unforgeability.

From Lui ·Mi = LuM we have Lu−ui = Mi ·M−1 and since u 6= ui we have L = (Mi ·M−1)
1

u−ui , which

for m := logGM = logH N, mi := logGMi = logH Ni can be written as G
mi−m
u−ui . Thus (Ni ·N−1)

1
u−ui =

H
mi−m
u−ui is a CDH solution.

36

C Additional Tools and Their Instantiations

In Sect. 6.4, we introduced the scheme from [Fuc09] to sign two public keys at once, which can easily be extended
for arbitrary many messages. The scheme Sig∗ however has message spaceM∗ := DH∗ = DH \ {(1, 1)}. In
this section, we define randomizable, extractable commitments to elements from M∗, and show how to make a
commitments to a signature and a proof of validity on a clear and a committed message fromM∗. We define the
following:

Committing toM∗ Elements. We define Com∗M that has the same properties as ComM, but with value space
M∗ rather thanM. By C∗M we denote the commitment space and byR∗M the space of randomness. Our instantia-
tion is given in Appendix C.1.

Partially Blind Automorphic Signatures. Since Sig∗ (cf. Sect. 6.4) signs two messages, we can define a variant
of SigCom that gets one message in the clear and one committed message. Based on Sig∗ and Com∗M, we define
PSigCom that is given a message M ∈ M∗ and a Com∗M commitment and outputs a proof of knowledge of a
Sig∗ signature on M and the committed value:

PSigCom(ck, sk,M,C). If M ∈ M∗ and C ∈ C∗M then the algorithm outputs a commitment to a signature and a
proof of validity (cΣ, π) which is distributed as[

Σ← Sign∗(sk, (M,V)); ρ← R :
(
Com(ck,Σ, ρ), Prove(ck,EVer∗(vk,(M,·),·), (V, ν), (Σ, ρ))

)]
,

where V and ν are such that C = Com∗M(ck, V, ν).

Note that if in the construction of a blind signature in Sect. 4.2 we replace Sig, ComM and SigCom by Sig∗,
Com∗M and PSigCom, we obtain partially blind signatures [AF96] (where the signer controls part of the message),
which are automorphic themselves.

C.1 Commitments to Non-Trivial Messages

We instantiate Com∗M, with message spaceM∗ := DH∗ = {(Gm, Hm) |m ∈ Zp \ {0}}. To guarantee that the
committed value is not (1, 1), Com∗M contains additional elements. Intuitively, given (M,N) ∈ M∗ if we choose
l ← Z∗p and publish W = N l then W 6= 1 iff N 6= 1. We add a commitment cL to Gl and a proof πW that
e(Gl, N) = e(G,W), which proves well-formedness of W . In the WI setting W, cL and πW perfectly hide N .

Randomization of a Com∗M commitment is a bit trickier. Since l must be from Z∗p, we randomize it multi-
plicatively, that is, we choose l′ ← Z∗p and replace l by l·l′. This also enables randomization of W as W ′ := W l′

which without knowledge of N cannot be done additively. Finally, Lemma 4 (Sect. 7.4) shows how to adapt cL
and πW to the new value l·l′.

We define Com∗M by extending ComM from Sect. 8.1:

Com∗M(pp, (M,N), (κ = (t, µ, ν, ρ, σ), η, l)). If (M,N) ∈ DH∗, (κ, η, l) ∈ RM ×R× Z∗p =: R∗M then define

W := N l cL := Com(ck, Gl, η) πW ← Prove(ck,EW , (Gl, η), (N, ν))

with EW (L; N) : e(L,N) = e(G,W), and output
(
ComM(ck, (M,N), κ),W, cL, πW

)
.

The space of valid commitments is C∗M :=
{

(C,W, cL, πW) |C ∈ CM ∧ W 6= 1 ∧ Verify(ck,EW , cL, cN , πW)}.
Com∗M is shown to be binding and computationally hiding analogously to ComM; in particular if ck∗ is a WI key
then for every (M,N) ∈ DH∗, given (C,W, cL, πW) there exists (κ, η, l) such that C = ComM(ck∗, (M,N), κ),
W = N l, cL = Com(ck∗, Gl, η) and πW ← Prove(ck,EW , (Gl, η), (N, ν)) with κ = (t, µ, ν, ρ, σ).

Using the results from Sect. 7, we define RdCom∗M by extending RdComM:

RdCom∗M(pp, (C,W, cL, πW), (κ′, η′, l′) returns a commitment (C′,W ′, c′L, π
′
W) that is equivalent to the output

of Com∗M(pp, (M,N), (κ+ κ′, l′ ·η + η′, l·l′)) defined as C′ := RdComM(pp,C, κ′) and

37

W ′ := W l′ c′L := RdCom(ck, (cl
′
L), η′) π′W ← RdProof(ck,EW , (cl

′
L, η
′), (cN , ν ′), πl

′
W)
)

RdCom∗M works as follows: the part C of a commitment is randomized by RdComM which replaces κ by κ+ κ′.
Now W is replaced by W l′ , which implicitly replaces l by l·l′. Setting ĉL := cl

′
L, we get ĉL = Com(ck, Ll

′
, l′ ·η)

and by Lemma 4, we have that π̂W := πl
′
W is a proof for EW and (ĉL, cN). In W ′, ĉL and π̂W , randomness

l has thus consistently been replaced by l · l′. The final step is to set c′L = RdCom(ck, ĉL, η′) and π′W ←
RdProof(ck,EW , (ĉL, η′), (cN , ν ′), π̂W). Note that c′L is thus a commitment to Ll

′
under randomness l′ ·η + η′.

If (κ, η, l) and (κ′, η′, l′) are both uniformly chosen fromR∗M then the randomness after randomization is also
uniform inR∗M.

C.2 Making Commitments to a Signature on a Public and a Committed Message and a Proof of
Validity

We give an instantiation of PSigCom defined at the beginning of the section. We start by giving a variant of
SigCom that has inputs (ck, sk, (V,W),C) with (V,W) ∈ M∗ and C ∈ C∗M and outputs a proof of knowledge of
a signature on (V,W) ◦· (M,N), where (M,N) is the message committed in C. The verification of a signature
on such a product Ver′((X,Y), (V,W), (M,N), (A,B,D,R, S)) are the equations EA′ , defined as

EA′(A,M ; S,D) : e(T−1, S) e(A, Y)e(M,H−1) e(A,D) = e(K ·V,H) ,

and EB , ER as defined in (12). Since the left-hand sides of EA′ and EA from (12) are equivalent, by Lemma 1
both equations have the same proofs: πA = πA′ . The only thing that changes w.r.t. SigCom is thus the value A of
the pre-signature.

SigCom′(ck, x, (V,W),C). This variant is defined as SigCom in Fig. 2, except that A := (K ·T r ·U ·V)
1
x+c .

Using SigCom′, the definition of PSigCom is straightforward. Note that AdPrCK can also be applied to outputs of
SigCom′ since proofs only depend on the left-hand sides of their equation. Let E bA′ be EA′ with Y being a variable.
Since EA′ and EA as well as E bA and E bA′ have the same left-hand sides, AdPrCK also transforms a proof for EA′
into one for E bA′ .
PSigCom(ck, sk, (V,W),C).

• (vk∗, sk∗)← KeyGenS; τ ← RM; Cvk∗ := ComM(ck, vk∗, τ); (cΣ0 , π0)← SigCom(ck, sk,Cvk∗)
• (cΣ1 , π

′
1)← SigCom(ck, sk∗,C); π1 ← AdPrCK(ck, (vk∗, τ),C, cΣ1 , π

′
1)

(cΣ2 , π
′
2)← SigCom′(ck, sk∗, (V,W),C); π2 ← AdPrCK(ck, (vk∗, τ),C, cΣ2 , π

′
2)

(cΣ3 , π
′
3)← SigCom′(ck, sk∗, (V,W)3,C); π3 ← AdPrCK(ck, (vk∗, τ),C, cΣ3 , π

′
3)

• Return
(
cΣ = (Cvk∗ , cΣ0 , cΣ1 , cΣ2 , cΣ3), π = (π0, π1, π2, π3)

)
A proof of knowledge of a signature (cΣ, π) under vk on the message pair (V,W) ∈ M∗ and (M,N), which is
given as a commitment C ∈ C∗M is then verified by checking the following:

Cvk∗
?
∈ CM, Verify(ck,EVer(vk,·,·),Cvk∗ , cΣ0 , π0), Verify(ck,EVer(·,·,·),Cvk∗ ,C, cΣ1 , π1),

Verify(ck,EVer∗(·,(V,W),·,·),Cvk∗ ,C, cΣ2 , π2), Verify(ck,EVer∗(·,(V,W)3,·,·),Cvk∗ ,C, cΣ3 , π3) .

Proof adaptation AdPrC∗K for a verifiable encrypted signature of the above form
(
cΣ = (Cvk∗ , cΣ0 , cΣ1 , cΣ2 , cΣ3),

π = (π0, π1, π2, π3)
)

is done by running π̂0 ← AdPrCK(ck, (vk, ξ),Cvk∗ , cΣ0 , π0) and outputting (π̂0, π1, π2, π3).

38

