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Abstract. A common problem in many markets is that competing firms
cannot plan joint business strategies which are socially beneficial, as
each firm has its own preferable business strategy which would yield
higher profits for it and lower profits for the others. The solution to
this problem becomes complex because each firm need not stick to its
commitment to follow the pre-designated strategy. Game theory suggests
to us a way to enforce this commitment, as when every player chooses
his actions according to his observation of the value of a common public
signal and, assuming that the others do not deviate, no player is willing
to deviate from his recommended strategy. The players do not deviate
from their recommended strategy as playing them would yield them a
much higher expected pay-off than playing individually. The common
public channel can be a trusted external mediator which may send each
player his recommended strategy. This mediator can be simulated by a
cryptographic protocol, which all the players agree to implement. This
problem of suggesting the protocol is known as the Correlated Element

Selection Problem. The first two-player protocol was proposed by Dodis
et. al[1] in Crypto 2000. The extension of the two-player protocol to an
n-player protocol is highly prone to collusions, as two firms can collude
and cheat the rest of the firms. The main contribution of the paper is the
first n-player collusion free protocol for the correlated element selection

problem that does not use hardware primitives. We assume that players
are honest but curious.

1 Introduction

The notion of correlated equilibrium was first introduced by Robert Aumann in
1974[2]. Each player chooses his action according to the mediator or the protocol.
The distribution of the strategies to the players is called correlated if no player
wants to deviate from the recommended strategy provided others do not deviate.

We consider an example for a two player game used by Vanessa Teague in
[3]. The game has two competing firms in the same area. Each week, the CEOs
of both the firms decide whether to have a sale or not. If one firm decides to have
a sale and the other decides on having a no sale, then the first firm gets many



customers and gains a high profit. At the same time the second firm gets much
less customers and their profit goes down. Similarly, if both the firms decide on
no sale, then the profit got by them is the usual one. But if both the firms decide
to have a sale, then both of them get the same number of customers with the low
prices. Hence, the profit of both the firms goes down significantly. The incentive
from both the firms is to offer a sale but only when they are very confident that
the other is not going to offer one. But if they do not have any information about
the other firm, the state of (No sale, No sale) gives them the maximum average
pay-off. The pay-off matrix for this game can be given as follows :

Pay-off table Probability Distribution

No Sale Sale
No Sale (9, 9) (5, 12)

Sale (12, 5) (0, 0)

No Sale Sale
No Sale 1/3 1/3

Sale 1/3 0

As it is evident from the table, the strategy profile (Sale,Sale) is the worst for
both the players and hence, they would like to avoid playing that strategy profile.
But, as both the players are rational and would like to get maximum advantage,
they would prefer that the other player plays No Sale so that he can play Sale.
Thus, there is a problem in co-ordination between the players. This can be solved
with the help of a trusted third party or, in other words, a mediator. The me-
diator will at random choose one of the three strategy profiles from (N Sale, No
Sale), (Sale, No Sale), (No Sale, Sale). Thus, eliminating the chances of choosing
the (Sale, Sale) strategy set. This assumes a uniform probability distribution as
shown above. Thus, we increase the overall expected pay-off of each player. Each
player does not know about the strategy of the other player. Therefore, there
will be no tendency to deviate from his recommended strategy. This is a good
example of correlated equilibrium. For a n player game, we refer to σ∗
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Similarly, for any player pi, the expected utility for any strategy ai is given by
ui(ai, σ
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Definition 1. (Correlated Equilibrium): A correlated equilibrium for a game
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The question that arises from the above explanation is that, is there any other
method to attain the increased expected pay-offs without the external mediator
? The concept of cryptography provides a solution to this question. If the players
are allowed to communicate and coordinate among themselves before the start
of the game, then there is a possibility that they agree on a correlated strategy
profile without revealing any information about their own strategy. This can be
helped by the execution of a pre-decided protocol by each player. The suggested



protocol must be able to simulate the mediator. It is also a Nash Equilibrium
for the players to execute the given protocol, as their expected pay-off will be
better by executing the move recommended by the protocol. Thus, no player has
a motivation to deviate from the protocol when all the other players also adhere
to it. The problem of replacing the mediator with a set of rules is known as the
correlated element selection problem[1].

The correlated element selection problem[1] is defined as follows. There are
n players, p1, p2 . . . pn, with a common m list of tuples {(ai1, ai2, ..., ain)/i =
1 to m} and they need to jointly choose a random tuple number r, such that
player pj only learns the value arj , not even the random tuple number r. It
means that, every player pj only learns the value arj . If some player learns the
tuple number r, then it reveals to him the other players’ strategies. This problem
holds a huge significance, as we can find many analogies to this problem in the
real world.
Motivation and significance of the problem:
When there are multiple players, some subset of the players can come together,
collude, and try to get a significant advantage over the other players. Let us take
the case of the previous example and consider that there are n firms and at any
point of time only k, k < n, firms can announce a discount. The solution to the
problem is to suggest, in a completely random manner, which set of players can
announce a discount sale. If any two players collude and are able to get a chance
to announce a discount sale, with some non-negligible probability, then the pro-
tocol is not collusion free. The only successful attempts to suggest a collusion
free protocol are made in [4, 5] with the use of hardware primitives.

We assume, all the players agree to follow the protocol and anyone caught
not following it can be punished by aborting the protocol. The players communi-
cate via messages. The protocol shows how some basic Cryptography, Blindable
Encryption and Commitment tools can be utilized to implement the correlated
element selection problem. In the next section we present the related work to-
wards solving the problem and our contributions. In section 3, we briefly narrate
some basic game theory concepts and cryptographic primitives used in this pa-
per. We then discuss some unsuccessful models to solve the problem in section
4. Our protocol is discussed in detail in section 5 with section 6 concluding the
paper and showing a direction for further work.

2 Related Work and Contributions

The correlated element selection problem was first solved by Barany [6] for n ≥ 4,
where n is the number of players. The protocol has two players performing the
role of the preparer. The protocol was efficient but it was not a collusion free
protocol, i.e., if any two players collude, they can easily obtain moves of the
other players. The other protocols [7, 8] are also in the same line. But all the
above protocols ignored the issue of forming coalitions.



Recently, Dodis et. al[1] presented the first protocol for a 2-player game. The
protocol assumed a uniform distribution of probability for all possible strategy
profiles and the protocol had exponential communication complexity. Vanessa
Teague[3] considered the problem with non uniform probability distribution of
the strategies and presented better communication complexity protocol. The
communication complexity is further improved by Mikhail et. al[9]. All the pro-
tocols [1, 3, 9] work for two players only. The correlated element selection problem
was effectively solved with hardware primitives by Lepinksi et. al[4]. They have
proposed a collusion free model for a n-player game. It provided a high level of
security and efficiency. They have used hardware resources such as ballot boxes
and envelopes, which makes the protocol not suitable in all the general cases.
Along the similar lines, recently there is an another protocol by Izmalkov et.
al[5] with hardware primitives.

Abraham et. al[10] has shown that if k < n, assuming the use of crypto-
graphic primitives and also assuming that the utilities are known, there is a
k−resilient multiparty computation protocol, i.e. simulating a mediator, with
constant expected running time. They have extended their results with players
having unexpected utility, and pre-play communication before the game starts,
i.e cheap talk. When 2(k + t) < n and allowing cheap talk, they have shown
that the mediator can be simulated and proved the existence of ǫ, (k, t) mecha-
nism, where t represents the players with unexpected utilities. In fact, we have a
given an example for the ”mediator simulation for correlated element selection
problem” and presented a protocol for the same.

In this paper we follow the uniform probability distribution, means every
strategy profile is chosen with equal probability. Here, we present a collusion
free n-player protocol for the correlated element selection problem. In other
words, all the players want to collectively decide upon any one of the m tuples
known to all. To the best of our knowledge, the protocol that we are presenting
here is the first collusion free protocol, without any hardware primitive.

3 Preliminaries

We consider a n-player (p1, p2, . . . pn) correlated element selection problem with
m correlated choice. Let Γ (n, L, U) represents a n-persons game, where L =
{L1, . . . , Ln} and Li is the set of actions for each player pi and U = {u1, . . . , un}
is a utility function for each player, where ui : L → R. We consider one preparer
and n− 1 choosers. The choosers are numbered from 1 to n− 1. The Preparer is
denoted by P and the choosers are denoted by Ck, where k is in {1, 2, ..., n− 1}.
Let the set {1, 2, ..., n} be denoted by [n]. We denote pk as the public key and
sk as the secret key used by the preparer. We also denote the list of tuples (all
the correlated choices) T as: {(ai1, ai2, ..., ain)/i = 1 to m} which is a set of
(ai1, ai2, ..., ain) for all i ∈ [m].



3.1 Basics of Game Theory

We define some basic terminologies of game theory in this section [11].
A strategy can be defined as a complete algorithm for playing the game; implicitly
listing all moves and counter-moves for every possible situation throughout the
game. And a strategy profile is a set of strategies for each player which fully
specifies all actions in a game. A strategy profile must include one and only one
strategy for every player. Let a−i be a strategy profile of all players except for the
player pi. When each player pi, i ∈ {1, . . . , n} chooses strategy ai ∈ L resulting in
strategy profile a = {a1, . . . , an}, then player pi obtains pay off ui(a). Note that
the pay off depends on the strategy profile chosen, i.e., on the strategy chosen
by player pi as well as the strategies chosen by all the other players. Some basic
notions in game theory are defined as follows:

Definition 2. (Weak Domination): In a strategic game with ordinal prefer-
ences, player p′is action a ∈ Li weakly dominates his action a′ ∈ Li if

ui(a, a−i) ≥ ui(a
′, a−i)

for every list L−i of the other players’ actions. We say that the action a
′

is
weakly dominated.

Definition 3. (Symmetric Games): A game Γ (N, L, U) is called a symmet-
ric game if for each player pi and for any permutation π we have :

ui(a1, a2, . . . , an) = uπ(i)(aπ(i), aπ(i), . . . , aπ(n))

In simple words, in a symmetric game, the pay-offs of playing a particular strat-
egy are only determined by the other strategies employed and not by which
player is playing them.

The protocol that we present in this paper is resilient to coalition, i.e., the
protocol allows the player to tackle and overcome any coalition between players
in the game. The outcome of the game will be the same even if some colluded
players try to get inappropriate advantage. Thus, we introduce the term Coalition
Resilient Equilibrium. Let C be a coalition set, where C = {P1, P2, . . . , Pt} and
t < n. Let the vector σ = (σ1, σ2, . . . , σn) and LC = L1 ∗ L2 ∗ . . . ∗ Lt and
σC = (σi1, σi2, . . . , σit). Let σ−C mean that all the players except the coalition
members follow strategy σ. A strategy profile σ is a t-resilient equilibrium if
for every coalition C of size at most t, no member of a coalition improves its
pay-off by coordinating their actions and communicating messages. We can say
k resilient equilibrium tolerates deviations by coalitions of size upto k, if any
coalition C, of size C ≤ k, deviates from the equilibrium, then no one in C can
get any advantage. Thus, we define the coalition resilient equilibrium as:

Definition 4. (Coalition Resilient Equilibrium)[12]: Let Γ = (N, L, U) be
a game. The joint strategy profile σ = (σ1, σ2, . . . , σn) is a k-resilient equilibrium
for 1 ≤ k < n, and for all possible non-empty sets C, |C| ≤ k, C ⊆ N and for
every player i ∈ C for any τC strategy profile of coalition players, then the fol-
lowing holds true:

ui(σC , σ−C) ≥ ui(τC , σC)



3.2 Cryptographic Primitives

The principle tool that we use in our protocol is the Blindable Encryption
Scheme. Blindable encryption includes the algorithms for key-generation, en-
cryption and decryption. We denote the blinding algorithm using the keyword
Blind and also the encryption and the decryption function as Enc and Dec
respectively. The formal description of the blinding and combining functions is:

Definition 5. (Blindable Encryption): A public key encryption scheme ε
with public key pk is blindable if there are some Blind and Combine algorithms
such that for any message m1 and every cipher text c ∈ Encpk(m1), we have:
For any message β (the blinding factor), Blindpk(c, β) produces a random en-
cryption of (m1 + β).

Encpk(m1 + β) ≡ Blindpk(c, β)
Blinding twice can be achieved by using two random coins r1 and r2. Then for
any two blinding factors m2 and m3, we have:

Blindpk(Blindpk(c, m2; r1), m3; r2) = Blindpk(c, m2 + m3; Combinepk(r1, r2))

Using the blindable encryption schemes anyone can covert an encryption c of
m1 to an encryption c̄ of (m + β) without the knowledge of the message or the
secret key. Thus, only the person having the secret key can decrypt the message
and the person who blinded it will know the original message signal. We have
discussed about the working and the implementation of blindable encryption
schemes in the appendix in detail.

Commitment schemes are the other cryptographic primitive that we use in
this paper. They allow a player to commit to a value to the other players keeping
them hidden at the same time. Thus, the player can later reveal the committed
value which the other players can verify. Commitments are used to blind the
value of a player so that he cannot adapt to other values to gain inappropriate
advantage. More information about the commitment schemes is given in the
appendix. The commitment scheme has two steps as defined in [13]:

Definition 6. (Commitment Scheme):

1. Commit. The sender sends the encrypted form of bit b which he wants to
commit to, to the receiver.

2. Reveal or Open. The sender sends additional information to the receiver
which enables him to recover the bit b.

There are three requirements for this:

1. Hiding Property. The receiver does not learn anything about the commit-
ted value in the commit step. The receiver cannot distinguish between the
commitment of any two discrete values.

2. Binding property. The sender cannot alter the committed value once he has
committed to it in the commit phase. This requirement has to be satisfied,
even if the sender tries to cheat.

3. Viability. If both the sender and receiver follow the protocol, the receiver
will always recover the committed value.



4 Existing Protocol for 2 Players:

The 2-player protocol for the correlated element selection as given by Dodis [1]
is given in table 1.

Protocol CES

Common inputs: List of the tuples {(ai, bi)/i = 1 to m}, Public key pk.
Preparer knows: Secret key sk

1. Preparer
Picks the random permutation σ over [m].
Let (ci, di) = (Encpk(aσ(i)), Encpk(bσ(i))) for all i ∈ [m].
Send the list {(ci, di)/i = 1 to m} to the chooser.

2. Chooser
Picks a random index r ∈ [m], and a random blinding factor β.
Let (e, f) = (Blindpk(cr, 0), Blindpk(dr, β)).
Send (e, f) to the preparer.

3. Preparer
Set a = Decsk(e), b̄ = Decsk(f). Output a and send b̄ to chooser.

4. Chooser
Unblind the value and output, i.e., set b = b̄ − β. Outputs b as his strategy.

Table 1. Dodis 2-player protocol

The above protocol is formulated for a 2-player correlated element selection
problem. One player acts like a Preparer (P) and the other as a chooser (C).
The preparer in the first step permutes the pairs and then encrypts them using
his public key. Preparer then sends these pairs to the chooser. The chooser then
chooses a random pair number l, where 1 ≤ l ≤ m. Chooser then blinds the
first index with zero and the second index with his blinding factor β. After the
blinding is done, the chooser sends the selected pair to the preparer. The preparer
decrypts both the values. As the value at the first index is blinded only by 0,
he gets the information about the original move, whereas, the preparer gets no
information about the move at the second index as it is blinded by β. Thus, the
preparer takes the decryption of the value at the first index as his move. The
preparer returns the decryption of the value at the second index to the chooser.
The chooser unblinds the received value by subtracting his blinding factor β and
outputs the value as his move.

5 The n player Protocol

5.1 Unsuccessful Directions

In the extended n-player protocol, we have a single preparer (P ) and n − 1
choosers (Ci) where i ∈ [n − 1]. The preparer permutes and encrypts all the m



tuples and passes it to all the players. Here, a tuple is analogous to a pair and the
tuple number analogous to the pair number of the 2-player game. We considered
that all the choosers will collectively decide upon the tuple number to be chosen
from the available m choices. Thus, only the choosers will have the information
of the tuple number. But it is clearly seen that even if one chooser colludes with
the preparer, he can inform the preparer about the tuple number. The preparer
knows the tuple permutation and hence, can know all the moves of the players
if he knows the selected tuple number. Thus, any collusion between the preparer
and a chooser can cause the protocol to fail. To overcome this problem, let us
have a particular chooser, Ck, who permutes and blinds all the tuples and sends
them to all the choosers. The rest of choosers collectively decides on a tuple
number. Even if any one of the choosers colludes with the preparer, they do not
get any information about the original tuple. This is true as preparer’s tuples
are again permuted and blinded by another chooser Ck. The protocol seems to
be working, but if the chooser Ck colludes with the preparer and with any of
the players in the group, then they know the moves of all the other players. The
same problem can be seen when two choosers also permute and blind the tuples..

Thus, to make tuple selection completely collusion free, every chooser, one
by one, should permute and blind the tuples and pass it to other choosers. After
all the choosers have finished blinding and permuting, the (n − 1)th chooser
randomly picks up a tuple number and informs all the other players. Then they
jointly compute a permutation, which specifies which chooser takes which index
from the tuple. For example, in the ith tuple (ai1, ai2, . . . , ain) each player has
to choose an index number which will determine the player’s strategy. Thus, if
the players agree upon a permutation {3, 2, 1, . . . , n− 1} which signifies that the
player one, p1, takes the 3rd index, p2 takes the 2nd index and the nth player,
pn, takes the (n − 1)th index and so on.

5.2 The Protocol

In an n-player game, we select one player to be the preparer(P ) and all the
other n− 1 players as choosers. They collectively decide upon any one of the m
correlated choices. A player’s move is decided by the value at a distinct index
(which no other player has taken) in the agreed upon tuple. All the n−1 choosers
have two private blinding factors, i.e., every chooser Ci has βi as its public
blinding factor and αi as its private blinding factor. The public key used by the
preparer(P ) is already made available to all the choosers. Thus, we present our
protocol in the table 3.

At the beginning of the protocol, the preparer randomly permutes all the
tuples of the game and encrypts them element wise using his public key. After
the encryption is done, he sends the encrypted tuples to all the choosers. Next in
a tuple, the users collectively select the permutation of index number, i.e., each
player selects the index which will determine his move in the game. In other
words, its result is a permutation which tells which player takes which index in
a tuple. This is done by executing the sub-protocol (sub-protocol π2). As we are
considering a symmetric game, using its definition we can state that, irrespective



Protocol-NCES

Common inputs: List of the tuples {(ai1, ai2, ..., ain)/i = 1 to m}
Public key pk.

Preparer knows: Secret key sk

1. Prepare.
Takes the m tuples and permutes them according to σ . Encrypts all the tuples
using the public key as :
(bi1, bi2, ..., bin) = (Encpk(aσ(1i)), Encpk(aσ(2i)), ..., Encpk(aσ(ni))), for all i ∈ [m].
Sends the encrypted tuples, {(bi1, bi2, ..., bin)/i = 1 to m} to all the choosers.

2. Choosers (execution of the sub-protocol π2).
After the execution of this protocol, each chooser Ci agrees upon a distinct index
number hi in a tuple, i.e., the value at the index will determines the move of the
player.

3. Chooser 1 to (n − 1)
– The permuted tuples are passed from one player to other in the following

order: C1  C2  ...  Cn−1  P .
– Each chooser Cj , j ∈ [n − 1] permutes all the tuples with his private permu-

tation function σj , and blinds his index hj in all the tuples with (αj + βj).
{( ¯bihj

)/i = 1 to m} = {(Blindpk(bihj
, (αj + βj))/i = 1 to m}.

– Then the chooser blinds all the other values in the tuples with βj .
(b̄i1, b̄i2, ..., ¯bin) = (Blindpk(bi1, βj), Blindpk(bi2, βj), ..., Blindpk(bin, βj)) for
all i ∈ [m] and i 6= hj .

– Passes the tuples to the chooser (j + 1), till the (n − 1)th chooser is reached.
– The (j + 1)th chooser also executes the step 3.

4. Preparer.
– The preparer also blinds his index with (αn + βn) in all the tuples. Then

blinds all the other value in tuples with βn.
– Let the tuples be denoted by {(ei1, ei2, ..., ein)/i = 1 to m}.
– Sends these permuted tuples to all the players.
– Preparer randomly selects a number r ∈ [m], i.e., the tuple number and

announces it to all.
5. Choosers.

Every chooser now sends the value at the index allotted to him in the rth tuple
to the preparer, i.e., Player pi sends ¯erhi

to the preparer, where
¯erhi

= Blindpk(brhi
, (αi + β)).

6. Preparer.
– The preparer decrypts the values sent by the choosers and sends them back

the decrypted message. Send drhi
= Decsk( ¯erhi

) back to the chooser i.
– The preparer decrypts the value at the index allotted to him in the rth tuple.

7. All players.
Each player pi publicly announces the choice of its βi. Then each compute β =∑

βi for i ∈ [n]. pi then secretly computes his move as : ei = drhi
− (β + αi).

Output ei and agree on the move ei.

Table 2. n-player correlated element selection protocol.



of the index a player chooses, the overall pay-off will remain the same. This holds
true because in a symmetric game the pay-off is determined only by the other
strategies played and not by who plays it. Thus, after the execution of π2, an
index number is allotted to each player (including the preparer), i.e., every player
pi agrees upon the index number denoted by hi.

In the next stage of the protocol, the original message is transmitted from
one chooser to another in a particular order. Each chooser Ci first permutes
all the tuples (only the tuples and not the values inside any tuple) with its
permutation function σi and then blinds the element at his index in all the
tuples with (αi + βi). Subsequently in the same step, the chooser blinds all the
other values in each tuple with βi. We call αi as the private blinding factor of
the player i. In the next succeeding steps, each chooser repeats the same steps
till the (n − 1)th chooser finishes.

Now after every chooser has permuted and blinded every tuple, the resulting
tuple permutation is sent to the preparer. The preparer then performs the same
blinding procedure in order to keep his strategy hidden from others. Then the
preparer sends the final tuple combination to all the choosers. The (n − 1)th

chooser randomly chooses and announces a particular tuple number r such that
r ∈ [m]. Consequently, each chooser sends the value at the index allotted to him
in the agreed tuple to the preparer. The preparer then decrypts it and sends it
back to all the choosers. The preparer does not get any information about the
moves of the players as each choice is blinded by (αi + β).

All the players pi (including the preparer), announce their choices of βi pub-
licly. Henceforth, all the players individually calculate β =

∑
βi for all i ∈ [n].

Then each player i individually subtracts the (αi + β) from the decrypted value
sent by the preparer and outputs his move.

5.3 Sub-Protocol π2 (Random permutation selection)

In the sub-protocol random permutation selection, as described earlier, we need
to decide upon the index number each player takes within a particular tuple.
For making this sub-protocol uniform and distributed, we take in the individual
choices of each player. Thus, each player has his own permutation function (ρi).

We first assume that each player is connected via a simultaneous synchronous
communication channel, which means that all the players communicate simul-
taneously. As all the players announce their permutation function ρi simultane-
ously, then the computation of the random permutation selection is said to be
trivial. All the players then agree on ρn(ρn−1(. . . (ρ2(ρ1(S)) . . .)), where S is the
sequence {1, 2, . . . , n}.

But in the absence of the simultaneous channel, the players who have colluded
with the preparer can wait to receive every other player’s permutation function.
Based on others’ permutation functions, he can choose his permutation, such
that it matches with the tuple permutation of their choice. To solve this problem
we use the concept of commitment schemes. We use Commit to denote for
committing to a particular value and Reveal to reveal the committed value. The
commitment schemes hold a property that, if a player commits to a value then



he can not deviate from it. If ever he does deviate, it is be noted by others. In
this sub-protocol, every player pi sends his committed value, Commit(ρi), to
all. After a chooser receives all the other commitments, he reveals ρi to all the
other players. Finally, when every player has revealed his value, the permutation
function is calculated as : ρn(ρn−1(. . . (ρ2(ρ1(S)) . . .)) by all the players. The
protocol is given in table 4.

Protocol-RPI

All the players execute the following steps :

– Each player pi decides upon its permutation function ρi.
– Each player pi computes its commitment, Commit(ρi). He sends this value to all

the other players and waits until he receives all other players’ Commit(ρj) value.
– After receiving every other players Commit(ρj), each player pi starts revealing

its committed function, i.e., ρ̄i.
– After every value is revealed, each player pi verifies whether :

Commit(ρj) = Commit(ρ̄j).
If it is not equal then the player quits from the protocol and announces the
deviation by sending specific signal.

– Each player calculates the final permutation as :
{g1, g2, ..., gn} = ρn(ρn−1(....(ρ2(ρ1(S))...)),
where S is the sequence {1, 2, 3, ..., n}.

– Each player pi chooses the value at the ith index of the final permutation, i.e.,
agrees upon hi in the list of final permutation.

Table 3. Protocol for computation of random permutation of indices.

5.4 Proof of Correctness

Theorem 1. The NCES protocol securely completes the function of the corre-
lated element selection problem among the n players.

Proof. The rational players in the above problem behave honestly, except that
they want to know every other player’s strategy, so that after completion of
the execution of the protocol they can deviate. This is equivalent to honest-
but-curious behaviour of players. Hence, as long as our encryption and blinding
schemes are secure, the protocol NCES securely performs the function of the
correlated element selection problem. We have not assumed the broadcast chan-
nels in the protocol NCES and RPI as player pi cannot send different messages
to different players. As it can result in a strategy profile which does not belong
to the set of correlated choices, may result in a lower pay off to all the players.
Let a be the strategy used by player pi in which he sends the same message to
all the players and a′ represent the strategy in which he sends different messages
to different players. Then, ui(a, a−i) ≥ ui(a

′, a−i). So, sending the same message



to all players weakly dominates sending different messages. Hence, our protocol
results in a (n − 1) coalition resilient equilibrium. �

6 Conclusion

We have considered the correlated element selection problem, where firms want
to correlate their business strategies and agree upon them in an untrustworthy
environment. We have proposed an n-player protocol for solving the correlated
element selection problem. Thus, we have shown a successful way to simulate a
mediator for achieving correlated equilibrium. As per our knowledge this is the
first collusion free protocol to solve this problem without hardware primitives.
We have used game theoretic concepts like weak dominance to prove the correct-
ness of a cryptographic protocol (which are indeed used to solve a game theory
problem). Thus, we have shown an interesting way to overlap different proof
techniques. For the internet domains, in many problems like selfish routing[14],
achieving correlated equilibrium has a significant importance[15]. The collusion
free and efficient polynomial communication protocols of correlated element se-
lection problem can be used to solve these problems and will have a significant
impact on the total social cost. As a first attempt, we have proposed a collusion
free protocol. Achieving both collusion free and polynomial communication are
completely open and will have significant advantage. As our results are efficiently
applicable to symmetric games, getting these results in asymmetric games is a
good direction to extend the work.
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A Appendix

A.1 Implementation of Blindable Encryption

We present two blindable encryption schemes namely ElGamal encryption and
the Goldwasser-Micali encryption schemes. These schemes are briefly described
below. Goldwasser-Micali Encryption
Goldwasser and Micali proposed this semantically secure scheme in[16]. The
message is encrypted bit by bit. A random n is picked by a generation algorithm,
where n = pq, a product of two k-bit primes together with any quadratic non-
residue y with the Jacobi symbol l, the public key is n and y, and the secret key
is p and q.

The encryption algorithm takes the message m and the random integer r
as input and outputs (ym.r2mod n). To decrypt one can simply determine if
the cipher text c is a square modulo n, i.e. modulo both p and q. The scheme is
semantically secure under the quadratic residue assumption. Since c = Enc(m; r)
and c1 = Enc(m1; r1), then c.c1 = Enc(m + m1; r.r1). Thus, it can be clearly
seen that this scheme is blindable. Now, as The blinding of any message m is
done by using a randomness r. Thus, every time a person is blinding m value
with different values of randomness r, the resulting cipher text will be different.

We can also use double blinding encryptions. Let m2 be encrypted with the
randomness r2 and c2 = Enc(m2; r2). Thus, the following will hold good :

c.c1.c2 = Enc(m + m1 + m2; r.r1.r2)



Proving that the public key (n, y) is committing requires proving that y is a
quadratic-non-residue modulo n, which can be done efficiently. Proving that c is
an encryption of m can be done by proving quadratic residuosity.

ElGamal Encryption
In the ElGamal encryption scheme, a generation algorithm picks a random

k-bit prime p = 2q + 1, such that q is a prime. And let g be the generator of
the subgroup Q of the quadratic residues modulo p. Then it picks a random
x ∈ Zq and the sets E(m) =< gr, hr.m >. The decryption D(s, t) outputs
t

sx . This encryption scheme in semantically secure under the decisional Diffi-
Hellman assumption. To blind the cipher text < s, t > with the blinding factor
m̄, we compute Blind(< s, t >, m̄) =< s.gr̄, t.hr̄.m̄ >, where r̄ is chosen at
random from Zq. If s = gr, t = hr.m (where r and m are some unknown), then
Blind(< s, t >, m̄) =< gr+r̄, hr+r̄.(mm̄) >, which is a random encryption of
mm̄ and when r̄ is random then (r + r̄ mod q) is also random. Thus, we can see
that Combine(r1, r2) = (r1 + r2 mod q).

We can prove the equality of the discrete-log of two known elements with
respect to two known bases by using any one of the several known simple pro-
tocols. By proving the above equality we can prove that a cipher text < s, t >
is an encryption of a message m.

In our protocol, we have made use of the Goldwasser-Micali blindable en-
cryption schemes. Similarly in the ElGamal encryption scheme, we blind the
message with 1 instead of 0 to get back the original message. And if we have
blinded the message with β, then we can obtain the original message by dividing
the decrypted message by β instead of subtracting.

A.2 Commitment schemes

The concept of commitment schemes was first introduced and used by Manuel
Blum in 1983[17]. Commitment schemes are cryptographic primitives that allows
a player to commit to value while keeping it hidden from all the other players.
The players can later reveal the committed value. Commitments are used to bind
a player to a value so that later they cannot adopt to any other message in order
to gain any inappropriate advantage over the other players. The commitment
schemes are used in many other cryptographic protocols such as zero knowledge
proofs and secure computation. The commitment schemes are executed in the
following two steps :

– The commit phase :
In this phase a value is chosen by a player. The player then commits to this
value to all the other players.



– The reveal phase :
In the reveal phase, the player reveals his original value. All the other players
then check for the revealed value with the commitments they have received
earlier.

The commit phase consists of a single message being sent from a player to
the other players. It is important that none of the other player is able to get any
information about the specific value held by the committing player. In the reveal
phase, the player reveals the committed value to the other players. All the other
players then perform a check upon the revealed and the committed value. The
value chosen at the commit phase must be the only one that validates during
the reveal phase.

The commitment schemes that we use are based on the discrete logarithm
problem (DL problem). The discrete logarithm problem is defined in [18]. Sup-
pose, the discrete logarithm of a is h. Finding the value of a from h is very
difficult. finding the value of a is not like the taking the ordinary logarithms as
the DL problem is defined in a discrete domain, the solution should be exact.
Thus, based on this DL problem, a Commitment Scheme in which the sender
commits to a message m ∈ [q − 1] is given in [13]. Thus, the protocol is:

Log Commitment Protocol

1. System Set up.
The receiver randomly chooses large prime numbers p and q such that q divides
(p − 1). Then he randomly chooses g and v from the subgroup G of order q in
Z

∗

q , g, v 6= 1. Receiver then sends p, q, g and v to the sender.
2. Commit.

Sender then verifies whether p and q are primes or not, that q divides (p− 1) and
that g and v are elements of order q. To commit to a message m ∈ [q − 1], he
chooses a random r ∈ [q − 1], sets c := grvm mod q and sends c to the receiver.

3. Reveal.
Sender sends r and m to the receiver who verifies whether c = grvm mod q .


