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Abstract. We are interested in the integrity of the query results from an outsourced database service
provider. Alice passes a set D of d-dimensional points, together with some authentication tag T, to an
untrusted service provider Bob. Later, Alice issues some query over D to Bob, and Bob should produce
a query result and a proof based on D and T. Alice wants to verify the integrity of the query result with
the help of the proof, using only the private key. In this paper, we consider aggregate query conditional
on multidimensional range selection. In its basic form, a query asks for the total number of data points
within a d-dimensional range. We are concerned about the number of communication bits required and
the size of the tag T. Xu and Chang [1] proposed a new method to authenticate aggregate count query
conditional on d-dimensional range selection over static dataset, with O(d2 log2N) communication
bits, where N is the number of points in the dataset D. We extend their method to suport other types
of queires, including summing, finding of the minimum/maximum/median and usual (non-aggregate)
range selection, with similar complexity. Furthermore, dynamic operations, like insertion and deletion,
over the outsourced dataset are also supported.

Keywords: Authentication, Multidimensional Aggregate Query, Secure Outsourced Database, Dynamic
Database, Count, Sum, Average, Min, Max, Median, Range Selection

1 Introduction

Alice has a set D of d-dimensional points. She preprocesses the dataset D using her private key to generate
some authentication tag T. She sends (outsources) D and T to an untrusted service provider Bob. Then
Alice deletes the original copy of dataset D and tag T from her local storage. Later Alice may issue a query
over D to Bob, for example, an aggregate query conditional on a multidimensional range selection, and Bob
should produce the query result and a proof based on D and T. Alice wants to authenticate the query result,
using only her private key. This problem fits in the framework of the outsourced database applications [2,3],
which emerged in early 2000s as an example of “software-as-a-service” (SaaS).

We are concerned about the communication cost and the storage overhead on Alice/Bob’s side. Such
requirements exclude the following straightforward approaches: (1) Bob sends back the whole dataset D
with its tag T; (2) Alice keeps a local copy of the dataset; (3) During preprocessing, Alice generates and
signs answers to all possible queries.

Very recently, Xu and Chang [1] proposed a new method to authenticate aggregate count query over a
static d-dimensional outsourced dataset, with O(d2 log2N) communication bits, where N is the number of
points in the dataset. Their method combined two customer designed primitives: (1) a GKEA (Generalized
Knowledge of Exponent Assumption [4]) based homomorphic authentication tag; (2) a functional encryption
scheme supporting multidimensional range query. In this paper, we extend their method in two directions
without sacrifying the communication complexity: (1) support other types of queries, including summing,
finding of the minimum/maximum/median and usual (non-aggregate) range selection; (2) support dynamic
operations like insertion and deletion over the outsourced dataset.



Table 1: Worst case performance of different authentication schemes for aggregate range query or range selection
query. This table consists of two parts: the first three rows are for aggregate query; the rest four rows are for range
selection query.
Note: (1) The symbol “-” indicates that the authors do not provide such information in their paper. (2) Our scheme
is much more efficient in computation cost in 1D case, compared with high dimensional case (See annotation ?). (3)
dN logN ≤ logdN , if d > log(dN)/ log logN . We point out that the high computation cost on prover can be mitigated
with horizontal partition of the dataset and parallel execution on each partition. (4) We do not include [5, 6] in this
table, since these works do not provide concise asymptotic bound on their schemes. However, their performances are
limited by the underlying data structure they adopted, i.e. KD-tree [5] and R-Tree [6], which require exponential (in
dimension) communication overhead in the worst case. (5) Our scheme supports private key verification, while the
other works in this table support public key verification.

Scheme Dimension
d

Communica-
tion overhead
(bits)

Storage over-
head

Computation
(Verifier Alice)

Computation
(Prover Bob)

Query Techniques

PDAS [7] d = 1 O(|S| logN) O(N) O(|S| logN) O(|S|+K2) Sum,Count Aggregated commitment
+ Shamir’s Secret-Sharing
Scheme

Li et al. [8] d ≥ 1 O(dN + 2d) Ω(dN) O(dN + 2d) Ω(N
1− 1

d ) Sum or Count or Min or
Max (One authentica-
tion data structure per
query type)

MHT-like authentication
structure for B-Tree/R-Tree

This paper and
Xu et al. [1]

d ≥ 1 O(d2 log2 Z) O(dN) O(d2 log2 Z)†? O(dN logZ)‡? Sum,Count,Min,Max,
Median

(customer designed) func-
tional encryption + GKEA
based homomorphic tag

Atallah et al. [9] d = 1, 2 O(1) O(N) O(|S|) O(1) Range Selection Precomputed prefix sum +
BLS signature

Martel et al. [10] d ≥ 1 O(logd−1N
+|S|)

- - - Range Selection Authentication Data Struc-
ture + Geometry Partition

Chen et al. [11] d ≥ 1 O(logd Z) O(N logd Z) O(logd Z) O(logd Z) Range Selection Authentication Tree Struc-
ture + Access Control

This paper d ≥ 1 O(d2 log2 Z) O(dN) O(d2 log2 Z +
|S|)†?

O(dN logZ +
|S|)‡?

Range Selection (customer designed) func-
tional encryption + GKEA
based homomorphic tag

This paper d ≥ 1 O(d2 log2 Z) O(dN · 2d) O(d2 log2 Z +
|S|)†?

O(dN logZ +
|S|)‡?

Range Selection with
projection

(customer designed) func-
tional encryption + GKEA
based homomorphic tag

N : The number of tuples in the dataset. S: The set of tuples satisfying the query condition.
K: The number of servers in PDAS [7]. Z: The domain size of attributes/points in one dimension.
†: O(d2 log2 Z) group multiplications. ‡: O(dN logZ) bilinear map operations.
?: If the query range is 1D, the cost is O(|S|).

1.1 Contribution

The main contribution of this paper can be summarized as below.

1. We propose a method to authenticate aggregate queries over static multidimensional dataset, including
Sum, Min, Max, Median, with O(d2 log2Z) communication bits, based on [1]. We prove that the new
authentication method is secure.

2. We propose a method to authenticate range selection query over multidimensional static dataset, with
O(d2 log2Z) communication bits, based on [1]. We prove that the new authentication method is secure.

3. We propose a method to authenticate aggregate range query and non-aggregate range selection query
over dynamic multidimensional dataset. We prove that the proposed method is secure.

4. We extend our method to support privacy protection and prevent frame attack.

The comparison between our result and previous work is given in Table 1.



2 Related work

Researches in secure outsourced database focus on two major aspects: (1) privacy (i.e. protect the data
confidentiality against both the service provider and any third party) e.g. [3,12,13,14], and (2) integrity (i.e.
authenticate the soundness and completeness of query results returned by the service provider) e.g. [2, 10,
15, 16, 17, 5, 18, 6, 19, 20, 9, 21, 22, 23, 24, 7, 8]. In the “integrity” track, a lot of works (e.g. [10, 16, 17, 5, 9, 6])
are done for “identity query” [18], i.e. the query result is a subset of the database. [16, 5] authenticated 1D
range selection queries, with linear (in the number of tuples selected by the query condition) communication
cost and storage overhead. [17] verified range selection queries using aggregated signatures (like RSA [25],
BLS [26]). [6] proposed a linear (or superlinear) scheme, which uses chained signatures over a “verification
R-Tree” built on a multidimensional data space, to authenticate windows query, range query, kNN query, and
RNN query. To the best of our knowledge, the current most efficient authentication scheme for range selection
queries is [9], which proposed an efficient authentication scheme for 1D and 2D range selection queries over a
grid dataset (e.g. GIS or image data) with O(1) communication cost and linear storage overhead. [18] claimed
to authenticate arbitrary queries, but their security model is too weak: a playful adversary can easily break
their scheme. Aggregate range query is arguably more challenging and only a few works (e.g. [5, 7, 8, 1]) are
devoted to the authentication of aggregate query. We remark that our scheme can also protect privacy for
aggregate attributes by using homomorphic encryption scheme like [7, 8]).

There are roughly four categories of approaches for outsourced database authentication in the litera-
tures [2, 10, 15, 16, 17, 5, 18, 6, 19, 20, 9, 21, 22, 23, 24]. (1) (Homomorphic and/or aggregatable) Cryptographic
primitives, like collision-resistant hash, digital signature, commitment [17,27,7]. (2) Geometry partition and
authenticated data structure [10, 6, 9, 22, 19, 8]. For example, Merkle Hash Tree (typically for 1D case) and
variants, KD-tree with chained signature [5], R-Tree with chained signature [6], and authenticated B-Tree/R-
Tree [8]. (3) Authenticated precomputed partial result, e.g. authenticated prefix sum [9, 8] (the static case
solution in [8]) (4) Inserting and auditing fake tuples [20]. Instead of leveraging on the standard or existing
cryptographic primitives (e.g. digital signature scheme, cryptographic hash) like most of previous works, [1]
designed a new functional encryption scheme and a new homomorphic authentication tag. Consequently, [1]
achieves very good asymptotic performance, but their proof of security became much more challenging.

To the best of our knowledge, the existing few works (e.g. [5, 7, 8]) on authentication of aggregate query
either only deal with 1D case, or have communication overhead1 linear (or even superlinear) w.r.t. the
number of data points in the query range, and/or exponential in dimension. Even for multidimensional (non-
aggregate) range selection query, the communication overhead is still in O(logd−1N+ |S|) (Martel et al. [10],
Chen et al. [11]), where S is the set of data points within the query range, N is the number of data points
in the dataset, and d is the dimension.

Recently, Gennaro et al. [28] and Chung et al. [29] proposed methods to authenticate any outsourced
(or delegated) polynomial time function, based on fully homomorphic encryption [30, 31, 32]. They [28, 29]
also gave a good discussion on why previous techniques (e.g. interactive proofs, probabilistic checkable
proof (PCP), and interactive arguments ) are insufficient for authenticating outsourced function from the
performance point of view. If a function has input size Γ1 and output size Γ2, then both Gennaro et al. [28]
and Chung et al. [29] have communication overhead in Ω(Γ1 + Γ2) to authenticate this function, where the
hidden constant behind the big-Ω notation could be huge. The reason is two-fold: (1) First, using Gentry’s
fully homomorphic encryption scheme, one bit plaintext will be expanded to O(κ3) bits ciphertext; (2)
Second, in Gennaro et al. [28], before encrypting, each bit of plaintext will be replaced by a κ bits long
message, which in turn will be encrypted by fully homomorphic encryption scheme; in Chung et al. [29], to
authenticate a query, Alice has to generate O(t) similar queries and issues all of these queries together and
encrypts them using fully homomorphic encryption scheme, to achieve false positive probability 2−t. The
difference between their solutions and our work may become more clear when authenticating non-aggregate
range selection query: Both Gennaro et al. [28] and Chung et al. [29] will require linear communication
overhead (with huge constant factor), while our solution still requires O(d2 log2Z) communication overhead.
1 The original papers either do not provide a tight theoretical asymptotic bound, or do not relate the bound to

generic parameters, including database size, domain size, dimension and security parameter.



3 Formulation

In this section, we restate the problem formulation and security model from [1], with modifications adapting
our extension in this paper.

3.1 Dataset and Query

The dataset D is a set of N d-dimensional points x1,x2, . . . ,xN from the domain [Z]d where Z is a big integer
(e.g. 64 bits integer). Each point x ∈ D is associated with a vector-valued attribute, denoted as Att(x), where
each component of the vector Att(x) is an integer. Let R = [a1, b1] × [a2, b2] × . . . × [ad, bd] ⊆ [Z]d be a
d-dimensional rectangular range. Xu and Chang [1] focused on aggregate count query function Count :

Count(D,R)def=
∑

x∈D∩R

Att(x) (mod p),

where the attribute Att(x) = 1 for each point x ∈ D. Note that p is exponential in the security parameter
κ and N is polynomial in κ.

In this paper, we are concerning the following queries together with multidimensional vector-valued
attribute Att(x), x ∈ D:

Sum: A sum query with range R asks for the summation of attributes Att(x) for all data points x ∈ D∩R.

Sum(D,R) =
⊕

x∈D∩R

Att(x) (mod p) (1)

Min: A min query with range R and dimension ι ∈ [d] asks for the minimum attribute value along the ι-th
dimension among all data points x ∈ D ∩R.

Min(D,R, ι) = min
x∈D∩R

Att(x)[ι] (2)

Max: A max query with range R and dimension ι ∈ [d] asks for the maximum attribute value along the
ι-th dimension among all data points x ∈ D ∩R.

Max(D,R, ι) = max
x∈D∩R

Att(x)[ι] (3)

Median: A median query with range R and dimension ι ∈ [d] asks for the meadian attribute value along
the ι-th dimension among all data points x ∈ D ∩R.

Median(D,R, ι) = y, such that y ∈ S = {Att(x)[ι] : x ∈ D∩R} and y is ranked d |S|
2
e-th among the set S

(4)
RangeSelect: A range select query with range R asks for all data points x ∈ D ∩R.

RangeSelect(D,R) = {x : x ∈ D ∩R} (5)

3.2 Security Model

Xu and Chang [1] presented a formulation for the authentication problem over outsourced database, as a
variant of Verifiable Computation [28]. Let us view a query on a dataset as the function F : D×Q→ {0, 1}∗,
where D is the domain of datasets, Q is the domain of queries, and the output of F is represented by a
binary string. Note that a query Q ∈ Q is represented by combination of query type (like count, sum, etc),
query range, and other parameters if any (e.g. a min query Min(R, ι)). Xu and Chang [1] defined the remote
computing protocol as follow:



Definition 1 (RC [1]) A Remote Computing (RC) protocol for a function F : D × Q → {0, 1}∗, between
Alice and Bob, consists of a setup phase and a query phase. The setup phase consists of a key generating
algorithm KGen and data encoding algorithm DEnc; the query phase consists of a pair of interactive algo-
rithms, namely the evaluator Eval and the extractor Ext. These four algorithms (KGen,DEnc, 〈Eval,Ext〉) run
in the following way:

Setup Phase
1. Given security parameter κ, Alice generates a key K: K ← KGen(1κ).
2. Alice encodes dataset D ∈ D: (DB,DA)← DEnc(D,K), then sends DB to Bob and keeps DA.

Query Phase The query phase consists of multiple query sessions. In each query session, Alice and Bob
interact as below.
1. Alice selects a query Q ∈ Q.
2. Algorithm Ext(DA,Q,K) on Alice’s side, interacts with algorithm Eval(DB) on Bob’s side to compute

(ζ,X,Ψ)← 〈Eval(DB),Ext(DA,Q,K)〉, where ζ ∈ {accept, reject} and Ψ is the proof of result X.
If ζ = accept, then Alice accepts that X is equal to F (D,Q). Otherwise, Alice rejects.

Definition 2 (Efficient RC [1]) A RC protocol is efficient, if

1. the size of K and DA are both in O(poly(d)) where d is the dimension of dataset D;
2. communication complexity is O(poly(d, log |D|));
3. the size of DB is O(poly(d, |D|)) (this implies the complexity of DEnc is in O(poly(d, |D|)) ).
4. the algorithm Ext must be more efficient than computing F directly (This is similar with models in

[28, 29]).

ARC protocol is verifiable, if the following conditions hold: (1) Alice always accepts, when Bob follows the
protocol honestly; (2) Alice rejects with o.h.p. (overwhelming high probability), when Bob returns a wrong
result. Here adversaries, i.e. malicious Bob, are allowed to interact with Alice and learn for polynomial number
of query sessions, before launching the attack. During the learning, the adversary may store whatever it has
seen or leant in a state variable.

Definition 3 (VRC [1]) A RC protocol E = (KGen,DEnc, 〈Eval,Ext〉) w.r.t. function F : D×Q→ {0, 1}∗,
is called VRC ( Verifiable Remote Computing) protocol, if the following two conditions hold: Let κ be the
security parameter.

– correctness: for any D ∈ D, any K ← KGen(1κ) and any Q ∈ Q, it holds that 〈Eval(DB),Ext(DA,Q,K)〉 =
(accept, F (D,Q), Ψ) for some Ψ , where (DB,DA)← DEnc(D,K).

– soundness: for any PPT (adaptive) adversary A, the advantage AdvE,A(1κ) ≤ negl(κ) (asymptotically
less or equal).

where AdvE,A(1κ) is defined as

AdvE,A(1κ) def= Pr

[
(ζ,X,Ψ , viewEA,D,Q)← ExpEA(1κ) :

ζ = accept ∧ X 6= F (D,Q)

]
;

Experiment ExpEA(1κ)

D← A(viewEA);
K ← KGen(1κ);
(DB,DA)← DEnc(D,K);
loop until A(viewEA) decides to stop

Qi ← A(DB, view
E
A);

(ζi, Xi,Ψ i)← 〈A(DB, view
E
A),Ext(DA,Qi,K)〉;

Q← A(DB, view
E
A);

(ζ,X,Ψ)← 〈A(DB, view
E
A),Ext(DA,Q,K)〉;

Output (ζ,X,Ψ , viewEA,D,Q).



The probability is taken over all random coins used by related algorithms, negl(·) is some negligible function,
and viewEA is a state variable2 describing all random coins chosen by A and all messages A can access during
previous interactions with E.

We remark that this security model is also related to the formulation of POR (Proof of Retrievability) [33]
and it is not surprising that our scheme could imply a (ρ, λ)-valid POR system, with some proper parameters
ρ and λ.

4 Background

In this section, we summarize the authentication scheme for aggregate count query over static multidi-
mensional dataset proposed by Xu and Chang [1], which serves as the base of this paper. For the sake
of presentation of our extension in this paper, we make a very slight modification to the original scheme
proposed by Xu and Chang [1].

Let D be a set of N d-dimensional points in domain [1,Z]d, and each point x ∈ D is associated with an
attribute Att(x). In [1], the attribute function is Att(x) = 1, since it dealed with Count query.

Overview Xu and Chang [1] implicitly defined homomorphic authentication tag functions DTag and QTag.
Their scheme is an interactive protocol between Alice and Bob, and contains a setup phase followed by a
query phase. In the setup phase, Alice preprocesses the dataset by generating a tag DTagK(x) for each point
x in the dataset D with her private key K. At the end of setup phase, Alice sends both the dataset D and
tags T = {DTagK(x) : x ∈ D} to Bob and removes them from her storage. Later in the query phase, Alice
may issue many queries over the dataset to Bob. For example, Alice may want to know how many points are
within a range R. Alice sends R to Bob. Meanwhile, in order to help Bob to generate a proof, Alice chooses a
random nonce ρ and sends Φ = {QTagK(x, ρ) : x ∈ R} to Bob. After receiving R and Φ, Bob is supposed to
return X =

∑
x∈D∩R Att(x) = |D∩R| as result and Ψ1 = ⊗x∈D∩RDTagK(x) and Ψ2 = ⊗x∈D∩RQTagK(x, ρ)

as proof. Since the tag functions DTag,QTag are homomorphic, Alice can verify the consistency between Ψ1

and Ψ2 using her private key K. To ensure completeness, Alice has to interact with Bob and perform the
above procedure for the complement query range R{.

However, the size of Φ is propotional to the size of range R, which could be huge. One of main contributions
of [1] is that the paper proposed a new functional encryption scheme and use it to reduce communication
cost in the following way:

– In the setup phase, Alice produces a ciphertext CTx for each data point x ∈ D using the functional
encryption scheme. Alice sends all ciphertexts CTx’s together with the dataset and tags to Bob at the
end of setup.

– In a query session, for a count query with rectangular range R, Alice chooses a random nonce ρ and
generates a short delegation key δ w.r.t. the range R and the random nonce ρ, using the functional
encryption scheme. Alice sends the delegation key δ to Bob together with the query.

– For each data point x ∈ D∩R, Bob can decrypt ciphertext CTx and obtain QTagK(x, ρ) as the decrypted
value using the functional encryption scheme and the delegation key δ. For points y 6∈ R, Bob learns
nothing about QTagK(y, ρ).

Since the size of delegation key δ is in O(d log2Z), the communication cost is reduced dramatically.

Formal Algorithm The homomorphic authentication tag (DTag,QTag,Verify) implied in Xu and Chang [1]
is as below: Let key K = (θ, β, γ) ∈ G̃ × Z∗p × Z∗p, vx, wx ∈ G̃ be random coins chosen for point x, and

2 The adaptive adversary A may keep updating this state variable.



Ψ = (Ψ1, Ψ2, Ψ3).

DTagK(x) =
(
θAtt(x)vx, v

β
x, wx

)
(6)

QTagK(x, ρ) = vγxw
ρ
x (7)

Verifyρ,K(Y,Ψ , Ψ4) =

{
1

(
if
(
Ψ1θ
−Y )β = Ψ2 and

(
Ψ1θ
−Y )γ Ψρ3 = Ψ4

)
0 (otherwise)

(8)

The authentication tag (DTag,QTag,Verify) is homomorphic and satisfies the following properties:

Verifyρ,K (Att(x), DTagK(x), QTagK(x, ρ)) = 1 (9)

Verifyρ,K

(∑
x∈R

Att(x),
⊗
x∈R

DTagK(x),
∏
x∈R

QTagK(x, ρ)

)
= 1 (10)

We restate the scheme in [1] in Figure 1 with authentication tag (DTag,QTag,Verify) and hide details of the
applications of the functional encryption scheme.

Security Since the authentication tag function is homomorhpic, an adversary (i.e. a dishonest Bob) may
attemp to cheat and convince Alice to accept a wrong result in this way: choose some integer µx for each
point x, and in Step B1 of algorithm CollRes compute the proof (Ψ , Ψ4) as below

Ψ ←
⊗

x∈D∩R

tµx
x =

⊗
x∈D

DTag(x)µx , Ψ4 ←
∏

x∈D

QTag(x, ρ)µx (13)

It is easy to verify that the above forged proof passes the verification in Step A2 of CollRes in Figure 1,
but may not pass the second equality test in Step 3 of Count in Figure 1. Such adversary looks “restricted”
in its attack strategy. However, [1] showed that, under GKEA assumption, such adversary’s power is not
restricted at all: If there exists an efficient (arbitrary) adversary that breaks their scheme, then there exists
such “restricted” adversary that breaks their scheme.

[1] considered various types of PPT adversaries, which interacts with Alice by playing the role of Bob
and intends to output a wrong query result and a forged but valid proof:

– Type I adversary: This adversary is not confined in any way in its attack strategy and produces a tuple
(X,Ψ = (Ψ1, Ψ2, Ψ3), Ψ4) on a query range R.

– Type II adversary: A restricted adversary which can produce the same forgery3 from the same input as
Type I adversary, additionally, it finds N integers4 µi’s, 1 ≤ i ≤ N , such that

Ψ ←
⊗

x∈D∩R

tµx
x =

⊗
x∈D

DTag(x)µx ,

– Type III adversary: The same as Type II adversary, with additional constraint: µi = 0 for xi ∈ D∩R{.
– Type IV adversary: The same as Type III adversary, with additional constraint: µi = 1 for xi ∈ D ∩R.

It seems that from Type I to Type IV adversaries are more and more restricted, in the sense that

{Type I Adversary} ⊇ {Type II Adversary} ⊇ {Type III Adversary} ⊇ {Type IV Adversary} (14)

However, [1] showed that, in the above formula (14), (informally) each inclusion relation ⊇ can be replaced
by equality =, under related cryptographic assumptions (GKEA, computational diffie-hellman assumption
etc). Furthermore, [1] proved that there exists no Type IV adversary under certain crypgraphic assumptions.
3 This is possible, if the Type II adversary just invokes Type I adversary as a subroutine using the same random

coin.
4 Note that µi can take negative integer value, and µi > 1 (µi < 1, respectively) corresponds to the case of double

counting (undercounting, respectively) point xi.



Fig. 1: Construction of RC protocol E = (KGen,DEnc, 〈Eval,Ext〉) where 〈Eval,Ext〉 (namely Count) invokes
〈Ẽval, Ẽxt〉 (namely CollRes) as a subroutine. The attribute function is Att(x) = 1 for each x ∈ D.

(Alice) KGen(1κ): Output a private key K.

(Alice) DEnc(D;K):

1. For each point x ∈ D, generate a tag
tx = DTag(x,K).

2. For each point x ∈ D, generate a ciphertxt CTx, using the functional encryption scheme with key K.

3. Send DB = (D,T = {tx : x ∈ D},C = {CTx : x ∈ D}) to Bob, and keep only key K and DA = (N, d, ∆ =⊗
x∈D tx) in local storage.

(Alice, Bob) Count = 〈Eval(DB),Ext(DA, R, K)〉: DA = (N, d, ∆),DB = (D,T,C)
Precondition: The query range R ⊂ [Z]d is a rectangular range.

Step 1: Alice partitions the complement range R{ into 2d rectangular ranges {R` ⊂ [Z]d : ` ∈ [1, 2d]}, and sets
R0 = R.

Step 2—Reduction: For 0 ≤ ` ≤ 2d, Alice and Bob invokes CollRes on range R`. Denote the output as
(ζ`, X`,Ψ

(`)).
Step 3: Alice sets ζ = accept, if the following equalities hold

∀0 ≤ ` ≤ 2d, ζ`
?
= accept,

⊗
0≤`≤2d

Ψ (`) ?
≡ ∆; (11)

otherwise sets ζ = reject. Alice outputs (ζ,X0,∆).

(Alice, Bob) CollRes = 〈Ẽval(DB), Ẽxt(DA, R, K)〉: DA = (N, d, ∆),DB = (D,T,C)
Precondition. The query range R ⊂ [Z]d is a rectangular range.

Step A1: (Alice’s first step) Alice chooses a random nonce ρ from Z∗p and produces a delegation key δ w.r.t. range
R and nonce ρ, using the functional encryption scheme. Alice sends (R, δ) to Bob.

Step B1: (Bob’s first step) Bob computes the query result X and proof (Ψ1, Ψ2, Ψ3, Ψ4) as follows

X ←
∑

x∈D∩R

Att(x); Ψ ←
⊗

x∈D∩R

tx =
⊗

x∈D∩R

DTagK(x); Ψ4 ←
∏

x∈D∩R

QTagK(x, ρ) (12)

where for each point x ∈ D ∩ R, QTagK(x, ρ) is obtained by decryting CTx using the functional encryption
scheme with delegation key δ. Bob sends (X, Ψ , Ψ4) to Alice.

Step A2: (Alice’s second step) Alice verifies whether (Ψ , Ψ4) are valid tags for X under DTag and QTag respectively,
using the private key K and ρ. If the following equation holds,

Verifyρ,K (X, Ψ , Ψ4)
?
= 1

then sets ζ = accept. Otherwise sets ζ = reject. Alice outputs (ζ,X,Ψ))



5 Authenticating Aggregate queries beyond count: SUM, MIN, MAX

5.1 SUM

Suppose each data point x ∈ D is associated with an attribute value Att(x). The sum query with range R
asks for the summation

∑
x∈D Att(x).

5.1.1 Summing 1D Attribute Suppose the attribute value is in 1D, i.e. Att(x) ∈ [Z]. The authentication
scheme for Sum is identical to the scheme in Figure 1 for Count, except that

– the attribute function Att(x) = 1 is redefined as Att(x) = yx ∈ [Z].
– Alice sends {Att(x) : x ∈ D} to Bob in the setup phase, and Bob keeps it along with the dataset and

tags.

Denote the modified scheme as (KGen,DEnc,Sum(1)).

Lemma 1 Suppose attribute value is in 1D. The extended scheme (KGen,DEnc,Sum(1)) is a VRC w.r.t.
Sum, i.e. it is correct and sound to authenticate Sum.

5.1.2 Summing Multi-Dimensional Attribute Suppose the attribute value Att(x) = x ∈ [Z]n for
some integer n. The authentication scheme for summing n-dimensional attribute is identical to the scheme
in Section 5.1.1 for 1D case, except that

– The secret key K generated by KGen contains an additional element s = (s1, . . . , sn) which is randomly
chosen from the domain

(
Z∗p
)n;

– The attribute function Att(x) = yx ∈ [Z] and the tag function

DTag(x) =
(
θAtt(x)vx, v

β
x, wx

)
=
(
θyxvx, v

β
x, wx

)
are redefined as:

Att(x) = x ∈ [Z]n; DTag(x) =
(
θ〈x, s〉vx, v

β
x, wx

)
– Step B1 and Step A2 in CollRes are modified accordingly (i.e. In Step A2, X is replaced by the inner

product 〈X, s〉).

Denote the modified scheme as (KGen,DEnc,Sum(n)).

Theorem 2 The extended scheme (KGen,DEnc,Sum(n)) is a VRC w.r.t. Sum, i.e. it is correct and sound
to authenticate Sum.

Proof (of Theorem 2). The correctness part is straightforward due to the homomorphic property (i.e. Equa-
tion (10)) of (DTag,QTag,Verify). We focus on the soundness part.

Using proof by contradiction, suppose that there exists a PPT adversary B which can output a wrong
query result Y 6=

∑
x∈D∩R Att(x) (mod p) for sum query with range R and passes all verifications with

non-negligible probability ε.
Part I: We will show that 〈Y , s〉 = 〈X, s〉 mod p, where s is a part of private key and X =

∑
x∈D∩R Att(x)

(mod p) is the correct query result for the corresponding query R.
We construct an adversary B′ to against the scheme (KGen,DEnc,Sum(1)) for 1D case, based on B.

Adversary B′ will simulate two instances of experiments:

– Experiment ExpE1DB′ for scheme (KGen,DEnc,Sum(1)): B′ takes the role of Bob and interacts with Alice.
– Experiment ExpEdDB for scheme (KGen,DEnc,Sum(d)): B′ takes the role of Alice and B takes the role of

Bob.



Alice B′ B
Choose a dataset D ⊆ [Z]d

D←−
Choose s ∈R

(
Z∗p
)n; for each x ∈

D, compute yx = 〈x, s〉;
D, {yx}←−−−−−

Run DEnc to
generate T,C

T,C
−−→

T,C
−−→

Choose a query Ri

Ri←−
Forward query Ri to Alice

Ri←−
Generate chal-
lenge δ

δ−→
Forward reply δ to B

δ−→
Generate result and proof
(X, Π)

X, Π
←−−−

Compute y = 〈X, s〉
y,Π
←−−

Verify the proof
By our hypothesis, with non-negligible probability ε, we have Y 6=

∑
x∈D∩R x and the proof ΠY passes

all verification. As a result, with probability at least ε, B′’s reply is (〈Y , s〉 , ΠY ) passes all verification. On
the other hand, Lemma 1 says, for any PPT adversary which can output a query result with a proof, if the
proof is valid then the query result is correct with overwhelming high probability 1− ε′ (ε′ is some negligible
function). Hence, with probability at least ε(1− ε′), we have

〈Y , s〉 =
∑

x∈D∩R

yx =
∑

x∈D∩R

〈x, s〉 = 〈X, s〉 , where X =
∑

x∈D∩R

x 6= Y .

Therefore, with non-negligible probability ε(1 − ε′), the adversary B can output two distinct values X
and Y such that 〈Y , s〉 = 〈X, s〉 mod p.

Part II: We construct an algorithm to solve Discrete Log Problem (DLP) based on the adversary B.

Solve Discrete Log Problem (DLP) based on Adversary B

1. Input is (u, ua) ∈ G̃2. The goal is to find a ∈ Z∗p.
2. For each i ∈ [d], choose yi, zi from Z∗p at random and set θi = (ua)yi uzi ∈ G̃.

3. Simulate the authentication scheme (KGen,DEnc,Sum(n)) with the following modifications:
– The secret key θ and s = (s1, . . . , sn) are implicitely defined by θi = θsi .

– The simulator does not know values of (θ, s), but still can compute θ〈Att(x), s〉:

θ〈Att(x), s〉 =
∏
i∈[n]

θλii . where Att(x) = (λ1, . . . , λn)



4. Invoke the adversary B and obtains output (X,Y ). Let w = (w1, . . . , wn) = X −Y mod p. Applying the result
in Part I, with non-negligible probability, we have

θ〈w, s〉 = 1 and w 6= 0 mod p

5. A univariable equation on unknown a can be formed: Let y = (y1, . . . , yn) and z = (z1, . . . , zn).∏
i∈[n]

θwii =
∏
i∈[n]

uwi(ayi+zi) = 1.

a 〈y, w〉 + 〈z, w〉 = 0 mod p

Note: Given θi, i ∈ [n], yi’s are truely random. Hence, the probability that 〈y, w〉 = 0 is negligible.

6. Solve the equation and get the root a∗. Output a∗.

The constructed PPT algorithm solves DLP with non-negligible probability. The contradiction with DL
Assumption, implies that our hypothesis is wrong and such adversary B does not exist. Consequently, the
soundness part of Theorem 2 is proved. ut

For the rest of remaining part of this paper, we assume the attribute function is

Att(x) = (x1, . . . , xd, 1), where x = (x1, . . . , xd).

By Theorem 2, our scheme can support both summing over the first d dimensions of attribute values and
counting over the last dimension of attribute values. The Avg query can be authenticated by combination
of Sum and Count.

5.2 MIN

A min query Min(R, ι) with query range R and dimension ι ∈ [d], asks for the minimum attribute values
along the ι-th dimension among all data points within D ∩R. We find that Min query can be converted to
Count query. The conversion is based on this proposition:

Proposition 1 For any finite set S of numbers,

c = minS ⇔ c ∈ S ∧ |S| = |{x : x ∈ S ∧ x ≥ c}|. (15)

Suppose Alice asks Bob for the minimum attribute value along the ι-th dimension of points within range
R. Bob returns a data point x, such that Att(x)[ι] is minimum in the set S of attribute values along the
ι-th dimension of all points within range R (i.e. S = {x[ι] : x ∈ R∩D}). Meanwhile, Bob also sends a proof
to show that x ∈ D. Then Alice issues two Count queries to Bob: (1) Count(R), i.e. the size of set S;
(2) Count

(
R
⋂ (

[Z]ι−1 × [c,Z]× [Z]d−ι
))

where c = Att(x)[ι], i.e. the size of set {x : x ∈ S ∧ x ≥ c}.
Bob is expected to return the two count numbers with proofs following the scheme in [1]. Alice believes c is
the minimum value if all proofs are valid and the two count nubmers are equal. The algorithm is showed in
Figure 2.

Theorem 3 The extended scheme is a VRC w.r.t. Min, i.e. it is correct and sound to authenticate Min.

Similarly, Max query can be authenticated.



5.3 Median

Median can also be converted into Count. Quartile or percentile queries can be handled in a similar way.

Proposition 2 Let S be a finite set of numbers.

c is the median in set S ⇔ c ∈ S ∧ |{x : x ∈ S ∧ x ≤ c}| ≥ d |S|
2
e ∧ |{x : x ∈ S ∧ x ≥ c}| ≥ d |S|

2
e

(16)

Suppose Alice asks Bob for the median attribute value along the ι-th dimension of points within range R.
Bob returns a data point x, such that Att(x)[ι] is the median in the set S of attribute values along the ι-th
dimension of all points within range R (i.e. S = {x[ι] : x ∈ D ∩R}). Meanwhile, Bob also sends a proof
to show that x ∈ D. Then Alice issues three Count queries to Bob: (1) Count(R), i.e. the size of set S;
(2) Count

(
R
⋂ (

[Z]ι−1 × [c,Z]× [Z]d−ι
))

where c = Att(x)[ι], i.e. the size of set {x : x ∈ S ∧ x ≥ c}; (3)
Count

(
R
⋂ (

[Z]ι−1 × [1, c]× [Z]d−ι
))

i.e. the size of set {x : x ∈ S∧x ≤ c}. Bob is expected to return the
three count numbers N1, N2 and N3 with proofs following the scheme in [1]. Alice believes c is the median
value if all proofs are valid and N2 ≥ dN1

2 e and N3 ≥ dN1
2 e.

The algorithm is showned in Figure 2. Note that when the size of S is even, there are two medians. For
simplicity of presentation of the algorithm, we request Bob to return either one of the two medians, instead
of both.

Fig. 2: Authenticating Min query and Median query.

(Alice, Bob) Min(R, ι):

1. Alice sends (R, ι) to Bob.

2. Bob finds x∗ = arg minx∈D∩R x[ι] and sends x∗ to Alice.

3. Alice issues a count query Count({x∗}) with range {x∗} to Bob and gets authenticated query result N0.

4. Alice sets c = x∗[ι] and finds the range Rc = R ∩
(
[Z]ι−1 × [c,Z]× [Z]d−ι

)
.

5. Alice issues two count queries Count(R) and Count(Rc) to Bob and gets authenticated results N1 and N2.

6. Alice accepts c as the minimum, if all verifications succeed and N0 ≥ 1 and N1 = N2.

(Alice, Bob) Median(R, ι):

1. Alice sends (R, ι) to Bob.

2. Bob finds x∗ such that x∗[ι] is a median among {x[ι] : x ∈ D} and sends x∗ to Alice.

3. Alice issues a count query Count({x∗}) with range {x∗} to Bob and gets authenticated query result N0.

4. Alice sets c = x∗[ι] and finds the range R+
c = R ∩

(
[Z]ι−1 × [c,Z]× [Z]d−ι

)
and range R−c = R ∩(

[Z]ι−1 × [1, c]× [Z]d−ι
)
.

5. Alice issues three count queries Count(R), Count(R+
c ) and Count(R−c ) to Bob and gets authenticated results

N1, N2 and N3.

6. Alice accepts c as the median, if all verifications succeed and N0 ≥ 1 and N2 ≥ dN1
2
e and N3 ≥ dN1

2
e.

5.4 Beyond Aggregate queries: Range Selection

In this section, we extend our method to support range selection and range selection with projection.



5.5 Range Selection

A range selection query with range R asks for all data points within the range R:

RangeSelect(R) = {x : x ∈ D ∩R}.

We assume the dataset D is a set of distinct points. The authentication scheme for range selection query
is as follows:

Authenticating Multidimensional Range Selection Query

1. In the setup, Alice generates a signature Sig(x) for each data point x ∈ D using an aggregate signature scheme,
and sends all signatures to Bob.

2. To answer a range selection query with range R, Bob finds the set S = {x : x ∈ D ∩ R} and computes an
aggregated signature Sig(S) for set S from signatures Sig(x)’s for point x ∈ D∩R, using the aggregate signature
scheme. Bob sends (S,Sig(S)) to Alice.

3. Alice verifies: (1) Is S a set of distinct points? (2) Is S a subset of query range R? (3) Is Sig(S) a valid signature
for S?

4. Alice issues a count query with range R to Bob and gets authenticated result N0.

5. Alice verifies whether |S| = N0.

6. Alice accepts S as the query result, if all verifications succeed.

The above method has communication overhead equal to that of Count query: O(d2 log2Z). To the best
of our knowledge, this is the first efficient VRC (See Definition 2) to authenticate multidimensional range
selection query.

5.6 Range Selection with Projection

A range selection query with projection on the 1st dimension asks for the 1st dimension of all data points
within the query range

RangeSelect(R) = {x[1] : x ∈ D ∩R}.

Authenticating this query with sublinear communication overhead is more challenging that range selection
without projection. If we just apply the method in Section 5.5, the communiction overhead will be linear:
Since only the 1st dimension of data points within the query range is asked for, but all dimensions of such
data points are returned as the query result. The requirement of sublinear communication overhead implies
that Alice has to verify whether x ∈ R, with only the knowledge of the first dimension x[1] of point x.

Our idea is that: Alice derives the randomness vx from x[1] only using a pseudorandom function F$(·)
when generating the authentication tag during the setup. Then Alice issues a count query with range R to
Bob and receives from Bob the query result N0 and its proof Ψ . Meanwhile, Alice also receives S = {x[1] :
x ∈ D ∩R}. Alice verifices whether the proof Ψ is consistent with

∏
x∈S F$(x) and whether |S| = N0. The

detailed algorithm is given in Figure 3.
This solution has a limitation: When generating authentication tag during the setup, if Alice derives

the randomness vx from x[1], then the resulting scheme only supports projection on the 1st dimension. To
support projection on any combination of dimensions, Alice has to generate 2d authentication tags for each
data point, and one tag for one subset of [d]. As a result, we can authenticate range selection with projection,
at the cost of O(d2 log2Z) communication overhead per query and O(dN · 2d) storage on Bob’s side.

Theorem 4 The extended scheme is a VRC w.r.t. range selection, i.e. it is correct and sound to authenticate
d-dimensional range selection.



Fig. 3: Construction of RC protocol E = (KGen,DEnc, 〈Eval,Ext〉) to authenticate multidimensional range
selection query with projection on the 1st dimension. The attribute function is Att(x) = (x1, . . . , xd, 1) for
each x = (x1, . . . , xd) ∈ D.

(Alice) KGen(1κ):

1. Generate a private key K as in Figure 2 in MAIA.

2. Let {F$ : [Z]d → G̃}$∈{0,1}κ be a pseudoranom function. Choose a random seed $ ∈ {0, 1}κ.

3. Set K ← (K, $).

4. Output the private key K.

(Alice) DEnc(D;K): The same as in DEnc in Figure 1 [1], except that the randomness vx ∈ G̃ is generated in this
way: Let x[1] denote the first component of vector value x.

∀x ∈ D, vx = F$(x[1]).

(Alice, Bob) RangeSelect = 〈Eval(DB),Ext(DA, R, K)〉: DA = (N, d, ∆),DB = (D,T,C)
Precondition: The query range R ⊂ [Z]d is a rectangular range.

Step 1: Alice partitions the complement range R{ into 2d rectangular ranges {R` ⊂ [Z]d : ` ∈ [1, 2d]}, and sets
R0 = R.

Step 2—Reduction: For 0 ≤ ` ≤ 2d, Alice and Bob invokes CollRes on range R`. Denote the output as
(ζ`, X`,Ψ

(`)).
Step 3: Alice verifies whether the following equalities hold:

∀0 ≤ ` ≤ 2d, ζ`
?
= accept,

⊗
0≤`≤2d

Ψ (`) ?
≡ ∆. (17)

Note: Until this point, all are identical to the Count algorithm.
Step 4: Bob sends back S = {x[1] : x ∈ D ∩R} to Alice.
Step 5: Alice verifies whether the following equalities hold: Let Ψ (0)[2] denote the 2nd component of vector value

Ψ (0).
Ψ (0)[2]

?
=
∏
x∈S

F$(x[1])β ; |S| = X0 (18)

Alice sets ζ = accept if all verifications in equation (17) and equation (18) succeed; and sets ζ = reject

otherwise. Alice outputs (ζ, S,∆).

(Alice, Bob) CollRes = 〈Ẽval(DB), Ẽxt(DA, R, K)〉: DA = (N, d, ∆),DB = (D,T,C)
Identical with CollRes in Figure 1. Save the details.



6 Dynamic Dataset

6.1 Insertion

Insert(D̂,K):
Precondition: Alice has Ds = (K, N, d,∆); Bob has Dp = (D,T,C).
Alice runs the algorithm DEnc(D̂,K) to generate (D̂s = (N̂ , d, ∆̂), D̂p = (D̂, T̂, Ĉ)). Alice updates ∆← ∆ · ∆̂,N ←
N + N̂ . Alice sends (D̂, T̂, Ĉ) to Bob. Bob sets D = D ∪ D̂,T = T ∪ T̂,C = C ∪ Ĉ.

We can prove the security if insertion is non-adaptive, i.e. the inserted items are sampled from a particular
distribution.

Theorem 5 The extended scheme is correct and sound to authenticate d-dimensional Count, Sum, Avg, Min,
Max, Median and range selection queries over dynamic dataset that supports insertion.

6.2 Deletion

Deletion is equivalent to insertion into another dataset.
Let E = (KGen,DEnc,ProVer).

KGen(1κ): Run E .KGen(1κ) twice independently and output two keys K and K.
DEnc(D;K,K): Run E .DEnc(D;K) to generate (DA,DB). Set D = T = C = ∅, DA = (N = 0, d,∆ = 1), and
DB = (D,T,C, pk), where pk is part of K.
Insert(D′,K): Run E .Insert(D′,K).
Delete(D′): Set D′ ← D′ ∩D. Run E .Insert(D′,K) to insert points in D′ into the complement dataset D.
Sum(R;K,K): Run E .Sum(R;K) over dataset D to obtain (ζ,X,∆); run E .Sum(R;K) over the complement dataset
D to obtain (ζ,X,∆). If ζ = ζ = accept, then set ς = accept; otherwise set ς = reject. Output (ς,X −X,∆/∆).
Min(R, ι;K,K): Assume

∑
x∈D x < (p, . . . , p)

1. Alice sends range R to Bob.
2. Bob finds x∗ = arg minx∈D∩R x[ι]. Bob sends x∗ back to Alice.
3. Alice issues Sum query with range R = {x∗} to Bob over dataset D and D, and obtains output (ζ,X−X,∆/∆).

If ζ = accept and X −X > 0, then believes that x∗ is a valid data point.
4. Alice issues a Count query.

Corollary 6 The extended scheme is correct and sound to authenticate d-dimensional Count, Sum, Avg, Min,
Max, Median and range selection queries over dynamic dataset that supports both insertion and deletion.

7 Security beyond authentication

7.1 Privacy

At first, let us distinguish aggregate attributes and selection attributes: (1) Aggregate attributes are dimensions along
which a query apply the aggregate operation (like sum, min, max); (2) Selection attributes are dimensions on which
a query applys range constraint. Take an example, a sum query which asks for the sum of the 3rd dimension of data
points with selection on the 1st and th 2nd dimensions: Let R = [a1, b1]× [a2, b2]× [1,Z]d−2 be the query range.∑

x∈R

x[3]

In this example, the 3rd dimension is the aggregate attribute, and the 1st and the 2nd are selection attributes. Note
that in some query, a dimension can be both aggregate attribute and selection attribute.

We found previous works on privacy preserving aggregate range query over outsourced dataset can be divided
into two categaries:



– Protect the privacy of aggregate attributes, where any aggregate attribute is not a selection attribute, e.g.
[7]. These works typically employ homomorphic encryption scheme to hide the aggregate attribute values and
reserve the capability of doing aggregation. Particularlly, additive homomorphic encryption scheme (e.g. Paillier
system [34]) for aggregate Sum,Avg query and order preserving encryption scheme (e.g. [35]) for aggregate
min/max query.

– Protect the privacy of selection attributes. fully homomorphic encryption scheme [30]. It is worthy to point out
that order preserving encryption scheme (e.g. [35]) and MRQED scheme [36] based approaches are not secure
against adaptive adversary.

Privacy of Aggregate Attributes against Adaptive Adversary Our solution can achieve similar privacy
protection as Yao et al. [7].

W.L.O.G, we assume only the 1st dimension is aggregate attribute, and in every query range R has the form
R = [1,Z]× [a2, b2]× . . . [ad, bd] ⊆ [1,Z]d, i.e. the query has no constraint on the 1st dimension. Let (G,E,D,H) be
an additive homomorphic encyrption scheme (e.g. Paillier system [34]).

The new scheme is identical to the solution for aggregate sum query in Section 5.1, except that

– Additionally, in the setup, Alice generates a key pair (KE,KD) by running the key generating algorithm G, and
for each point x ∈ D replaces the first dimension x[1] with the ciphertext EKE(x[1]). Next, apply DEnc on the
(d− 1)-dimensional dataset D′ = {(x2, . . . , xd) : (x1, x2, . . . , xd) ∈ D}.

– To answer a sum query over 1st dimension, Bob “sums” all ciphertexts EKE(x[1]) for points x ∈ D ∩R using
the homomorphic property of the encryption scheme, i.e. using algorithm H, and sends the resulting ciphertext
CT = EKE(

∑
x∈D∩R x[1]) of sum to Alice as the query result.

– Alice can decrypt ciphertext CT with decryption key KD to recover the sum
∑

x∈D∩R x[1].

Privacy of Selection Attributes against Memoryless Adversary [28, 36]

To the best of our knowledge, Gennaro et al. [28] is the only available solution which can protect privacy against
adaptive adverseries. Here, we present two methods based on homomorphic encryption scheme, which is secure against
non-adaptive adversary who has no memories.

A straightforward approach is to apply order preserving encryption scheme [37, 35]. During the setup, Alice can
encrypt each selection attribute with an order preserving encryption scheme. Since the order between any two values
are preserved, Bob can do comparision directly.

Alternatively, we may apply MRQED, which is predicate encryption scheme supporting multidimensional range
query. Under MRQED, a message Msg can be encrypted under an identiy x, which is a point in a d-dimensional space
[1,Z]d. From the master secret key, a delegation key δ w.r.t. a d-dimensional rectangular range R can be derived.
With the delegation key δ, the ciphertext for the message Msg under identity point x can be decrypted to recover
Msg, iff the identity point x is within the range R.

Let M be the domain of the messages to be encrypted under MRQED, and M̂ be a subset of M such that (1)

the size of M̂ is superpolynomial; (2) the ratio |M̂||M| is negligible. During the setup, for each data point x ∈ D, Alice

choose a random message Msgx ∈ M̂, and encrypts the message Msgx under identiy point x usig MRQED encryption
scheme. Alice replaces each data point with its corresponding ciphertext and sends all of N resulting ciphertexts to
Bob. Later, Alice wants to query range R, then she can derive the delegation key δ w.r.t R and sends δ to Bob.
With the delegation key δ, Bob can decide whether a ciphertext is corresponding to a data point x within the query
range R, without knowing the value of x: Bob decrypts each ciphertext Cx with the delegation key, and gets the
decrypted value Mx. If Mx ∈ M̂, then x ∈ R with o.h.p. Otherwise, x 6∈ R definitely.

It is worthy to point out that, the above two approaches using order preserving encryption and MRQED is secure
in privacy protection if only one query is allowed. After multiple queries, Bob may be able to infer the value of some
data point, using the information that whether the point is inside or outside previous query ranges.

7.2 Frame Attack

Let (KG,Sign,Verify) be a secure digital signature scheme. Suppose Alice has signing key (PKA, SKA) and Bob has
signing key (PKB, SKB), where only Alice knows the private key SKA, only Bob knows the private key SKB, and the
two public keys PKA and PKB are known to public. We assume there is no Denial of Service (DOS) attack.



7.3 Dynamic Dataset

In additional to our original scheme, Alice and Bob are required to do the following steps to prevent frame attack.

1. During the setup, Alice signs the dataset D with her private key and sends the signature SignSKA
(D) to Bob.

2. For each update command U (e.g. insertion x or deletion y) that Alice issues to Bob, Alice has to sign it and
sends the signature SignSKA

(U) together with the update command to Bob. Next, Bob sends an ACK message
with signature, i.e. SignSKB

(U) to Alice.
3. For each query Q Alice issues to Bob, Bob generates the query result X and proof Π. Bob sends back to Alice

the signed result with proof, i.e. (X , Π,SignSKB
(Q,X , Π)).

4. In all above cases, the receiver of a signature will verify the validity of the signature using the corresponding
public key, and rejects that reply message and asks the sender to resend the corrupted message if the signature
is not valid.

To claim that Bob returned a wrong result for query Q, Alice has to present to the third trusted party two pieces
of information: (1) the query Q and the corresponding signed result: (X , Π,SignB(Q,X , Π)); (2) the set SACK of all
ACKs with Bob’s signatures. On the other hand, to prove his innocence, Bob has to present to the third trusted
party the original dataset D together with Alice’s signature, and the set SU of all update commands signed by Alice.

The third trusted party verifies all signatures using corresponding public keys. If Alice presents a message which
is wrongly signed by Bob, then decides Alice cheats. Similarly, if Bob presents a message which is wrongly signed by
Alice, then decides Bob cheats. The third trusted party then checks the authenticated messages in the following way:

– If SACK ( SU , then judges that Bob cheats.
– If SU ( SACK , then judges that Alice cheats.
– Until this point, All parties have a comsesus on the current status of dataset: Let the dataset D? be the resulting

dataset after applying the authenticated update commands in SU to the original dataset D. Then, compute the
query Q over the authenticated dataset D?, and gets the result Y. If X 6= Y, then judges that Bob cheats.

For the static case, where the update commands are not allowed, all actions/signatures on updates can be saved
and Bob only needs to provide the signed original dataset.

8 Conclusion

We propose efficient schemes to authenticate queries over static/dynamic outsourced dataset with O(d2 log2 Z) com-
munication overhead, which conquer the “curse of dimensionality”. The supported queries include aggregate range
query, i.e. Count, Sum, Avg, Min, Max, Median and range selection.
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