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1 Introduction

In this paper we study linear codes for CDMA (Code Division Multiple Access).
This is the standard for the 3rd Generation cellular communications systems.
In this standard bent functions are used for constructing codes of constant
amplitude. This application allows to decrease PAPR (peak-to-average power
ratio) coefficient as much as possible. Such codes consist of vectors of values
for bent functions.

Let us give the paper structure. In this section we consider some definitions
and facts about bent functions. In the second section we give some information
about affine equivalent bent functions. In the third section we give a simple
method for constructing bent functions at the minimal distance from the given
one. In the fourth section we briefly discuss CDMA. In the fifth section we
give some known facts on linear codes for CDMA and present a new algorithm
for constructing such codes. Our codes of small lengths (obtained with the
algorithm) have the best known parameters.

Let us give some definitions and known facts connected to bent functions.
Denote by dist(f, g) = |{x : f(x) 6= g(x), x ∈ En}| Hamming distance between
Boolean functions f and g. Denote by En a n-ary binary cube. Let Fn be a set
of all Boolean functions in n variables. By ⊕ denote the sum modulo 2.

Definition 1. A Boolean function f with even number of variables is a bent
function if it is on the maximal possible distance from all affine functions.

Denote by Bn the class of bent functions in n variables. For two Boolean
functions f and g in n variables, denote by D(f, g) the set of vectors for which
they differ.

1The author is supported by the RF President grant for young Russian scientists (MK-
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3 EXHAUSTIVE SEARCH OF BENT FUNCTIONS AT THE MINIMAL

DISTANCE FROM THE GIVEN ONE

Definition 2. A Boolean function f in n variables is called affine on the set
D ⊆ En if there exist w0 ∈ En, c ∈ E such that for any x ∈ D we have
f(x) = 〈w0, x〉 ⊕ c.

Remind that the set L ⊆ En is called an affine subspace if L = x0 ⊕ U ,
where x0 is a vector from En and U is a subspace in En. In [1] it is proved
Theorem 1 Let f, g ∈ Fn, f ∈ Bn, dist(f, g) = 2n/2. Then g ∈ Bn if and
only if the set D(f, g) is an affine subspace and function f is affine on D(f, g).

2 Affine equivalent bent functions

Boolean functions f and g in n variables are called affine equivalent if there
exist a nonsingular matrix A of order n, vector b of length n and affine function ℓ
in n variables such that it is true g(x) = f(Ax ⊕ b) ⊕ ℓ(x) for any x.

Definition 3. Let f ∈ Bn. Then vector r in Z
2

n

is called a distance spectrum
for bent function f , if the component i of vector r is equal to the number of bent
functions at distance i from the function f .

Statement 1. Distance spectra for affine equivalent bent functions are the
same.

Proof: The following equalities take a place: dist(f(x), g(x)) = dist(f(Ax ⊕
b), g(Ax ⊕ b)), det(A) 6= 0; ∀h ∈ Fn dist(f, g) = dist(f ⊕ h, g ⊕ h). As
far as the class of bent functions is closed under affine transforms of variables
and under addition of affine functions, then from these equalities the statement
follows. �

Hence, to obtain various distance spectra for bent functions it is enough to
find distance spectrum for one bent function from each class of affine equiva-
lence.

3 Exhaustive search of bent functions at the minimal

distance from the given one

From Theorem 1 it follows that if we want to find all bent functions at the
minimal distance from the given one it is enough to find all affine subspaces of
dimension n/2, on which the given bent function becomes affine.

Definition 4. Basis of subspace with dimension n/2 consists of n/2 rows of
an echelon matrix over Z2 such that:
1) every next line ends with number of zeros running in succession smaller then
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has the previous line;
2) under each leading one (first one in a line) there are zeros in a column;
3) other elements are any.

We give examples of such a matrix and bent functions at the minimal dis-
tance.

Example 1. Let us take a bent function in 6 variables: f1(x) = x1x2x3 ⊕
x1x4 ⊕ x2x5 ⊕ x3x6. For constructing bent function at the minimal distance we
find affine subspace L = v ⊕U such that f1 becomes affine on it. By algorithm
given further, we construct bases of all subspaces U and all v such that f1 is
affine on L = v⊕U . Let us give an example for v, for a basis matrix of subspace
U and for the basis matrix of orthogonal subspace. v =

(

0 1 0 0 0 0
)

,

AU =





1 0 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0



 , AU⊥ = (aij) =





0 0 0 0 0 1
0 1 0 0 0 0
1 0 1 1 0 0



 .

Now we construct an indicator. It is a conjunction of n/2 items of the following
form. The item number i is constructed from i-th row of matrix AU⊥ as follows:
(ai1x1 ⊕ ai2x2 ⊕ ... ⊕ ainxn ⊕ 1). Hence, IL(x) = IU (x ⊕ v) = IU (x1, x2 ⊕
1, x3, x4, x5, x6) = (x6 ⊕ 1)(x2 ⊕ 1 ⊕ 1)(x1 ⊕ x3 ⊕ x4 ⊕ 1) = x1x2x6 ⊕ x2x3x6 ⊕
x2x4x6 ⊕ x2x6 ⊕ x1x2 ⊕ x2x3 ⊕ x2x4 ⊕ x2. Thus we have bent function f2(x) =
f1(x) ⊕ IL(x) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x1x2x6 ⊕ x2x3x6 ⊕ x2x4x6 ⊕
x2x6 ⊕ x1x2 ⊕ x2x3 ⊕ x2x4 ⊕ x2 at the minimal distance 2n/2 = 8 from f1.

Algorithm 1. (Exhaustive search of all affine subspaces of dimension n/2
such that Boolean function becomes affine on them)
1) Input: Boolean function f(x) (in our case it is a bent function).
2) for any v in En we take a new function: g(x) = fv(x) = f(x ⊕ v).
3) after that g(x) is normalised: g′(x) = g(x) ⊕ g(0).
Now we search subspaces such that the function g′ becomes linear on them. For
each function g′ we recurrently construct all basis matrices of size n/2 × n.
4) let A1 be a matrix with one row.
5) Suppose that we have constructed the matrix Ai−1 of size (s− 1)×n, where
s − 1 < n/2. Let us construct a matrix Ai of size s × n. For this we add one
more vector to the basis.

We run through all vectors in lexicographical order and put each vector u
to the matrix Ai−1 in such a way that matrix Ai satisfies to conditions 1 – 3
from definition 4.

Then for each such vector u we check two conditions: (a) g(x⊕u) = g(x)⊕
g(u); (b) vector v lexicographically precedes to the vector u ⊕ x ⊕ v, where x
runs through the subspace generated by rows of matrix Ai−1.
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We put u to the matrix Ai only if all these conditions are satisfied. If there
are no suitable vectors then it is a deadlock of recursion brunch.

4 CDMA

In this section we briefly discuss general model for communication (CDMA).
For more details see [3]. In this model a binary data vector c = (c0, c1, ..., cm−1)
is input to orthogonal transform, where m = 2n. The output is Sc(t) =
∑m−1

i=1
(−1)cifi(t), where fi(t) are orthogonal functions of time t, 1 6 t 6 m.

For CDMA the orthogonal transform is a Walsh-Hadamard transform:

WH(m) =

(

WH(m − 1) WH(m − 1)
WH(m − 1) −WH(m − 1)

)

, WH(1) = 1.

Thus Sc(t) =
∑m−1

i=1
(−1)ciWH(m)it. Peak-to-average power ratio is defined as

PAPR(c) = 1

mmaxt|Sc(t))|, 1 6 PAPR(c) 6 m. So we can see that PAPR(c)
can be as large as m in a communication system using an orthogonal transform.
This results in more expensive and inefficiently used components. Thus, there
is a task to decrease PAPR as much as possible.

5 Linear codes for CDMA

There is a problem how we can control the PAPR of transmissions? We can use
coding. A subset C in Em is called a binary code of length m. The elements of
code are called codewords. The code distance is equal to the minimal Hamming
distance between different codewords. Linear [m, k, d]-code is a linear subspace
C ⊆ Em of dimension k with the code distance d. We can construct code
C ⊂ Em in which every word has small PAPR. One of such codes is the code
based on vectors of values of bent functions. Such a code is called constant
amplitude code. It has the smallest PAPR equal to 1.

Further we do not distinguish a function and its vector of values.

We introduce the following definition.

Definition 5. For bent function f in n variables a code C of length 2n we
call SPB-code (i.e. saving property ”bent”) if function f ⊕ c is bent for any its
codeword c.

Statement 2. Maximal sizes of SPB-codes for affine equivalent bent functions
are the same.
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Proof: Suppose we have a bent function f and SPB-code C of maximal size
for it. Let us construct all bent functions of the form g = f ⊕ c, where c in C,
and apply affine transform A for them. As far as the class of bent functions is
closed under affine transforms we have bent functions g′(x) = (f ⊕c)(Ax⊕b) =
f(Ax⊕ b)⊕ c(Ax⊕ b). Let us add f(Ax⊕ b) to g′ and we get SPB-code C ′ for
bent function g′. It is easy to notice that this code has a maximal size. �

Further we study only linear SPB-codes.

Earlier (implicitly) linear SPB-codes were already considered. For con-
structing linear SPB-codes in [3] it is suggested to use construction of Mc-
Farland [2] f(x, y) = 〈x, π(y)〉 ⊕ g(y), where x, y ∈ En/2, g(y) is a Boolean
function in n/2 variables, π is a permutation on En/2. Let us consider a linear
SPB-code of length 2n. This code consists of vectors of values of functions
h(x, y) = g(y) and all affine functions in n variables. Dimension of this code
is equal to k = 2n/2 + n/2, code distance d = 2n/2. For example for any bent
function in McFarland class in 6 variables we have linear SPB-code with pa-
rameters [26, 11, 8] and for bent function in 8 variables we have linear SPB-code
with parameters [28, 20, 16]. Further we give an algorithm for constructing lin-
ear SPB-codes of more large size.
Algorithm 2. 1) Input: bent function f ;
2) We add f to the list of functions (functionList);
3) We construct all affine subspaces of dimension n/2 on which the given bent
function becomes affine (for that we use algorithm 1). We add them to list;
4) Further we call recursive function findCode(f , list, functionList);

findCode(f , list, functionList)
1) Input: bent function f , list of affine subspaces on which f becomes affine,
list of bent functions;
2) For each affine subspace from list we construct bent function g at the mini-
mal distance from f ;
3) If g is linear independent to all functions in functionList we add g to
functionList;
4) Now we form a newList of subspaces. For each affine subspace from list we
check the following condition. If function g becomes affine on this subspace,
then we add it to newList;
5) Then we call recursive function findCode(g, newList, functionList);
We use this algorithm for constructing linear SPB-codes for some bent func-
tions in 6 and 8 variables. Note that our linear SPB-codes are not necessarily
optimal. Further we give the table with affine nonequivalent bent functions and
dimensions of the corresponding linear SPB-codes.
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n bent function dim

6 x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x4 ⊕ x2x6 ⊕ x3x4⊕
⊕x3x5 ⊕ x3x6 ⊕ x4x5 ⊕ x4x6 15

6 x1x2x3 ⊕ x2x4x5 ⊕ x1x2 ⊕ x1x4 ⊕ x2x6 ⊕ x3x5 ⊕ x4x5 15

6 x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 15

6 x1x2 ⊕ x3x4 ⊕ x5x6 15

8 x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x4x7 ⊕ x3x5⊕
⊕x2x7 ⊕ x1x5 ⊕ x1x6 ⊕ x4x8 29

8 x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x3x5 ⊕ x2x6⊕
⊕x2x5 ⊕ x1x7 ⊕ x4x8 28

8 x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x3x5 ⊕ x1x3⊕
⊕x1x4 ⊕ x2x7 ⊕ x6x8 30

8 x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x3x5 ⊕ x2x6⊕
⊕x2x5 ⊕ x1x2 ⊕ x1x3 ⊕ x1x4 ⊕ x7x8 30

8 x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x3x5 ⊕ x1x6 ⊕ x2x7 ⊕ x4x8 28

8 x1x2x7 ⊕ x3x4x7 ⊕ x5x6x7 ⊕ x1x4 ⊕ x3x6⊕
⊕x2x5 ⊕ x4x5 ⊕ x7x8 29

8 x1x2x3 ⊕ x2x4x5 ⊕ x3x4 ⊕ x2x6 ⊕ x1x7 ⊕ x5x8 28

8 x1x2x3 ⊕ x2x4x5 ⊕ x1x3 ⊕ x1x5 ⊕ x2x6 ⊕ x3x4 ⊕ x7x8 30

8 x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x7x8 29

8 x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x7x8 28

Code distances of these linear SPB-codes are equal to the minimal possible
distance 2n/2 between bent functions in n variables. In contrast to the method
based on construction of McFarland, our method substantially depends on the
concrete form of a bent function.
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