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Abstract

Consider the following problem: a sender S and a receiver R are part of an unreliable,
connected, distributed network. The distrust in the network is modelled by an entity
called adversary, who has unbounded computing power and who can corrupt some of
the nodes of the network (excluding S and R) in a variety of ways. S wishes to send
to R a message mS that consists of ℓ elements, where ℓ ≥ 1, selected uniformly from a
finite field F. The challenge is to design a protocol, such that after interacting with S as
per the protocol, R should output mS without any error (perfect reliability). Moreover,
this hold irrespective of the disruptive actions done by the adversary. This problem
is called reliable message transmission or RMT in short. The problem of secure mes-
sage transmission or SMT in short requires an additional constraint that the adversary
should not get any information about the message what so ever in information theoretic
sense (perfect secrecy). Security against an adversary with infinite computing power
is also known as non-cryptographic or information theoretic or Shannon security and
this is the strongest notion of security. Notice that since the adversary has unbounded
computing power, we cannot solve RMT and SMT problem by using classical crypto-
graphic primitives such as public key cryptography, digital signatures, authentication
schemes, etc as the security of all these primitives holds good only against an adversary
having polynomially bounded computing power.

RMT and SMT problem can be studied in various network models and adversarial
settings. We may use the following parameters to describe different settings/models
for studying RMT/SMT:

1. Type of Underlying Network — Undirected Graph, Directed Graph, Hypergraph.

2. Type of Communication — Synchronous, Asynchronous.

3. Adversary capacity — Threshold Static, Threshold Mobile, Non-threshold Static,
Non-threshold Mobile.

4. Type of Faults — Fail-stop, Passive, Byzantine, Mixed.

Irrespective of the settings in which RMT/SMT is studied, the following issues are
common:

1. Possibility: What are the necessary and sufficient structural conditions to be
satisfied by the underlying network for the existence of any RMT/SMT protocol,
tolerating a given type of adversary?

2. Feasibility: Once the existence of a RMT/SMT protocol in a network is ascer-
tained, the next natural question is, does there exist an efficient protocol on the
given network?

3. Optimality: Given a message of specific length, what is the minimum communi-
cation complexity (lower bound) needed by any RMT/SMT protocol to transmit
the message and how to design a polynomial time RMT/SMT protocol whose
total communication complexity matches the lower bound on the communication
complexity (optimal protocol)?

In this dissertation, we look into the above issues in several network models and
adversarial settings. This thesis reports several new/improved/efficient/optimal solu-
tions, gives affirmative/negative answers to several significant open problems and last
but not the least, provides first solutions to several newly formulated problems.
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Chapter 1

Introduction

Achieving secure communication between two entities who are far away from each other
is an age old problem. The notion of ”security” was first formalized by Shannon in
his classical work [73]. In his work, Shannon assumed the following: there exists a
sender S and a receiver R who are connected by an insecure channel. There exists a
computationally unbounded adversary who can listen all the communication over the
channel. Under these circumstances, Shannon showed that in order to securely send a
message mS to R of size ℓ bits, the following should hold:

1. S and R should have a common secret key of size ℓ bits beforehand;

2. The common secret key cannot be established between S and R using this com-
mon channel;

3. Each time S wants to send a new message, S and R should use a new common
key. That is, keys cannot be re-used.

The security achieved against the computationally unbounded adversary was termed
”perfect security” or ”perfect secrecy” or unconditional secrecy or information theoretic
security. However, the above shortcomings made achieving perfect secrecy impractical.
This motivated the research community to look for other alternatives. Two distinct
approaches emerged in the literature as practical alternatives:

1. Polynomially Bounded Adversary: This approach was first introduced by
Diffie and Hellman in their landmark paper [26]. In this approach, it is assumed
that the computational power of the adversary is polynomially bounded, but the
adversary has full access to the cipher text. This models a ’passive’ eavesdrop-
per of the channel between S and R. Under this assumption, Diffie and Hellman
showed how S and R can establish a common secret key using the insecure chan-
nel connecting them. In their work, Diffie and Hellman also proposed a new
paradigm, called public-key cryptography (PKC). In this paradigm, every party
holds a public key and a private key, where the private key is kept secret and the
public key is available to every one. If S wants to send a message then S encrypts
the message using the public key of R and sends it to R. R then recovers the
message by decrypting the encrypted message using his private key.

The work of Diffie and Hellman was followed by that of [67], who proposed a
public key cryptosystem, whose security depends upon the hardness assumption
of certain number theoretic problem.
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2. Bounded Bandwidth Adversary: This approach is based on the assumption
that in reality, the information obtained by the adversary on the cipher text is
partial. Unlike the traditional problem of secure communication, where S and R
are connected directly by a single insecure channel, in a real life scenario, S and
R may be a part of a large, distributed network. Moreover, it may not be possible
for the adversary to control the entire network. This is because the network may
be very large and even if the attacker possess sufficient computational power, he
would need to spend a considerable amount of time before he succeeds in getting
hold of the network completely. And usually, a corrupt node/channel can be
detected and corrected by the systems administrator in a relatively much lesser
amount of time. Thus, the attacker can, at any given instant, control only a part
of the network.

The assumption that the adversary has partial access to the network opens a
new line of research, which can make achieving perfect security feasible, without
restoring to any computational assumptions. Moreover, it also eliminates the un-
realistic requirements, implied by Shannon’s theorem to achieve perfect security.
This line of research lead to the problem of reliable message transmission (RMT)
and secure message transmission (SMT).

RMT and SMT were first introduced by Dolev, Dwork, Waarts and Yung [28]. In their
model, S and R are connected by multiple, disjoint, communication channels, unlike
classical model where only one communication channel is assumed. Moreover, it is
assumed that a computationally unbounded adversary controls only a limited number
of channels. Under this scenario, Dolev et al. showed how to achieve perfect security.
The work of Dolev et al. has since set off an entire line of research.

This dissertation deals with RMT and SMT problem in several network model
and adversary settings. This chapter is structured in the following manner: First, we
recall the taxonomy or the framework for RMT and SMT problem. This taxonomy
was first discussed in [75]. This provides a comprehensive framework to explore the
depth and width of the problem in a unified way. We then briefly discuss about the
existing literature of RMT and SMT and their limitations. We then emphasize on our
contribution in this thesis and its impact on the literature. This will help to judge the
stand that our results hold with respect to the past history and also to understand how
our results have advanced the state-of-the-art research of this field. Lastly, we describe
the chapter wise organization of this thesis.

1.1 Overview of RMT and SMT

In the problem of RMT, S and R are part of an unreliable, connected, distributed
network. The distrust in the network is modelled by an entity called adversary, who
has unbounded computing power and who can corrupt some of the nodes in the network
(excluding S and R) in a variety of ways. S wishes to send to R a message mS that
consists of ℓ elements, where ℓ ≥ 1, selected uniformly and randomly from a finite
field F. The challenge is to design a protocol, such that after interacting with S as
per the protocol, R should output mS without any error (perfect reliability), inspite of
the disruptive actions done by the adversary. The problem of SMT has an additional
requirement that the adversary should not get any information about mS what so ever
in information theoretic sense (perfect security). Security against such an adversary,
having unbounded computing power is also known as non-cryptographic or information
theoretic or Shannon security and this is the strongest notion of security.
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1.2 Motivation for Studying RMT and SMT

RMT and SMT are fundamental problems in reliable and secure distributed computing.
There are basically two motivations for studying RMT and SMT protocols:

1. Many fundamental fault tolerant distributed computing primitives, such as secure
multiparty computation (MPC) [89, 37, 13, 17, 66, 8, 9, 11], Byzantine Agreement
(BA) [63, 29, 27, 16, 44], Verifiable Secret Sharing (VSS) [18, 13, 66, 36], etc
assume that there exists a direct and secure link between every two nodes in the
network. This implies that the underlying network graph is a complete graph,
which is an unrealistic assumption. In the networks, where S and R are not
adjacent, RMT/SMT protocols help to simulate a virtual reliable/secure link
between S and R. This way, we can simulate a virtual complete network, over
which the above fault tolerant primitives can be executed.

2. The second motivation to study SMT is to achieve information theoretic secu-
rity. The security of all existing public key cryptosystems, digital signatures are
based on the unproven hardness assumptions of certain number theoretic prob-
lems. However, the increase in computing speed and advent of new computing
paradigms like Quantum computing [74] may render these assumptions very weak
or useless in practice. But these factors have no effect on information theoretic
security which is the strongest notion of security. Thus in a scenario, when ex-
isting public key cryptosystems, digital signatures can not provide satisfactory
security, SMT protocols may help to provide effective alternative.

1.3 RMT, SMT and Its Variants

We now give informal definition of different variants of RMT/SMT. A more formal and
rigorous definition will appear in the next chapter.

1. An RMT protocol is called δ-reliable, for any δ = 2−Ω(κ), where κ is the error
parameter, if at the end of the protocol, R correctly outputs S’s message, except
with error probability δ. Moreover, this should hold, irrespective of the behavior
of the adversary.

2. An SMT protocol is called ǫ-secure, for any ǫ = 2−Ω(κ), where κ is the error
parameter, if at the end of the protocol, the adversary does not get any extra
information about S’s message, except with probability ǫ.

3. A message transmission protocol is called (ǫ, δ)-secure, if it is ǫ-secure and δ-
reliable, for some ǫ, δ > 0.

4. An RMT protocol is called perfectly reliable, also called as PRMT, if it is 0-
reliable.

5. An RMT protocol is called statistically reliable, also called as SRMT, if it is
δ-reliable, for some δ > 0.

6. A message transmission protocol is called perfectly secure, also called as PSMT,
if it is (0, 0)-secure.

7. A message transmission protocol is called statistically secure, also called as SSMT,
if it is (0, δ)-secure. Such protocols are also called as almost perfectly secure
protocols [24, 33, 87, 43].
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1.4 Various Models for Studying RMT and SMT

There are various network settings and adversary model in which RMT and SMT
problem can be studied and has been studied in the past. We may use the following
parameters to describe different settings/models for studying RMT and SMT:

1. Underlying network;

2. Type of communication;

3. Adversary Capacity;

4. Type of faults; and

5. Type of security.

We now elaborate on each of the above attributes.

1.4.1 Underlying Network: Undirected, Directed and Hypergraph

The simplest of the network is undirected network model, where it is assumed that link
between every two nodes is bidirectional and hence support both way communication.
In directed network model, it is assumed that every communication link has a direction
associated with it. Hypergraphs are the most general form of the network, where instead
of edges, we have hyperedges. Each hyperedge will have a source node and a set of
receiver(s). Any information sent by the source node will be received identically by all
the receiver(s) of the hyperedge.

1.4.2 Type of Communication: Synchronous and Asynchronous

In a synchronous network, there exists a global clock in the system and so the trans-
mission delay along every edge of the network is bounded. On the other hand, in an
asynchronous network, there is no global clock in the system. Thus each link in the
network has arbitrary (but finite) delay. The inherent difficulty in designing a protocol
over asynchronous network comes from the fact that we cannot distinguish between a
slow sender and a corrupted sender. Thus, if a receiver node is expecting some mes-
sage from a sender node and if no message arrives then the receiver cannot distinguish
whether the sender node is corrupted and did not sent the message at all or the message
is just delayed in the network.

1.4.3 Adversary Capacity

The adversary capacity can be further categorized based on the following two proper-
ties:

1.4.3.1 Corruption Capacity: Threshold and Non-Threshold

In threshold adversary settings, the number of nodes that can be corrupted by the
adversary is bounded by a threshold. On the other, non-threshold adversary setting
is a generalization of threshold settings. In non-threshold setting, the adversary is
specified by an adversary structure, which is a set of all possible set of nodes that can
be potentially corrupted by the adversary. Moreover, each set in the adversary structure
may have different size. During the protocol execution, the adversary is permitted to
corrupt the nodes of any one arbitrarily chosen set in the adversary structure. It is easy
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to see that a threshold adversary is a special type of non-threshold adversary, where
the size of each set in the adversary structure is bounded by a threshold.

1.4.3.2 Adversary Behavior: Static and Mobile

If the adversary is static, then it controls the same set of nodes throughout the protocol
execution. This is a valid assumption if the protocol is executed for a short period of
time. On the other hand, if the adversary is mobile, then the adversary can corrupt
different set of nodes during different instances of the protocol. This models a scenario
when a protocol is executed for a long duration. Under this circumstances, the nodes
which were corrupted in the earlier stage may be rectified, while in the mean time, the
adversary may corrupt some other set of nodes. Such a scenario is best modelled by
mobile adversary.

1.4.4 Type of Faults: Failstop, Passive, Byzantine and Mixed

The weakest type of corruption is the failstop corruption, where the adversary can
simply stop the complete functioning of a node. This type of corruption is called failstop
corruption and models the scenario when a node may get crashed due to system failure
or natural calamity. Passive corruption means that the adversary has full access to
the the computation and communication of the node. However, the adversary cannot
make the node to deviate from the protocol. The most powerful type of corruption is
Byzantine corruption, where a node is completely under the control of the adversary
and may behave arbitrarily during the protocol execution. Lastly, the adversary may
simultaneously control different set of nodes in passive, fail-stop and active fashion;
such a generalized adversary is called mixed adversary.

1.4.5 Type of Security: Perfect and Statistical

Based on the security level achieved by a protocol, we may have perfect security or
statistical security. See Section 1.3 for more details.

1.5 Taxonomy of Settings for Studying RMT and SMT

A taxonomy of settings in which RMT and SMT problem can be studied is presented
in Fig. 1.1.

Figure 1.1: The taxonomy of settings in which RMT/SMT can be studied.

Underlying Network Type of Adversary Capacity Type of Type of
Communication Faults Security

Undirected Graph

Directed Graph

Undirected Hypergraph

Directed Hypergraph

Synchronous

Asynchronous

Threshold Static

Threshold Mobile

Non-Threshold Static

Non-Threshold Mo-

bile

Byzantine

Fail-Stop

Passive

Mixed

Perfect

Statistical

For example, one may study SMT over an undirected synchronous network thwart-
ing a threshold static mixed adversary? In this way, hundreds of different models/settings
can be formulated and almost all of them are used in practice. Any RMT/SMT protocol
is analyzed by the following four parameters:
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1. Connectivity of the underlying network;

2. Number of phases, denoted by r, taken by the protocol. Here a phase is a com-
munication from S to R or vice-versa,

3. Communication complexity denoted by b, which is the total number of field ele-
ments communicated by S and R in the protocol and

4. Amount of computation done by S and R in the protocol.

Irrespective of the settings in which RMT/SMT is studied, the following issues are
common:

1. Possibility: What are the necessary and sufficient structural conditions to be
satisfied by the underlying network for the existence of any RMT/SMT protocol,
tolerating a given type of adversary?

2. Feasibility: Once the existence of a RMT/SMT protocol in a network is ascer-
tained, the next natural question is, does there exist an efficient protocol on the
given network?

3. Optimality: Given a message of specific length, what is the minimum communi-
cation complexity (lower bound) needed by any RMT/SMT protocol to transmit
the message and how to design a polynomial time RMT/SMT protocol whose
total communication complexity matches the lower bound on the communication
complexity (optimal protocol)?

The above taxonomy and a unified framework for a number of research problems
were first discussed in [75]. Different techniques are used to resolve the above issues in
different settings. For example, the techniques used in designing optimal RMT/SMT
protocols in undirected networks are completely different from the ones used in directed
networks.

1.6 A Brief Overview of the Existing Results

The RMT and SMT problem were first proposed and solved by Dolev et al. [28]. Dolev
et al. considered an undirected synchronous network and assumed that the adversary
can corrupt at most tb nodes in the network in Byzantine fashion. The work of Dolev
et al. is followed by several other works, which considered RMT/SMT problem in
several network settings and adversarial model. For example, [28, 70, 77, 4, 30, 42]
studied PRMT and PSMT in undirected synchronous network, tolerating threshold
static Byzantine adversary. In [24, 25, 87, 88], PSMT and SSMT in directed network is
studied. In [35, 24] the authors have studied RMT and SMT in Hypergraphs. PSMT in
asynchronous network is studied in [69, 76]. Threshold setting is discussed in [28, 42],
while non-threshold setting is discussed in [41, 76, 25, 84]. In [82], PSMT in mobile
setting is discussed. SSMT in studied in [33, 24, 86, 43, 5].

1.7 Motivation of Our Work

Though RMT/SMT and its variants have been studied extensively in the past, there
are still several limitations of the existing results, which can be categorized as follows:
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1. The issue of possibility, feasibility and optimality in the context of RMT
and SMT in undirected networks has been completely resolved in [28, 70, 77,
4, 30, 81, 42]. However, all these works assume that the underlying network in
synchronous and the adversary is a static adversary, who can corrupt the nodes
only in Byzantine fashion. Not too much is known regarding the above issues in
other network models and adversarial settings. For example, in a typical large
network, certain nodes may be strongly protected and few others may be moder-
ately/weakly protected. An adversary may only be able to fail-stop/eavesdrop a
strongly protected node, while he may affect a weakly protected node in Byzan-
tine fashion. Thus, we may capture the abilities of an adversary in a more realistic
manner, using three parameters tb, tf , tp where tb, tf , tp are the number of nodes,
which can be under the influence of the adversary in Byzantine, fail-stop and pas-
sive fashion respectively. Also it is better to grade different kinds of disruption
done by adversary and consider them separately rather than treating every kind
of fault as Byzantine fault as this is an “overkill” and causes an over estimation of
the resources required for RMT/SMT 1. Thus it is justifiable to study RMT/SMT
in the context of mixed adversary. Unfortunately, not much is known prior to
our work, regarding possibility, feasibility and optimality of RMT/SMT
and its variants in the context of mixed adversary.

2. In undirected network model, it is assumed that the communication link between
any two nodes in the network is bi-directional. However, in practice not every
communication channel may admit bi-directional communication. For instance,
a base-station may communicate to even a far-off hand-held device but the other
way round communication may not be possible. In such a scenario, it is more
appropriate to model the underlying network as a directed graph. Motivated by
this, Desmedt et al. [24, 87] introduced the problem of RMT/SMT in directed
network. However, they only resolved the issue of possibility and feasibility
and nothing is known regarding the issue of optimality of RMT/SMT and its
variants in directed network.

3. If a protocol is executed for a very short duration, then it is appropriate to
model the adversary as static, who corrupts the same set of nodes throughout the
protocol. However, in many practical scenarios, a protocol may be executed for a
longer duration, where S and R may interact for a long time. In such scenarios,
some of the faults which are done in the earlier stages, may be identified and
fixed and in the mean time, a hacker may attack some other nodes. Evidently,
in such cases the mobile adversary models the fault behavior more appropriately
than static adversary. The issue of possibility and feasibility of RMT/SMT
tolerating mobile adversary has been resolved in [82]. Unfortunately, nothing is
known regarding the issue of optimality of RMT/SMT in the context of mobile
adversary.

4. In a synchronous network, if S (R) sends some information along a path, then
it is assumed that R (S) will get the information (possibly corrupted) along the
path after a fixed interval of time. However, this is a very strong assumption
because the delay in the arrival of a single message will affect the overall security
of the protocol. A typical large network like the Internet can be modelled more
accurately by asynchronous networks than synchronous networks. The inherent
difficulty in designing a protocol in asynchronous network comes from the fact

1A formal justification of the last statement will appear in the subsequent chapters.

7



that we cannot distinguish between a slow sender and a corrupted sender. Due to
this inherent difficulty, RMT/SMT protocols in asynchronous networks seem to
very involved. In the literature, prior to our work, not too much is known regard-
ing possibility, feasibility and optimality of RMT/SMT and its variants
in asynchronous network.

1.8 Our Contribution and Models Discussed in this Thesis

In this thesis, we extend the state of the art discussed in the previous section by explor-
ing RMT/SMT and its variants in various network models and adversarial settings. In
this thesis, we consider the following network model and adversary settings:

1. Underlying Graph: Undirected as well as directed.

2. Type of Communication: Synchronous as well as asynchronous.

3. Adversary Capacity: Threshold static as well as threshold mobile.

4. Type of Faults: Byzantine as well as mixed.

5. Type of security: perfect as well as statistical.

In the next section, we give the organization of the thesis and also informally
summarize the results that will be presented in each chapter.

1.9 Organization of the Thesis and Brief Overview of Our
Results

In this thesis, we will be studying the RMT/SMT and its variants in different network
models and adversarial settings. So instead of describing all network models and adver-
sarial settings at the same place, we feel appropriate to discuss about various models
in respective chapters. Accordingly, we also give the literature survey related to each
model in the corresponding chapters. We believe that this will increase the readability
of this thesis.

The thesis is divided into three parts. The first two parts deal with synchronous
network, while the last part deals with asynchronous network. The results related to
PRMT and SRMT in synchronous network are given in the first part, while the second
part contains the results related to PSMT and SSMT in synchronous network. We now
give a brief overview of the results that will be discussed in each chapter.

In the next chapter, we present the definitions used in this thesis. We also present
the properties of Reed-Solomon (RS) codes, which will be used throughout this thesis.

In Chapter 3, we study PRMT in undirected synchronous network tolerating thresh-
old static Byzantine adversary, denoted by Astatic

tb
. The adversary Astatic

tb
controls the

same set of tb nodes throughout the protocol in Byzantine fashion. In [28], it is shown
that PRMT tolerating Astatic

tb
is possible iff there exists n ≥ 2tb +1 node disjoint paths,

also called as wires between S and R. Moreover, in [81], it is shown that any multiphase

(more than two phase) PRMT protocol tolerating Astatic
tb

must communicate Ω
(

nℓ
n−tb

)

field elements to reliably send a message mS containing ℓ field elements. This implies
that if n = 2tb + 1, then any three or more phase PRMT must communicate Ω(ℓ) field
elements because if n = 2tb + 1, then n = Θ(tb). In [49], the authors have shown
the tightness of this bound by designing an O(log tb) PRMT protocol, which reliably
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sends a sufficiently large message containing ℓ field elements by communicating O(ℓ)
field elements. The core of Chapter 3 contains a discussion of an improved protocol,
in which we significantly reduce the phase complexity of the PRMT protocol of [49].
Specifically, we design a three phase PRMT protocol which sends a sufficiently large
message containing ℓ field elements by communicating O(ℓ) field elements. This result
is based on [58].

In Chapter 4, we study PRMT in undirected synchronous network tolerating thresh-
old mobile Byzantine adversary, denoted by Amobile

tb
. The adversary Amobile

tb
controls

different set of tb nodes in Byzantine fashion, during different phases of the protocol.
Intuitively, it seems that the connectivity requirement for PRMT tolerating Amobile

tb
must be more in comparison to its static counter part Astatic

tb
. However surprisingly, in

[82], the authors have shown that PRMT tolerating Amobile
tb

is possible iff there exists
n ≥ 2tb + 1 wires between S and R, which is same as the connectivity requirement
for any PRMT protocol tolerating Astatic

tb
. Since Amobile

tb
is more powerful than Astatic

tb
,

the lower bound on the communication complexity of PRMT against Astatic
tb

, as given

in [81], must hold against Amobile
tb

. This implies that if n = 2tb + 1, then any three or
more phase PRMT must communicate Ω(ℓ) field elements to reliably send a message
containing ℓ field elements against Amobile

tb
. However, as far our knowledge is concerned,

there is no PRMT protocol tolerating Amobile
tb

, which satisfies this bound. So in Chap-
ter 4, we design a three phase PRMT protocol which sends a sufficiently large message
containing ℓ field elements by communicating O(ℓ) field elements, tolerating Amobile

tb
.

This protocol is different from the three phase PRMT protocol against Astatic
tb

, hav-
ing similar properties, which is presented in Chapter 3. Our communication optimal
PRMT protocol against Amobile

tb
gives the following conclusion: if the adversary does

only Byzantine corruption, then mobility of the adversary does not hinder to design a
three phase PRMT with a communication complexity of O(ℓ). This result is based on
[60].

All the existing PRMT protocols abstract the paths between S and R as wires, ne-
glecting the intermediate nodes in the paths. However, in Chapter 4, we show that this
causes significant over estimation of the communication complexity as well as the num-
ber of communication rounds required by the protocol. So, we consider the underlying
paths in its full form, instead of abstracting them as wires and derive a tight bound on
the number of communication rounds required to achieve reliable communication from
S to R tolerating a mobile adversary with arbitrary roaming speed. We show how our
constant phase PRMT protocol against Amobile

tb
can be easily adapted to design round

optimal and bit optimal PRMT protocol, provided the network is given as a collection
of vertex disjoint paths.

Chapter 5 deals with PRMT in undirected synchronous network, tolerating threshold
static mixed adversary, denoted by Astatic

(tb,tf ). The adversary Astatic
(tb,tf ) can control disjoint

set of tb and tf nodes in Byzantine and fail-stop fashion respectively. PRMT tolerating
Astatic

(tb,tf ) was first studied in [75], where the author has justified the study of PRMT

tolerating mixed adversary. The author has also given the necessary and sufficient
condition for PRMT tolerating Astatic

(tb,tf ). The characterization shows the existence of

more fault tolerance in a network, while the existing results offer no such insight.
The main contribution of Chapter 5 is that we study the inherent tradeoff among the
three important parameters of PRMT, namely the connectivity requirement n, phase
complexity r and communication complexity b. Specifically, we give the answer to the
following Holy Grail problem of PRMT:

Given an n-connected undirected synchronous network, under the influence
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of Astatic
(tb,tf ) and a value b, what is the minimum number of phases r needed

to reliably send a message mS, where |mS| = ℓ, such that the total commu-
nication complexity of the protocol is O(b)?

We solve the above question by deriving a non-trivial lower bound on r. Moreover,
we show that our lower bound is asymptotically tight. To the best of our knowledge,
our lower bound is first of its kind and captures the inherent tradeoff among n, b, ℓ and
r simultaneously. This result is based on [6].

In Chapter 6, we focus on PRMT in undirected synchronous network, tolerating
threshold mobile mixed adversary, denoted by Amobile

(tb,tf ) . The adversary Amobile
(tb,tf ) can con-

trol different set of tb and tf nodes in Byzantine and fail-stop fashion respectively in
different phases of the protocol. We show that PRMT tolerating Amobile

(tb,tf ) is possible

iff PRMT tolerating Astatic
(tb,tf ) is possible. This shows that as far as possibility is con-

cerned, mobility of the adversary does not add additional constraints. We then derive
the lower bound on the communication complexity of any PRMT protocol tolerating
Amobile

(tb,tf ) and show that the bound is asymptotically tight. Our lower bound reveals

the following important property: if the adversary is mixed, then any PRMT proto-
col against mobile adversary requires more communication, as compared to its static
counter part. Thus if the adversary can do mixed type of corruption, then mobility of
the adversary affects optimality of the protocols. This is quiet interesting because in
Chapter 4 we show that mobility of the adversary has no effect on possibility, as well
as optimality, if the adversary does only Byzantine corruption. This result is based
on [19].

In Chapter 7, we study PRMT in directed synchronous network, tolerating threshold
static Byzantine adversary, denoted by Astatic

tb
. The condition for the possibility of

PRMT in undirected graph tolerating Astatic
tb

, as given in [28], will also hold for directed
graphs. However, nothing is known regarding the optimality of PRMT in directed
network. We make inroads toward this in Chapter 7. Specifically, the main contribution
of Chapter 7 is that we resolve the following question:

what are the necessary and sufficient structural conditions that the underly-
ing graph should satisfy for the possibility of communication optimal PRMT
protocol, which sends a message of size ℓ field elements by communicating
O(ℓ) field elements over a directed network / digraph?

The result of this chapter is based on [57].
In Chapter 8, we study SRMT in undirected synchronous network, tolerating thresh-

old static Mixed adversary, denoted by Astatic
(tb,tf ). The results stated in this chapter are

not contribution of this thesis. They are recalled from [75]. However, the main purpose
of recalling these results here is to make the thesis self complete. This is because several
of these results will be used in the subsequent chapters of the thesis.

Chapter 8 marks the end of first part of the thesis. In Chapter 9, we study PSMT in
undirected synchronous network, tolerating Astatic

tb
. From [28], any two or more phase

PSMT tolerating Astatic
tb

is possible iff there exists n ≥ 2tb + 1 wires between S and R.
In [81], the authors have shown that any two or more phase PSMT tolerating Astatic

tb

must communicate Ω
(

nℓ
n−2tb

)
field elements to securely send a message mS containing

ℓ field elements. This implies that if n = 2tb + 1, then any two or more phase PSMT
must communicate Ω(nℓ) field elements because if n = 2tb +1, then n = Θ(tb). In [77],
the author presented a two phase PSMT protocol, whose communication complexity
satisfies the above bound asymptotically. However, in [4], the authors showed that
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the two phase PSMT protocol of [77] does not provide perfect reliability. The authors
in [4] also presented a two phase communication optimal PSMT protocol tolerating
Astatic

tb
, which asymptotically satisfies the lower bound given in [77]. However, the

two phase PSMT protocol of [4] has the following two disadvantages: (a) Both S and
R have to perform exponential amount of computation; (b) The protocol is optimal
only if the message is exponentially large. The main contribution of Chapter 9 is a
three phase polynomial time, communication optimal PSMT protocol tolerating Astatic

tb
,

which satisfies the lower bound given in [81]. Though our PSMT protocol requires one
extra phase, it overcomes the shortcomings of the two phase PSMT protocol of [4].
The result of this chapter is based on [58].

In Chapter 10, we study PSMT in undirected synchronous network tolerating thresh-
old mobile Byzantine adversary, denoted by Amobile

tb
. Intuitively, it seems that the

connectivity requirement for PSMT tolerating Amobile
tb

must be more than its static
counter part Astatic

tb
. However surprisingly in [82], the authors have shown that PSMT

tolerating Amobile
tb

is possible iff PSMT tolerating Astatic
tb

is possible. Since Amobile
tb

is more powerful than Astatic
tb

, the lower bound on the communication complexity of

PSMT against Astatic
tb

, as given in [81], must hold against Amobile
tb

. This implies that
if n = 2tb + 1, then any two or more phase PSMT must communicate Ω(nℓ) field ele-
ments to securely send a message containing ℓ field elements against Amobile

tb
. However,

to the best of our knowledge, the only known communication optimal PSMT protocol
against Amobile

tb
, achieving the above bound is due to [77], which takes O(tb) phases.

The major contribution of Chapter 10 is that we design a three phase communication
optimal PSMT protocol which sends a sufficiently large message containing ℓ field el-
ements by communicating O(nℓ) field elements, tolerating Amobile

tb
. This protocol is

different from the three phase communication optimal PSMT protocol against Astatic
tb

,
having similar properties, which is presented in Chapter 9. Our communication optimal
PSMT protocol against Amobile

tb
gives the following conclusion: if the adversary does

only Byzantine corruption, then mobility of the adversary does not hinder to design
a three phase PSMT with a communication complexity of O(nℓ). The result of this
chapter is based on [60].

In Chapter 11, we study PSMT in undirected synchronous network tolerating thresh-
old static mixed adversary. However, in addition to Byzantine and failstop corruption,
we also consider passive corruption. Thus, the mixed adversary, denoted by Astatic

(tb,tf ,tp)

corrupts a disjoint set of tb, tf and tp nodes in Byzantine, failstop and passive fashion
respectively throughout the protocol. In [75], the author has shown that any multi
phase PSMT tolerating Astatic

(tb,tf ,tp) is possible iff there exists n ≥ 2tb + tf + tp + 1 wires

between S and R. Moreover, any multi phase PSMT tolerating Astatic
(tb,tf ,tp) must com-

municate Ω
(

nℓ
n−(2tb+tf +tp)

)
field elements to securely send a message containing ℓ field

elements. However, no multi phase communication optimal PSMT protocol tolerat-
ing Astatic

(tb,tf ,tp) was presented in [75]. We completely resolve the issue of optimality

of multi phase PSMT tolerating Astatic
(tb,tf ,tp) in Chapter 11. Specifically, we present a

four phase communication optimal PSMT protocol tolerating Astatic
(tb,tf ,tp), which securely

sends a message containing ℓ field elements, by communicating O(nℓ) field elements
over n = 2tb + tf + tp + 1 wires. We also show that the techniques used to design com-
munication optimal PSMT protocol against Astatic

tb
cannot be extended in a straight

forward manner to design communication optimal PSMT protocol against Astatic
(tb,tf ,tp).

So to design our four phase PSMT protocol against Astatic
(tb,tf ,tp), we use certain new

techniques. The result of this chapter is based on [19].
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In Chapter 12, we study PSMT in undirected synchronous network tolerating thresh-
old mobile mixed adversary, denoted by Amobile

(tb,tf ,tp), who corrupts different set of tb, tf
and tp nodes in Byzantine, failstop and passive fashion respectively during different
phases of the protocol. To the best of our knowledge, nothing is known in the lit-
erature regarding possibility and optimality of PSMT in undirected synchronous
network tolerating Amobile

(tb,tf ,tp). In Chapter 12, we completely resolve these issues. The

result of this chapter is based on [19].
In Chapter 13, we study PSMT in directed synchronous network tolerating threshold

static Byzantine adversary Astatic
tb

. PSMT protocols in directed network tolerating
Astatic

tb
are presented in [24, 62, 53]. However, recently in [88], the authors showed none

of these PSMT protocols tolerating Astatic
tb

provide perfect secrecy. This brings forth
the question of designing PSMT protocols in directed networks tolerating Astatic

tb
. We

make inroads in this directions by providing communication optimal PSMT protocols
in directed networks tolerating Astatic

tb
. The result of this chapter is based on [57, 55].

In Chapter 14, we study SSMT in undirected synchronous network tolerating thresh-
old static mixed adversary Astatic

(tb,tf ,tp). The issue of possibility and optimality of

single phase SSMT tolerating Astatic
(tb,tf ,tp) has been resolved in [75]. Moreover, the author

in [75] also resolved the issue of possibility of multi phase SSMT tolerating Astatic
(tb,tf ,tp).

Furthermore, Srinathan [75] also gave the lower bound on the communication complex-
ity of multi phase SSMT tolerating Astatic

(tb,tf ,tp). However, no multi phase communication

optimal SSMT protocol tolerating Astatic
(tb,tf ,tp) was presented. We completely resolve the

issue of optimality of multi phase SSMT tolerating Astatic
(tb,tf ,tp) in Chapter 14. The

contents of Chapter 14 is based on the results that appeared in [59].
In Chapter 15, we discuss about SRMT and SSMT in directed synchronous network

tolerating threshold static Byzantine adversary, denoted by Astatic
tb

. In [24], the authors
have given the necessary and sufficient condition for the existence of any SRMT and
SSMT protocol tolerating Astatic

tb
. However, to the best of our knowledge, nothing is

known in the literature regarding optimality of SRMT and SSMT in directed network
tolerating Astatic

tb
. The main contribution of Chapter 15 is that we present the lower

bound on the communication complexity of SRMT and SSMT in directed network
tolerating Astatic

tb
. Moreover, we show the tightness of the bound by designing com-

munication optimal SRMT and SSMT protocol in directed network tolerating Astatic
tb

.
The contents of this chapter is based on the results that appeared in [61]. The main
reason for presenting the results for SRMT and SSMT together in the same chapter is
that few of the results for SSMT will be used for SRMT. To make the chapter more
readable and self contained, we present these results together in the same chapter.

Chapter 15 marks the end of second part of the thesis. In Chapter 16, we study
PSMT and SSMT in asynchronous network tolerating Astatic

tb
. Unlike synchronous net-

work, PSMT and SSMT has not been studied extensively in asynchronous network. To
the best of our knowledge, the only known PSMT protocol in asynchronous network
tolerating Astatic

tb
is dues to [69]. However, in Chapter 16, we show that the PSMT

protocol of [69] does not provide perfect security. We then give the characterization for
PSMT and SSMT in asynchronous network tolerating Astatic

tb
, thus completely resolving

the issue of possibility. The most interesting fact brought forth by our character-
ization is the following: our characterization shows that asynchrony of the network
demands higher connectivity of the network for the existence of PSMT protocols. On
the other hand, asynchrony of the network does not demand higher connectivity of the
network for SSMT protocols. The contents of Chapter 16 is based on the results that
appeared in [20].
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In the next chapter, we discuss about the definitions used in this thesis. We also
discuss about few black box protocols, which will be used in other chapters.
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Chapter 2

Definition and Preliminaries

In this chapter, we give the definitions which are used throughout this thesis. We discuss
about the properties of Reed-Solomon (RS) codes [45] which will be used extensively
in our protocols.

2.1 Definition of Various Type of Corruptions

We now define the various type of corruptions that can be done by an adversary.

Definition 2.1 (Fail-stop Corruption [31]) A node P is said to be fail-stop cor-
rupted if the adversary can crash P at will at any time during the execution of the
protocol. But as long as P is alive, P will honestly follow the protocol and the adver-
sary will have no access to any internal state of P.

Definition 2.2 (Passive Corruption [31]) A node P is said to be passively cor-
rupted if the adversary has full access to the information available/generated at P and
all internal states of P. However, P will honestly follow the protocol execution.

Definition 2.3 (Byzantine Corruption [31]) A node P is said to be Byzantine cor-
rupted if the adversary fully controls the actions of P. The adversary will have full access
to the computation and communication of P and can force P to deviate from the protocol
in any arbitrary manner.

2.2 Definition of RMT, SMT and Its Variants

Let the message to be transmitted be drawn uniformly and randomly from F. We
define the view of a node Pj, at any point of the execution of a protocol Π to be
the information that Pj can get from its local input to the protocol (if any), all the
messages that Pj had earlier sent or received, the protocol code executed by Pj and
random coins of Pj . Let A be a computationally unbounded adversary, who can corrupt
some of the nodes in the network in a variety of ways 1. The view of A at any point of
the execution of Π is defined as all the information that A can get from the views of
all the nodes corrupted by A (i.e. all the information that these nodes can commonly
compute from their views). For a message mS ∈ F, any adversary A and any protocol
Π, let Γ̂(A,mS,Π) denote the probability distribution on the view of the adversary A
at the end of the execution of Π. We now give the following definitions:

1A can be static or mobile. A may corrupt the nodes in Byzantine or fail-stop or passive or mixed
fashion. Moreover, A may be either threshold or non-threshold.
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Definition 2.4 (Perfectly Reliable Message Transmission (PRMT)) A proto-
col Π is said to facilitate perfectly reliable message transmission (PRMT) between S
and R if for any message mS drawn from F and for every adversary A, the following
condition is satisfied:

1. Perfect Reliability: R should receive mS correctly, without any error.

Definition 2.5 (Perfectly Secure Message Transmission (PSMT)) A protocol Π
is said to facilitate perfectly secure message transmission (PSMT) between S and R if
for any message mS drawn from F and for every adversary A, the following conditions
are satisfied:

1. Perfect Reliability: same as in PRMT.

2. Perfect Secrecy or Perfect Security or Information Theoretic Security: Γ̂(A,mS,Π) =
Γ̂(A, m̂S,Π), for every m̂S 6= mS. That is, the two distributions are identical ir-
respective of the message transmitted.

Any PSMT protocol is also called as (0, 0)-SMT protocol, having zero error in both
reliability as well in security.

Definition 2.6 (Statistically Reliable Message Transmission (SRMT)) A pro-
tocol Π is said to facilitate statistically reliable message transmission (SRMT) between
S and R if for any message mS drawn from F and for every adversary A, the following
condition is satisfied:

1. Statistical Reliability or δ-Reliability: R should receive mS correctly, except with
error probability δ = 2−Ω(κ), where κ is the error parameter.

Definition 2.7 (Statistically Secure Message Transmission (SSMT)) A proto-
col Π is said to facilitate statistically secure message transmission (SSMT) between S
and R if for any message mS drawn from F and for every adversary A, the following
conditions are satisfied:

1. Perfect Secrecy: same as in PSMT.

2. Statistical Reliability: same as in SRMT.

SSMT protocols are also called as (0, δ)-SMT protocols or almost perfectly secure
message transmission protocols.

Unifying all the above definitions, we give the following definition:

Definition 2.8 ((ǫ, δ)-SMT) A protocol Π is said to facilitate (ǫ, δ)-SMT between S
and R if for any message mS drawn from F and for every adversary A, the following
conditions are satisfied:

1. δ-Reliability: same as in SRMT.

2. ǫ-Secrecy: |Γ̂(Astatic
t ,mS,Π)− Γ̂(Astatic

t , m̂S,Π)| = ǫ, for all possible m̂S 6= mS.

Definition 2.9 (Communication Optimal Protocol) Let Π be an r (r ≥ 1) phase
PRMT/PSMT/SRMT/SSMT protocol which sends a message mS containing ℓ (ℓ ≥
1) field elements by communicating O(b) field elements, over a network, tolerating a
given adversary A. If the lower bound on the communication complexity of any r
phase PRMT/PSMT/SRMT/SSMT protocol to send mS over such a network in the
presence of A is Ω(b) field elements, then Π is said to be a communication optimal
PRMT/PSMT/SRMT/SSMT protocol to send mS.
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2.3 Coding Theory Preliminaries

A (tb, tf )-error-erasure correcting code is used to reliably send message over a noisy
channel. Let Ch(tb,tf ) denote a noisy channel, where at most tf and tb locations of a
codeword can be arbitrarily erased and changed respectively during the transmission.
A (tb, tf )-block error-erasure correcting code encoding a message of k field elements to
a codeword of N field elements is an injective mapping C : F

k → F
N (N > k), where F

is the underlying field. The encoding function is used in conjunction with a decoding
function D : F

N → F
k with the property that if its input differs from a valid codeword

in at most tb locations, apart from at most tf erasures, then D outputs the message
corresponding to that codeword. We say that the code corrects tb Byzantine errors
and tf erasures. Clearly, such a decoding function will always exist iff any two valid
codewords differ in at least 2tb + tf + 1 locations [45].
We now define error correction and error detection.

Definition 2.10 (Error Correction and Error Detection [68]) Let C be a code-
word transmitted over Ch(tb,tf ) and let C ′ be the received vector. By a Byzantine error,
we mean the event of changing an entry in codeword C. The error locations are the
indices of the entries in which C and C ′ differs. The task of error correction is to
find the error locations and error values in the received vector C ′. On the other hand,
error detection means an indication by the decoder that errors have occurred, without
attempting to correct them.

We next present Singleton Bound which defines the maximum amount of information
which can be reliably send using a (tb, tf )-block error-erasure correcting code.

Theorem 2.11 (Singleton Bound [45]) Suppose a sender has generated a (tb, tf )-
block error-erasure correcting codeword C of size |C| = N , for a message block M of
size k field elements and sends the codeword C through Ch(tb,tf ). Let C ′ be the received
vector of size N ′, where N ′ ≥ N − tf and let C ′ be different from C in at most tb
locations. Then the receiver can reconstruct the message M from C ′ iff N ≥ 2tb+tf +k.

We now give the definition of a special type of (tb, tf )-block error-erasure correcting
code called Reed-Solomon (RS) codes which we use in our protocols.

Definition 2.12 (Reed-Solomon (RS) Codes [45]) For a message block M = (m1,
. . . ,mk) over F, define ReedSolomon polynomial as PM (x) = m1+m2x+. . .+mkx

k−1.
Let α1, α2, ..., αN denote a sequence of distinct, publicly known and fixed elements from
F, where N > k. Then the vector C = (c1, c2, . . . , cN ) is called the Reed-Solomon
(RS) codeword of length/size N for the message block M , where ci = PM (αi), for
i = 1, . . . , N . We denote the length/size of C by |C|.

Theorem 2.13 ([45]) RS codes satisfy Singleton Bound.

2.3.1 RS Decoding Algorithm

Berlekamp-Welch algorithm is one of the most simple and efficient RS decoding algo-
rithms existing in the literature. The description of this algorithm can be found in any
standard Coding theory book, such as [68, 48, 40]. However, the descriptions of the
algorithm, as given in these sources, are in terms of several field and algebraic opera-
tions, which is specific to coding theory community. Since the main topic of this thesis
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is RMT/SMT, where decoding algorithm is only used as a black-box, in order to avoid
too much digression, we take the simple description of the algorithm from [51].

Suppose sender has a message of size k field elements, which he wants to send
reliably over Ch(tb,tf ) using RS codes. In order to do so, the sender has to encode the
message into an RS codeword of size N = 2tb + tf + k (see Theorem 2.11). So the
sender constructs ReedSolomon polynomial P (x) of degree k − 1 and constructs the
RS codeword C = (c1, . . . , cN ) of length N , where ci = P (αi), for i = 1, . . . , N . Finally,
the sender sends the codeword C to the receiver over Ch(tb,tf ).

We now assume the worst case, where exactly tf locations get erased in the codeword
C during its transmission. Although any subset of tf locations might get erased, we
make a simplifying assumption that the last tf locations have been erased. Thus,
the receiver will receive a shortened vector C ′ = (c′1, . . . , c

′
N ′) of length N ′, where

N ′ = N − tf = 2tb + k. Let R(x) denote the polynomial of smallest degree passing
through the points (α1, c

′
1), . . . , (αN ′ , c′N ′). It is easy to see that R(x) will differ from

P (x) in at most tb values of αj . Notice that the received values R(αj)’s may not lie on
a k − 1 degree polynomial, due to the presence of tb corrupted values. In order to get
the original message, the receiver has to construct the polynomial P (x) from these N ′

values of R(x). The questions is, how the receiver can do so?
Our first observation is that if the receiver can find a polynomial P ′(x) of degree

k− 1 that agrees with R(x) at k + tb points, then P ′(x) = P (x). This is because out of
the k + tb points, at most tb could be corrupted. Therefore, P ′(x) = P (x) for at least k
points. But a polynomial of degree k − 1 is uniquely defined by its values at k points.

Now the question is: how the receiver can find such a polynomial? The receiver
could try to guess where the tb errors occurred, but this would take too much time (in
fact, it would require exponential time). A very clever polynomial-time algorithm for
this problem was invented by Berlekamp and Welch. The main idea is to describe the
received polynomial R(x) (constituted by R(αj) values), which because of the errors
may not be a k − 1 degree polynomial, as a ratio of polynomials. Let e1, . . . , etb be
the tb positions at which errors occurred. Define the error locator polynomial E(x) =
(x− e1)(x− e2) . . . (x− etb). It is easy to see that E(x) is zero at exactly the tb points
at which errors occurred. Now observe that the following relation holds:

P (x)E(x) = R(x)E(x), for x = α1, . . . , αN ′ . (2.1)

The above equation is true for all x points at which no errors occurred, as P (x) = R(x)
at those points. On the other hand, at all x points where error occurred, E(x) = 0. So
both the sides of the above equation will be zero at those points.

Now let Q(x) = P (x)E(x). Then Q(x) is a polynomial of degree tb + k − 1 and
is therefore specied by tb + k coefcients, which are unknown. E(x) is a polynomial
of degree tb and is described by tb + 1 coefcients. Note that the coefcient of xtb in
E(x) is 1. So, there are only tb unknown coefficients of E(x). Thus, there are total
(tb + k) + (tb) = 2tb + k = N ′ unknowns here. Moreover, we have N ′ received values
of R(x). So from Equation 2.1, by equating Q(x) = R(x)E(x), we can form a system
of N ′ linear equations in N ′ unknowns and solve them. Once the system of equations
are solved, we get Q(x) and E(x). From the E(x) polynomial, we get the locations at
which errors occurred. We can then find P (x) by computing the quotient Q(x)/E(x).

If N ′ = k+2tb and if indeed at most tb errors occurred, then the decoding algorithm
will correctly output the message. For a complete proof of this fact, see [48, 68, 40].

We now demonstrate the working of the above algorithm with few examples. In
these examples, for the ease of presentation, we make the following assumptions:
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1. Instead of performing the computations over F, we perform the computations
over the set of whole numbers. However, the same examples will also work if we
perform all the computations over a sufficiently large F.

2. Instead of using α1, . . . , αN from F for computing RS codeword of length N , we
use 1, . . . , N from the set of whole numbers.

Remark 2.14 In all the following examples, we will specify k, the degree of the poly-
nomial used for encoding as a function of tb. This is because in all our PRMT and
PSMT protocols, k will be indeed selected as a function of tb. In fact, each of the fol-
lowing examples represents one of the possible cases, which may arise in the context
of our PRMT and PSMT protocol. During the description of our PRMT and PSMT
protocols, we will show how these examples are related with various such cases.

Example 2.15 Let tb = 1, tf = 0, k = tb + 1 = 2 and N = k + 2tb + tf = 4. Let
m = (1, 2). So the ReedSolomon polynomial is P (x) = 1 + 2x. The RS codeword of
length four will be C = (P (1), . . . , P (4)) = (3, 5, 7, 9) Suppose during the transmission
of the codeword, the third location gets corrupted and the receiver receives the vector
(3, 5, 8, 9). Let R(x) be the minimum degree polynomial passing through the points
(1, 3), (2, 5), (3, 8) and (4, 9). It is easy to see that R(x) is not a polynomial of degree
one. The goal of the decoding algorithm will be to find a polynomial of degree k−1 = 1,
passing through k + tb = 3 of the R(j)’s. It is easy to see that there is exactly one such
polynomial, namely the one passing through the points (1, 3), (2, 5) and (4, 9). Since
tb = 1, the error locator polynomial is

E(x) = (x− e1)

Now Q(x) = P (x)E(x) will be of degree two. So let

Q(x) = Ax2 + Bx + F

For x = 1, . . . , 4, it holds that
Q(x) = R(x)E(x)

The above relation implies that

Ax2 + Bx + F = R(x)(x− e1)

=⇒ Ax2 + Bx + F + e1R(x) = xR(x)

Substituting x = 1, . . . , 4 in the above relation, we get the following system of equations:

A + B + F + 3e1 = 3

4A + 2B + F + 5e1 = 10

9A + 3B + F + 8e1 = 24

16A + 4B + F + 9e1 = 36

Solving the above system of linear equations, we get A = 2, B = −5, F = −3 and e1 = 3.
Thus Q(x) = 2x2− 5x− 3 and E(x) = (x− 3). This implies that error has occurred in
the third location. Finally, the algorithm computes P (x) = Q(x)/E(x) = 1 + 2x. Thus
the recovered message is (1, 2).
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In the above example, the value of N, tb, tf and k satisfies the inequality given in
Theorem 2.11. However, if this is not the case, then anything can happen. We illustrate
all possible cases with few examples. These examples will also illustrate the cases which
will arise, when we use RS encoding and decoding in the context of PRMT/PSMT.
We will then give the formal description of the RS decoding algorithm, along with its
properties.

Example 2.16 Let tb = 2, k = tb + 1 = 3, tf = 0 and N = 2tb + 1 = 5. Let m =
(1, 2, 3). So P (x) = 1+2x+3x2 and the RS codeword of size five is (P (1), . . . , P (5)) =
(6, 17, 34, 57, 86). Suppose during the transmission of codeword, only one error occurs,
instead of tb = 2 errors. Let the error occurs at the first location and let the received
vector be (4, 17, 34, 57, 86).

Although only one error has occurred in the received vector (instead of two), the
receiver has no information about this fact. The receiver will think that at most two
errors are present in the received vector and would try to correct them. However, from
Theorem 2.11, we require N ′ = 7 in order to correct two errors. Furthermore, with
N ′ = 5 and k = 3, the decoding algorithm will correctly output the original message,
only if one error would have occurred in the received vector, which is the case in this
example.

If the receiver applies RS decoding algorithm, assuming the number of errors to be
corrected is one, then the algorithm will proceed as follows: the decoding algorithm will
try to find a polynomial of degree k − 1 = 2, passing through k + 1 = 4 of the received
points. It is easy to see that the only polynomial passing through four of the received
points in this case is the original polynomial P (x). Since the algorithm is assuming the
number of errors to be one, the error locator polynomial will be

E(x) = (x− e1)

Also, Q(x) = P (x)E(x) will be a polynomial of degree three. So let

Q(x) = Ax3 + Bx2 + Cx + D

By substituting x = 1, . . . , 5 in the equation

Q(x) = R(x)E(x),

we get the following system of linear equations:

A + B + C + D + 4e1 = 4

8A + 4B + 2C + D + 17e1 = 34

27A + 9B + 3C + D + 34e1 = 102

64A + 16B + 4C + D + 57e1 = 228

125A + 25B + 5C + D + 86e1 = 430

By solving the above system of equations, we get A = 3, B = −1, C = −1,D = −1 and
e1 = 1. Thus E(x) = (x − 1) and Q(x) = 3x3 − x2 − x − 1, indicating that error has
occurred in the first location. Moreover, P (x) = Q(x)/E(x) = 1 + 2x + 3x2. Thus in
this case, the receiver will correctly recover the message.

In the above example, the receiver could recover the original message only because the
number of actual errors that are present in the received vector is same as the number
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of errors that the receiver guessed and tried to correct. But receiver will not be sure
whether the recovered message is correct. Because the decoding algorithm tried to
correct only one error, where as two errors could be present in the received vector. If
the receiver is sure that exactly one error could be present in the received vector, then
he is certain that the output of the algorithm is correct. However, since he is unsure
about the exact number of errors in the received vector, the receiver cannot take any
guarantee of the output polynomial. In fact, if two errors occur in the transmitted
codeword, then the decoding algorithm could end up outputting an incorrect message,
as illustrated in the next example.

Example 2.17 Suppose in the previous example, exactly tb = 2 errors occur in the
transmitted codeword. Namely, the errors occur in the third and fourth location and
let the received vector be (6, 17, 28, 39, 86). Notice that the errors are introduced in
the codeword in such a way that the two corrupted points, namely (3, 28) and (4, 39),
along with the first two correct points, namely (1, 6) and (2, 17) lie on the polynomial
0x2 + 11x− 5. This is possible because the original polynomial P (x) = 3x2 + 2x + 1 is
of degree two and two polynomials of degree two can have same value at two points.

Now if the receiver assumes that only one error is present in the received vector
and tries to correct it, then the decoding algorithm will proceed as follows: the decoding
algorithm will try to find a polynomial of degree k− 1 = 2, passing through k +1 = 4 of
the received points. In this case, there is only one such polynomial, namely 0x2 +11x−
5, passing through the points (1, 6), (2, 17), (3, 28) and (4, 86) and hence the decoding
algorithm will output this polynomial. Out of the received five points, only three points,
namely (1, 6), (2, 17) and (5, 86) lie on the original polynomial P (x).

Since the decoding algorithm assumes the number of errors to be one, the error
locator polynomial will be (x− e1) and Q(x) = Ax3 +Bx2 +Cx+D. After substituting
x = 1, . . . , 5 in the relation Q(x) = R(x)(x − e1), we get the following system of
equations:

A + B + C + D + 6e1 = 6

8A + 4B + 2C + D + 17e1 = 34

27A + 9B + 3C + D + 28e1 = 84

64A + 16B + 4C + D + 39e1 = 156

125A + 25B + 5C + D + 86e1 = 430

Solving the above system of equations, we get Q(x) = 11x2−60x+25 and E(x) = (x−5).
This will give P (x) = Q(x)/E(x) = 11x − 5. Thus the decoding algorithm outputs an
incorrect polynomial. Moreover, the algorithm has output fifth location as the error
location, even though the fifth location in the received vector represents a correct point
on original polynomial P (x).

In the above algorithm, the decoding algorithm outputs an incorrect message due to the
following reason: the sender sent the codeword (6, 17, 34, 57, 86), corresponding to the
polynomial 3x2+2x+1. From Theorem 2.11, receiver will be able to recover the message
only if one Byzantine error occur during the transmission of the codeword. However,
during the transmission of the codeword, two errors occur instead of one. The received
vector is (6, 17, 28, 39, 86). The errors are introduced in such a way that the received
vector (6, 17, 28, 39, 86) has a distance 2 of one from the codeword (6, 17, 28, 39, 50),

2The distance between two vectors is the number of locations at which the two vectors have different
components.

20



corresponding to the polynomial 0x2 + 11x − 5. Since the decoding algorithm tried
to correct one error, it will work as if the transmitted codeword was (6, 17, 28, 39, 50),
which is received as (6, 17, 28, 39, 86), due to the introduction of error at fifth location.
So it will output fifth location as the error location, even though it is not an error
location. Moreover, the algorithm will output an incorrect message.

The above example illustrates one of the cases, which occurs, when the actual
number of errors in the transmitted codeword is more than the number of errors,
which the RS decoding algorithm can correct (as given by Theorem 2.11). However,
there may be another case. The actual number of errors in the transmitted codeword
could be more than the number of errors, which the RS decoding algorithm can correct
(as given by Theorem 2.11), such that the decoding algorithm fails to output any
meaningful polynomial. If this is the case, then the decoding algorithm can simply
declare that actual number of errors in the received vector is more than the number
of errors that the decoding algorithm tried to correct. This case is illustrated by the
following example:

Example 2.18 Suppose tb = 2, tf = 0, N = 2tb + 1 = 5 and k = tb + 1 = 3. Let
m = (1, 2, 0). So P (x) = 1+2x and the transmitted codeword is (3, 5, 7, 9, 11). Suppose
two errors are arbitrarily introduced in the first two locations and let the received vector
be (1, 2, 7, 9, 11). From Theorem 2.11, the receiver can recover the original message
from the received vector if only one error occurs in the received vector.

If the RS decoding algorithm tries to correct one error in the received vector, then the
algorithm will proceed as follows: the algorithm will try to find a polynomial of degree
two passing through four of the received points. However, in this case, the errors are
introduced in such a way that there exist no polynomial of degree two passing through
four of the received points. So the algorithm will not output any meaningful polynomial.

Since the decoding algorithm assumes the number of errors to be one, the error
locator polynomial will be (x− e1) and Q(x) = Ax3 +Bx2 +Cx+D. After substituting
x = 1, . . . , 5 in the relation Q(x) = R(x)(x − e1), we get the following system of
equations:

A + B + C + D + e1 = 1

2A + 4B + 2C + D + 2e1 = 4

27A + 9B + 3C + D + 7e1 = 21

64A + 16B + 4C + D + 9e1 = 36

125A + 25B + 5C + D + 11e1 = 55

Solving the above system of equations, we get Q(x) = −1
8x3 + 7

2x2 − 79
8 x + 5 and

E(x) = (x − 5
2 ). Thus the decoding algorithm outputs Q(x) and E(x), which are not

meaningful. The error location as pointed out is not an integer. Moreover, Q(x) does
not divide E(x). So the algorithm can declare that more than one error are present in
the received vector.

We now give the summary of the four examples, which illustrates four properties of the
RS decoding algorithm, which will be further used in the context of our PRMT/PSMT
protocols. We will formalize these properties at the end of this section.

1. In Example 2.15, the receiver knows that at most tb errors could be present in
the received vector. Moreover, the value of k,N ′, tb and tf satisfies the inequality
given in Theorem 2.11. Hence the decoding algorithm correctly outputs the
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message by finding the tb errors. Moreover, the receiver is sure that the output
polynomial is correct.

2. In Example 2.16, the receiver knows that at most tb errors could be present in the
received vector. However, only tb

2 errors are introduced in the received vector. By
substituting N ′ = 2tb +1, k = tb +1 and tf = 0 in the inequality of Theorem 2.11,
we find that RS decoding algorithm can correctly output the message only if tb

2
errors are present in the received vector. Since only tb

2 errors are introduced in
the received vector, the RS decoding algorithm when applied to correct tb

2 errors,
correctly outputs the original message. However, receiver has no way of knowing
that the recovered message is correct as he does not know that indeed tb

2 errors
are present in the received vector.

3. In Example 2.17, more than tb
2 errors are introduced in the received vector. How-

ever, from Theorem 2.11, RS decoding algorithm can correctly output the message
only if tb

2 errors are present in the received vector. But the actual number of er-
rors in the received vector is more than what can be corrected. Moreover, the
errors are introduced in such a way that the received vector has a distance of tb

2

from another valid codeword Ĉ (different from the original codeword which was
actually sent by the sender). Since the decoding algorithm is applied to correct tb

2

errors, the algorithm will output incorrect message, corresponding to Ĉ. More-
over, the decoding algorithm outputs at least one correct location in the received
vector as the error location. Furthermore, the receiver has no way of knowing
that the recovered message is incorrect.

4. In Example 2.18, more than tb
2 errors are introduced in the received vector. From

Theorem 2.11, RS decoding algorithm can correctly output the message only if
tb
2 errors are present in the received vector. But the actual number of errors in
the received vector is more than what can be corrected. However, the errors are
introduced in such a way that the received vector has a distance of more than
tb
2 from all possible valid codewords. Since the decoding algorithm is applied
to correct tb

2 errors, it fails to output any meaningful polynomial. In this case,
the receiver simply declares that more than tb

2 errors are present in the received
vector.

In all the previous examples, we have only considered the error correcting capability of
RS codes as given by Theorem 2.11. However, we can use RS codes to either correct
errors or detect errors or simultaneously do the both. The following theorem gives the
number of errors which can be corrected and detected by RS codes.

Theorem 2.19 ([45, 24]) Let C be an RS codeword of length N , corresponding to a
message of size k field elements and let C be transmitted over Ch(tb,tf ). Let C ′ be the
received vector of size N ′, where N ′ ≥ (N − tf ). Then RS decoding can correct upto c
Byzantine errors in C ′ and simultaneously detect additional d Byzantine errors in C ′

iff N ′ − k ≥ 2c + d, such that (c + d) ≤ tb.

Notice that Theorem 2.11 is a special case of Theorem 2.19 because we obtain the
former by substituting d = 0 and c = tb in the later. Theorem 2.19 states that if we
use RS decoding algorithm only for correcting errors (i.e., d = 0), then it can correct

at most (N ′−k)
2 errors. Thus if at most (N ′−k)

2 errors are present in the received vector,
then the decoding algorithm will correctly find them and recovers the original message.

On the other hand, if we use RS decoding algorithm only for detecting errors (i.e.,
c = 0), then it can detect at most (N ′ − k) errors. Thus if at most (N ′ − k) errors
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are present in the received vector, then the decoding algorithm will sense it and will
output an error, indicating that at most (N ′ − k) errors are present in the received
vector. However, unlike error correction, error detection will not output the locations
at which errors are present.

If RS decoding algorithm is used with non-zero values of c and d (provided they
satisfy the inequalities given in Theorem 2.19), then the algorithm can simultaneously
correct and detect errors. In this case, the algorithm will first try to correct c errors.
If the number of errors that are present in the received vector is indeed c, then the
algorithm will correct all of them. Moreover, the algorithm will not detect any addi-
tional error and will correctly output the message. On the other hand, if more than c
errors but at most (c + d) errors are present in the received vector, then the algorithm
will detect the additional d errors (other than the c errors, which it tried to correct)
and will output an error, indicating that more than c errors are present in the received
vector. We illustrate the case of simultaneous correction and detection using RS decod-
ing, with the help of following example. This example also illustrate the cases, which
will arise in the context of our PRMT/PSMT protocols, when we use RS decoding for
simultaneous error detection and correction.

Example 2.20 Let tb = 2, tf = 0, N = 2tb + 1 = 5, k = tb
2 + 1 = 2, c = tb

2 = 1 and
d = tb

2 = 1. Let m = (1, 2). So P (x) = 1 + 2x and the transmitted RS codeword is
C = (3, 5, 7, 9, 11). Since tf = 0, N ′ = N = 5. Substituting the value of N ′,K, c and
d in the inequality of Theorem 2.19, we find that RS decoding algorithm will be able to
correct one error and detect one additional error in the received vector.

Suppose exactly one error occurs in the received vector, say in the first location. The
RS decoding algorithm, when applied to correct c = 1 error, will correctly identify the
error. This is because the algorithm will try to find a polynomial of degree k − 1 = 1,
passing through k + c = k + tb

2 = 3 of the received points. In this case, there is only
one polynomial of degree one, passing through three of the received points, namely the
original polynomial P (x). So the algorithm will correctly output the polynomial P (x).
Moreover, the receiver will be sure that the output polynomial is correct because in this
case, (c + d) = tb and the maximum number of errors that could be present in the
received vector is also tb. Since the algorithm has not detected any additional error
(other than c errors), it implies that the output polynomial is indeed correct.

On the other hand, suppose that more than c = tb
2 = 1 errors are present in the

received vector; i.e., suppose two errors are present in the received vector. More-
over, the errors are introduced in the first two locations and let the received vector
be (5, 6, 7, 9, 11). Notice that here the errors are introduced in such a way that first
tb + (k − 1) = 3 points in the vector, namely (1, 5), (2, 6) and (3, 7) lie on polynomial
x + 4. On the other hand, the last N ′− tb = 3 points in the vector, namely (3, 7), (4, 9)
and (5, 11) lie on polynomial 2x + 1. If we apply the RS decoding algorithm to correct
c = 1 error, then the decoding algorithm will try to find a unique polynomial of degree
k − 1 = 1, passing through k + c = k + tb

2 = 3 of the received points. In this case,
there are two polynomials of degree one, passing through three of the received points.
So the decoding algorithm will output an error. More specifically, E(x) = (x − e1)
and Q(x) = P (x)E(x) = Ax2 + Bx + F . By substituting x = 1, . . . , 5 in the relation
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Q(x) = R(x)E(x), we get the following system of linear equations:

A + B + F + 5e1 = 5

4A + 2B + 1F + 6e1 = 12

9A + 3B + 1F + 7e1 = 21

16A + 4B + 1F + 9e1 = 36

25A + 5B + 1F + 11e1 = 55

However, the above system of equations does not have any solution and hence the algo-
rithm will not output any polynomial. This will indicate to the the receiver that more
than c errors are presented in the received vector, which are detected by the algorithm.

In the above example, we have considered the case, when c + d = tb. If c + d < tb,
then again anything can happen. For example, the errors could be introduced in such
a way that the received vector could have a distance of c from another valid codeword
(other than the one sent by the sender, as in Example 2.17). In this case, the algorithm
will output the incorrect polynomial corresponding to the other codeword. Moreover,
the receiver will have no way of knowing that the output polynomial is incorrect, as
(c + d) < tb. On the other hand, the errors could be introduced in such a way that the
received vector has a distance of more than c from all valid codewords (as in Example
2.18). In this case, the algorithm will fail to output any polynomial, indicating to the
receiver that more than c errors are present in the received vector.

We now give the formal description of RS decoding algorithm. In the algorithm,
all the computations are performed over F. The algorithm takes the following inputs:

1. A vector C ′ of length N ′, received over Ch(tb,tf ). Let i1, . . . , iN ′ ∈ {1, . . . , N}
denote the indices of the components of the received vector. This implies that the
components of the received vector at the remaining indices in the set {1, . . . , N}−
{i1, . . . , iN ′} are erased. Here N is the length of the original RS codeword and
N ′ ≥ (N−tf ). We denote the values in the received vector as R(αi1), . . . , R(αiN′ ).

2. Parameter k, where k − 1 is the degree of the original polynomial P (x), used for
encoding the message.

3. Parameters c ≥ 0 and d ≥ 0, subject to the condition that N ′ − k ≥ 2c + d and
(c + d) ≤ tb. Here c is the number of errors that the algorithm tries to correct
and d is the number of additional errors that the algorithm tries to detect.

The algorithm is formally given in Fig. 2.1.

Definition 2.21 (Good/Bad Error List) We call an error list generated by RS-DEC

algorithm as “good” if each of the values in the error list, pointed as a corrupted value,
is indeed corrupted. Otherwise we call the error list as “bad”. When an error list is
“bad”, it points a correct value in C ′ as corrupted.

We now state few important properties of RS decoding, which will be used in the context
of our PRMT/PSMT protocols. We have already illustrated all these properties with
examples and hence we will not give formal proof of these properties. For a complete
formal proof, we refer [40, 68]. In all these properties, we assume that t′b ≤ tb is the
actual number of errors that are present in the received vector. The receiver has no
information about t′b, except that t′b ≤ tb.
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Figure 2.1: Protocol for RS Decoding

Algorithm RS-DEC(N ′, C ′, c, d, k)

Goal: To Find a Polynomial of Degree k−1 Passing Through k+c Received
R(αj)’s

1. Let the error locator polynomial be E(x) = (x−e1) . . . (x−ec). The coefficient
of xc in E(x) will be one.

2. Let Q(x) = P (x)E(x) = ac+k−1x
c+k−1 + ac+k−2x

c+k−2 + . . . + a0 be the
polynomial of degree c + k − 1.

3. Form a system of N ′ equations, involving 2c + k ≤ N ′ unknowns
e1, . . . , ec, ac+k−1, . . . , a0, by substituting x = αi1 , . . . , αiN′ in the relation
Q(x) = R(x)E(x).

4. Solve the above system of equations. Now there are the following cases:

(a) If the above system of equations fails to give any solution, then output
an error. In this case, the receiver concludes that more than c errors are
present in the received vector.

(b) If the above system of equations gives a solution, such that the value of
at least one of the unknowns e1, . . . , ec, ac+k−1, . . . , a0 is outside the field
F, then output an error. In this case, the receiver concludes that more
than c errors are present in the received vector.

(c) If the above system of equations gives a solution, such that value of at
least two distinct unknowns in the set {e1, . . . , ec} are same, then output
an error. In this case, the receiver concludes that more than c errors are
present in the received vector.

(d) If the above system of equations gives a solution, such that value of all the
2c+k unknowns are from the field F and each of unknowns in {e1, . . . , ec}
have distinct values, then do the following:

i. Compute P (x) = Q(x)/E(x). Let P (x) = b0 + b1x + . . . + bk−1x
k−1.

ii. Output (b0, . . . , bk−1) as the message. In addition, output an error
list, denoted by Error List. The Error List indicates the values
which are identified to be corrupted in C ′. The Error List will
contain c pairs. For j = 1, . . . , c, the jth entry of Error List is of
the form (ej , C

′
iej

), where C ′
iej

denotes the ithej
entry in C ′.

Property 2.22 If c+d = tb and t′b ≤ c, then the algorithm will correct all these errors
and will detect no additional errors. So the algorithm will output P (x), which is the
original/correct k − 1 degree polynomial and Error List, which is a ”good” error list
(of cardinality at most c). Moreover, the receiver is certain that the output polynomial
P (x) is correct and the error list Error List is ”good”. This property is illustrated in
Example 2.20.

Property 2.23 If c + d = tb and t′b > c, then the algorithm will fail to output any
message, thus indicating to the receiver that more than c errors are present in the
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received vector. This is because even though the actual number of errors t′b is more than
c (which is the number of errors which the algorithm tried to correct), the algorithm has
the capability to detect (tb− c) ≥ (t′b− c) additional errors. However, the algorithm can
only detect the additional errors, but will not be able to correct them. So the algorithm
will not output any message. In this case, the receiver concludes that more than c errors
are present in C ′. This property is illustrated in Example 2.20.

Property 2.24 If c + d < tb and t′b ≤ c, then the algorithm will correct all the t′b
errors and will correctly output P (x). Moreover, Error List will be a ”good” error list
(of cardinality at most c). However, receiver will not be sure/certain that the output
polynomial P (x) is correct and the error list Error List is ”good”. This is because the
extra detection capability of the algorithm in this case is less than tb − c and the value
of t′b is unknown to the receiver. This property is illustrated in Example 2.16.

Property 2.25 If c + d < tb and t′b > c, such that the received vector has a distance
of c from another valid codeword (different from the one, which was originally sent by
the sender), then the algorithm will output the incorrect P ′(x) 6= P (x), corresponding
to the other codeword. Moreover, the Error List will be ”bad” of cardinality at most
c. Furthermore, receiver will not be sure/certain that the output polynomial P ′(x) is
correct and the error list Error List is ”bad”. This is because the extra detection
capability of the algorithm in this case is less than tb− c and the value of t′b is unknown
to the receiver. This property is illustrated in Example 2.17.

Property 2.26 If c + d < tb and t′b > c, such that the received vector has a distance
of more than c from all valid codewords, then the algorithm will output error. In this
case, the receiver is certain that more than c errors are present in the received vector.
This property is illustrated in Example 2.18.

In the next chapter, we discuss about PRMT in undirected synchronous network,
tolerating threshold static Byzantine adversary.
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Part I

Results for PRMT and SRMT in
Synchronous Network
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Chapter 3

PRMT in Undirected Networks
Tolerating Static Byzantine
Adversary

In this chapter, we study PRMT 1 in undirected synchronous network, tolerating thresh-
old static Byzantine adversary. We first give the formal specification of the network
model and adversary settings used in this chapter. We then give the existing results
and motivation of our work. We then present our result.

3.1 Underlying Network Model and Adversary Settings

In this chapter, we consider the following settings: We assume that the underlying
network is a connected synchronous network, represented by an undirected graph, where
S and R are two non-adjacent nodes of the graph. All the edges in the network are
reliable and secure but the nodes can be corrupted. We assume that there exists a
threshold static adversary, denoted by Astatic

tb
, who has unbounded computing power

and who controls at most tb nodes (excluding S and R) in Byzantine fashion.
Following the approach of Dolev et al. [28], we abstract away the network and

assume that S and R are connected by n parallel and synchronous bi-directional node
disjoint paths/channels w1, w2, . . . , wn, also called as wires. The reason for such an
abstraction is as follows: suppose some intermediate node between S and R is un-
der the control of the adversary. Then all the paths between S and R which passes
through that node are also compromised. Hence, all the paths between S and R pass-
ing through that node can be modelled by a single wire between S and R and we can
declare that the wire is corrupted. In the worst case, the adversary can compromise
an entire wire in Byzantine fashion by controlling a single node on the wire. Hence
Astatic

tb
, having unbounded computing power can corrupt up to tb wires in Byzantine

fashion. A Byzantine corrupted wire may deliver correct information or it may deliver
incorrect/changed information. However, in any case, the adversary will completely
know the actual information that was sent through a Byzantine corrupted wire. An
example of wire abstraction of the network is given in Fig. 3.1.

The set of wires whichAstatic
tb

controls is decided before the execution of the protocol.
Before the execution of the protocol, neither S nor R knows in advance which wires
are going to be influenced by Astatic

tb
. However, the total number of wires that can be

1Recall that in PRMT we require only reliability. So adversary may obtain any information related
to the message.
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Figure 3.1: Wire Abstraction of a Network.

under the control of Astatic
tb

throughout the protocol is bounded by threshold tb. Also
once a wire is under the control of Astatic

tb
, it will remain so throughout that particular

execution of the protocol.
We use mS to denote the message that S wants to send to R, where mS is a sequence

of ℓ field elements, where ℓ ≥ 1, selected uniformly from a finite field F. Moreover,
we assume that all computations and communication in our protocols are done over F.
The only restriction on F is that |F| > n. We use |mS| to denote the number of field
elements in mS. We say that a wire is corrupted, if the information sent over the
wire is changed. A wire which is not under the control of the adversary is said to be
honest.

In our protocol, we assume the following: if S (R) is expecting some information in
a specific form along a wire and if no/syntactically incorrect information comes, then
S (R) assumes some pre-defined value and carry on the computation. Thus we do not
consider the case when no information or syntactically incorrect information is received
along a wire.

Definition 3.1 (Broadcast) If some information is sent over all the wires then it is
said to be “broadcast”. If x is “broadcast” over at least 2tb + 1 wires, then at most tb
wires may deliver incorrect x. But at least tb+1 wires will deliver correct x. So receiver
will be able to correctly recover x by taking majority among the received values.

We now summarize the existing literature and our result for PRMT in undirected
synchronous network tolerating Astatic

tb
.

3.2 Known Results

PRMT problem was first introduced by Dolev et al. [28], who gave the following
characterization:

Theorem 3.2 ([28]) Let S and R be connected by n wires. Then for any r (r ≥ 1),
an r-phase PRMT protocol tolerating Astatic

tb
is possible iff n ≥ 2tb + 1.

The lower bound on the communication complexity of PRMT protocol tolerating Astatic
tb

is derived in [77] and in [81]. We now state these lower bounds.
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Theorem 3.3 ([77, 81]) Let S and R be connected by n ≥ 2tb +1 wires and let r ≤ 2.

Then any r-phase PRMT protocol tolerating Astatic
tb

must communicate Ω
(

nℓ
n−2tb

)
field

elements to reliably send a message containing ℓ field elements.

Theorem 3.4 ([81]) Let S and R be connected by n ≥ 2tb + 1 wires and let r ≥ 3.

Then any r-phase PRMT protocol tolerating Astatic
tb

must communicate Ω
(

nℓ
n−tb

)
field

elements to reliably send a message containing ℓ field elements.

The lower bound given in Theorem 3.3 is tight. Specifically, let S and R be con-
nected by n = 2tb + 1 wires, which is the minimum number of wires required for any
PRMT protocol against Astatic

tb
. Then S can reliably send a message mS containing ℓ

field elements by simply broadcasting it. This will take one phase and will require a

communication complexity of O
(

nℓ
n−2tb

)
= O(nℓ) field elements.

If n = 2tb+1, then n = Θ(tb) and hence from Theorem 3.4, any three or more phase

PRMT must communicate Ω
(

nℓ
n−tb

)
= Ω(ℓ) field elements to reliably send a message

containing ℓ field elements. Moreover, in [49], the authors have shown that this bound
is asymptotically tight. Specifically, the authors have shown the following:

Theorem 3.5 ([49]) Let S and R be connected by n = 2tb+1 wires. Then there exists
an O(log tb) phase PRMT protocol tolerating Astatic

tb
, which reliably sends a message

containing ℓ = Θ(n log2 n) field elements by communicating O(ℓ) field elements.

Though the protocol given in [49] is communication optimal, it requires too many
phases. This motivates us to design a communication optimal PRMT protocol tolerat-
ing Astatic

tb
with less number of phases.

3.2.1 Our Contribution

We significantly improve the phase complexity of the PRMT protocol of [49]. Specifi-
cally, we design a three phase PRMT protocol called 3-Optimal-PRMT-Static-Byzantine
with n = 2tb + 1 wires, which reliably sends a message containing ℓ = Θ(n2) field ele-
ments by communicating O(n2) field elements. Thus, we get reliability with constant
factor overhead and that too in constant phases. From Theorem 3.4, our protocol is
phase optimal. Moreover, from Theorem 3.3, our protocol requires minimum connec-
tivity. It should be noted that our protocol achieves optimality only if ℓ = Θ(n2), while
the protocol of [49] achieves it for ℓ = Θ(n log2 n).

3.3 Protocols

Before presenting protocol 3-Optimal-PRMT-Static-Byzantine, we present few sub-protocols,
which will be used as black-box in protocol 3-Optimal-PRMT-Static-Byzantine. We first
present a single phase PRMT protocol called 1-PRMT-Byzantine, which is based on the
properties of RS codes. The protocol will also be used in other subsequent chapters.

3.3.1 Single Phase PRMT Tolerating Astatic
tb

Let S and R be connected by N ≥ 2tb + 1 wires, w1, . . . , wN , of which at most tb wires
can be under the control of Astatic

tb
. We design a single phase PRMT protocol called

1-PRMT-Byzantine, which allows S to reliably send a message mS containing ℓ ≥ 1 field
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Figure 3.2: Single Phase Reliable Message Transmission Tolerating Astatic
tb

Protocol 1-PRMT-Byzantine(mS, ℓ,N, tb, k = N − 2tb)

Phase I: S to R: S does the following computation and communication:

1. S breaks up mS into blocks BS
1 , . . . ,BS

ℓ/k, each consisting of k field elements,
where k = N −2tb. If ℓ is not an exact multiple of k, a default padding is used
to make ℓ mod k = 0.

2. For j = 1, . . . , ℓ/k, S computes RS codeword CS
j = (cSj1, . . . , c

S
jN ) of length,

N , corresponding to block BS
j .

3. For i = 1, . . . , N , S sends cSji along wire wi, for j = 1, . . . , ℓ/k.

Message Recovery by R:

1. For j = 1, . . . , ℓ/k, let R receive the vector CR
j = (cRj1, . . . , c

R
jN ).

2. For j = 1, . . . , ℓ/k, R executes RS-DEC(N,CR
j , tb, 0, k) and recovers BR

j . R

then concatenates all BR
j ’s to recover the message mR.

elements to R. The protocol is based on the properties of RS codes and is presented in
Fig. 3.2.
We now prove the properties of protocol 1-PRMT-Byzantine.

Lemma 3.6 (Correctness) Protocol 1-PRMT-Byzantine correctly delivers mS.

Proof: In order to show that R will correctly receive mS, we show that R will recover
each BS

j correctly. In the protocol, each BS
j is of size k = N − 2tb and is RS encoded

into a codeword of length N , where N ≥ 2tb +1. Corresponding to each BS
j , R receives

a vector CR
j of size N and this vector differs from the original codeword CS

j in at most
tb locations. So by putting N ′ = N ≥ 2tb + 1, k = N − 2tb, c = tb and d = 0 in the
inequality of Theorem 2.19, we find that R will be able to correct all the tb errors in
CR

j by applying RS-DEC to CR
j . Thus R correctly recovers BS

j . 2

Lemma 3.7 (Communication Complexity) The communication complexity of pro-

tocol 1-PRMT-Byzantine is O
(

Nℓ
N−2tb

)
.

Proof: Corresponding to each block of size k, S sends an RS codeword of length N .

So communication complexity of the protocol is O
(

Nℓ
k

)
= O

(
Nℓ

N−2tb

)
. 2

3.3.2 Increasing the Throughput of Protocol 1-PRMT-Byzantine

Protocol 1-PRMT-Byzantine has another important property. Consider the following
scenario: Let S knows that R has the knowledge of the exact identity of α ≤ tb wires
that are Byzantine corrupted. However S does not know the exact identity of those α
wires. If this is the case, then the following theorem holds:
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Theorem 3.8 (Increased Throughput in 1-PRMT-Byzantine) Suppose S knows
that R has the knowledge of the exact identity of α ≤ tb wires that are Byzantine
corrupted. Then in protocol 1-PRMT-Byzantine, S can reliably send mS using block
size k = (N − 2tb) + α. That is, S can send α field elements, in addition to what is
allowed by Singleton bound. Moreover, the communication complexity of the protocol

will be O
(

Nℓ
(N−2tb)+α

)

Proof: Since R is aware of the exact identity of α Byzantine corrupted wires, R can
simply ignore the values received over these wires. So the length of each received
vector CR

j will be N ′, where N ′ = N − α. Moreover CR
j will now differ from the

original codeword CS
j in at most tb − α locations. So by putting N ′ = N − α, k =

(N − 2tb) + α, c = tb − α and d = 0 in the inequality of Theorem 2.19, we find that
by applying RS-DEC to CR

j , R will be able to correct all the tb − α errors in CR
j and

hence correctly recover BR
j .

Since k = (N − 2tb) + α, the communication complexity of the protocol will be

O
(

Nℓ
(N−2tb)+α

)
. 2

3.3.3 Reliably Communicating a Set of Conflicts

Consider the following scenario: S selects at random n = 2tb + 1 polynomials each of
degree tb, denoted by pS

i (x), where 1 ≤ i ≤ n. Next through wire wi, S sends to R the
following:

1. Polynomial pS
i (x) 2 and

2. For j = 1, . . . , n, the value rS
ji = pS

j (i).

Assume that R receives the following over wire wi:

1. Polynomial pR
i (x);

2. The values rR
ji , for j = 1, . . . , n.

Now R tries to find as many faults as he can find that occurred in the previous
phase and communicate all his findings reliably back to S. Towards this, R first con-
structs what is known as conflict graph H = (W, E), where W = {w1, w2, . . . , wn} and
(wi, wj) ∈ E if rR

ij 6= pR
i (j) or rR

ji 6= pR
j (i). Corresponding to each edge (wi, wj) ∈ E, R

adds a six tuple (wi, wj , r
R
ij , pR

i (j), rR
ji , p

R
j (i)) to a list Fault. A naive and straightfor-

ward way of reliably sending Fault to S is to broadcast Fault over all the n wires. In
the worst case there can be O(n2) edges in the conflict graph and hence O(n2) tuples
in the list Fault. So broadcasting Fault will require a communication complexity of
O(n3) field elements.

An interesting question here is can R reliably send Fault to S tolerating Astatic
tb

,
with a communication complexity less than O(n3) ? The answer is yes and that is what
is done in [77], where the authors have given a method to reliably communicate Fault
with a complexity of O(n2). We call this method as Matching technique, which we use
as a black box in protocol 3-Optimal-PRMT-Static-Byzantine. The method is formally
explained in Fig. 3.3.

The following lemma and theorems taken from [77] show that by doing the compu-
tation and communication given in Fig. 3.3, R will be able to reliably send the list of
O(n2) conflictions by communicating O(n2) field elements.

2We assume that the polynomial is sent by sending its tb + 1 coefficients.
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Figure 3.3: Reliably Sending a List of Confliction Tolerating Astatic
tb

Matching Technique

Computation and Communication by R:

1. R initializes his fault-list, denoted by LR
fault, to ∅. R then constructs an undi-

rected graph H = (W, E) whereW = {w1, . . . , wn} and the edge (wi, wj) ∈ E
if rR

ij 6= pR
i (j) or rR

ji 6= pR
j (i).

2. If the degree of node wi in the graph H constructed above is greater than tb
then R adds wi to LR

fault.

3. Let H ′ = (W ′, E′) be the induced subgraph of H on the vertex set W ′ =
(W \ LR

fault). Next, R finds a maximal matching a M ⊆ E′ of graph H ′.

4. For each edge (wi, wj) in H that does not belong to M , R associates the
six-tuple {wi, wj , r

R
ij , rR

ji , p
R
j (i), pR

i (j)}. Let {a1, a2, . . . , aN} be the edges in H
that are not in M . Replacing each of these edges with its associated six-tuple,
R gets a set of 6N field elements, denoted by X = {X1,X2, . . . ,X6N}.

5. R then broadcasts the following to S

(a) The set LR
fault;

(b) For each edge (wi, wj) ∈M , the six tuple (wi, wj , r
R
ij , rR

ji , p
R
i (j), pR

j (i)).

6. Finally R reliably sends the list X to S by executing 1-PRMT-
Byzantine(X, |X|, n, tb, |M | + |L

R
fault|) with increased throughput (see sec-

tion 3.3.2).

a A subset M of the edges of H, is called a matching in H if no two edges in M are
adjacent. A matching M is called maximal if it is not a proper subset of any other
matching in the graph.

Theorem 3.9 ([77]) Given an undirected graph H = (V,E), with a maximum degree
∆ and a maximal matching M , the number of edges |E| is less than or equal to (2|M |2+
|M |∆).

Lemma 3.10 ([77]) S is guaranteed to receive the set X correctly in Matching Tech-

nique.

Proof: First notice that if (wi, wj) ∈ H, then either wi or wj or both are corrupted.
This is because an honest wire will never conflict another honest wire. Similarly, if
a node wi in H has degree more than tb then it implies that wi is corrupted. This
is because an honest wire may conflict at most tb corrupted wires. This implies that
all the wires listed in LR

fault are indeed corrupted. Since R broadcasts LR
fault and M ,

S will correctly receive them and hence will identify at least |LR
fault| + |M | corrupted

wires. So from Theorem 3.8, by substituting N = 2tb + 1 and α = |LR
fault| + |M |, we

find that S will be able to reliably receive X at the end of 1-PRMT-Byzantine. 2

Theorem 3.11 ([77]) The overall communication complexity done by R in Matching

Technique is O(n2).
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Proof: First notice that |M | = O(tb). This is because there are at most tb corrupted
wires and no two honest wires conflict each other. Similarly, |LR

fault| = O(tb). This is

because each wire in LR
fault is indeed corrupted. Also notice that the maximum degree

of any vertex in the conflict graph H is tb. Hence from Theorem 3.9 we find that the
maximum number of edges in conflict graph H will be O(t2b) = O(n2). This further
implies that |X| = O(n2). So from Theorem 3.8, the communication complexity of
sending X by executing 1-PRMT-Byzantine with block size of α = |LR

fault| + |M | is

O(n2). 2

Thus, the entire conflict graph is sent in two parts; first a matching M and list LR
fault is

broadcast, which requires a communication complexity of O(n2). Then the rest of the
edges of the conflict graph are sent by communicating O(n2) field elements by using
1-PRMT-Byzantine with increased throughput.

We are now ready to present our three phase communication optimal PRMT pro-
tocol 3-Optimal-PRMT-Static-Byzantine, which we do in the next section.

3.3.4 Protocol 3-Optimal-PRMT-Static-Byzantine

We now give the formal description of protocol 3-Optimal-PRMT-Static-Byzantine. Let
S and R be connected by n = 2tb + 1 wires, of which at most tb wires are under
the control of Astatic

tb
. The high level idea of the protocol is as follows: let mS be the

message containing (tb+1)2 = Θ(n2) field elements. We denote mS by mS = {mS
ij : i =

0, . . . , tb and j = 0, . . . , tb}. During first phase, S constructs a bi-variate polynomial
FS(x, y) of degree tb in x and y, such that the elements of mS constitutes the coefficients
of FS(x, y). From FS(x, y), S obtains n univariate polynomials pS

1 (x), . . . , pS
n(x), where

pS
i (x) = FS(x, i). Then S sends to R over wire wi the polynomial pS

i (x) and the value
of every polynomial pS

j (x) at x = i. On receiving the values from S, the receiver R
construct the conflict graph and reliably sends the conflict graph during second phase
using Matching Technique. S reliably receives the conflict graph and after doing local
comparison, identifies all corrupted wires which delivered incorrect polynomials to R
during first phase. Notice that there can be at most tb such corrupted wires. S then
broadcasts the identity of those corrupted wires to R during third phase. R on receiving
the identity of those wires, ignores the polynomials received over those wires during
the first phase. R will be then left with at least tb + 1 correct univariate polynomials
pS

i (x)’s, using which R recovers FS(x, y) and hence the message mS. The protocol is
formally presented in Fig. 3.4.

We now prove the properties of protocol 3-Optimal-PRMT-Static-Byzantine.

Claim 3.12 In protocol 3-Optimal-PRMT-Static-Byzantine, if wi delivers pR
i (x) 6= pS

i (x)
during Phase I, then S will detect this at the end of Phase II and will include wi

in LS
fault. Thus, identities of all the wires which delivered incorrect polynomial during

Phase I will be known to S at the end of Phase II.

Proof: Suppose wi is corrupted and delivers pR
i (x) 6= pS

i (x) during Phase I. In the
worst case, these two polynomials can intersect at most at tb points, since both are
of degree tb. Since there are at least n − tb = tb + 1 honest wires and it may happen
that pR

i (x) = pS
i (x) at most at tb j’s corresponding to tb honest wires, it implies that

there exists at least one honest wire, say wj , such that pR
i (j) 6= pS

i (j). Thus wi and wj

will conflict each other and so the edge (wi, wj) will be present in the conflict graph
H. Now by the property of Matching Technique, corresponding to the edge (wi, wj)
in H, S will reliably receive the six tuple (wi, wj , r

R
ij , pR

i (j), rR
ji , p

R
j (i)). So after doing
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Figure 3.4: Three Phase Communication Optimal PRMT Tolerating Astatic
tb

Protocol 3-Optimal-PRMT-Static-Byzantine (mS = {mS

ij : i = 0, . . . , tb and j = 0, . . . , tb})

Phase I: S to R

1. S constructs a bivariate polynomial FS(x, y) of degree tb in x and y where FS(x, y) =
Pi=tb

i=0

Pj=tb
j=0 mS

ijx
iyj .

2. For i = 1, . . . , n, S constructs univariate polynomial pS

i (x) = FS(x, i).

3. S sends the following to R over wire wi, for i = 1, . . . , n:

(a) Polynomial pS

i (x);

(b) Value rS

ji = pS

j (i), for j = 1, . . . , n.

Phase II: R to S

1. Let R receive the following over wire wi, for i = 1, . . . , n:

(a) Polynomial pR

i (x);

(b) Value rR

ji , for j = 1, . . . , n.

2. R constructs the conflict graph H and reliably sends it to S using Matching Technique.

Phase III: S to R

1. S reliably receives the conflict graph H . Thus corresponding to each edge (wi, wj) in H , S
reliably receives the six-tuple (wi, wj , r

R

ij , p
R

i (j), rR

ji, p
R

j (i)).

2. S initializes LS

fault = LR

fault
a. Then for every received six-tuple (wi, wj , r

R

ij , p
R

i (j), rR

ji , p
R

j (i)),
S does the following computation:

(a) S checks rR

ij
?
= rS

ij or pR

i (j)
?
= pS

i (j). If the first test fails then S concludes that wj is
corrupted and adds wj to LS

fault. On the other hand if the second test fails then S
concludes that wi is corrupted and adds wi to LS

fault.

(b) S checks rR

ji
?
= rS

ji or pR

j (i)
?
= pS

j (i). If the first test fails then S concludes that wi is
corrupted and adds wi to LS

fault. On the other hand if the second test fails then S
concludes that wj is corrupted and adds wj to LS

fault.

3. S broadcasts LS

fault to R and terminates the protocol.

Message Recovery by R

1. R correctly receives LS

fault and identifies all corrupted wi’s which delivered incorrect pS

i (x)’s
during Phase I.

2. R neglects the polynomials received over the wires in LS

fault during Phase I.

3. Using the remaining polynomials, R reconstructs FS(x, y) and hence the message mS and
terminates the protocol.

a Recall that during Matching Technique, S receives LR
fault from R.

local computation, S will find that pR
i (j) 6= pS

i (j) and hence will conclude that wi has
delivered pR

i (x) 6= pS
i (x). Thus S will include wi in LS

fault. 2

Lemma 3.13 (Correctness) In protocol 3-Optimal-PRMT-Static-Byzantine, R will be
able to correctly recover mS at the end of Phase III.

Proof: From Claim 3.12, at the end of Phase II, S will identify all corrupted wi

who has delivered incorrect pR
i (x) 6= pS

i (x) to R during Phase I and will include such
wi’s in LS

fault. Since S broadcasts LS
fault during Phase III, R will also come to know

the identity of such wi’s at the end of Phase III and hence will neglect them. Now
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notice that there can be at most tb such corrupted wi’s. Hence at the end of Phase
III, R will come to know about all the pS

i (x)’s (at least tb + 1) which he has received
correctly during Phase I. Now it is easy to see that using those pS

i (x)’s, R will be able
to correctly reconstruct FS(x, y). This is because FS(x, y) is a bivariate polynomial
of degree tb in x and y and hence it can be reconstructed using tb + 1 correct pS

i (x)’s.
Since all corrupted pR

i (x)’s will be eliminated by R, all polynomials pR
i (x), where

wi ∈ {w1, . . . , wn} \ LS
fault are correct. R can use any tb + 1 of these polynomials to

reconstruct FS(x, y). Once FS(x, y) is reconstructed, R will get mS, as the coefficients
of FS(x, y) are the elements of mS. 2

Lemma 3.14 (Communication Complexity) The total communication complexity
of protocol 3-Optimal-PRMT-Static-Byzantine is O(n2).

Proof: During Phase I, S sends a polynomial of degree tb and n values over each wire.
This will incur a communication complexity of O(n2). During Phase II, R reliably
sends the conflict graph using Matching Technique, which from Theorem 3.11 requires
a communication complexity of O(n2). During Phase III, S broadcasts LS

fault. Since

|LS
fault| ≤ tb, Phase III will incur a communication cost of O(n2). Thus the overall

communication complexity of protocol 3-Optimal-PRMT-Static-Byzantine is O(n2). 2

Theorem 3.15 Protocol 3-Optimal-PRMT-Static-Byzantine is a communication opti-
mal PRMT protocol which achieves reliability with constant factor overhead.

Proof: From Theorem 3.4, any three phase PRMT protocol over n = 2tb+1 wires must

communicate Ω
(

nℓ
n−tb

)
= Ω(ℓ) field elements to reliably send a message containing ℓ

field elements against Astatic
tb

. This is because n = 2tb + 1 and hence n − tb = Θ(n).
Now substituting ℓ = (tb + 1)2, we find that any three phase PRMT protocol over
n = 2tb +1 wires has to communicate Ω(t2b) = Ω(n2) field elements. From Lemma 3.14,
the total communication complexity of protocol 3-Optimal-PRMT-Static-Byzantine is
O(n2). Hence the protocol is communication optimal. Moreover, it is easy to see that
the protocol achieves reliability with constant factor overhead. 2

Theorem 3.16 Let N be an undirected synchronous network, under the influence of
Astatic

tb
, where S and R are connected by n = 2tb + 1 wires. Then three phases are nec-

essary and sufficient for the existence of any PRMT protocol which achieves reliability
with constant factor overhead.

Proof: Follows from Theorem 3.4 and Theorem 3.15. 2

3.4 Concluding Remarks and Open Problems

In this chapter, we presented a three phase communication optimal PRMT protocol in
undirected synchronous network tolerating Astatic

tb
. Moreover, we have shown that our

protocol is phase optimal, as well as require minimum connectivity. This, along with
Theorem 3.2 completely settles the issue of possibility, feasibility and optimal-
ity of PRMT in undirected synchronous network tolerating Astatic

tb
. These results are

summarized in Fig. 3.5.
From Fig. 3.5, we find that protocol 3-Optimal-PRMT-Static-Byzantine is commu-

nication optimal only if the message contains ℓ = Θ(n2) field elements. This leads to
our first open problem which is as follows:
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Figure 3.5: Summary of the Results for PRMT in Undirected Synchronous Network
Tolerating Astatic

tb

Number of Connectivity Lower Bound on Upper Bound
Phases (r) Requirement (n) Communication

Complexity

r ≤ 2 n ≥ 2tb + 1 [28] Ω
(

nℓ
n−2tb

)
[81] Broadcast protocol:

n = 2tb + 1,
Communication

complexity = O(nℓ)

r ≥ 3 n ≥ 2tb + 1 [28] Ω
(

nℓ
n−tb

)
[81] Protocol

3-Optimal-PRMT-Static-Byzantine:
n = 2tb + 1, ℓ = Θ(n2)

Communication
complexity = O(ℓ)

Open Problem 1 Let S and R be connected by n = 2tb + 1 wires. Then does there
exist a multiphase (more than two phase) PRMT protocol which reliably sends a message
containing ℓ field elements by communicating O(ℓ) field elements, tolerating Astatic

tb
, for

all values of ℓ ?
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Chapter 4

PRMT in Undirected Networks
Tolerating Mobile Byzantine
Adversary

In this chapter, we study PRMT in undirected synchronous network, tolerating threshold
mobile Byzantine adversary. PRMT in the presence of static adversary has received
quiet a bit of attention in the past [28, 49, 81]. However, as first noticed by Ostrovsky et
al. [50], the static model implicitly assumes that the number of dishonest nodes in the
network is independent of the execution time of the protocol. This is usually not true
in practice. Furthermore, since a corrupted node could be corrected given sufficient
time, Ostrovsky et al. [50] proposed the mobile adversary model wherein the adversary
could move around the network whilst still corrupting up to tb nodes at any given
instant. Subsequently, extensive research efforts on tolerating mobile adversaries have
resulted in what is now well-known as proactive security [39, 32, 38, 7]. However, in
the context of PRMT, not too much is known regarding the mobility of the adversary.
So in this chapter, we completely settle the issue of possibility, feasibility and
optimality of PRMT in undirected synchronous network tolerating threshold mobile
Byzantine adversary. We begin with the network model used in this chapter.

4.1 Underlying Network Model and Adversary Settings

The network model is similar to the one used in the previous chapter. However, instead
of threshold static adversary Astatic

tb
, we assume the presence of a threshold mobile

adversary Amobile
tb

. Unlike Astatic
tb

, who controls the same set of tb wires throughout

the protocol, Amobile
tb

may control different set of tb wires during different phases of

the protocol. Thus if some wire wj is under the control of Amobile
tb

in ith phase of a

protocol, then it does not imply that wj will be corrupted in (i+1)th phase also, unless
Amobile

tb
controls wj in (i + 1)th phase also. Moreover, by controlling wj in ith phase,

the adversary Amobile
tb

will not get any information about the communication done over

wire wj in earlier phase(s), if Amobile
tb

has not controlled wj in earlier phase(s). This is
because we assume that every intermediate node along a wire immediately erases all
information from its local memory at the end of a phase.

We next summarize the existing literature and our result for PRMT in undirected
synchronous network tolerating Amobile

tb
.
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4.2 Existing Literature

PRMT problem in the presence of Amobile
tb

was studied in [82], who gave the following
characterization:

Theorem 4.1 ([82]) Let S and R be connected by n wires and let r ≥ 1. Then any
r-phase PRMT protocol tolerating Amobile

tb
is possible iff n ≥ 2tb + 1.

The above theorem is quiet interesting because it shows that the connectivity re-
quirement for PRMT is same against both Astatic

tb
, as well as Amobile

tb
. This is non-

intuitive because Amobile
tb

is more powerful than Astatic
tb

and hence it is expected that

the connectivity requirement for PRMT against Amobile
tb

should be more than the net-
work connectivity required for Astatic

tb
. Indeed, if n = 2tb + 1, then S can reliably send

a message by simply broadcasting it over all the n wires. Then irrespective of whether
the adversary is static or mobile, R will correctly receive the message.

Since Amobile
tb

is more powerful than Astatic
tb

, the lower bound on the communication
complexity of PRMT against Astatic

tb
, as given in Theorem 3.3 and Theorem 3.4 must

hold against Amobile
tb

. Thus we have the following theorems:

Theorem 4.2 Let S and R be connected by n ≥ 2tb +1 wires and let r ≤ 2. Then any

r-phase PRMT protocol tolerating Amobile
tb

must communicate Ω
(

nℓ
n−2tb

)
field elements

to reliably send a message containing ℓ field elements.

Theorem 4.3 Let S and R be connected by n ≥ 2tb +1 wires and let r ≥ 3. Then any

r-phase PRMT protocol tolerating Amobile
tb

must communicate Ω
(

nℓ
n−tb

)
field elements

to reliably send a message containing ℓ field elements.

It is easy to see that the lower bound given in Theorem 4.2 is tight. Specifically,
let S and R be connected by n = 2tb + 1 wires, which is the minimum number of wires
required for any PRMT protocol against Amobile

tb
. Then S can reliably send a message

mS containing ℓ field elements by simply broadcasting it. This will take one phase and

will require a communication complexity of O
(

nℓ
n−2tb

)
= O(nℓ) field elements.

If n = 2tb+1, then n = Θ(tb) and hence from Theorem 4.3, any three or more phase

PRMT protocol must communicate Ω
(

nℓ
n−tb

)
= Ω(ℓ) field elements to reliably send a

message containing ℓ field elements against Amobile
tb

. To the best of our knowledge, there

is no PRMT protocol tolerating Amobile
tb

, which satisfies this bound. This motivates us

to design communication optimal PRMT protocol tolerating Amobile
tb

.

4.2.1 Our Contribution

Let S and R be connected by n = 2tb +1 wires. We then design a three phase commu-
nication optimal PRMT protocol called 3-Optimal-PRMT-Mobile-Byzantine, tolerating
Amobile

tb
, which reliably sends a message containing ℓ = Θ(n3) field elements by com-

municating O(n3) field elements. From Theorem 4.3, our protocol is phase optimal.
Moreover, from Theorem 4.2, our protocol requires minimum connectivity. The only
demerit of our protocol is that it achieves optimality only if ℓ = Θ(n3).

In the previous chapter, we presented a three phase PRMT protocol called 3-
Optimal-PRMT-Static-Byzantine, which reliably sends a message containing ℓ = Θ(n2)
field elements by communicating O(n2) field elements, tolerating Astatic

tb
. An interesting

question here is why protocol 3-Optimal-PRMT-Static-Byzantine will not work against
Amobile

tb
. We answer this question in the next section.
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4.3 Limitations of Matching Technique

The main reason why protocol 3-Optimal-PRMT-Static-Byzantine will not work against
Amobile

tb
is that protocol 3-Optimal-PRMT-Static-Byzantine uses Matching Technique to

reliably send the conflict list during Phase II. The Matching Technique will be able to
reliably send the conflict list against Astatic

tb
. However, it will fail to reliably send the

conflict list against Amobile
tb

. This is because Amobile
tb

can corrupt different set of tb wires
in each phase. In Matching Technique, R first broadcasts a maximal matching M and
the list LR

fault, which facilitates S to identify |M |+ |LR
fault| wires which were corrupted

during Phase I. If the adversary is static, then the same set of |M |+ |LR
fault| wires will

be corrupted in all the three phases and hence S can neglect them. S can recover the
remaining portion of the conflict graph by the properties of 1-PRMT-Byzantine with
increased throughput (see Theorem 3.8).

However, if the adversary is mobile, then the above logic will not work. This is
because the set of |M | + |LR

fault| wires which were corrupted in Phase I may not be

corrupted in remaining phases of the protocol. In the worst case, these |M | + |LR
fault|

wires may not be under the control of the adversary at all during second phase. So
if S neglects these wires, then S will loose |M | + |LR

fault| correct values and hence
1-PRMT-Byzantine (with increased throughput) will fail to correctly deliver the
remaining portion of the conflict graph. So against a mobile adversary, the only way
of reliably sending the conflict graph seems to broadcast it. But this will require a
communication complexity of O(n3) field elements. To circumvent this situation, we
present a technique called Union Technique, which will used in our protocol 3-Optimal-
PRMT-Mobile-Byzantine.

4.4 Protocols

We first begin with the description of Union Technique, which will be used in protocol
3-Optimal-PRMT-Mobile-Byzantine.

4.4.1 Union Technique

Now recall the same scenario described in Section 3.3.3. S and R are connected by
n = 2tb + 1 wires. S selects at random n polynomials each of degree tb, denoted by
pS

i (x), where 1 ≤ i ≤ n. Next through wire wi, S sends to R the following:

1. Polynomial pS
i (x) and

2. For j = 1, . . . , n, the value rS
ji = pS

j (i).

Assume that R receives the following over wire wi:

1. Polynomial pR
i (x);

2. The values rR
ji , for j = 1, . . . , n.

Let BR denote the set of n polynomials and n2 values as received by R. Using BR,
R can construct a conflict graph. Now, in our three phase PRMT protocol 3-Optimal-
PRMT-Mobile-Byzantine, during Phase I, instead of a single set BR, R receives n such
sets denoted as BR

k , for k = 1, . . . , n, where each BR
k contains n polynomials, denoted

by pR
k,i(x), i = 1, . . . , n and n2 values, denoted by rR

k,i,j, 1 ≤ i, j ≤ n. The flow of
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Figure 4.1: Data Flow Over the n Wires During Phase I of Protocol 3-Optimal-PRMT-
Mobile-Byzantine

Wire BR
1 . . . BR

n

w1 pR
1,1(x) rR

1,1,1, . . . , r
R
1,n,1 . . . pR
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R
n,n,1

. . . . . . . . . . . .
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1,i(x) rR

1,1,i, . . . , r
R
1,n,i . . . pR

n,i(x) rR
n,1,i, . . . , r

R
n,n,i

. . . . . . . . . . . .

wn pR
1,n(x) rR

1,1,n, . . . , rR
1,n,n . . . pR

n,n(x) rR
n,1,n, . . . , rR

n,n,n

information over n wires during Phase I of 3-Optimal-PRMT-Mobile-Byzantine is given
in Fig. 4.1.

R then constructs conflict graph Hk using the set BR
k . For each Hk, we can say

the following from the proof of Claim 3.12: if during Phase I, R receives a corrupted
polynomial pR

k,i(x) 6= pS
k,i(x) over wi, then there exist at least one edge (wi, wj) in Hk,

where wj is an honest wire. If R broadcasts all the n conflict graphs to S, then S will
correctly receive Hk (even if the adversary is mobile) and hence from Claim 3.12, after
doing local comparison, S can find out the identity of all faulty wires wi over which R
has received at least one faulty pR

k,i(x) during Phase I, where k ∈ {1, . . . , n}. However,

broadcasting all conflicting graphs requires communicating O(n4) field elements, as
each conflict graph may have O(n2) edges. So we now introduce a method of combining
n conflict graphs into a single conflict graph HR. By broadcasting HR to S, the receiver
R can ensure that S will be able to identify all wi’s over which R has received at least
one faulty polynomial pR

k,i(x). However, broadcasting HR will require a communication

complexity of O(n3).
The combined conflict graph HR = (V,E) will have vertices and edges as follows:

V = {w1, w2, . . . , wn} and E = {(wi, wj)} where edge (wi, wj) ∈ E if the edge (wi, wj)
occurs in at least one Hk, k = 1, . . . , n. Since an edge (wi, wj) can occur in multiple
Hk’s, R considers (wi, wj) from the minimum indexed Hγ among all such Hk’s, keeping
a note that (wi, wj) is added from Hγ . For each (wi, wj) ∈ E, R adds a seven tuple
{wi, wj , γ, pR

γ,i(j), r
R
γ,i,j , p

R
γ,j(i), r

R
γ,j,i} to a list X, provided (wi, wj) is taken from Hγ .

This indicates that in the set BR
γ , the wires wi and wj conflict with each other. It is

easy to see that there can be O(n2) edges in HR and hence O(n2) tuples in X. We call
this method of generating a single conflict list from n conflict lists as Union Technique.

In the next theorem, we prove that S can identify all faulty wires over which R
received at least one faulty polynomial after correctly receiving X.

Theorem 4.4 In the Union Technique, if R broadcasts X to S, then S identifies all
faulty wires wi over which R has received at least one corrupted polynomial pR

k,i(x) 6=

pS
k,i(x) during Phase I.

Proof: Suppose during Phase I, R receives a faulty polynomial pR
k,i(x) 6= pS

k,i(x)
over wi. Then from Claim 3.12, there exists at least one edge (wi, wj) ∈ Hk, where
wj is an honest wire. Since the combined conflict graph HR is formed by considering
all the edges in the individual Hk’s, 1 ≤ k ≤ n, list X must have a seven tuple
{wi, wj , γ, pR

γ,i(j), r
R
γ,i,j , p

R
γ,j(i), r

R
γ,j,i}. Now there are following two possibilities:

1. γ = k: This indicates that the seven tuple exactly corresponds to the edge
(wi, wj) ∈ Hk.
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2. γ < k: This indicates that the seven tuple corresponds to the edge (wi, wj) ∈ Hγ ,
which implies that wire wi has either delivered incorrect pR

γ,i(x) 6= pS
γ,i(x) or an

incorrect value rR
γ,j,i 6= rS

γ,j,i. However, what ever may be the case, adding the
seven tuple for the edge (wi, wj) ∈ Hγ to the list X will not affect in identifying
wi as as a corrupted wire.

Thus, for each faulty wi delivering at least one incorrect polynomial during Phase
I, there exists a seven tuple in X. If R broadcasts X, then S will correctly receive it
(even if the adversary is mobile) and hence after performing local verification, S will
identify all faulty wires, over which R received at least one faulty pR

k,i(x) 2

We are now well equipped to present protocol 3-Optimal-PRMT-Mobile-Byzantine, which
we present in the next section.

4.4.2 Protocol 3-Optimal-PRMT-Mobile-Byzantine

The protocol is similar to protocol 3-Optimal-PRMT-Static-Byzantine. However, instead
of using Matching Technique, we use Union Technique to reliably send the conflict list.

Intuitively, protocol 3-Optimal-PRMT-Mobile-Byzantine works as follows: S selects
n bivariate polynomials, each of degree tb in x and y, whose coefficients are the elements
of the message to be sent. S then generates n sets BS

k , k = 1, . . . , n from the n bivariate
polynomials and communicates them to R during Phase I. On receiving n BR

k ’s, R first
constructs n conflict graphs Hk’s and then combine all of them to a single graph HR,
using Union Technique. R then broadcasts to S the list of seven tuples corresponding to
the conflict graph HR during Phase II. In Phase III, S identifies all faulty wires which
delivered incorrect polynomials to R during Phase I and broadcasts their identities to
R. Finally, R recovers the message by reconstructing all the n bivariate polynomials
by ignoring the faulty wires, which delivered incorrect polynomials during Phase I.
The protocol is formally given in Fig. 4.2.

We now prove the prove the properties of protocol 3-Optimal-PRMT-Mobile-Byzantine.

Lemma 4.5 (Correctness) In protocol 3-Optimal-PRMT-Mobile-Byzantine, R will al-
ways be able to correctly recover the message.

Proof: In protocol 3-Optimal-PRMT-Mobile-Byzantine, to recover mS, R should be
able to interpolate each bivariate polynomial FS

k (x, y), for k = 1, . . . , n. Since each
FS

k (x, y) is of degree tb in both x and y, R requires tb +1 correct FS
k (x, i) = pS

k,i(x)’s to

recover FS
k (x, y). Since among the n wires, at most tb can be corrupted during Phase

I, R will receive at least tb + 1 correct pS
k,i(x)’s. During Phase II, R constructs n

conflict graph Hk, 1 ≤ k ≤ n and combine them into a single conflict graph HR using
Union Technique, forms the corresponding list of seven tuples X and broadcasts it to
S. So S will correctly receive X. From Theorem 4.4, on receiving X, S identifies all
faulty wires over which R has received at least one faulty polynomial during Phase
I and adds them to Lfault and broadcasts Lfault to R. So R correctly receives Lfault

and neglects all the n polynomials received over each wi ∈ Lfault. Since |Lfault| ≤ tb,
R will be left with at least tb + 1 correct pS

k,i(x)’s, for each 1 ≤ k ≤ n, using which R

recovers each FS
k (x, y) and hence mS. 2

Lemma 4.6 (Communication Complexity) The total communication complexity
of protocol 3-Optimal-PRMT-Mobile-Byzantine is O(n3).
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Figure 4.2: Three Phase Communication Optimal PRMT Tolerating Amobile
tb

Protocol 3-Optimal-PRMT-Mobile-Byzantine

mS = {mS

k,i,j : k = 1, . . . , n, i = 0, . . . , tb and j = 0, . . . , tb}

Phase I: S to R:

1. Using the mk,i,j values, S defines n bivariate polynomials FS

k (x, y), k = 1, . . . , n as follows:

FS

k (x, y) =
P

i=tb
j=tb
i=0,j=0 mS

k,i,jx
iyj .

2. S then evaluates each FS

k (x, y), k = 1, . . . , n at y = 1, . . . , n to obtain total n2 univariate
polynomials denoted as pS

k,i(x), 1 ≤ k, i ≤ n, each of degree tb where pS

k,i(x) = FS

k (x, i).

3. For i = 1, . . . , n, S sends the following to R over wire wi:

(a) Polynomials pS

k,i(x), k = 1, . . . , n;

(b) Values rS

k,j,i, for 1 ≤ k, j ≤ n, where rS

k,j,i = pS

k,j(i).

Phase II: R to S:

1. Let R receive the following over wire wi, for i = 1, . . . , n (see Fig. 4.1 for the pictorial
representation):

(a) Polynomials pR

k,i(x), k = 1, . . . , n;

(b) Values rR

k,j,i, for 1 ≤ k, j ≤ n.

2. Using the received values, R constructs n conflict graphs H1, . . . , Hn. R then combines these
graphs into a single conflict graph HR using Union Technique, as explained in the previous
section.

3. R constructs the list of seven tuples X corresponding to HR (as explained in the previous
section) and broadcasts X to S.

Phase III: S to R:

1. S reliably receives the list X. S then creates a list Lfault which is initialized to ∅.

2. For each seven tuple {wi, wj , γ, pR

γ,i(j), r
R

γ,i,j , p
R

γ,j(i), r
R

γ,j,i} ∈ X, S does the following:

(a) S checks pR

γ,i(j)
?
= pS

γ,i(j). If not, then S adds wi to Lfault.

(b) S checks rR

γ,i,j
?
= rS

γ,i,j . If not, then S adds wj to Lfault.

(c) S checks pR

γ,j(i)
?
= pS

γ,j(i). If not, then S adds wj to Lfault.

(d) S checks rR

γ,j,i
?
= rS

γ,j,i. If not, then S adds wi to Lfault.

3. S finally broadcasts the list Lfault to R and terminates 3-Optimal-PRMT-Mobile-Byzantine.

Message Recovery by R:

1. R reliably receives Lfault and identifies all wi over which it had received at least one incorrect
polynomial pR

k,i(x) 6= pS

k,i(x) during Phase I.

2. R neglects all the polynomials pR

k,i(x), k = 1, . . . , n, received over each wi ∈ Lfault during
Phase I.

3. Using the remaining (at least tb + 1) pR

k,i(x)’s, R correctly recovers the bivariate polynomial
FS

k (x, y), for k = 1, . . . , n and hence the message mS.

Proof: During Phase I, S sends over each wire n polynomials of degree tb and n2

values. So communication complexity of Phase I is O(n3). During Phase II, R
broadcasts the list X. As explained earlier, X contains O(n2) tuples. Hence broad-
casting X requires O(n3) communication complexity. During Phase III, S broadcasts
the list Lfault. Since |Lfault| ≤ tb, this involves communicating O(ntb) = O(n2) field
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elements. Hence the overall communication complexity of protocol 3-Optimal-PRMT-
Mobile-Byzantine is O(n3). 2

Theorem 4.7 Protocol 3-Optimal-PRMT-Mobile-Byzantine is a communication opti-
mal PRMT protocol which achieves reliability with constant factor overhead tolerating
Amobile

tb
.

Proof: From Theorem 4.3, any three phase PRMT protocol over n = 2tb + 1 wires

must communicate Ω
(

nℓ
n−tb

)
= Ω(ℓ) field elements to reliably send a message contain-

ing ℓ field elements against Amobile
tb

. This is because n = 2tb+1 and hence n−tb = Θ(n).
Now substituting ℓ = n(tb + 1)2, we find that any three phase PRMT protocol over
n = 2tb + 1 wires has to communicate Ω(nt2b) = Ω(n3) field elements to reliably send a
message containing Θ(n3) field elements. From Lemma 4.6, the total communication
complexity of protocol 3-Optimal-PRMT-Mobile-Byzantine is O(n3). Hence the proto-
col is communication optimal. Moreover, it is easy to see that the protocol achieves
reliability with constant factor overhead. 2

Theorem 4.8 Let N be an undirected synchronous network, under the influence of
Amobile

tb
, where S and R are connected by n = 2tb +1 wires. Then three phases are nec-

essary and sufficient for the existence of any PRMT protocol which achieves reliability
with constant factor overhead.

Proof: Follows from Theorem 4.3 and Theorem 4.7. 2

4.5 PRMT Tolerating Mobile Adversary (in Terms of Rounds)

Till the previous section, we concentrated to design communication optimal PRMT
protocol, when the network is abstracted in terms of wires. The merits of working in
such a model are as follows:

1. It eases deriving the connectivity requirement for the possibility of PRMT/PSMT
protocols and also the lower bounds for the communication complexity of proto-
cols.

2. It simplifies the analysis of any protocol designed in such model.

But this model has its own demerits. In many practical scenarios, modelling the
network as wires, does not give correct estimation of the communication complexity
of PRMT protocols. To understand the statement, we provide a motivating example.
Consider the network consisting of (2tb + 8) vertices, as given in Fig. 4.3.

Suppose the network in Fig. 4.3 is abstracted as a collection of (2tb + 2) wires,
under the control of Amobile

tb
. It is easy to see that in this network, there exists a single

phase PRMT protocol (namely broadcast protocol), which reliably sends a message
containing ℓ field elements by communicating O(nℓ) field elements, tolerating Amobile

tb
.

Now suppose that the protocol execution take place in a sequence of rounds, where
at the beginning of each round, each node send messages to their neighbors. Thus, the
messages sent by a node in round k, reaches its neighbor at the beginning of round
k + 1. Then the so called single phase broadcast protocol runs for six rounds (which
is the length of the longest path), with a communication complexity of O(n) times the
message size. Now the question is whether there exists a six round PRMT protocol in
the network of Fig. 4.3 with a better communication complexity. The answer is yes!

44



Figure 4.3: A (2tb + 2)-(S,R)-connected Network.
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Consider the following protocol: S and R run the three phase PRMT protocol
3-Optimal-PRMT-Mobile-Byzantine using the wires along the nodes P1, P2, . . . , P2tb+1,
neglecting the path of length six (the longest path takes six rounds, while all other
paths delivers message in two rounds). Thus while the single phase broadcast protocol
has a complexity of O(nℓ), the three phase protocol has a communication complexity
of O(ℓ). Thus in Fig. 4.3, a six round protocol with a communication complexity of
O(ℓ) is possible.

However, the information regarding the length of each of the paths (wires) in the
actual network is completely lost in the wired abstraction. Thus in many practical
scenarios, wired abstraction causes an over estimation in the round complexity and
communication complexity of PRMT protocols in the original network. This motivates
us to redefine our network model and adversary settings, which we do in the next
section.

4.5.1 Round Based Network and Adversary Settings

As shown in the previous section, it is necessary to use more fine-grained and hence
stronger model, namely the graph based one (in comparison to the collection of wires)
for designing and analyzing optimal PRMT protocols. So we consider a graph with
internal details in the following way. Let H be an undirected graph under the control
of Amobile

tb
. From Theorem 4.1, H should be (2tb + 1)-(S, R) connected which is a

necessary and sufficient condition for PRMT tolerating Amobile
tb

. Let G be the subgraph
of H induced by the 2tb + 1 vertex disjoint paths between S and R. If there are more
than 2tb + 1 vertex disjoint paths in H, then G will also contain these paths. In the
following sections, we work on G to derive tight lower bound on round complexity for
reliable communication and design protocols on G.

The system is assumed to be synchronous. Any protocol is assumed to be executed
in a sequence of rounds, wherein in each round, a node perform some local computation,
sends new messages to his out-neighbors and receive the messages sent in previous round
by his in-neighbors. The distrust in the network is modelled by a mobile Byzantine
adversary Amobile

tb
. The behavior of Amobile

tb
is re-defined to allow it to corrupt any set of

tb nodes, after every ρ ≥ 1 rounds, where ρ is called the roaming speed of the adversary.
We first consider the worst case, that of ρ = 1. Later on, we extend our results to
arbitrary value of ρ.
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More formally, before the beginning of round k, the adversary can corrupt any set
of nodes Pcorrupt, consisting of tb nodes. Then the adversary has access to the messages
sent to the nodes in Pcorrupt in round k − 1 and can alter the behavior of the nodes
in Pcorrupt arbitrarily in round k. However by corrupting a node P in round k the
adversary does not obtain information about the messages to and from the node P
in all the previous rounds, i.e., the protocol can choose to delete some information
from the (honest) node at the end of a round, to make sure that the information is
not available to the adversary even if he corrupts the node at a later round. Before
computing the minimum number of rounds for reliable communication, we explain the
concept of transmission graph.

4.5.2 Transmission Graph

Graphs always have been used as a very powerful abstraction of the network by mod-
elling the physical link between two nodes as an edge between the corresponding vertices
of the graph. However it does not contain any temporal information. Especially in the
case of a mobile adversary, where the adversary can corrupt different set of nodes at
different time instance, a graph representation of the network is inadequate. However
since the protocol itself discretizes time in terms of rounds, it is sufficient to model the
system at each round, rather than each time instant. Hence, in [82], the authors have
introduced the concept of transmission graph Gd to study the execution of a protocol
that has run for d rounds.

In the transmission graph Gd, each node P is represented by a set of nodes {P0, P1, P2,
. . . , Pd}. The node Pr corresponds to the node P at round r. For any two neighboring
nodes P and Q and any 1 ≤ r ≤ d, a message sent by P to Q in round r−1 is available
to Q only at round r. Hence there is an edge in Gd connecting the node Pr−1 to the
node Qr for all 1 ≤ r ≤ d. Note that the transmission graph is a directed graph,
because of the directed nature of time. So the edges between the nodes at consecutive
time steps are always oriented towards increasing time. We now recall the definition of
transmission graph from [82].

Definition 4.9 (Transmission Graph [82]) Given a graph G = (V,E) and a posi-
tive integer d, the transmission Graph Gd is a directed graph defined as follows:

• Nodes of Gd belong to V ×{0 . . . d} where the node (P, r) ∈ V ×{0 . . . d} is denoted
by Pr.

• The edge set of Gd is Ed = E1 ∪ E2 where E1 = {(Par−1 , Pbr
) |(Pa, Pb) ∈

E and 1 ≤ r ≤ d} and E2 = {(Par−1 , Par )|Pa ∈ V and 1 ≤ r ≤ d}.

Let Pr = {Par |Pa ∈ V } and let ADVmobile be a threshold mobile adversary acting
on the network G, that can corrupt any tb nodes in each round. Consider an execution
Γ of a d-round protocol on G. Suppose ADVmobile corrupts a set of nodes Advr =
{P1, P2, . . . Ptb} in round r in G, then the same effect is obtained by corrupting the
nodes Advr = {P1r , P2r , . . . Ptbr

} in Gd. Hence the effect of ADVmobile on execution Γ

can be simulated by a static general adversary, who corrupts
d⋃

r=1
Advr on Gd. More

formally, we have the following lemma:

Lemma 4.10 Mobile adversary ADVmobile acting on the original network graph G
for d rounds can be simulated by a static adversary given by the adversary structure
ADVd

static = {Adv1 ∪Adv2 ∪Adv3 . . .∪Advd|Advr ∈ Πtb(P
r), 1 ≤ r ≤ d} on Gd, where
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Πtb(P
r) denotes the set of all subsets of cardinality tb of the set Pr excluding Sr and

Rr.

Example 4.11 Consider the network shown in Fig. 4.4:

Figure 4.4: A 3-(S,R)-connected Network G.
A B

C D E F

G H I J
K

S R

The network is 3-(S,R)-connected and hence from Theorem 4.1, at most one mobile
corruption (i.e., Amobile

1 ) can be tolerated by any PRMT protocol.
Now consider G4, where the adversary structure ADV4

static = {Adv1∪Adv2∪Adv3∪
Adv4}. Here each Advr ∈ Π1(P

r), 1 ≤ r ≤ 4, where Π1(P
r) denotes the set of all sub-

sets of cardinality one of the set Pr. For example, {A1, A2, A3, A4}, {A1,D2, G3,H4}, {H1,
E2, B3, A4} are some of the elements of ADV4

static in G4. Here {A1, A2, A3, A4} denotes
an adversarial strategy where in the original network, the adversary corrupts the same
node A in all the four rounds. Similarly {H1, E2, B3, A4} denotes an adversarial strat-
egy where in the original network, the adversary corrupts the nodes H,E,B and A
during first, second, third and fourth round respectively. In fact there are 114 possible
elements of ADV4

static in G4, since there are 11 nodes in G (excluding S and R) and
in each of the four rounds, adversary can choose any one of the 11 nodes to corrupt.
Now out of these 114 possible elements, only one element corresponds to the actual
corruption for four rounds, that would have been done by the adversary on the original
graph.

In general let G be a graph with 2tb + 1 (or more) vertex disjoint paths between
S and R and N be the total number of nodes in these paths. Then in Gd, there will

be
( N
tb+1

)d
possible elements in the adversary structure ADVd

static. In order to find
the minimum number of rounds for reliable communication, we slightly modify the
definition of transmission graph as follows:

Definition 4.12 (Modified Transmission Graph) Given a graph G and an integer
d > 0, the modified Transmission Graph Gd is the graph Gd along with two additional
nodes S and R, where S is connected to all Sr,0 ≤ r ≤ d and each Rr, 0 ≤ r ≤ d is
connected to R. Further the edges between (Sr−1,Sr) and (Rr−1,Rr) for 1 ≤ r ≤ d
are removed.

Definition 4.13 (Securely Disjoint Paths) Two paths Γ1 and Γ2 between the nodes
S and R in the modified transmission graph Gd are said to be securely disjoint if the
common nodes (if any) between the two paths are only of the type Sa and Rb for some
value of a and b. That is, Γ1 ∩ Γ2 ⊂ {S0,S1,S2 . . .Sd} ∪ {R0,R1,R2 . . .Rd}.

Definition 4.14 (Space Time Path) Given a path Γ = {S, P1, P2 . . . Pz,R} from
S to R in the original graph G, the space-time path Γi in graph Gd is defined as
Γi = {S,Si, P1i+1 , P2i+2 , . . . Pzi+z

,Ri+z+1,R}, 0 ≤ i ≤ d− z − 1.
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We now illustrate the above definitions with the following example:

Example 4.15 Consider the path Γ = {S, A,B,R} in Fig. 4.4. Now in G5, there are
three space time paths corresponding to the path Γ, namely Γ0 = {S,S0, A1, B2,R3,R},
Γ1 = {S,S1, A2, B3,R4,R} and Γ2 = {S,S2, A3, B4,R5,R}. The space time path Γ0

can be interpreted as S communicating to A in the 0th round, A communicating to B
in the first round, B communicating to R in the second round which is received by R
in the third round. Similarly, the paths Γ1 and Γ2 can be interpreted. Note that in
G5, there are only three space time paths corresponding to the path Γ in G. This is so
because if any protocol is executed for five rounds, then R will stop receiving anything
from B after fifth round. In general, let G be a graph and Γ be a path between S and
R containing z nodes (i.e., the path length is z + 1). Then in the transmission graph
Gd, d > z, there will be d − z space time paths corresponding to the path Γ, namely
Γi, 0 ≤ i ≤ d− z − 1.

Lemma 4.16 ([82]) For any path Γ of length z (containing z + 1 nodes) from S to
R in G, the paths Γi, 0 ≤ i ≤ d − z are pairwise securely disjoint. Further, for any
two vertex disjoint paths Γ1, Γ2 in G and for any i, j, the paths Γi

1 and Γj
2 are securely

disjoint.

We illustrate the above lemma with the following example:

Example 4.17 Consider the paths Γ1 = {S, A,B,R} and Γ2 = {S, C,D,E, F,R} in
the network shown in Fig. 4.4. Suppose we consider the transmission graph G6, then
there are following space time paths corresponding to Γ1 in G6:

1. Γ0
1 = {S,S0, A1, B2,R3,R},

2. Γ1
1 = {S,S1, A2, B3,R4,R},

3. Γ2
1 = {S,S2, A3, B4,R5,R} and

4. Γ3
1 = {S,S3, A4, B5,R6,R}.

Similarly, there are following space time paths corresponding to Γ2 in G6:

1. Γ0
2 = {S,S0, C1,D2, E3, F4,R5,R} and

2. Γ1
2 = {S,S1, C2,D3, E4, F5,R6,R}.

It is clear that all Γi
1, 0 ≤ i ≤ 3 are securely disjoint. Similarly, all Γi

2, 0 ≤ i ≤ 1 are
securely disjoint. Also all the space time paths Γi

1,Γ
j
2, 0 ≤ i ≤ 3, 0 ≤ j ≤ 1 are securely

disjoint.

4.5.3 Computing Minimum Number of Rounds for PRMT with ρ = 1

In [82], the authors have computed a lower bound for the minimum number of rounds d
for reliable communication from S to R. They showed that d > (2tb +1)N (see Lemma
4.1 of [82]), where S and R are connected by 2tb +1 paths and N is the total number of
nodes in the given network. However, we show that the bound in [82] is not tight. So,
we derive tight bound on the minimum number of rounds, denoted by rmin, required
for reliable communication from S to R.

Consider a graph G where S and R are connected by 2tb + 1 vertex disjoint paths
{Γ1,Γ2, . . . ,Γ2tb+1}. Without loss of generality, assume that the paths are arranged in
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ascending order of path length. Let Ni denote the number of nodes in Γi, 1 ≤ i ≤ 2tb+1.
Then as explained earlier, in Gd, there will be d−Ni space time paths, corresponding
to the path Γi in G, provided d−Ni > 0. If d−Ni ≤ 0 then there will be no space time
path corresponding to Γi in Gd. Assuming that each of the term d−Ni is positive, the
total number of the space time paths in Gd is

∑i=2tb+1
i=1 (d − Ni). From Lemma 4.16,

all these paths are securely disjoint. Now if any reliable protocol is executed on the
original graph G for d rounds, then the adversary can make corruption only up to (d−1)
rounds because in any reliable protocol, which is executed for d rounds, R will receive
information from its neighboring nodes in round d, which they sent to R in round d−1
and terminates the protocol. So even if adversary corrupts some node in round d, it
will not effect the protocol, because the protocol will terminate in the dth round itself.
Note that if at least one node in a space time path in Gd is corrupted, it implies that
the entire space time path is corrupted because the corrupted data introduced by the
corrupted node will be forwarded by other nodes of the path in subsequent rounds. In
general, since the adversary can corrupt at most tb nodes in each round of any reliable
protocol, it can corrupt at most tb(d − 1) nodes in Gd which can be distributed on
tb(d − 1) secure disjoint paths in the worst case and hence each element in ADVd

static

is of maximum cardinality tb(d− 1). We now state the following theorem.

Theorem 4.18 Let G be an undirected network where S and R are connected by 2tb +
1 vertex disjoint paths Γ1,Γ2, . . . ,Γ2tb+1 with Ni nodes in Γi, 1 ≤ i ≤ 2tb + 1. Let
ADVmobile be a mobile adversary corrupting any set (probably different) of tb nodes in
each round of a protocol. Then the minimum number of rounds required for reliable
communication from S to R is given by rmin = N − 2tb + 1, where N =

∑i=2tb+1
i=1 Ni.

Proof: Necessity: Let rmin be the minimum number of rounds required for reliable
communication in G. Then as explained above, any mobile adversary ADVmobile can be
simulated by a static adversary structureADVrmin

static where each element of the adversary

structure is of cardinality tb(rmin−1). Also in Grmin , there will be
∑i=2tb+1

i=1 (rmin−Ni)
securely disjoint paths between S and R, out of which at most tb(rmin−1) can be under
the control of the adversary. Now it is known from [41], that reliable communication
between S and R in a network in the presence of a static adversary given by an ad-
versary structure is possible iff removal of the nodes belonging to any two adversarial
sets in the adversary structure does not disconnect S and R. It implies that reliable
communication in G under the presence of ADVmobile is possible in rmin rounds if∑i=2tb+1

i=1 (rmin−Ni) ≥ 2tb(rmin− 1) + 1. Solving this we get rmin ≥ N − 2tb + 1 where

N =
∑i=2tb+1

i=1 Ni.

Sufficiency: Suppose rmin = N − 2tb + 1 where N =
∑i=2tb+1

i=1 Ni. Then in Grmin

there are 2tb(rmin − 1) + 1 securely disjoint paths from S to R, out of which at most
tb(rmin − 1) can be under the control of the adversary ADVrmin

static. Let us denote these
paths by w1, w2, . . . , w2q+1, where q = tb(rmin−1). We now describe a reliable protocol
called REL on the graph Grmin , which takes rmin rounds. We also show how protocol
REL can be executed on the real network G to reliably send mS. Protocol REL is given
in Fig. 4.5.

Protocol REL can be emulated on G in the following way: if a node P1b
and P2b+1

are consecutive nodes in Grmin along some path wi, where wi is the space time path
corresponding to some physical path Γj, 1 ≤ j ≤ 2tb +1, then the node P1 on receiving
m̂S (possibly changed mS) along the path Γj at the beginning of round b forwards it to
the node P2 at the end of round b which is received by P2 in round b+ 1. The protocol
has a communication complexity O(2tb(rmin − 1)|mS|) and this is polynomial in N .
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Figure 4.5: An rmin Round PRMT Protocol on Graph Grmin

Protocol REL

1. The sender S sends the message mS along all the paths wi, 1 ≤ i ≤ 2q + 1.

2. All nodes Pab
along a path wi just forward the message to the next node along

wi.

3. The receiver on receiving the values along all the paths takes the majority
value as the message mS.

The correctness of the protocol is obvious. This completes the sufficiency proof. 2

We now illustrate Theorem 4.18 with the following example:

Example 4.19 For the network in Fig. 4.4, rmin = 10. This is because in G9, there
are total sixteen space time paths, of which the adversary can corrupt at most eight
paths. So exactly half of the paths can be under the control of the adversary. However,
in G10, there are nineteen space time paths, out of which the adversary can corrupt at
most nine paths. Hence, majority of the paths will be error free.

4.5.4 Finding rmin in the Presence of More than 2tb +1 Paths for ρ = 1

In many practical scenarios there may be more than 2tb+1 vertex disjoint paths between
S and R. Even then we can find rmin by using the same argument as in the previous
section. Suppose G is a network where there are n node disjoint paths between S and
R, where n > 2tb + 1. Let the paths be denoted by Γ1,Γ2, . . . ,Γ2tb+1, . . . ,Γn and let
the paths be arranged in ascending order of path length, such that there are Ni nodes
in path Γi. We call the algorithm for computing rmin in this case as Algorithm-Round-
Complexity, which is given in Fig. 4.6.

Figure 4.6: Algorithm for Finding rmin in the Presence of More than 2tb + 1 Paths for
ρ = 1

Algorithm Algorithm-Round-Complexity

1. Set rmin = N − 2tb + 1 where N =
∑i=2tb+1

i=1 Ni.

2. For i = 2tb + 2 to n do:

(a) If Ni + 1 > rmin then output rmin and EXIT.

(b) If Ni + 1 ≤ rmin then do the following:

i. Compute r = ⌈ (N1+N2+...+Ni)−2tb+1
i−2tb

⌉

ii. If r ≤ rmin then set rmin = r else GOTO step 3.

3. Output rmin.

The correctness of algorithm Algorithm-Round-Complexity is stated in the following
theorem.
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Theorem 4.20 Algorithm Algorithm-Round-Complexity correctly computes rmin when
S are R connected by more than 2tb + 1 vertex disjoint paths and ρ = 1.

Proof: In Algorithm-Round-Complexity, rmin is first set to N−2tb+1, which according
to Theorem 4.18 is the minimum number of rounds for reliable communication in the
presence of 2tb + 1 paths Γj, 1 ≤ j ≤ 2tb + 1 between S and R. Note that the paths
Γj, 1 ≤ j ≤ n are arranged in ascending order of path length. Now there are following
cases to be considered for Γ2tb+2:

1. rmin < N2tb+2 + 1: Note that N2tb+2 + 1 is the path length of Γ2tb+2. So if in any
reliable protocol, the path Γ2tb+2 is involved then it will take at least N2tb+2 + 1
rounds to send any information from S to R through the path Γ2tb+2. However,
since rmin < N2tb+2 + 1, including the path Γ2tb+2 will increase rmin. Since the
path lengths of remaining Γj , 2tb + 3 ≤ j ≤ n is at least N2tb+2 + 1, using the
above argument, any round optimal protocol should only consider the first 2tb +1
paths and hence rmin = N − 2tb + 1.

2. rmin ≥ N2tb+2 + 1: In this case, including Γ2tb+2 may reduce the value of rmin.
Using the argument of Theorem 4.18, we first compute minimum number of
rounds r required for reliable communication considering the first 2tb + 2 paths.
Now r is computed by solving the inequality

∑i=2tb+2
i=1 (r − Ni) ≥ 2tb(r − 1) + 1

which implies r ≥ ⌈
(N1+N2+...+N2tb+2)−2tb+1

2 ⌉. If the minimum value of r is less
than or equal to rmin, then considering Γ2tb+2 reduces or does not change rmin

and hence rmin is updated to r. Otherwise Γ2tb+2 is neglected and rmin is not
updated. However, if r > rmin, then including Γ2tb+2 in any reliable protocol
protocol will increase rmin. Hence Γ2tb+2 is not considered. Since the path
lengths of remaining Γj, 2tb + 3 ≤ j ≤ n is at least N2tb+2 + 1, including any of
them will increase rmin. Hence all of them are neglected.

In the algorithm, the above two checking is done for all Γi, 2tb + 2 ≤ i ≤ n. Once
rmin is computed, S will know which paths to consider for reliably sending any message
to R. In the corresponding transmission graph Grmin there will be 2tb(rmin − 1) + 1
securely disjoint paths. So the protocol REL can be executed on Grmin which can be
simulated on original network G as specified in Theorem 4.18. 2

We now illustrate Algorithm-Round-Complexity with the following example:

Example 4.21 Intuitively, rmin can be computed considering the first 2tb + 1 shortest
node paths between S and R. However, this is not always true! For example in Fig.
4.4, assuming tb = 1, we find that rmin = 10 (according to Theorem 4.18). Now if we
add one more vertex disjoint path of six nodes between S and R, then from Algorithm-

Round-Complexity, rmin = 8.

4.5.5 Computing rmin for Arbitrary Roaming Speed

Till now we have considered a roaming speed of ρ = 1. We now consider a mobile
adversary with roaming speed ρ > 1 and compute rρ

min, which is the minimum number
of rounds required for reliable communication from S to R, against a tb-active mobile
adversary, corrupting tb nodes after every ρ rounds. Note that a mobile adversary
with roaming speed one is the strongest adversary. Intuitively, reducing the roaming
speed of the adversary will reduce the minimum number of rounds required for PRMT
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between S and R. We support our intuition by computing rρ
min for an arbitrary ρ,

where ρ > 1.
Let S and R are connected by n = 2tb + 1 vertex disjoint paths Γi, 1 ≤ i ≤ 2tb + 1,

which are in ascending order of path length and let Γi has Ni nodes. Without loss of
generality, we assume that the adversary starts corruption from the first round of any
protocol. Thus, if ρ = 2 and if a protocol is executed for six rounds, then the adversary
will corrupt tb nodes in round one, three and five. Note that the tb nodes which
are corrupted in round one, three and five will also remain corrupted in the second,
fourth and sixth round respectively. In general, any mobile adversary ADVρ

mobile who
corrupts any tb nodes in the network after every ρ rounds in any r round protocol,

can be simulated by a static adversary structure ADVρ
static with size

(N
tb

)⌈ r
ρ
⌉

where N
is total number of nodes in 2tb + 1 paths. This is because in r rounds, adversary will
change the set of corrupted nodes after every ⌈ r

ρ⌉ rounds.
We now show how the adversary with arbitrary roaming speed changes its control

over space time paths with the help of following example. Recall that in Gr, each
Γi, 1 ≤ i ≤ 2tb + 1 will have r −Ni securely disjoint space time paths.

Example 4.22 Consider two space time paths Γ0
1 = {S,S0, A1, B2, C3,R4,R} and

Γ1
1 = {S,S1, A2, B3, C4,R5,R} in G5, corresponding to some path Γ1 = {S, A,B,C,R}

in a network G. If ρ = 1 and if the adversary corrupts node A during first round, then
Γ0

1 is corrupted. However, it does not imply that Γ1
1 is also corrupted until and unless

the adversary corrupts node A in the second round also. However, if ρ = 2 and if the
adversary corrupts node A during the first round, then both Γ0

1 and Γ1
1 will be corrupted

because node A will remain corrupted during the second round also. Thus for ρ = 1,
the two space time paths are independent of each other but for ρ = 2, the two space
time paths can be treated as one set, which will be corrupted if the adversary corrupts
the first node of the physical path during the first round.

In general, if any reliable protocol is executed for r rounds, then in Gr, each Γi, 1 ≤
i ≤ 2tb + 1 will have ⌈ r−Ni

ρ ⌉ independent securely disjoint set of space time paths.
Notice that if ρ = 1, then each space time path is itself an independent set and hence
we get r −Ni independent sets for each Γi. Since the adversary can corrupt nodes up
to r − 1 rounds, in Gr, at most ⌈ r−1

ρ ⌉ × tb independent sets can be corrupted. This is

because out of r−1 rounds, the adversary will change the set of corrupted nodes ⌈ r−1
ρ ⌉

times. We now state the following theorem:

Theorem 4.23 Let G be a (2tb + 1)-(S, R) connected undirected network under the
influence of a tb-active mobile adversary with roaming speed of ρ > 1. Then the mini-
mum number of rounds rρ

min required for reliable communication from S to R in G is

given by rρ
min = min {r, rρ−1

min} where r is the minimum value satisfying the inequality∑i=2tb+1
i=1 ⌈ r−Ni

ρ ⌉ ≥ 2⌈ r−1
ρ ⌉ × tb + 1.

Proof: Necessity: In Gr, there will be
∑i=2tb+1

i=1 ⌈ r−Ni

ρ ⌉ independent set of securely

disjoint paths, out of which at most ⌈ r−1
ρ ⌉tb independent sets could be corrupted. Con-

sidering each independent set as wires, from [28], r will be rρ
min if

∑i=2tb+1
i=1 ⌈ r−Ni

ρ ⌉ ≥

2⌈ r−1
ρ ⌉ × tb + 1. If the minimum value of r satisfying this inequality is greater than

rρ−1
min, then rρ

min = rρ−1
min because a mobile adversary with roaming speed ρ is always

weaker in capability than one with roaming speed ρ − 1. Hence any round optimal
PRMT protocol tolerating a mobile adversary with roaming speed ρ − 1 can always
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withstand a mobile adversary with roaming speed ρ.

Sufficiency: We design PRMT protocol called RELρ, which reliably sends a message

from S to R in rρ
min rounds. If rρ

min = rρ−1
min, then RELρ is same as RELρ−1. Otherwise,

RELρ is defined as given in Fig. 4.7.

Figure 4.7: Round-Optimal Reliable Message transmission of mS Tolerating a Mobile
Adversary with Roaming Speed of ρ > 1.

Protocol RELρ

1. S sends mS along the first space time path of each
∑i=2tb+1

i=1 ⌈
rρ
min−Ni

ρ ⌉ inde-
pendent set of securely disjoint space time paths.

2. R only considers the values received along the first space time path of each of

the
∑i=2tb+1

i=1 ⌈
rρ
min−Ni

ρ ⌉ independent set of securely disjoint space time paths

and outputs the majority as mS.

The correctness of protocol RELρ follows from the fact that R will receive
∑i=2tb+1

i=1 ⌈
rρ
min

−Ni

ρ ⌉ different copies of the message mS, out of which at most ⌈
rρ
min

−1
ρ ⌉×

tb can be corrupted. However since
∑i=2tb+1

i=1 ⌈
rρ
min−Ni

ρ ⌉ ≥ 2⌈
rρ
min−1

ρ ⌉ × tb + 1, R will

always receive the correct message mS along the majority of the paths. 2

We now illustrate Theorem 4.23 with the following example:

Example 4.24 Consider the network G in Fig. 4.4. If ρ = 1, then from Theorem
4.18, r1

min = 10. However, if ρ = 2, then from Theorem 4.23, r2
min = 9. For the

network G of Fig. 4.4, in the transmission graph G8, there will be the following space
time paths between S and R:

1. Γ0
1 = {S,S0, A1, B2,R3,R};

2. Γ1
1 = {S,S1, A2, B3,R4,R};

3. Γ2
1 = {S,S2, A3, B4,R5,R};

4. Γ3
1 = {S,S3, A4, B5,R6,R};

5. Γ4
1 = {S,S4, A5, B6,R7,R};

6. Γ5
1 = {S,S5, A6, B7,R8,R}

7. Γ0
2 = {S,S0, C1,D2, E3, F4,R5,R};

8. Γ1
2 = {S,S1, C2,D3, E4, F5,R6,R};

9. Γ2
2 = {S,S2, C3,D4, E5, F6,R7,R};

10. Γ3
2 = {S,S3, C4,D5, E6, F7,R8,R};

11. Γ0
3 = {S,S0, G1,H2, I3, J4,K5,R6,R};

12. Γ1
3 = {S,S1, G2,H3, I4, J5,K6,R7,R};
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13. Γ2
3 = {S,S2, G3,H4, I5, J6,K7,R8,R}.

If ρ = 2, then there will be total seven independent set of securely disjoint paths (three
corresponding to Γ1, two corresponding to Γ2 and two corresponding to Γ3). Note that
the last set of securely disjoint path corresponding to Γ3 will have only one path unlike
the other sets, each of which will have two paths. Now out of the eight rounds, adversary
can do corruption in round one, three, five and seven. Hence, there can be at most four
sets of securely disjoint paths out of the seven sets which can be under the control of
the adversary. Since majority of the sets will be under the control of the adversary, no
reliable protocol is possible in eight rounds. More formally, there exists two elements
in the the static adversary structure ADV8

static corresponding to the transmission graph
G8, such that removal of all the securely disjoint paths passing through these nodes in G8

disconnects S and R. For example, consider the sets {A1, A2, A3, A4, A5, A6,K7,K8}
and {C1, C2, C3, C4,K5,K6,K7,K8} belonging to the adversary structure ADV8

static.
The set {A1, A2, A3, A4, A5, A6,K7,K8} denotes an adversary who corrupts nodes A
in the first round (and hence in the second round also because ρ = 2), node A in
the third round (and hence in the fourth round also), node A in the fifth round (and
hence in the sixth round also) and finally node K in the seventh round. Similarly, the
other adversary element can be interpreted. Now it is easy to see that all the space
time paths in G8 passes through one of the nodes in {A1, A2, A3, A4, A5, A6,K7,K8} ∪
{C1, C2, C3, C4,K5,K6,K7,K8}. Hence removal of these nodes will disconnect S and
R and hence no reliable protocol will exist in G8 and hence r2

min 6= 8.
However, if we consider the transmission graph G9, then there will be nine inde-

pendent set of securely disjoint paths between S and R (four corresponding to Γ1, three
corresponding to Γ2 and two corresponding to Γ3), out of which at most four sets can
be under the control of the adversary. Hence majority of the sets will not be under the
control of the adversary and hence reliable protocol is possible between S and R in G9.
Since the protocol can be simulated in the original network G in nine rounds, r2

min = 9.
Note that for G, r1

min = 10. Hence r2
min < r1

min.

Once we know how to compute rρ
min in the presence of 2tb + 1 node disjoint paths

between S and R, Algorithm-Round-Complexity can be adapted to find rρ
min in the

presence of more than 2tb + 1 node disjoint paths between S and R, tolerating a tb-
active mobile adversary with roaming speed of ρ > 1.

4.5.6 Computing Minimum Number of Rounds for Static Adversary

Here we compute rmin for reliable communication against a tb-active static adversary.
If a node is corrupted by the static adversary in some round, then it remains corrupted
for the remaining rounds of the protocol. Hence, the total number of nodes that will
be corrupted throughout the protocol is tb.

Theorem 4.25 Let G be a (2tb + 1)-(S, R) connected undirected network under the
influence of a tb-active static adversary. Let Γ1,Γ2, . . . ,Γ2tb+1 be the 2tb + 1 vertex
disjoint paths with Ni nodes in Γi, 1 ≤ i ≤ 2tb + 1. Let the paths be arranged in
ascending order of path length. Then rmin = N2tb+1 + 1, the length of the longest path
Γ2tb+1.

Proof: Necessity: A node once corrupted by static adversary remains so for the
remaining rounds of the protocol. Hence all the space time paths passing through the
node remain corrupted. Thus, if the adversary corrupts the first node of Γi during the
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first round of an r round PRMT protocol, then all the r − Ni + 1 space time paths
Γj

i , 0 ≤ j ≤ r−Ni will be corrupted (this is the worst adversary strategy). So all these
paths can be considered as a single set controlled by the adversary. Likewise, all the
individual space time paths corresponding to each Γi can be considered as a single set.
Hence rmin is the minimum value of r such that after r rounds, there exists 2tb + 1
such independent sets (corresponding to each of the 2tb + 1 physical paths in G). It is
easy to verify that rmin is N2tb+1 + 1 which is the length of the longest path Γ2tb+1 in
G. The reason is that the independent set corresponding to Γ2tb+1 will be generated
only in GN2tb+1+1; i.e., after N2tb+1 +1 rounds. Before that, in Gr, r = N2tb+1, only the
independent sets corresponding to Γi, 1 ≤ i ≤ 2tb will be generated. Hence there will
be only 2tb such independent sets in GN2tb+1 , out of which at most tb can be corrupted
by the adversary. Hence no reliable protocol will be possible in GN2tb+1 and hence rmin

will be at least N2tb+1 + 1.

Sufficiency: Consider the following protocol in GN2tb+1+1: S sends the message along
the first space time path corresponding to each of the 2tb + 1 independent sets. On
receiving, R will output majority as the message. The correctness of the protocol
follows from the fact that in GN2tb+1+1, there will be 2tb + 1 independent sets of paths,
of which at most tb could be corrupted. 2

4.5.7 Communication Optimal PRMT Protocol in Terms of Rounds

Let S and R be connected by 2tb + 1 node disjoint paths and let there be a tb-active
mobile adversary, with roaming speed of ρ = 1. From Theorem 4.18, in Grmin there
will be 2tb(rmin − 1) + 1 securely disjoint paths, out of which at most tb(rmin − 1)
can be corrupted. However each of these paths are temporal and hence can be used
at most once. We now present the modified version of three phase PRMT protocol
3-Optimal-PRMT-Mobile-Byzantine, called PRMT-Round-Mobile-Byzantine, tolerating a
mobile adversary who can corrupt tb nodes in every round of a protocol.

PRMT-Round-Mobile-Byzantine is executed for 3rmin rounds on G, where G is the
original network consisting 2tb + 1 vertex disjoint paths between S and R. The first
phase of 3-Optimal-PRMT-Mobile-Byzantine is executed in the first rmin rounds from
S to R, the second phase of 3-Optimal-PRMT-Mobile-Byzantine is executed in the next
rmin rounds from R to S and finally the third phase in the last rmin rounds from S to
R. This can be visualized as executing a 3rmin round protocol on G3rmin , where first
rmin rounds are executed from S to R, next rmin rounds from R to S and finally last
rmin rounds from S to R.

Let q = tb(rmin−1) and n = 2q+1. We refer to the nodes corresponding to the first

rmin rounds from S to R as the first half denoted by Γ
(1)
i , 1 ≤ i ≤ 2q + 1 , the nodes in

the next rmin rounds from R to S as second half denoted by Γ
(2)
i , 1 ≤ i ≤ 2q+1 and the

nodes in the last rmin rounds from S to R as third half denoted by Γ
(3)
i , 1 ≤ i ≤ 2q +1.

From Theorem 4.18, rmin = N − 2tb + 1.
Protocol PRMT-Round-Mobile-Byzantine is same as protocol 3-Optimal-PRMT-Mobile-

Byzantine, except that degree of each bi-variate polynomial is q. Moreover, Phase i, 1 ≤

i ≤ 3 is executed in rmin rounds on Γ
(i)
j , 1 ≤ j ≤ 2q+1. PRMT-Round-Mobile-Byzantine

can be simulated on G following the explanation provided earlier for REL protocol. It
is easy to see that Lemma 4.5 and Lemma 4.6 will hold for PRMT-Round-Mobile-
Byzantine, with q in place of tb. Protocol PRMT-Round-Mobile-Byzantine reliably sends
n(q + 1)2 = Θ(n3) field elements by communicating O(n3) field elements in 3rmin

rounds. The protocol is formally given in Fig. 4.8.
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Figure 4.8: A 3rmin Round Communication Optimal PRMT Protocol in Terms of
Rounds

Protocol PRMT-Round-Mobile-Byzantine

Let the sequence of n(q + 1)2 field elements that S wishes to transmit be denoted by mS

k,i,j ,
0 ≤ i, j ≤ q and 1 ≤ k ≤ n.

First rmin rounds: (S to R) executed over space time paths Γ
(1)
i

1. Using the mS

k,i,j values, S defines n bivariate polynomials FS

k (x, y), 1 ≤ k ≤ n as follows:

FS

k (x, y) =
P

i=q
j=q

i=0,j=0 mS

k,i,jx
iyj .

2. S evaluates each FS

k (x, y), 1 ≤ k ≤ n at y = 1, . . . , n to obtain total n2 polynomials denoted
as pS

k,i(x), 1 ≤ k, i ≤ n, each of degree q where pS

k,i(x) = FS

k (x, i).

3. Over space time paths Γ
(1)
i , 1 ≤ i ≤ 2q + 1, S sends pS

k,i(x), 1 ≤ k ≤ n and the values pS

k,j(i),
denoted by rS

k,j,i, for 1 ≤ k, j ≤ n.

Second rmin rounds: (R to S) executed over space time paths Γ
(2)
i

1. Let R receive over space time path Γ
(1)
i , 1 ≤ i ≤ n the polynomials pR

k,i(x) and the values
rR

k,j,i, 1 ≤ k, j ≤ n.

2. Using the received values, R constructs the conflict graphs H1, . . . , Hn.

3. R combines Hk, 1 ≤ k ≤ n into a single conflict graph HR using Union Technique and forms
the corresponding list of seven tuples X and reliably sends X to S by executing protocol
REL over the space time paths Γ

(2)
i , 1 ≤ i ≤ 2q + 1.

Last rmin rounds: S to R executed over space time paths Γ
(3)
i

1. At the end of REL, S reliably receives the list X and identifies all faulty space time paths
Γ

(1)
i over which R has received at least one faulty polynomial pR

k,i(x) 6= pS

k,i(x) during first
rmin rounds.

2. S adds all faulty paths to a list Lfault. Note that |Lfault| ≤ q. S then reliably sends Lfault

to R by executing protocol REL protocol over the space time paths Γ
(3)
i , 1 ≤ i ≤ 2q + 1 and

terminates PRMT-Round-Mobile-Byzantine.

Message Recovery by R.

1. R reliably receives Lfault at the end of REL and identifies all space time path Γ
(1)
i over which

it has received at least one faulty polynomial pR

k,i(x) 6= pS

k,i(x) during the first rmin rounds
(proof is similar to Lemma 4.5).

2. R neglects all the polynomials pR

k,i(x), 1 ≤ k ≤ n received over each Γ
(1)
i ∈ Lfault during

first rmin rounds.

3. Using the remaining (at least q + 1) pR

k,i(x)’s, 1 ≤ k ≤ n, R correctly recovers the bivariate
polynomials FS

k (x, y)’s, 1 ≤ k ≤ n and hence the message and terminates PRMT-Round-

Mobile-Byzantine.

Lemma 4.26 Protocol PRMT-Round-Mobile-Byzantine is both round optimal as well
as communication optimal.

Proof: The proof simply follows from the fact that protocol PRMT-Round-Mobile-
Byzantine simulates the phase optimal and communication optimal three phase proto-
col 3-PRMT-Mobile-Byzantine and it takes rmin rounds to simulate a phase of protocol
PRMT-Round-Mobile-Byzantine. 2

In protocol PRMT-Round-Mobile-Byzantine, we have assumed that the adversary has
roaming speed of ρ = 1 and there are 2tb + 1 node disjoint paths between S and R.
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However, the protocol can be easily modified if there are more than 2tb + 1 paths
between S and R. This is because we can use Algorithm-Round-Complexity to compute
rmin. Similarly, if ρ > 1, then also we can compute rρ

min and accordingly modify
protocol PRMT-Round-Mobile-Byzantine.

4.6 Concluding Remarks and Open Problems

On the first look, a mobile adversary appears to be much more powerful and demand-
ing than a static adversary with the same threshold. However the equivalence in terms
of tolerability for these two kind of adversaries has been shown in [82]. In this chap-
ter we have shown the equivalence in terms of designing optimal PRMT protocol.
Specifically, we presented a three phase communication optimal PRMT protocol in
undirected synchronous network tolerating Amobile

tb
. Moreover, we have shown that our

protocol is phase optimal, as well as require minimum connectivity. Our protocol takes
three phases and sends a message of size ℓ field elements by communicating O(ℓ) field
elements. Our protocol, along with Theorem 4.1 completely settles the issue of pos-
sibility, feasibility and optimality of PRMT in undirected synchronous network
tolerating Amobile

tb
. These results are summarized in Fig. 4.9.

Figure 4.9: Summary of the Results for PRMT in Undirected Synchronous Network
Tolerating Amobile

tb

Number of Connectivity Lower Bound on Upper Bound
Phases (r) Requirement (n) Communication

Complexity

r ≤ 2 n ≥ 2tb + 1 Ω
(

nℓ
n−2tb

)
Broadcast protocol:

Theorem 4.1 Theorem 4.2 n = 2tb + 1,
Communication

complexity = O(nℓ)

r ≥ 3 n ≥ 2tb + 1 Ω
(

nℓ
n−tb

)
Protocol

Theorem 4.1 Theorem 4.3 3-Optimal-PRMT-Mobile-Byzantine:
n = 2tb + 1, ℓ = Θ(n3)

Communication
complexity = O(ℓ)

From Fig. 4.9, we find that protocol 3-Optimal-PRMT-Mobile-Byzantine is commu-
nication optimal only if the message contains ℓ = Θ(n3) field elements. This leads to
the following open question:

Open Problem 2 Let S and R be connected by n = 2tb + 1 wires. Then does there
exist a multiphase (more than two phase) PRMT protocol which reliably sends a message
containing ℓ field elements, by communicating O(ℓ) field elements, tolerating Amobile

tb
,

for all values of ℓ ?

Our second major contribution in this chapter comes in terms of providing a generic
method to compute the minimum number of rounds for PRMT tolerating a mobile
adversary with arbitrary roaming speed. Though we have presented round optimal
protocol for reliable communication for every tolerable adversary, we are able to show
that the round optimal protocol are efficient only if the network is given as a collection
of node disjoint paths. This leads to the following interesting open problem:
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Open Problem 3 Given an arbitrary network and a tb-active mobile adversary, with
arbitrary roaming speed ρ, what is the minimum number of rounds required for reliable
communication?

Till now we have considered only Byzantine adversary, who corrupts the nodes in
Byzantine fashion. In the next chapter, we consider a mixed adversary, who can corrupt
nodes in a variety of ways.
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Chapter 5

On Tradeoff Among Network
Connectivity, Phase Complexity
and Communication Complexity
of PRMT Tolerating Static
Mixed Adversary

In the last two chapters, we have studied PRMT tolerating only Byzantine corruption.
However, in a typical large network, there can be various other type of corruption.
For example, certain nodes may be strongly protected and few others may be moder-
ately/weakly protected. An adversary may only be able to fail-stop a strongly protected
node, while he may affect in a Byzantine fashion a weakly protected node. Thus, we
may capture the abilities of an adversary in a more realistic manner using two pa-
rameters tb and tf , where tb and tf are the number of nodes corrupted in Byzantine
and fail-stop respectively. Also it is better to grade different kinds of disruption done
by adversary and consider them separately rather than treating every kind of fault
as Byzantine fault because this is an “overkill” (a more detailed discussion on the last
point will appear in the subsequent section of this chapter). So in this chapter, we study
PRMT in undirected synchronous network, tolerating threshold static mixed adversary.
We now give the formal specification of the network model used in this chapter.

5.1 Underlying Network Model and Adversary Settings

The underlying network model is similar as in Chapter 3. However, instead of a static
Byzantine adversaryAstatic

tb
, we assume the presence of a static mixed adversary Astatic

(tb,tf ).

The adversary Astatic
(tb,tf ) has unbounded computing power and controls disjoint sets of tb

and tf nodes in Byzantine and fail-stop fashion 1 respectively. Thus, we assume that
S and R are connected by n parallel and synchronous bi-directional node disjoint
paths/channels w1, w2, . . . , wn, also called as wires. The adversary Astatic

(tb,tf ), having

unbounded computing power can corrupt up to tb and tf wires in Byzantine and fail-
stop fashion respectively. Moreover, as a worst case assumption, we assume that the
wires that are under the control of the adversary in Byzantine and fail-stop fashion are
mutually disjoint.

1See Section 2.1 for the definition of fail-stop corruption.
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The characteristic of a Byzantine corrupted wire is already specified in Chapter 3.
A wire which is controlled in a fail-stop fashion may fail to deliver any information,
but if it delivers the information then it will be correct. Moreover, the adversary will
have no idea about the information that has passed through a wire which is controlled
in fail-stop fashion.

We assume that any PRMT protocol operates as a sequence of phases. The static
mixed adversary Astatic

(tb,tf ) controls the same set of tb (tf ) wires among n wires, in

Byzantine (fail-stop) respectively, in different phases of any PRMT protocol. The
static Byzantine adversary Astatic

tb
is a special type of Astatic

(tb,tf ) with tf = 0, who controls

at most tb wires in Byzantine fashion.

5.2 Existing Results for PRMT Tolerating Astatic
(tb,tf )

In [75], the author gave the following characterization for PRMT in undirected syn-
chronous network tolerating Astatic

(tb,tf ).

Theorem 5.1 ([75]) Let r ≥ 1. Then any r-phase PRMT protocol over an undirected
synchronous network N tolerating Astatic

(tb,tf ) is possible iff N is (2tb + tf + 1)-(S, R)-

connected.

Proof (sketch): The necessity of the above condition follows from the following
argument: Let Π be a PRMT protocol over N , where there exists n = 2tb + tf wires
between S and R. Now consider the following adversarial strategy of Astatic

(tb,tf ): the

adversary blocks the communication over tf wires. Now consider the network N ′

that is induced by N after deleting these tf wires from N (this can be interpreted
as adversary Astatic

(tb,tf ) blocking the communication over tf wires). It follows that N ′ is

not a (2tb + 1)-(S,R)-connected network. Evidently, if Π is a PRMT protocol in N
tolerating Astatic

(tb,tf ), then Π′ is a PRMT protocol in N ′ tolerating Astatic
tb

, where Π′ is the

protocol Π restricted to the nodes in N ′. However, from Theorem 3.2, we know that
Π′ is non-existent. Thus Π is impossible too.

The sufficiency of the above condition is shown by the following protocol: Let S
and R be connected by n = 2tb + tf + 1 wires. S broadcasts the message mS through
all the n wires. Out of the n wires, at most tf wires may fail to deliver any information,
while tb wires may deliver incorrect information. However, there exists at least tb + 1
honest wires, which will deliver correct mS. Hence R recovers mS by taking majority
among the received values. 2

5.2.1 Justification to Study PRMT Tolerating Astatic
(tb,tf )

We now demonstrate that Theorem 5.1 shows more fault tolerance in comparison to
Theorem 3.2. Let N be a network where S and R are connected by n = 4 wires. Then
from Theorem 3.2, the maximum number of Byzantine faults that can be tolerated
is one. However, from Theorem 5.1, it is possible to tolerate one fail-stop fault, in
addition to one Byzantine fault. Thus Theorem 5.1 shows the availability of more
fault tolerance in comparison to Theorem 3.2. If we would have modelled the fail-stop
corruption as Byzantine corruption, then from Theorem 3.2, we would have required
six wires, which is clearly more than what is actually required. This justifies the study
of mixed adversary in the context of PRMT.

In the next section, we define the holy grail problem of PRMT tolerating Astatic
(tb,tf ).
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5.3 Holy Grail Problem of PRMT Tolerating Astatic
(tb,tf )

We now formulate the holy grail problem of PRMT tolerating Astatic
(tb,tf ). PRMT toler-

ating Astatic
(tb,tf ) is possible iff there exists n ≥ 2tb + tf + 1 wires between S and R (see

Theorem 5.1). Let us first consider the scenario where we work with minimal connec-
tivity required for the existence of PRMT against Astatic

(tb,tf ); viz n = 2tb + tf + 1. From

the basic results of coding theory (see Theorem 5.5), any single phase PRMT protocol
over n = 2tb + tf + 1 wires has to communicate Ω(nℓ) field elements to reliably send
a message mS, containing ℓ field elements. In fact, there exists a naive single phase
PRMT protocol (namely the broadcast protocol) with a communication complexity of
O(nℓ). So any PRMT protocol with communication complexity of less than nℓ, must
run for several phases. Hence a natural and fundamental question here is the following:

Given n = 2tb + tf + 1, a message mS of size ℓ field elements and b <
nℓ, what is the lower bound Ω(r) on the phase complexity of any PRMT
protocol, which sends mS with a total communication complexity of O(b)?
Moreover, do we have such an O(r) phase efficient PRMT protocol, whose
total communication complexity is O(b)?

It is clear that for any PRMT protocol, the communication complexity b should
satisfy ℓ ≤ b ≤ nℓ. This is because any PRMT protocol has to at least send the mes-
sage. So Ω(ℓ) is a trivial lower bound on the communication complexity of any PRMT
protocol. On the other hand, there exists a naive, single phase PRMT protocol with
a communication complexity of O(nℓ). We may refer a PRMT protocol with com-
munication complexity of O(ℓ), as communication optimal PRMT protocol or PRMT
protocol with constant factor overhead. Extending the previous question to this very
interesting and important case, we may ask the following:

When n = 2tb + tf +1, |mS| = ℓ and b = ℓ, what is the lower bound Ω(r) on
the phase complexity of any PRMT protocol, which sends mS with a total
communication complexity of O(b)? Moreover, do we have such an O(r)
phase efficient PRMT protocol?

Note that if such a protocol exists, it will be simultaneously optimal in connectivity,
communication complexity and phase complexity.

So far, we have considered only minimally connected network. If we have higher
connectivity, then again the required number of phases may be reduced. Specifically,
when n ≥ 2tb + tf + 1 and b < nℓ, we ask for minimum r and a corresponding phase
optimal protocol. Unifying all the above questions, we formulate the following most
generic question, which is the holy grail for PRMT problem:

Given an n-connected network (n ≥ 2tb + tf + 1) under the influence of
Astatic

(tb,tf ), a message mS of size ℓ field elements and a value b, where ℓ ≤ b <

nℓ, what is the lower bound Ω(r) on the phase complexity of any PRMT
protocol, which sends mS with a total communication complexity of O(b)?
Moreover, do we have such an O(r) phase efficient PRMT protocol?

To the best of our knowledge, no one has addressed the above all encompassing and
unifying question.
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5.4 Our Solution to the Holy Grail Problem

In this chapter, we completely resolve the holy grail question by deriving exact ex-
pression for lower bound for the phase complexity of PRMT protocols and also design
a PRMT protocol whose phase complexity matches this bound asymptotically, thus
proving that our bound is asymptotically tight. Our lower bound expression is first of
its kind, which simultaneously captures the inherent relationship among all the param-
eters of any PRMT protocol, namely n, b and r. The existing lower bound(s) and the
corresponding optimal protocols [28, 77] in the context of PRMT, try to optimize only
one parameter out of n, b and r.

From our general result, we obtain several interesting corollaries on the inherent
trade-off available between the three parameters, namely n, b and r. For example our
general result imply that when tb = 0, n = tf + 1 and b = O(ℓ), then any PRMT
protocol requires Ω(log(tf )) phases to send mS, where |mS| = ℓ.

5.5 An Overview of Our Results in This Chapter

In this section, we give an overview of our results which are presented in this chapter.
In summary we show the following in this chapter:

1. Let S and R be connected by n ≥ 2tb+tf +1 wires. Then any single phase PRMT

protocol tolerating Astatic
(tb,tf ) has to communicate Ω

(
nℓ

n−(2tb+tf )

)
field elements to

reliably send a message containing ℓ field elements. Moreover this bound is tight.
The lower bound is derived by showing equivalence of single phase PRMT toler-
ating Astatic

(tb,tf ) and (tb, tf )-block error/erasure correcting codes.

2. If tf ≤ (n−tf ), then there exists a three phase PRMT protocol tolerating Astatic
(tb,tf ),

which can send mS containing Θ(n3) field elements by communicating O(n3) field
elements.

3. Let S and R be connected by n ≥ 2tb + tf + 1 wires such that tf > 0 and tf >
(n− tf ). Let mS be a message of size ℓ field elements, which S wants to reliably
send to R, tolerating Astatic

(tb,tf ), such that the total communication complexity of

the protocol is O(b), where ℓ ≤ b < nℓ. Then any PRMT protocol to send mS

must run for Ω

(
log(

tf
n−tf

)

log( cb
ℓ

)

)
= Ω(D) phases, where c > 1 is a positive constant.

We show that this bound on phase complexity is asymptotically tight. That is,
we design an O(D) phase PRMT protocol tolerating Astatic

(tb,tf ), where S and R are

connected by n ≥ 2tb + tf + 1 wires. The protocol reliably sends a message mS

containing ℓ = n3 field elements by communicating O(b) field elements, where
ℓ ≤ b < nℓ.

As important corollaries of the above lower bound, we also show the following:

(a) Any PRMT protocol with constant factor overhead over n = tf + 1 wires,
influenced by Astatic

tf
(i.e., tb = 0), must run for Ω(log(tf )) phases.

(b) Let S and R be connected by 2tb + tf + 1 wires, such that tb, tf > 0 and
tf > (n − tf ). Then any PRMT protocol with constant factor overhead

tolerating Astatic
(tb,tf ), must run for Ω(log(

tf
tb

)) phases.
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Remark 5.2 (Surprising Factor) As mentioned above, if tb = 0, n = tf + 1 and
b = O(ℓ), then any PRMT protocol requires Ω(log(tf )) phases to send mS containing
ℓ field elements against Astatic

tf
. This is surprising because from Theorem 3.16, against

only static Byzantine adversary Astatic
tb

(i.e., tf = 0), there exists a constant (three)
phase PRMT protocol, which achieves reliability with constant factor overhead. These
two results seem to be counter intuitive, since a Byzantine adversary is more powerful
than fail-stop adversary (a Byzantine adversary can maliciously change the information
over a wire, where as fail-stop adversary can only block the communication over a
wire). However, we informally explain the subtle but simple reason behind this seemingly
paradoxical result (a formal argument is given in the subsequent section).

In a minimally connected network tolerating only Byzantine adversary, we have
n = 2tb +1 wires. So the number of corrupted wires is less than half of the total number
of wires. This allow us to do error detection/correction in three phases, resulting in
a three phase PRMT protocol with a communication complexity of O(ℓ) (for details,
see protocol 3-Optimal-PRMT-Static-Byzantine in Fig. 3.4). However, in a minimally
connected network tolerating only fail-stop adversary, we have only n = tf + 1 wires
between S and R, of which there is only one un-corrupted wire. It is this reduced
connectivity (in comparison to the case of a Byzantine adversary) that hinders us to
design a constant phase PRMT protocol against fail-stop adversary in a minimally
connected network, with communication complexity of O(ℓ).

In the next section, we derive the lower bound on the communication complexity
of single phase PRMT protocol tolerating Astatic

(tb,tf ).

5.6 Bounds for Single Phase PRMT Tolerating Astatic
(tb,tf )

In this section, we show the equivalence between a single phase PRMT tolerating
Astatic

(tb,tf ) and (tb, tf )-block error-erasure correcting code. Let S and R be connected by

N ≥ 2tb+T +1 wires, w1, . . . , wN , of which at most tb and T wires can be Byzantine and
fail-stop corrupted, such that T ≤ tf . We design a single phase PRMT protocol called
1-PRMT-Mixed, which allows S to reliably send a message mS containing ℓ ≥ 1 field
elements to R. The protocol is based on the properties of RS codes and is presented in
Fig. 5.1.

We now prove the properties of protocol 1-PRMT-Mixed.

Lemma 5.3 (Correctness) Protocol 1-PRMT-Mixed correctly delivers mS.

Proof: In order to show that R will correctly receive mS, we show that R will recover
each BS

j correctly. In the protocol, each BS
j is of size k = N−2tb−T and is RS encoded

into a codeword of length N ≥ 2tb + T + 1. Corresponding to each BS
j , R receives a

vector CR
j of size N ′ where N ′ ≥ N − T and this vector CR

j differs from the original

codeword CS
j in at most tb locations. So by putting N ′ ≥ N−T, k = N−2tb−T, c = tb

and d = 0 in the inequality of Theorem 2.19, we find that R will be able to correct all
the tb errors in CR

j by applying RS-DEC to CR
j . Thus R correctly recovers BS

j . 2

Lemma 5.4 (Communication Complexity) The communication complexity of pro-

tocol 1-PRMT-Mixed is O
(

Nℓ
N−2tb−T

)
.

Proof: Corresponding to each block of size k, S sends an RS codeword of length N .

So communication complexity of the protocol is O
(

Nℓ
k

)
= O

(
Nℓ

N−2tb−T

)
. 2
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Figure 5.1: Single Phase Reliable Message Transmission Tolerating Mixed Adversary

Protocol 1-PRMT-Mixed(mS, ℓ,N, tb, T, k = N − 2tb − T )

Phase I: S to R: S does the following computation and communication:

1. S breaks up mS into blocks BS
1 , . . . ,BS

ℓ/k, each consisting of k field elements,
where k = N − 2tb − T . If ℓ is not an exact multiple of k, a default padding
is used to make ℓ mod k = 0.

2. For j = 1, . . . , ℓ/k, S computes an RS codeword CS
j = (cSj1, . . . , c

S
jN ) of length

N , corresponding to block BS
j .

3. For i = 1, . . . , N , S sends cSji to R along wire wi, for j = 1, . . . , ℓ/k.

Message Recovery by R:

1. Let R receive information over wires wi1 , . . . , wiN′ , where {wi1 , . . . , wiN′ } ⊆
{w1, . . . , wN} and N ′ ≥ N − T .

2. For j = 1, . . . , ℓ/k, let R receive cRji1, . . . , c
R
jiN′

along wire wi1 , . . . , wiN′ respec-

tively. Let CR
j = (cRji1 , . . . , c

R
jiN′

).

3. For j = 1, . . . , ℓ/k, R executes RS-DEC(N ′, CR
j , tb, 0, k) and recovers BR

j =

BS
j . R then concatenates all BR

j ’s to recover the message mR = mS.

Putting T = tf , the maximum value of T in protocol 1-PRMT-Mixed we find that given
a (tb, tf )-block error-erasure correcting code (for example RS code), whose maximum
attainable efficiency is bounded by Singleton Bound, we can design a single phase
PRMT protocol tolerating Astatic

(tb,tf ). The reverse process is equally valid - given a single

phase PRMT protocol against Astatic
(tb,tf ), we can convert it into a (tb, tf )-block error-

erasure correcting code, whose efficiency is bounded by Singleton Bound. Thus, the
maximum attainable efficiency for any single phase PRMT protocol is also subject to
the Singleton Bound. Thus we have the following theorem.

Theorem 5.5 Let S and R be connected by n ≥ 2tb + tf + 1 wires. Then any single

phase PRMT protocol tolerating Astatic
(tb,tf ) must communicate Ω

(
nℓ

n−(2tb+tf )

)
field ele-

ments to reliably send mS, where |mS| = ℓ. Moreover, the bound is tight.

Remark 5.6 The conversion from single phase PRMT protocol to an error-erasure
correcting code is straightforward if the messages sent along each wire in the protocol
are of same length. Suppose however, there exists a protocol Π that does not have
this symmetry property and beats the Singleton bound. Then consider the protocol Π′

which consists of n sequential executions of protocol Π with the identities of the wires
being “rotated” by a distance of i in the ith execution. Clearly this protocol achieves the
symmetry property by “spreading the load”; further its message expansion factor is equal
to that of Π. It therefore beats the Singleton bounds as well, which is a contradiction.
Thus without any loss of generality, we assume that the messages sent along each wire
in Π are of same length.
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5.6.1 Increasing the Throughput of Protocol 1-PRMT-Mixed

Protocol 1-PRMT-Mixed has another important property. Consider the following sce-
nario: Let S knows that R has the knowledge of the exact identity of α ≤ tb wires that
are Byzantine corrupted. However S does not know the exact identity of those α wires.
If this is the case, then the following theorem holds:

Theorem 5.7 (Increased Throughput in 1-PRMT-Mixed) Suppose S knows that
R has the knowledge of the exact identity of α ≤ tb wires that are Byzantine corrupted.
Then in protocol 1-PRMT-Mixed, S can reliably send mS using block size k = (N −
2tb − T ) + α. That is, S can send additional α field elements, than what is allowed
by Singleton bound. Moreover, the communication complexity of the protocol will be

O
(

Nℓ
(N−2tb−T )+α

)

Proof: Since R is aware of the exact identity of α Byzantine corrupted wires, R
can simply ignore the values received over these wires. So the length of each received
vector CR

j will be N ′, where N ′ ≥ N − T − α. Moreover CR
j will now differ from

original codeword CS
j in at most tb − α locations. So by putting N ′ ≥ N − T − α, k =

(N − 2tb− T )+ α, c = tb−α and d = 0 in the inequality of Theorem 2.19, we find that
by applying RS-DEC to CR

j , R will be able to correct all the tb − α errors in CR
j and

hence correctly recover BR
j .

Since k = (N − 2tb− T ) + α, the communication complexity of the protocol will be

O
(

Nℓ
(N−2tb−T )+α

)
. 2

5.6.2 PRMT Based on Both Error Correction and Detection Capa-
bility

Protocol 1-PRMT-Mixed uses only the error correcting capability of underlying error-
erasure correcting code. We now present a two phase protocol called 2-SP-REL-Mixed
(based on RS code which is a specific instance of error-erasure correcting code) that
possesses both error correction and error detection capabilities of the underlying error-
erasure correcting code. This is used later in designing our phase optimal PRMT
protocol. In 2-SP-REL-Mixed, S and R are connected by N ≥ 2tb + T + 1 wires, of
which at most tb and T wires can be Byzantine and fail-stop corrupted. Moreover,
T ≤ tf .

2-SP-REL-Mixed is based on the following principle: S and R guesses that adversary
will fail-stop at most T − kf wires and Byzantine corrupt at most tb

2 wires, where
0 ≤ kf ≤ T . If the adversary indeed does so, then S can reliably send tb

2 + kf extra
field elements (in addition to what is permitted by Singleton Bound) in a single phase
to R. However if adversary either fail-stops T − kf + 1 (or more) wires or Byzantine
corrupts more than tb

2 wires, then R will fail to recover anything. But R either comes to
know the identity of at least T−kf +1 fail-stop wires or detects more than tb

2 Byzantine
faults. In the later case, R can broadcast his findings to S, who after local verification
can identify more than tb

2 Byzantine corrupted wires. The protocol is presented in Fig.
5.2.

We now prove the properties of protocol 2-SP-REL-Mixed.

Lemma 5.8 (Correctness) In 2-SP-REL-Mixed:

1. If more than T −kf fail-stop errors occur during Phase I then R will not be able
to recover mS. However, in this case R will be able to know the identity of more
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Figure 5.2: Protocol 2-SP-REL-Mixed

Protocol 2-SP-REL-Mixed (mS, N, tb, T, kf)

Phase I: S to R

1. S performs the same computation and communication as done in protocol
1-PRMT-Mixed, except that now S divides mS into blocks BS

1 , . . . ,BS
z , each

consisting of k field elements, where k = (N − 2tb − T ) + tb
2 + kf .

Phase II: R to S

1. Let R receive information over N ′ wires, of which at most tb could be cor-
rupted. Thus R receives N ′ components, corresponding to each of the z code-
words.

2. IF N ′ < N−T +kf then R broadcasts to S, “ERROR1” signal along with the
count of the number of wires and their identity over which R has not received
any information and terminates. This case implies that more than T − kf

fail-stop errors have occurred during the transmission by S.

3. IF N ≥ N − T + kf then R applies RS-DEC(N ′, CR
i , tb

2 , tb
2 , k), where for i =

1, . . . , z, CR
i is the vector of length N ′, received corresponding to the block

BS
i . Now there are two possible cases:

(a) If after correcting tb
2 errors, the decoding algorithm does not detect ad-

ditional faults in any of the z received vectors, then R correctly recovers
BS

i , 1 ≤ i ≤ z. R then concatenates them to recover mS, broadcasts
“SUCCESS” signal to S and terminates the protocol. This case implies
that at most T − kf fail-stop errors and at most tb

2 Byzantine errors have
occurred during transmission by S.

(b) IF ∃e ∈ {1, 2, . . . , z}, such that after correcting tb
2 errors, the decoding

algorithm detects additional faults (at most tb
2 ) in the eth received vector

CR
e , then R broadcasts CR

e , along with index e and “ERROR2” signal
to S. If there are several such e’s, then R randomly selects one. R also
broadcasts the identity of wires which failed to deliver any information
and terminates. This case implies that at most T − kf fail-stop errors
and more than tb

2 Byzantine errors have occurred during transmission by
S.

Local Computation by S:

1. IF S receives ”SUCCESS” signal, then it does nothing.

2. IF S receives ”ERROR1” signal, then S comes to know the identity of N −N ′

fail-stop corrupted wires.

3. IF S receives ”ERROR2” signal, along with CR
e then after comparing it with

original codeword CS
e , S identifies more than tb

2 wires which were Byzantine
corrupted during Phase I.
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than T − kf fail-stop corrupted wires, which S will also come to know at the end
of Phase II.

2. If at most T − kf fail-stop and tb
2 Byzantine errors occur during Phase I, then

R will be able to recover mS.

3. If at most T −kf fail-stop errors and more than tb
2 Byzantine errors occur during

Phase I, then R will fail to recover mS. However, in this case R will detect that
more than tb

2 Byzantine errors have occurred during Phase I. Moreover, at the
end of Phase II, S will come to know the identity of more than tb

2 wires which
were Byzantine corrupted during Phase I.

Proof: We consider the following three cases:

1. More than T − kf wires get fail-stop corrupted during first phase: In
this case, irrespective of the number of Byzantine errors, R will come to know
the exact identity of more than T − kf wires which are fail-stop corrupted and
broadcasts their identity to S. So S will also come to know the identity of these
fail-stop corrupted wires. Notice that in this case R will fail to recover mS.

2. At most T − kf and tb
2 wires get fail-stop and Byzantine corrupted

respectively during Phase I: We consider the worst case, where exactly T−kf

wires get fail-stop corrupted during Phase I. Thus, R will receive a vector CR
i of

length N ′, corresponding to each block BS
i , where N ′ = N − (T − kf ). Moreover,

each CR
i will differ from CS

i in at most tb
2 locations. Notice that each BS

i is
RS encoded using a polynomial of degree k − 1 = (N − 2tb − T ) + tb

2 + kf − 1.
Substituting the value of N ′ and k in Theorem 2.19, we find that RS-DEC can
correct c = tb

2 and detect additional d = tb
2 Byzantine errors in each received

vector. Since the number of Byzantine errors in each received vector is at most
tb
2 , the decoding algorithm will correct them (and does not detect any additional
error) and recover each BS

i (and hence mS) correctly.

3. At most T − kf wires get fail-stop corrupted but more than tb
2 wires

get Byzantine corrupted during Phase I: Suppose more than tb
2 Byzantine

errors occur during the transmission of eth codeword CS
e , where e ∈ {1, 2, . . . , z}.

In this case, from the above argument, the decoding algorithm will correct tb
2

errors and will detect additional errors (at most tb
2 ) in the eth received vector

CR
e . So R will come to know that more than tb

2 Byzantine errors occurred during
the transmission of CS

e . So R broadcasts CR
e to S, who after locally comparing

it with the original eth codeword CS
e finds the identity of more than tb

2 Byzantine
corrupted wires. Notice that in this case, R will fail to recover the block BS

e and
hence the message mS. 2

Lemma 5.9 (Communication Complexity) The communication complexity of pro-

tocol 2-SP-REL-Mixed is O

(
|mS|N

(N−2tb−T )+
tb
2

+kf

)
+O(N2).

Proof: During Phase I, S sends an RS codeword of length N for each sub-block of
mS, where the size of each sub-block is (N − 2tb− T ) + tb

2 + kf . This incurs a commu-

nication cost of O

(
|mS|N

(N−2tb−T )+
tb
2

+kf

)
field elements. During Phase II, R broadcasts

a signal and in the worst case may also broadcast a vector of length N . This incurs
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a communication cost of O(N2). So total communication cost of protocol 2-SP-REL-

Mixed is O

(
|mS|N

(N−2tb−T )+
tb
2

+kf

)
+O(N2). 2

2-SP-REL-Mixed brings to the fore an important property (given in Corollary 5.9.1)
which holds for any single phase PRMT protocol. This property will be later used to
solve the holy grail problem of PRMT in the subsequent section.

Corollary 5.9.1 Let S and R be connected by N ≥ 2tb +T +1 wires, of which at most
tb and T wires can be Byzantine and fail-stop corrupted, such that T ≤ tf . Suppose S
wants to reliably send mS to R where |mS| = ℓ. If S in advance knows that adversary
will not do any Byzantine corruption and will only fail-stop at most T−kf wires, where
0 ≤ kf ≤ T , then S has to communicate at least Nℓ

(N−T+kf ) field elements to reliably

send mS. Moreover the minimum number of wires that the adversary needs to fail-stop
in order that R does not recover mS is T − kf +1. Thus if S does not know in advance
the number of fail-stop corruptions which are going to be done by the adversary, then

Nℓ
N−T+kf

is a trivial lower bound on the number of field elements to be sent by S, so

that either R recovers mS (if no Byzantine corruption and at most T − kf fail-stop
corruptions occur) or R comes to know the identity of at least T − kf + 1 fail-stop
corrupted wires (if more than T −kf fail-stop corruptions occur). The above expression
can also be viewed as ℓ× X+T

X+kf
, where X = N − T .

This finishes our discussion on single phase PRMT tolerating Astatic
(tb,tf ). In the next

section, we begin our discussion on the holy grail problem.

5.7 Answer to the Holy Grail Problem of PRMT

We now derive a nontrivial lower bound on phase complexity for any PRMT protocol
which transmits ℓ field elements by communicating O(b) field elements against Astatic

(tb,tf ),

where S and R are connected by n ≥ 2tb + tf + 1 wires and ℓ ≤ b < nℓ. This would
completely resolve the holy grail problem for PRMT. Notice that we are considering
n ≥ 2tb + tf + 1 because from Theorem 5.1, for the existence of any PRMT protocol
against Astatic

(tb,tf ), there should exist n ≥ 2tb + tf + 1 wires between S and R. Similarly,

we are interested in the case where ℓ ≤ b < nℓ. This is because any PRMT protocol
has a non-trivial lower bound of Ω(ℓ) on its communication complexity. On the other
hand, S can trivially send mS in a single phase by broadcasting it over the n wires.
This would require a communication cost of O(nℓ).

Recall that according to the definition of PRMT, R should correctly output the
message without any error. We assume that the protocol specification is public and
adversary is also aware of the steps of the protocol. Accordingly, the adversary device
his strategy. However, adversary has no access to the internal random coin tosses of S
and R. Without loss of generality, we assume that during each phase of the protocol,
the information sent over each wire is of the same length. Otherwise, using a similar
argument as given in Remark 5.6, we can show that any PRMT protocol which sends
un-equal sized information over each wire in each phase, does no better than a protocol
which sends equal sized information over each wire in each phase.

Theorem 5.10 Let S and R be connected by n ≥ 2tb + tf + 1 wires such that tf >
0 and tf > (n − tf ). Then any PRMT protocol tolerating Astatic

(tb,tf ), must run for
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Ω

(
log(

tf
n−tf

)

log( cb
ℓ

)

)

= Ω(D) phases for transmitting mS with a communication complexity

of O(b) field elements, where |mS| = ℓ, ℓ ≤ b < nℓ and c > 1 is a positive constant.

Remark 5.11 The lower bound of Ω(D) phases does not hold good if tf = 0. If tf = 0,
then n ≥ 2tb + 1. In this case, there exist a three phase PRMT protocol (protocol
3-Optimal-PRMT-Static-Byzantine, given in Fig. 3.4) which achieves reliability with
constant factor overhead. The lower bound also does not hold good if tf ≤ (n− tf ). If
tf ≤ (n− tf ), then we can send mS by communicating O(ℓ) field elements in constant
phases. A three phase PRMT protocol for achieving this task is given in section 5.8.1
(see Corollary 5.19.1).

Proof (of the theorem:) We present an adversarial behavior, against which no PRMT
protocol can send mS with a communication complexity of O(b) in less than D phases.
The adversary strategy is as follows: the adversary does no Byzantine corruption
throughout the protocol. Any lower bound derived with this assumption is surely
a lower bound when the adversary indeed does Byzantine corruption. So, here the
adversary does only fail-stop corruption. Once a wire (corrupted in fail-stop fashion)
fails to deliver information, it is marked as faulty wire and can be removed from the set
of current (currently used) wires. Therefore, at the beginning of any protocol, number
of current wires is n and number of undisclosed fail-stop wires is tf . Whenever a wire
(fail-stop corrupted) stops the communication, it reveals its corrupted status and thus
number of undisclosed fail-stop wires reduces. Let the number of undisclosed fail-stop
wires after ith disclosure be denoted by Li. Initially L0 = tf . Informally, the adver-
sarial strategy is as follows: During each phase, adversary checks how much portion of
mS, S is trying to send to R. This he can find out from the protocol specification. If
the size of the portion that S tries to send during a particular phase is more than a
“specific” limit, then the adversary does the minimum number of fail-stop corruptions,
so that R can recover only a specific “sub-portion” of the portion of mS sent by S in
that phase. Else, the adversary does no fail-stop corruption. Specifically, after the ith

disclosure of fail-stop corrupted wires, the adversary does the following:

• If S tries to send a portion of size q ≤
ℓ log( cb

ℓ
) log(tf )

log(Li) log(
tf

n−tf
)

=
ℓ log(tf )
D log(Li)

then adversary

does nothing.

• If S tries to send a portion of size more than
ℓ log(tf )
D log(Li)

then the adversary tries to

fail-stop the minimum number of wires so that R can recover only
ℓ log(tf )
D log(Li)

sub-portion
of the total portion that has been sent by S. If this is not possible then adversary fail-
stops in such a way that the number of undisclosed fail-stop wires reduces to tǫf , where
ǫ is a fixed positive fraction (which will be fixed shortly). Moreover, the adversary does
no corruption at all for the rest of the protocol execution.

In the sequel, we consider three possible cases and prove that in each case, the
number of phases required by the protocol is indeed Ω(D) and also show that such an
adversarial act is mountable against any protocol. During the computation of lower
bound, we use logarithm to the base e.

Claim 5.12 If the adversary does no fail-stop corruption throughout the protocol, then
the protocol terminates in Ω(D) phases.
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Proof: The reason why adversary remained inactive throughout the protocol is that

S never tried to transmit more than
ℓ log(tf )
D log(tf ) field elements from mS in any phase.

Hence, denoting the maximum message size as q that has been sent in any phase, we

get, q ≤
ℓ log(tf )
D log(L0) ≤

ℓ log(tf )
D log(tf ) = ℓ

D because L0 = tf . So the minimum number of phases

r, required to send ℓ field elements is given by r ≥ ℓ
q = D = Ω(D). 2

Claim 5.13 If the adversary fail-stops in such a way that the number of undisclosed
fail-stop wires at the end of the protocol remain strictly greater than tǫf , then the protocol
runs for Ω(D) phases.

Proof: Clearly, in this case the maximum message size sent by S in any phase is given

by q ≤
ℓ log(tf )
D log(tǫ

f
) =

ℓ log(tf )
Dǫ log(tf ) = ℓ

ǫD . So even if at most q field elements are communicated

in each phase, the protocol takes r ≥ ℓ
q = ǫD = Ω(D) phases to send ℓ field elements.

Hence the claim. 2

Claim 5.14 If the adversary fail-stops in such a manner that the number of undisclosed
fail-stop wires become less than or equal to tǫf , then also the protocol takes Ω(D) phases.

Proof: So in this case the number of undisclosed fail-stop wires reduces down to less
than or equal to tǫf . Suppose the adversary used k phases denoted as Ph1, Ph2, . . . , Phk

to reduce the number of undisclosed fail-stop wires from tf to tǫf . We will show that
k, the number of phases in which fail-stop corruption occurs is Ω(D), excluding other
phases where adversary does nothing. Let the number of undisclosed fail-stop wires
after Phi reduces from Li−1 to Li. So recording the count of undisclosed fail-stop
wires after every disclosure (of adversary) starting with the initial count of L0 = tf ,
we get a decreasing sequence tf , L1, L2, . . . , Lk−1, t

ǫ
f . Let α1, α2, . . . , αk be the number

of field elements communicated by S in the corresponding phases. In phase Phi, S

must have tried to send more than
ℓ log(tf )

D log(Li−1) field elements of mS and the adversary

exposed the minimum number of fail-stop corrupted wires (hence after Phi reducing

number of undisclosed fail-stop wires from Li−1 to Li) such that only
ℓ log(tf )

D log(Li−1) field
elements of the total message is recoverable by R. Then by Corollary 5.9.1, the number

of field elements αi, 1 ≤ i ≤ k transmitted in Phi is given by αi ≥
ℓ log(tf )

D log(Li−1) ×
X+Li−1

X+Li
,

where X = n − tf . This is so because during phase Phi, the number of current wires
is X + Li−1, the number of unknown errors (fail-stop) is Li−1 and S tried to sent

at least
ℓ log(tf )

D log(Li−1) field elements. The above mentioned attack by the adversary is

mountable since adversary is aware of αi (adversary knows the protocol specification)

and can solve
ℓ log(tf )

D log(Li−1) ×
X+Li−1

X+x = αi for x and accordingly blocks only Li−1 − x

wires, so that R recovers only
ℓ log(tf )

D log(Li−1) field elements and Li−1 reduces to Li. Since

the communication complexity of the protocol is O(b), the sum of all αi’s should be
bounded by d b, for some constant d ≥ 1. Hence

d b ≥
k∑

i=1

αi ≥
ℓ log(tf )

D log(tf )

X + tf
X + L1

+
ℓ log(tf )

D log(L1)

X + L1

X + L2

+ . . . +
ℓ log(tf )

D log(Lk−1)

X + Lk−1

X + tǫf

Since each 1
log(Li)

≥ 1
log(tf ) , we get
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d b ≥
ℓ log(tf )

D log(tf )

[
X + tf
X + L1

+
X + L1

X + L2
+ . . . +

X + Lk−1

X + tǫf

]
. Hence ,

d bD

ℓ
≥

X + tf
X + L1

+
X + L1

X + L2
+ . . . +

X + Lk−1

X + tǫf
and

d bD

ℓk
≥

(
X+tf
X+L1

+ X+L1
X+L2

+ . . . +
X+Lk−1

X+tǫ
f

)

k

≥ (
X + tf
X + L1

×
X + L1

X + L2
× . . .×

X + Lk−1

X + tǫf
)

1
k

The last inequality follows from the fact that Arithmetic Mean (AM) ≥ Geometric
Mean (GM). Since tf > X, we get

[
d bD

ℓk

]k

≥

[
X + tf
X + tǫf

]
≥

1

2k

(
tf
X

)(1−ǫ)

,

or equivalently,

[
2d bD

ℓk

]k

≥

(
tf
X

)1−ǫ

Let a = 2d, where a ≥ 2. Then we get




a b log(

tf
n−tf

)

ℓk log( cb
ℓ )




k

−

(
tf

n− tf

)1−ǫ

≥ 0 (5.1)

Let Y =

[
a b log(

tf
n−tf

)

ℓk log( cb
ℓ

)

]k

−
(

tf
n−tf

)1−ǫ
.

For our desired PRMT protocol, the value of k should be such that Y is non-
negative. For this, we first find the range of k in which Y is an increasing function of
k. Towards this, we make the following claim.

Claim 5.15 Y =

[
a b log(

tf
n−tf

)

ℓk log( cb
ℓ

)

]k

−
(

tf
n−tf

)1−ǫ
is an increasing function for all k ≤

ab log(
tf

n−tf
)

ℓ e log( cb
ℓ

)
= abD

e ℓ

Proof:

Y =




a b log(

tf
n−tf

)

ℓk log( cb
ℓ )




k

−

(
tf

n− tf

)1−ǫ

(5.2)

Y =

(
Z

k

)k

− Z ′ where Z =
a b log(

tf
n−tf

)

ℓ log( cb
ℓ )

and Z ′ =

(
tf

n− tf

)1−ǫ

⇒ log(Y + Z ′) = k log(Z)− k log(k)

⇒
1

Y + Z ′

dY

dk
= log(Z)− log(k)− 1

⇒
dY

dk
=

(
Z

k

)k [
log(

Z

k e
)

]
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Now putting dY
dk ≥ 0, we get

(
Z

k

)k [
log(

Z

k e
)

]
≥ 0⇒

Z

k e
≥ 1 as log 1 = 0 (5.3)

⇒ k ≤
Z

e
=

a b log(
tf

n−tf
)

e ℓ log( cb
ℓ )

=
abD

e ℓ
2

Thus we have shown that:

∀ k, k ≤
abD

e ℓ
, Y is an increasing function. (5.4)

Next we show that Y is negative at k =
D

a c
. (5.5)

Before that we prove the following:

Claim 5.16 D
ac < abD

e ℓ

Proof: Recall that c ≥ 1 and a ≥ 2. Also e = 2.73... Thus,

a ≥ 2

⇒ a2 ≥ 4

⇒ 1 ≥
4

a2

⇒ c >
4

a2

⇒ c >
e

a2

⇒
a

e
>

1

ac

Hence D
ac < aD

e < abD
ℓ e , since b ≥ ℓ 2

Lemma 5.17 The value of Y =
[

abD
ℓk

]k
−
(

tf
n−tf

)1−ǫ
is non-positive at k = D

a c for all

a ≥ 2 and some specific positive fraction ǫ.

Proof: The proof is by contradiction. Assume Y to be non-negative at k = D
a c . That

is, at k = D
a c , the inequality

[
abD
ℓk

]k
≥
(

tf
n−tf

)1−ǫ
holds. So, putting k = D

a c in this

relation and simplifying we get,

[
a2bc

ℓ

] D
a c

≥

(
tf

n− tf

)1−ǫ

=⇒
D

ac

[
log(

cb

ℓ
) + 2 log(a)

]
≥ (1− ǫ) log(

tf
n− tf

)

=⇒ log(
cb

ℓ
)

[
1

ac
− (1− ǫ)

]
+

2 log(a)

ac
≥ 0 as log

(
tf

n− tf

)
= D log

(
cb

ℓ

)

Now this relation does not hold for all values of a ≥ 2 for a specified choice of ǫ.
Specifically, for c = a10 + 1 and ǫ = 0.4, the equation does not hold. Hence this is a
contradiction that Y is non-negative at k = D

a c . Hence the lemma. 2

Now equation (5.4) and (5.5) together imply that for all values of k < D
a c , the value of
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Y is negative. Hence, for the value of Y to be non-negative, k should satisfy k > D
a c =

Ω(D). This establishes the lower bound on the phase complexity.
Thus, in all three cases, we proved that the number of phases required is Ω(D).

This completes the proof of Theorem 5.10. 2

We now dispose two important corollaries.

Corollary 5.17.1 Any PRMT protocol over n = tf + 1 wires, influenced by Astatic
tf

(i.e., tb = 0), must run for Ω(log(tf )) phases to reliably send ℓ field elements by com-
municating O(ℓ) field elements.

Thus against only fail-stop adversary over a minimal connected network, it takes log(tf )
phases to achieve reliability with constant factor overhead. Theorem 3.16 and Corollary
5.17.1 define the phase complexity lower bounds for two extreme cases (namely when
tf = 0 and tb = 0 respectively). The intermediate scenario is captured by the following
corollary which brings out the fundamental inherent trade-off between phase complexity
and communication complexity in the presence of Astatic

(tb,tf ).

Corollary 5.17.2 Let S and R be connected by 2tb + tf + 1 wires, such that tb, tf > 0

and tf > (n− tf). Then any PRMT protocol tolerating Astatic
(tb,tf ) must run for Ω(log(

tf
tb

))

phases to reliably send ℓ field elements by communicating O(ℓ) field elements.

5.8 Upper Bound on Phase Complexity of PRMT Toler-

ating Astatic
(tb,tf )

Let S and R be connected by n ≥ 2tb + tf + 1 wires. We then provide a PRMT pro-
tocol called Optimal-Static-PRMT-Mixed, which terminates in O(D) phases, tolerating
Astatic

(tb,tf ). The protocol sends a sufficiently large message mS containing ℓ field elements

(ℓ will be fixed shortly) by communicating O(b) field elements where ℓ ≤ b < nℓ and

D =
log(

tf
n−tf

)

log( cb
ℓ

)
. This shows that the bound proved in Theorem 5.10 is asymptotically

tight. Before presenting the protocol, we first design a three phase PRMT protocol
called 3-PRMT-Static-Mixed, which is used in protocol Optimal-Static-PRMT-Mixed.

5.8.1 Protocol 3-PRMT-Static-Mixed: A Three Phase PRMT Protocol

In protocol 3-PRMT-Static-Mixed, S and R are connected by N ≥ 2tb + T + 1 wires, of
which at most tb could be Byzantine corrupted and T ≤ tf could be fail-stop corrupted.
Also N and T are such that (n − tf ) = (N − T ). Let (n − tf ) = (N − T ) = X. The
protocol reliably sends a message M containing L field elements by communicating
O(NL

X ) field elements, where L ≥ N2. Note that in 3-PRMT-Static-Mixed, we have used
M,L,N and T instead of mS, ℓ, n and tf respectively. This is because 3-PRMT-Static-
Mixed will be used as a black-box in protocol Optimal-Static-PRMT-Mixed several times.
Moreover each time 3-PRMT-Static-Mixed is used in Optimal-Static-PRMT-Mixed, the
value of M,L,N and T may vary.

Protocol 3-PRMT-Static-Mixed uses the error correction and detection capability of
RS codes. The high level idea of the protocol is as follows: S divides M into several
blocks of size (X − 2tb) + tb

2 and tries to reliably send M by encoding each block of
M into an RS codeword of length N . If at most tb

2 Byzantine errors occur during
the transmission, then R will successfully recover M . Otherwise, R will detect that
more than tb

2 Byzantine errors have occurred. In this case, R sends back the received
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information to S, who then finds the identity of those corrupted wires (which are more
than tb

2 ). S then reliably sends the identity of those corrupted wires to R. S then again
re-sends M by using protocol 1-PRMT-Mixed with increased throughput. The protocol
is formally presented in Fig. 5.3.

Figure 5.3: A Three Phase PRMT Protocol Tolerating Mixed Adversary

3-PRMT-Static-Mixed(M, L, N, tb, T )

Phase I: S to R:

1. Let X = (N − T ). S divides M into blocks BS

1 , . . . ,BS

z , each of size (X − 2tb + tb

2
).

2. For j = 1, . . . , z, corresponding to block BS

j , S computes an RS codeword of size N , denoted
by CS

j = (cSj1, . . . , c
S

jN ).

3. For i = 1, . . . , N , sends cSji to R through wire wi, for j = 1, . . . , z.

Phase II: R to S

1. Let R receive information over wires wi1 , . . . , wi
N′

, where {wi1 , . . . , wi
N′

} ⊆ {w1, . . . , wN}

and N ′ ≥ N − T . For j = 1, . . . , z, let R receive cRji1
, . . . , cRjiN′

along wire wi1 , . . . , wiN′

respectively. Let CR

j = (cRji1
, . . . , cRjiN′

).

2. For j = 1, . . . , z, R executes RS-DEC(N ′, CR

j ,
tb

2
,

tb

2
, (X − 2tb + tb

2
)).

3. If after correcting tb

2
errors, the decoding algorithm does not detect additional faults in any

of the z received vectors, then R correctly recovers BS

j , 1 ≤ j ≤ z. R then concatenates
them to recover M , broadcasts “SUCCESS” signal to S and terminates the protocol. This
case implies that at most tb

2
Byzantine errors have occurred during transmission by S.

4. If ∃e ∈ {1, 2, . . . , z}, such that after correcting tb

2
errors, the decoding algorithm detects

additional faults (at most tb

2
) in the eth received vector CR

e , then R broadcasts CR

e , along
with index e and “ERROR” signal to S. If there are several such e’s, then R randomly selects
one. R also broadcasts the identity of wires which failed to deliver any information. This
case implies that more than tb

2
Byzantine errors have occurred during transmission by S.

IF S receives ”SUCCESS” signal, then S terminates the protocol. ELSE S receives ”ERROR”
signal, index e, vector CR

e as received by R in Phase I and initiates Phase III as follows:

Phase III: S to R:

1. After comparing CS
e (sent during Phase I) with CR

e (received by R at the end of Phase
I), S identifies more than tb

2
faulty wires (which delivered incorrect information to R during

Phase I).

2. S saves the identity of corrupted wires in a list Lfault. S then broadcasts Lfault to R.

3. S re-sends M by executing 1-PRMT-Mixed(M, L, N, tb, T, |Lfault|) with increased throughput
and terminates the protocol.

Local Computation by R

1. R correctly receives Lfault and identifies |Lfault| >
tb

2
Byzantine corrupted wires.

2. R finally recovers M at the end of 1-PRMT-Mixed(M, L, N, tb, T, |Lfault|) and terminates
the protocol.

We now prove the properties of protocol 3-PRMT-Static-Mixed.

Theorem 5.18 (Correctness) In protocol 3-PRMT-Static-Mixed, R will correctly re-
cover M in at most three phases.

Proof: We prove the theorem for the worst case, when during Phase I, the fail-
stop adversary blocks all T wires under its control. So during Phase I, R receives
N ′ = N −T values for each BS

j , 1 ≤ j ≤ z, which are RS encoded using polynomials of
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degree k− 1 = (X − 2tb) + tb
2 − 1. Putting the values of N ′ and k in Theorem 2.19, we

find that RS decoding can correct c = tb
2 errors and simultaneously detect additional

d = tb
2 errors in each of the z received vectors. Now there are following two cases:

1. At most tb
2 Byzantine errors occur during Phase I: In this case, the decoding

algorithm will correct these errors and will not detect additional errors in any
received vector. So R will recover each BS

j (and hence M) at the end of Phase
I. Moreover, S will also come to know this at the end of Phase II after receiving
the ”SUCCESS” signal.

2. More than tb
2 Byzantine errors occur during Phase I: In this case, ∃e ∈ {1, 2, . . . , z},

such that eth received vector CR
e contains more than tb

2 corrupted values. So, RS
decoding will correct tb

2 errors and simultaneously detect the remaining faults
(which are at most tb

2 ). So R will come to know that more than tb
2 values

are corrupted in CR
e . In this case, R reliably sends back CR

e to S, who after
comparing it with the original codeword CS

e , finds the identity of more than tb
2

Byzantine faults and saves them in Lfault. By broadcasting Lfault, S informs the
identity of these faulty wires to R. Finally S re-sends M by executing 1-PRMT-
Mixed(M,L,N, tb, T, |Lfault|) (with increased throughput). From Lfault, R will
come to know the identity of |Lfault| corrupted wires. So from Theorem 5.7,
1-PRMT-Mixed will be executed successfully and hence R will recover M at the
end of Phase III. 2

Theorem 5.19 (Communication Complexity) The communication complexity of
protocol 3-PRMT-Static-Mixed is O(NL

X ), where X = (N − T ) and L ≥ N2.

Proof: During Phase I, S communicates O

(
|M |

(X−2tb)+
tb
2

×N

)
= O(NL

X ) field ele-

ments. During Phase II, R may communicate O(N2) field elements by broadcasting
the eth received vector. During Phase III (if it is executed), S re-sends M by ex-
ecuting PRMT-Mixed(M,L,N, tb, T, |Lfault|), which from Theorem 5.7 communicates

O
(

|M |
(X−2tb)+|Lfault|

×N
)

= O(NL
X ) field elements because tb

2 < |Lfault| ≤ tb. Since,

L ≥ N2, the total communication complexity is O(NL
X ). 2

We now give two important corollaries of Theorem 5.19.

Corollary 5.19.1 1. If X ≥ T , then X = Θ(N) because N = X + T 2. Hence, in
this case protocol 3-PRMT-Static-Mixed sends L field elements by communicating
O(L) field elements, where L ≥ N2.

2. If T > X, then T = Θ(N) because N = X + T . So in this case protocol 3-

PRMT-Static-Mixed sends L field elements by communicating O(LT
X ) field ele-

ments, where L ≥ N2.

5.8.2 A Worst Case O(D) Phase PRMT Protocol Tolerating Astatic
(tb,tf )

Let S and R are connected by n ≥ 2tb + tf +1 wires. Then we present a protocol called
Optimal-Static-PRMT-Mixed tolerating Astatic

(tb,tf ), which has the following properties:

2From [21], if f(n) and g(n) are asymptotically non-negative functions then max(f(n), g(n)) =
Θ(f(n) + g(n))).
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1. If (n − tf ) ≥ tf then the protocol sends mS in three phases by communicating
O(|mS|) field elements.

2. If (n − tf ) < tf , then depending upon the adversary behavior, there are two
possibilities:

(a) The protocol reliably sends mS in O(D) phases by communicating O(b) field

elements, where |mS| = ℓ, D =
log(

tf
n−tf

)

log( cb
ℓ

)
and ℓ ≤ b < nℓ.

(b) The protocol fails to send mS. But it reduces n and tf such that (n−tf ) ≥ tf .
This process will takeO(D) phases and requires a communication complexity
ofO(b) field elements, where ℓ ≤ b < nℓ. Once n and tf satisfies (n−tf ) ≥ tf ,
mS is sent using the three phase protocol 3-PRMT-Static-Mixed.

To design the protocol, we use protocol 2-SP-REL-Mixed (given in Section 5.6) as
a black-box. In Optimal-Static-PRMT-Mixed, N denote the number of wires between S
and R and T denote the number of undisclosed fail-stop corruption. Both N and T are
global variables. Initially, N = n and T = tf . S and R also maintains a list of current
wires between S and R. Each time some wire is identified to be fail-stop corrupted,
it is removed from the list of current wires and accordingly the value of N and T are
reduced. The protocol is formally given in Fig. 5.4.

Remark 5.20 (Size of mS in Optimal-Static-PRMT-Mixed) If Optimal-Static-PRMT-

Mixed calls 3-PRMT-Static-Mixed to send M ′, then M ′ will contain at least one chunk
of mS of size ℓ

D . Since 3-PRMT-Static-Mixed requires the minimum message size (L) to

be N2 (where N ≤ n), we take |m| = ℓ = n3, which ensures that |M ′| = n3

D ≥ n2 ≥ N2.

The analysis of Optimal-Static-PRMT-Mixed is divided into following two cases:

1. When X ≥ T ;

2. When X < T . This case has further two sub-cases, depending upon whether
D ≥ 1 or D < 1.

We now consider all the above cases one by one.

Lemma 5.21 If X ≥ T , then Optimal-Static-PRMT-Mixed reliably sends mS in three
phases by communicating O(ℓ) field elements.

Proof: Follows from Part(1) of Corollary 5.19.1 by substituting L = |mS|, where
|mS| = n3. 2

Lemma 5.22 If X < T and D < 1 then Optimal-Static-PRMT-Mixed reliably sends
mS in three phases by communicating O(b) field elements.

Proof: If X < T then N = Θ(T ) because N = X + T . Also if D < 1 then it implies

log( cb
ℓ ) > log(

tf
n−tf

) ⇒ cb
ℓ >

tf
n−tf

⇒ b >
tf ℓ

c(n−tf ) ⇒ b > Tℓ
cX . This is because initially

N = n and T = tf . Also X = (N − T ). Thus, we require to send ℓ field elements by
communicating O

(
Tℓ
X

)
field elements. Since ℓ = n3 = N3, this implies that Optimal-

Static-PRMT-Mixed has to send N3 field elements by communicating O
(

N3T
X

)
field

elements. From Part(2) of Corollary 5.19.1, we find that this can be done in three
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phases by executing 3-PRMT-Static-Mixed. 2

Lemma 5.21 and Lemma 5.22 prove the properties of Optimal-Static-PRMT-Mixed for
two cases. Now we analyze the properties of Optimal-Static-PRMT-Mixed for the case
when X < T and D ≥ 1. In this case, the execution sequence of Optimal-Static-PRMT-
Mixed is as follows: S sequentially selects a chunk Bi of size ℓ

D from the message mS.
S then executes 2-SP-REL-Mixed to send Bi using (X − 2tb)+ tb

2 + kf as the block-size,

where kf = T ℓ
cb . In this process either (a) R recovers Bi or (b) S and R identifies at

least T − kf + 1 fail-stop corrupted wires or more than tb
2 Byzantine corrupted wires,

which subsequently S and R removes from their list of current wires. Accordingly, the
value of N,T and X are updated. In the first case R receives Bi and then S selects the
next chunk Bi+1 and repeats the same process. In the later cases, depending upon the
type of identified faulty wires, S re-sets the block-size and tries to re-send the same Bi

by executing 2-SP-REL-Mixed. Note that if more than tb
2 Byzantine corrupted wires are

identified, then the same block size is used to re-send Bi, whereas if more than T − kf

fail-stop corrupted wires are identified then block-size becomes (X − 2tb) + tb
2 + kf ,

where kf is reduced at least by a factor of ( cb
ℓ ). This process will continue until the

entire mS is received by R or the number of unknown fail-stop faults T becomes less
than or equal to X. When number of unknown fail-stop faults T becomes less than or
equal to X, S sends the remaining portion of mS, say m̂S, by executing the three phase
PRMT protocol 3-PRMT-Static-Mixed, which will optimally send m̂S by communicating
O(|m̂S|) field elements.

Thus, in summary, the execution sequence for this case is as follows: we create a
win-win situation with the adversary, such that if the number of fail-stop corruptions
done by the adversary is less than a specific limit then S will be able to successfully
send Bi to R. Moreover, the size of Bi will be more than what S is allowed to send
in a single phase to R according to Singleton Bound. On the other hand, if the the
number of fail-stop corruptions done by the adversary is more than the specific limit
then S will be not be able to successfully send Bi to R. But in this case, the number
of unknown fail-stop corruption, i.e. T , is reduced at least by a factor of cb

ℓ . This
process is repeated till either the entire mS is delivered or the value of T (after several
reductions) becomes less than or equal to that of X. In the later case, mS is re-sent
using 3-PRMT-Static-Mixed. Interestingly, we will show (in the sequel) that this entire
process takes O(D) phases and a communication complexity of O(b).

Lemma 5.23 In protocol Optimal-Static-PRMT-Mixed, if some execution of 2-SP-REL-

Mixed fails due to the occurrence of more than tb
2 Byzantine errors, then the remaining

executions of 2-SP-REL-Mixed in Optimal-Static-PRMT-Mixed can fail only due to oc-
currence of more than T − kf fail-stop errors.

Proof: In protocol Optimal-Static-PRMT-Mixed if some execution of 2-SP-REL-Mixed
fails due to the occurrence of more than tb

2 Byzantine errors, then both S and R will
know the identity of these wires. This implies that in the remaining executions of 2-SP-
REL-Mixed in Optimal-Static-PRMT-Mixed, at most tb

2 − 1 Byzantine errors can occur.
If in all these remaining executions of 2-SP-REL-Mixed, at most T − kf fail-stop errors
occur, then in each execution of 2-SP-REL-Mixed, R will receive N ′ = N − (T − kf )
values for each sub-block of Bi, where each sub-block is RS encoded using a polynomial
of degree k−1 = (X−2tb)+ tb

2 +kf −1. Putting these values in Theorem 2.19, we find
that RS decoding algorithm will be able to correct c = tb

2 errors in the received vectors
and hence 2-SP-REL-Mixed will be successful. So if some execution of 2-SP-REL-Mixed
fails then it will be due to the occurrence of more than T − kf fail-stop errors. 2
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Lemma 5.24 In protocol Optimal-Static-PRMT-Mixed, if any execution of 2-SP-REL-

Mixed fails due to occurrence of more than T − kf fail-stop errors, then T is reduced at
least by a factor of cb

ℓ .

Proof: From Lemma 5.8, if 2-SP-REL-Mixed fails due to the occurrence of more than
T − kf fail-stop errors, then the number of unknown fail-stop errors reduces to at least
T − (T − kf + 1) = kf − 1 = T ℓ

cb − 1. 2

Theorem 5.25 If X < T and D ≥ 1 then Optimal-Static-PRMT-Mixed terminates in
O(D) phases.

Proof: If X < T and D ≥ 1 then the phase complexity of Optimal-Static-PRMT-Mixed
is bounded by the number of times protocol 2-SP-REL-Mixed is executed in Optimal-
Static-PRMT-Mixed. There are q = D chunks of mS and 2-SP-REL-Mixed is executed at
least once to send each of them. If each chunk is sent successfully in a single attempt,
then the phase complexity of Optimal-Static-PRMT-Mixed is O(D).

On the other hand, from Lemma 5.24, each un-successful execution of 2-SP-REL-
Mixed in protocol Optimal-Static-PRMT-Mixed due to occurrence of more than T − kf

fail-stop errors reduces the number of unknown fail-stop errors T at least by a factor of
cb
ℓ . Also, from Lemma 5.23, 2-SP-REL-Mixed can fail only once due to Byzantine errors.
Hence the number of un-successful executions of 2-SP-REL-Mixed required to bring the
number of unknown fail-stop errors T , from its initial value of tf to n − tf (= X) is

bounded by O

(
log(

tf
n−tf

)

log( cb
ℓ

)

)

= O(D). Once T becomes less than or equal to X, the

remaining message is sent in three phases by executing 3-PRMT-Static-Mixed. Thus
even if adversary alternately allows some (un)successful executions of 2-SP-REL-Mixed
followed by some unsuccessful(successful) executions of 2-SP-REL-Mixed, the phase
complexity of Optimal-Static-PRMT-Mixed is bounded by O(D). 2

Theorem 5.26 The communication complexity of Optimal-Static-PRMT-Mixed is O(b),
where ℓ ≤ b < nℓ and ℓ ≥ n3.

Proof: In Optimal-Static-PRMT-Mixed, if step 2 is executed, then from Lemma 5.21,
the communication complexity of the protocol is O(ℓ) = O(b). Similarly, if step 3
is executed, then from Lemma 5.22, the communication complexity of the protocol is
O(b). However, if step 4 is executed, then the communication complexity of Optimal-
Static-PRMT-Mixed is computed as follows:

To send a chunk Bi of size ℓ
D , S executes 2-SP-REL-Mixed with block-size k =

(X−2tb)+
tb
2 +kf = (X−2tb)+

tb
2 +T ℓ

cb . Also at every stage of the protocol N = T +X.
From Lemma 5.9, the number of field elements sent by S during the execution of

2-SP-REL-Mixed is given by
ℓ
D

(X−2tb)+
tb
2

+T ℓ
cb

(X + T ). Since, T > X, by increasing

the numerator and decreasing the denominator, the above expression is bounded by
ℓ
D

2T
T ℓ

cb

= 2cb
D = O

(
b
D

)
. From Theorem 5.25, the overall phase complexity of Optimal-

Static-PRMT-Mixed is O(D). Thus, the total number of field elements communicated by
S is O(b). In the protocol, each time 2-SP-REL-Mixed fails, R broadcasts a bit vector
of length n, which requires communicating O(n2) field elements. Since, in Optimal-
Static-PRMT-Mixed, the number of failures of 2-SP-REL-Mixed is bounded by O(D),
the total number of field elements communicated by R in the protocol is O(n2D).
Since |mS| = n3 and b ≥ |mS|, the overall communication complexity of Optimal-
Static-PRMT-Mixed is O(b) +O(n2D) = O(b). 2
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Theorem 5.27 Let S and R be connected by n ≥ 2tb + tf + 1 wires, such that tf > 0
and tf > (n− tf ). Then there exists an O(D) phase PRMT protocol tolerating Astatic

(tb,tf ),

which sends a message mS containing ℓ = Θ(n3) field elements by communicating O(b)

field elements, where ℓ ≤ b < nℓ and D =

(
log(

tf
n−tf

)

log( cb
ℓ

)

)

.

Proof: Follows from the above discussion. 2

5.9 Concluding Remarks and Open Problems

In this chapter we have studied the inherent tradeoff among all the important parame-
ters of any PRMT protocol, namely network connectivity (n), phase complexity (r) and
communication complexity (b), in the presence of Astatic

(tb,tf ). Specifically, we have solved

the holy grail problem of PRMT by deriving a non-trivial lower bound on the phase
complexity of any PRMT protocol, which sends a given message over a given network
in the presence of Astatic

(tb,tf ), such that the communication complexity of the protocol is

bounded by a given limit. Our lower bound is first of its kind and shows the inherent
tradeoff among all the parameters of any PRMT protocol simultaneously. Moreover,
we have shown that our bound is asymptotically tight by presenting a PRMT protocol.
As a bi-product of our proposed PRMT protocol, we get a PRMT protocol which is
simultaneously optimal in all the parameters, namely n, b and r.

Our proposed PRMT protocol is optimal only for messages of some specific length
(specifically if |m| = Θ(n3)). This leads to the following open question:

Open Problem 4 Let S and R be connected by n ≥ 2tb + tf + 1 wires, such that
tf > 0 and tf > (n − tf ). Let mS be a message containing ℓ ≥ 1 field element(s) and
let ℓ ≤ b < nℓ. Then does there exist an O(D) phase PRMT protocol tolerating Astatic

(tb,tf ),

which sends mS by communicating O(b) field elements, for any value of ℓ?
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Figure 5.4: An O(D) Phase PRMT Protocol Tolerating Astatic
(tb,tf )

Protocol Optimal-Static-PRMT-Mixed (mS, n, tb, tf)

1. S and R initializes N = n and T = tf . Let X = N − T .

2. IF X ≥ T , then S sends mS by executing the three phase protocol 3-PRMT-
Static-Mixed and terminate Optimal-Static-PRMT-Mixed (see Lemma 5.21).

3. IF (X < T ) AND (D < 1), then S sends mS by executing the three phase
protocol 3-PRMT-Static-Mixed and terminate Optimal-Static-PRMT-Mixed (see
Lemma 5.22).

4. IF (X < T ) AND (D ≥ 1), then S and R does the following:

(a) S and R initializes i = 1. S breaks mS into chunks B1, B2, . . . , Bq each
of size ℓ

D (so q = D).

(b) While (i ≤ q) AND (T > X) DO

i. S sets kf = T ℓ
cb and executes 2-SP-REL-Mixed(Bi, N, tb, T, kf ) by

using the block size as k = (X−2tb)+
tb
2 +kf and waits for feed-back.

/* Recall that k is the block-size which is used in 2-SP-REL-Mixed.*/

ii. Depending upon the feedback that S receives at the end of 2-SP-
REL-Mixed(Bi, N, tb, T, kf ), S does the following:

A. S receives ”SUCCESS” SIGNAL: In this case, S concludes that
R has correctly received Bi. So both S and R increments i and
continues with the next iteration.

B. S receives ”ERROR1” SIGNAL: In this case, S concludes that
R has failed to recover Bi because more than T − kf fail-stop
corruptions have occurred. In this case, S and R will also come
to know the identity of N − N ′ fail-stop corrupted wires (here
N ′ is the number of wires over which R has received information
during 2-SP-REL-Mixed(Bi, N, tb, T, kf )). S and R remove these
wires from the list of current wires between S and R and does
not consider them for the rest of the protocol. Moreover, S and
R also reduces N and T and continues with the next iteration.

C. S receives ”ERROR2” SIGNAL: In this case, S concludes that
R has failed to recover Bi because more than tb

2 Byzantine
corruptions have occurred during the execution of 2-SP-REL-
Mixed(Bi, N, tb, T, kf ). Moreover, S will also come to know their
identity after doing local comparison. S saves their identity in a
list Lfault. S then broadcasts Lfault to R, who also then identifies
|Lfault| >

tb
2 Byzantine corrupted wires. S and R then globally

set N = N −|Lfault| and remove the wires in Lfault from the list
of current wires between S and R and continue with the next
iteration. Now number of Byzantine faulty wires in the set of
current wires is less than tb

2 .

(c) If i > q then S and R terminates the protocol. Else S sends the remaining
portion of the message, say M ′, consisting of chunks Bi, Bi+1, . . . , Bq by
executing the three phase PRMT protocol 3-PRMT-Static-Mixed.
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Chapter 6

PRMT in Undirected Networks
Tolerating Mobile Mixed
Adversary

In this chapter, we discuss about PRMT in undirected synchronous network, tolerating
threshold mobile mixed adversary. The mobile mixed adversary, denoted by Amobile

(tb,tf ) ,

may corrupt different set of tb and tf nodes in Byzantine and failstop fashion respec-
tively, during different phases of the protocol. In Chapter 4, we have studied PRMT
tolerating Amobile

tb
and showed that the mobility of the adversary has no effect on the

possibility and optimality of PRMT protocols. That is, the necessary and suffi-
cient condition are same for tolerating Amobile

tb
, as well as Astatic

tb
. Moreover, the lower

bound on communication complexity of PRMT protocols are same against Amobile
tb

, as
well as Astatic

tb
. Furthermore, the upper bound on communication complexity of PRMT

protocols are also same against Amobile
tb

, as well as Astatic
tb

1. Interestingly, we show that
it is not the case against mixed adversary. Specifically, in this chapter, we show that
PRMT tolerating Amobile

(tb,tf ) is possible iff PRMT tolerating Astatic
(tb,tf ) is possible. That is,

mobility of the adversary has no effect on the possibility of PRMT protocols toler-
ating mixed adversary. However, the communication complexity required by PRMT
protocols against Amobile

(tb,tf ) is more in comparison to Astatic
(tb,tf ). That is, mobility of the ad-

versary has effect on the optimality of PRMT protocols tolerating mixed adversary.
This brings forth the power of mobility in the context of mixed adversary. Our results
in this chapter completely settle the issue of possibility, feasibility and optimal-
ity of PRMT protocols in undirected synchronous network, tolerating Amobile

(tb,tf ) . To the

best of our knowledge, this is the first attempt in the literature of PRMT protocols.
We now begin with the specification of the network model used in this chapter.

6.1 Network Model and Adversary Settings

The network model used here is similar to the one given in section 4.1. That is, there
are n bi-directional synchronous wires w1, . . . , wn between S and R. However, instead
of Amobile

tb
, we assume the presence of a computationally unbounded mobile mixed

adversary Amobile
(tb,tf ) . The adversary Amobile

(tb,tf ) controls different set of tb and tf wires

(among n wires), in Byzantine and fail-stop fashion respectively, in different phases

1Here there is a slight exception that against Astatic
tb

, we can design communication optimal PRMT
protocol if ℓ = Θ(n2) (see Fig. 3.5). On the other hand, against Amobile

tb
, we can design communication

optimal PRMT protocol if ℓ = Θ(n3) (see Fig. 4.9).
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of a protocol. Hence if a wire is corrupted by the adversary in Byzantine/fail-stop
fashion in ith phase, then it is healed at the end of that phase. So a wire controlled
by the adversary in ith phase will be free from the influence of adversary in (i + 1)th

phase unless the adversary chooses the same wire to corrupt in (i + 1)th phase as well.
Though Amobile

(tb,tf ) controls different set of wires in different phases of the protocol, it does

not allow the adversary to gain any information which has previously passed (in earlier
phases of the protocol) through the wires under its control in current phase (unless the
wires were under the control of the adversary in earlier phases also). This is because
the wires (and hence the nodes along these wires) erase all the local information from
their memory at the end of each phase.

In the next section, we give the characterization of PRMT tolerating Amobile
(tb,tf ) . We

also derive the lower bound on the communication complexity of PRMT tolerating
Amobile

(tb,tf ) .

6.2 Characterization and Lower Bound on Communica-
tion Complexity

The necessary and sufficient condition for PRMT tolerating Amobile
(tb,tf ) is given by the

following theorem:

Theorem 6.1 PRMT over an undirected synchronous network N tolerating Amobile
(tb,tf ) is

possible iff N is (2tb + tf + 1)-(S, R)-connected.

Proof: From Theorem 5.1, PRMT tolerating Astatic
(tb,tf ) is possible only if N is (2tb +

tf + 1)-(S, R)-connected. Since Amobile
(tb,tf ) is more stronger than Astatic

(tb,tf ), obviously for

PRMT tolerating Amobile
(tb,tf ) , we require N to be (2tb + tf + 1)-(S, R)-connected. This

completes the necessity proof.
On the other hand, let N be (2tb + tf + 1)-(S, R)-connected. That is, there exists

at least n = 2tb + tf + 1 wires between S and R. Then to reliably send a message mS,
the sender S can simply broadcast mS to R over the n wires. It is easy to see that R
will correctly receive mS by taking majority among the received values. This completes
the sufficiency proof. 2

The lower bound on the communication complexity of PRMT tolerating Amobile
(tb,tf ) is

given by the following theorem:

Theorem 6.2 Let S and R be connected by n ≥ 2tb + tf +1 wires and let r ≥ 2. Then

any r-phase 2 PRMT protocol tolerating Amobile
(tb,tf ) , must communicate Ω

(
nℓ

n−(tb+tf )

)
field

elements in order to transmit a message containing ℓ field elements.

Proof: To prove the theorem, we first observe the communication pattern of any multi
phase PRMT protocol tolerating Amobile

(tb,tf ) and show that the communication complexity

of any multi phase PRMT protocol is not less than the communication complexity of
a special type of single phase PRMT protocol. We then derive the lower bound on the
communication complexity of this special type of single phase PRMT. More specifically,

2Any single phase PRMT protocol tolerating Astatic
(tb,tf ) will also work against Amobile

(tb,tf ). Hence the

lower bound on the communication complexity of single phase PRMT tolerating Astatic
(tb,tf ) as given in

Theorem 5.5 will also hold against Amobile
(tb,tf ).
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the proof of Theorem 6.2 follows from Lemma 6.3 and Lemma 6.11, which are proved
below.

Lemma 6.3 The communication complexity of any multi-phase PRMT protocol to
send a message against a mobile adversary corrupting up to B(≤ tb) and F (≤ tf )
wires in Byzantine and fail-stop manner respectively (in each phase of the protocol) is
not less than the share complexity (sum of the length of the shares) of distributing n
shares for the message such that any set of n−B−F shares has full information about
the message.

To prove the above lemma, we begin with defining a weaker version of single-phase
PRMT called PRMT with Error Detection (PRMTED). We then prove the equivalence
between the communication complexity of PRMTED protocol to send message M and
the share complexity (sum of the length of all shares) of distributing n shares for M,
such that any set of n − B − F shares has full information about M (see Claim 6.5).
We then show that the communication complexity of any multiphase PRMT protocol
tolerating Amobile

(tb,tf ) is at least equal to the communication complexity of single phase

PRMTED (see Claim 6.10). These two equivalence will prove the desired equivalence
as stated in Lemma 6.3. We begin with the definition of PRMTED protocol.

Definition 6.4 (PRMTED) A single phase PRMT protocol is called PRMTED if it
satisfies the following conditions:

1. If the adversary is passive throughout the protocol then R correctly receives the
message sent by S.

2. If the adversary changes information over B wires (B ≤ tb), then R detects it,
and aborts.

3. If adversary blocks F ≤ tf wires, without doing any other corruption, then R
recovers the message correctly. Else if adversary blocks more than tf wires or
does some other corruption (or both), then R aborts.

Observe that PRMTED is a strictly weaker version of PRMT because a PRMT
protocol not only detects errors but also corrects them. We next show that the prop-
erties of PRMTED protocol for sending a message M is equivalent to the problem of
distributing n shares of M, such that any set of n−B − F shares has full information
about M.

Claim 6.5 Let Π be a PRMTED protocol tolerating an adversary that can corrupt any
B and F wires connecting S and R in Byzantine and fail-stop manner respectively. In
an execution of Π for sending a message M, the data si, i = 1, . . . , n sent by the S
along wires wi form n shares for M, such that any set of n − B − F shares has full
information about M.

Proof: We show that any set of n−B−F shares has full information about M. The
proof is by contradiction. For a set of wires A, let Message(M, A) denote the set of
messages sent along the wires in A during the execution of a PRMTED protocol to send
M. Now for any set of C wires with |C| ≥ n−B−F , Message(M, C) should uniquely
determine the message M. If not, then there exists another message M′ such that
Message(M, C) = Message(M′, C). By definition, the adversary can block all the
messages sent along the F wires not in C and change the messages along B wires not
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in C, such that the set of all messages received by R is identical to Message(M′, C).
In this case, R receives the message M ′, while S sent M . This is a contradiction since
R must detect that there has been a corruption. 2

The above claim implies that the communication complexity of PRMTED protocol to
send M is same as the share complexity (sum of the length of all shares) of distributing
n shares for M, such that any set of n−B−F shares has full information about M. Now
we step forward to show that the communication complexity of PRMTED protocol is
the lower bound on the communication complexity of any multiphase PRMT protocol
against Amobile

(tb,tf ) . Before that we take a closer look at the execution of any multi-phase

PRMT protocol against Amobile
(tb,tf ) .

In any multiphase PRMT protocol, S and R can be modelled as polynomial time
Turing machines with access to a random tape. The number of random bits used by
the S and R are bounded by a polynomial q(n). Let r1, r2 ∈ {0, 1}

q(n) denote the
contents of the random tapes of S and R respectively. The message M is an element
from the set {0, 1}p(n), where p(n) is a polynomial. A transcript for an execution of a
multiphase PRMT protocol Π is the concatenation of all the messages sent by S and
R along all the wires.

Definition 6.6 (Passive Transcript) A passive transcript T (Π,M, r1, r2) is a tran-
script for the execution of the multiphase protocol Π with M as the message to be sent,
r1, r2 as the contents of the random tapes of sender S and the receiver R and the adver-
sary Amobile

(tb,tf ) remaining passive throughout the execution of Π. Let T (Π,M, r1, r2, wi)

denote the passive transcript restricted to messages exchanged along the wire wi. When
Π,M, r1, r2 are obvious from the context, we drop them and denote the passive tran-
script restricted to a wire wi by Twi

. Similarly, TC denotes the passive transcript T
restricted to a set of wires C.

Given (M, r1, r2) it is possible for S to compute the passive transcript T (Π,M, r1, r2)
by simulating R with random tape r2. Similarly given (M, r1, r2), R can compute
T (Π,M, r1, r2) by simulating S with r1. Note that although S and R require both
r1, r2 to generate the transcript T , receiver R requires only r2 in order to obtain the
message M from the transcript T . This is clear since R does not have access to r1

during the execution of Π but still can retrieve the message M from the messages
exchanged.

Definition 6.7 (Valid Fault Free Transcript) A passive transcript TC, with n −
F ≤ |C| ≤ n is said to be a valid fault-free transcript with respect to R if there exists
random string r2 and message M such that protocol Π at R with r2 as the contents
of the random tape and TC as the messages exchanged, terminates by outputting the
message M.

Definition 6.8 (Adversely Closed Transcript) Two passive transcripts TC and T ′
C ,

where n − F ≤ C ≤ n are said to be adversely close if the two transcripts differ only
on a set of wires A such that |A| ≤ B + (|C| − (n − F )). Formally |{wi|Twi

6= T ′
wi
}| ≤

B + (|C| − (n− F )).

We next prove the following claim:

Claim 6.9 Two valid fault-free transcripts TC(Π,M, r1, r2) and TC(Π,M′, r′1, r
′
2) with

two different message inputs M,M′, cannot be adversely close to each other, where
n− F ≤ C ≤ n.
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Proof: Suppose two valid fault-free transcripts TC(Π,M, r1, r2) and TC(Π,M
′
, r

′

1, r
′

2)
are adversely close. This implies that there is a set of wires A, where |A| ≤ B + (|C| −
(n− F )), such that the two transcripts differ only on messages sent along the wires in
A. Without loss of generality, assume that the last B + (|C| − (n−F )) wires belong to
A with A = X ◦Y where |X| = B and |Y | = (|C|−(n−F )). Consider the following two
executions of Π where the contents of S’s and R’s random tapes are r1, r2 respectively

• S wants to send M. S and R executes Π while the adversary stop the wires in Y
to deliver any message. As TC−Y (Π,M, r1, r2) is a valid transcript with respect
to M, R terminates with output M.

• S wants to send M. S and R executes Π. The adversary blocks messages
over Y and changes the messages along wires in X such that the view of S is
TC−Y (Π,M, r1, r2) but the view of R is TC−Y (Π,M′, r′1, r

′
2). Since TC−Y (Π,M′, r′1,

r′2) is a valid transcript with respect to M′, R will terminate with output M′.

The two scenarios differ only in the adversarial behavior and in the contents of R’s
random tape. In both the scenarios S wanted to send message M. But the message
received by receiver R in the second case is an incorrect message M′. This is a contra-
diction because Π is a PRMT protocol. 2

Till now, we have shown that a passive transcript over at least n − B − F wires
allows R to output M correctly. We now show how to reduce a multiphase PRMT
protocol into a single phase PRMTED protocol. Specifically, consider the protocol
PRMTED, given in Fig. 6.1.

Figure 6.1: Single Phase PRMTED Protocol

Protocol PRMTED

1. S computes the passive transcript T (Π,M, r1, r2) for some random r1 and r2

and sends T (Π,M, r1, r2, wi) to R along wire wi.

2. If R does not receive information through at least n−F wires then R outputs
ERROR and terminates the protocol.

3. If R receives information over the set of wires C = {wi1 , wi2 , . . . , wiα} where
n − F ≤ |C| ≤ n, then R concatenates the values received along these wires
to obtain a transcript TC (which may be corrupted along B wires) and does
the following:

• For each M ∈ {0, 1}p(n) and r2 ∈ {0, 1}
q(n), R does the following:

– If TC is a valid transcript with random tape contents r2 for message
M, then output M and terminates the protocol.

• If the condition in the For loop fails for all M ∈ {0, 1}p(n) and r2 ∈
{0, 1}q(n), then R outputs ERROR and terminates the protocol.

We now make the following claim regarding protocol PRMTED.
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Claim 6.10 The Communication complexity of any multiphase PRMT protocol Π
against Amobile

(tb,tf ) is at least equal to the communication complexity of PRMTED protocol.

Moreover, protocol PRMTED satisfies the properties given in Definition 6.4.

Proof: Let Π be any multi phase PRMT protocol tolerating Amobile
(tb,tf ) and let Πpassive

denote an execution of Π, where the adversary does only eavesdropping and does no
other type of corruption during the complete execution. It is easy to see that the
communication complexity of Πpassive is trivially a lower bound on the communication
complexity of any multi phase PRMT protocol (where the adversary may do other types
of corruptions, in addition to eavesdropping). We now show that the communication
complexity of Πpassive is same as the communication complexity of PRMTED protocol.
Once we do this, then the communication complexity of PRMTED protocol is a trivial
lower bound on the communication complexity of any multi phase PRMT protocol
tolerating Amobile

(tb,tf ) .

In PRMTED, S assumes its random tape contains r1 and random tape of R contains
r2. S also assumes that in Π, the adversary will only do eavesdropping and no other
type of corruption and generates the passive transcript T (Π,M, r1, r2). As explained
earlier, S can do so by simulating R, assuming the content of R’s random tape to be
r2. However, note that R neither knows m, nor r1, r2, which S has used for generating
T . S then communicates T to R by sending the components of T restricted to wire wi,
along wi. It is easy It is easy to see that the cost of communicating such a transcript
by PRMTED is same as the communication complexity of Πpassive.

The messages sent along wire wi in protocol PRMTED is the concatenation of the
messages that would have been exchanged between S and R along wi in Πpassive. From
Claim 6.9, we know that valid transcripts of two different messages cannot be adversely
close to each other. So irrespective of the actions of the adversary, the transcript re-
ceived by R cannot be a valid transcript for any message other than M for any value
of r2. Hence if R outputs a message M then it is the same message sent by S. Thus
protocol PRMTED satisfies the properties given in Definition 6.4. 2

Claim 6.5, along with Claim 6.10 completes the proof of Lemma 6.3. Till now, we have
shown that the communication complexity of PRMTED protocol is the lower bound on
the communication complexity of any multi phase PRMT protocol tolerating Amobile

(tb,tf ) .

Moreover, the communication complexity of PRMTED protocol to send a message M
is same as the share complexity of distributing n shares for the message M, such
that any set of n − (F + B) shares has full information about the message. All these
facts implies that share complexity of such a distribution gives the lower bound on the
communication complexity of any multi phase PRMT protocol tolerating Amobile

(tb,tf ) . We

now proceed to derive the share complexity of such a distribution scheme.

Lemma 6.11 The share-complexity (that is sum of the length of all shares) of dis-
tributing n shares for a message, consisting of ℓ elements from F, such that any set of

n−B − F shares has full information about the message, is Ω
(

nℓ
(n−B−F )

)
.

Proof: To prove the lemma, we use entropy based arguments. Let Xi denote the ith

share. For any subset A ⊆ {1, 2 . . . n}, let XA denote the set of variables {Xi|i ∈ A}.
Let M be the message, selected uniformly at random from F

ℓ. Then the message M
and the shares Xi are random variables. Let H(X) for a random variable denote its
entropy. Let H(X|Y ) denote the entropy of X conditional on Y . The conditional
entropy measures how much entropy a random variable X has remaining, if we have
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already learned completely the value of the second random variable Y [22]. Since any
set C of n−B − F shares has full information about M, we have

H(M|XC) = 0

Since M is chosen uniformly from F
ℓ, we have

H(M) = ℓ (6.1)

From the chain rule of the entropy [22], for any two random variable X1,X2, we
have H(X1,X2) = H(X2) + H(X1|X2). Substituting X1 = M and X2 = XC , we get

H(M,XC ) = H(XC) + H(M|XC)

From the properties of joint entropy [22], for any two variables X1,X2, we have
H(X1,X2) ≥ H(X1) and H(X1,X2) ≥ H(X2). Thus, H(M,XC) ≥ H(M). Substitut-
ing in the above equation, we get

H(M) ≤ H(XC) + H(M|XC)

≤ H(XC) + 0 because M can be known completely from XC

Consequently, H(M) ≤ H(XC). Therefore for any set C of cardinality n−B − F ,
we have

H(XC) ≥ H(M)⇒
∑

i∈C

H(Xi) ≥ H(M)

Since there are
( n
n−B−F

)
possible subsets of cardinality n − B − F , summing the

above equation over all possible subsets of cardinality n−B − F we get

∑

C

∑

i∈C

H(Xi) ≥

(
n

n−B − F

)
H(M)

Now in all the possible
( n
n−B−F

)
subsets of size n − B − F , each of the term H(Xi)

appears
( n−1
n−B−F−1

)
times. So

(
n− 1

n−B − F − 1

) n∑

i=1

H(Xi) ≥

(
n

n−B − F

)
H(M) ⇒

n∑

i=1

H(Xi) ≥
n

n−B − F
H(M)

Since H(M) = ℓ, we get
n∑

i=1

H(Xi) ≥
nℓ

n−B − F

Thus the share-complexity for any M ∈ F
ℓ is Ω

(
nℓ

n−B−F

)
. 2

Since B ≤ tb and F ≤ tf , Ω
(

nℓ
n−B−F

)
= Ω

(
nℓ

n−(tb+tf )

)
. Theorem 6.2 now follows from

Lemma 6.3 and Lemma 6.11. 2
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6.2.1 PRMT Against Amobile
(tb,tf ) Requires More Communication Than

PRMT Against Astatic
(tb,tf )

Suppose S and R are connected by n = 2tb + tf + 1 wires, which are under the control
of static mixed adversary Astatic

(tb,tf ). Then from Corollary 5.17.2, any PRMT protocol

tolerating Astatic
(tb,tf ), must run for Ω(log(

tf
tb

)) phases to reliably send ℓ field elements

by communicating O(ℓ) field elements. Moreover, from Theorem 5.27, the bound on
phase complexity is tight. This shows that in the presence of Astatic

(tb,tf ), it is possible

to achieve reliability with constant factor overhead, where S and R are connected by
n = 2tb + tf + 1 wires.

Now suppose that S and R are connected by n = 2tb + tf +1 wires, which are under
the control of mobile mixed adversary Amobile

(tb,tf ) . Then from Theorem 6.2, any multiphase

PRMT protocol against Amobile
(tb,tf ) , must communicate Ω

(
nℓ
tb

)
field elements to reliably

send ℓ field elements. However, since n = 2tb+tf +1, n need not be Θ(tb). In fact, in the
worst case, tb may be constant. This implies that in the presence of Amobile

(tb,tf ) , it may not

be possible at all to achieve reliability with constant factor overhead, irrespective of the
number of phases, when S and R are connected by n = 2tb + tf + 1 wires. This shows
that any PRMT protocol against Amobile

(tb,tf ) requires more communication complexity in

comparison to its static counter part.
In the next section, we show that the bound on the communication complexity

given in Theorem 6.2 is asymptotically tight. For this, we design a communication
optimal PRMT protocol tolerating Amobile

(tb,tf ) .

6.3 Communication Optimal PRMT Tolerating Amobile
(tb,tf )

Let S and R be connected by n = 2tb + tf + 1 wires, which are under the control
of Amobile

(tb,tf ) . We then design a three phase PRMT protocol called 3-Optimal-PRMT-

Mobile-Mixed, which reliably sends a message mS containing ntb (tb ≥ 1) field elements
by communicating O(n2) field elements. If tb = Θ(n), then ntb = Θ(n2) and hence
the protocol sends Θ(n2) field elements by communicating O(n2) field elements, thus
achieving reliability with constant factor overhead.

Remark 6.12 Notice that if tb = 0, then n = tf +1. In this case, we can directly send
any message of size ℓ by broadcasting it over the n wires, incurring a communication
cost of O(nℓ). Moreover, from Theorem 6.2, this will be optimal.

The idea of protocol 3-Optimal-PRMT-Mobile-Mixed is as follows: we create a win-
win situation with the adversary. Specifically, S divides the message into several blocks
of size tb

2 + 1 and tries to reliably send each block by encoding it into an RS code word
of length n. If at most tb

2 Byzantine errors occur during the transmission, then R will
be able to correctly recover each block at the end of first phase itself. However, if more
than tb

2 Byzantine errors occur, then R will fail to recover the blocks, but will detect
that more than tb

2 errors have occurred. So R reliably sends back the received vector
to S, in which R has detected more than tb

2 errors. However, since the adversary is
mobile and may corrupt different set of wires during second phase, to reliably send
back the received vector, R broadcasts it to S. S, after local comparison, finds the
identity of at least tb

2 wires, which delivered incorrect information during the first
phase. During third phase, S reliably sends the identity of these corrupted wires to R
by broadcasting. Now from the each vector received by R during first phase, R will
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neglect the components received over the corrupted wires. R will be then left with
shortened vector and in each vector there will be at most tb

2 corrupted values, which
R can now easily correct by using RS decoding algorithm. Thus in short, second and
third phase are used to identify at least tb

2 corrupted values in the vectors, which were
received by R during first phase. Once these corrupted values are removed, there will
be sufficient redundancy in each received vector to recover the original blocks of mS.
The protocol is formally given in Fig. 6.2.

Figure 6.2: A Three Phase Communication Optimal PRMT Protocol Tolerating
Amobile

(tb,tf ) , n = 2tb + tf + 1, |mS| = ntb

Protocol 3-Optimal-PRMT-Mobile-Mixed

Phase I: S to R:

1. S divides mS into blocks BS

1 , . . . ,BS

z , each containing 1 + tb

2
field elements.

2. For j = 1, . . . , z, S computes the RS codeword CS

j = (cSj1, . . . , c
S

jn) of length n corresponding
to block BS

j .

3. For i = 1, . . . , n, S sends ith component of all codewords to R over wire wi.

Phase II: R to S:

1. Let R receive information over wires wi1 , . . . , wiN′
, where n − tf ≤ N ′ ≤ n.

2. For j = 1, . . . , z, let R receive cRji1
, . . . , cRjiN′

over wires wi1 , . . . , wiN′
respectively. Let

CR

j = (cRji1
, . . . , cRjiN′

).

3. For j = 1, . . . , z, R executes RS-DEC(N ′, CR

j ,
tb

2
,

tb

2
,

tb

2
+ 1).

4. If ∃j ∈ {1, 2, . . . , z}, such that RS-DEC(N ′, CR

j ,
tb

2
,

tb

2
,

tb

2
+1) does not output any polynomial

of degree tb

2
, then R broadcasts CR

j and index j to S.

5. Else for each CR

j , j = 1, . . . , z, RS-DEC(N ′, CR

j ,
tb

2
,

tb

2
,

tb

2
+1) outputs correct BS

j . R recovers
mS by concatenating all BS

j ’s, broadcasts “TERMINATE” signal to S and terminates the
protocol.

If S receives “TERMINATE” signal, then S terminates the protocol. Else S executes the third
phase as follows:

Phase III: S to R:

1. S correctly receives CR

j and index j.

2. S locally compares CR

j with CS

j and identifies more than tb

2
wires which were Byzantine

corrupted during Phase I. S saves the identities of these wires in a list Lfault.

3. S broadcasts to R the list Lfault and terminates the protocol.

Local Computation by R at the End of Phase III:

1. R correctly receives Lfault and identifies |Lfault| ≥
tb

2
+ 1 wires, which delivered incorrect

values during Phase I.

2. For j = 1, . . . , z, R removes cRji from CR

j , provided wi ∈ Lfault.

3. For j = 1, . . . , z, R executes RS-DEC(N ′ − |Lfault|, C
R

j , tb − |Lfault|, 0,
tb

2
+ 1).

4. For j = 1, . . . , z, RS-DEC(N ′ − |Lfault|, C
R

j , tb − |Lfault|, 0,
tb

2
+ 1) outputs BS

j . R recovers
mS by concatenating all BS

j ’s and terminates the protocol.

Our three phase protocol works in the presence of Amobile
(tb,tf ) as in Phase II and Phase

III, R/S uses only broadcast for reliably sending some information. Broadcast sends
any information reliably even in the presence of Amobile

(tb,tf ) . We now prove the properties

of protocol 3-Optimal-PRMT-Mobile-Mixed.
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Lemma 6.13 (Correctness) Protocol 3-Optimal-PRMT-Mobile-Mixed correctly deliv-
ers the message mS in at most three phases, tolerating Amobile

(tb,tf ) .

Proof: We prove the theorem for the worst case, when R receives information over
N ′ = n − tf = 2tb + 1 wires during Phase I. Thus each received vector CR

j will be of

length 2tb+1. Each CR
j will differ from CS

j in at most tb locations. Moreover, each CS
j is

RS encoded using polynomial of degree tb
2 . Now by putting N ′ = 2tb+1, c = d = tb

2 and
k = tb

2 +1 in the inequality of Theorem 2.19, we find that RS-DEC(N ′, CR
j , tb

2 , tb
2 , tb

2 +1)

will be able to correct tb
2 errors in CR

j and detect additional tb
2 errors (if any) in CR

j .
Now there are two possible cases:

1. At most tb
2 Byzantine Errors are Present in Each CR

j : In this case, RS-DEC
will correct all these errors and will detect no additional errors. Thus RS-DEC
will correctly output each BS

j . Moreover, R will know that BS
j which is output by

RS-DEC is correct. This is because in this case, the error correction plus detection
capability of RS-DEC is equal to the maximum number of errors that can happen
(i.e c+d = tb). So R will correctly recover mS and will terminate the protocol by
broadcasting ”TERMINATE” signal 3. S on receiving this signal will conclude
that R has recovered mS and hence will terminate the protocol. So, in this case,
the protocol will terminate in two phases.

2. More than tb
2 Errors are Present in Some CR

j : In this case, RS-DEC will

correct tb
2 errors in CR

j and will detect the remaining errors (which can be at most
tb
2 ). Since RS-DEC can only detect the remaining errors and has no capability of
correcting them, it will not output anything. This will indicate to R that more
than tb

2 errors are present in CR
j . However, R has no means to know the identity

of the corrupted wires, who delivered those corrupted components of CR
j

4. To

know their identities, R broadcasts CR
j to S.

Upon receiving CR
j and locally comparing it with CS

j , S will identify at least
tb
2 + 1 Byzantine corrupted wires who had sent incorrect values during Phase
I. S saves their identities in a list Lfault. S then broadcasts Lfault to R. On
receiving Lfault, R removes all the components of each CR

j received over the wires

in Lfault. Thus each CR
j will now contain 2tb + 1− |Lfault| values, out of which

at most tb − |Lfault| <
tb
2 could be corrupted. Now putting N ′ = N ′ − |Lfault| =

2tb + 1 − |Lfault|, c = tb − |Lfault|, d = 0 and k = tb
2 + 1 in the inequality of

Theorem 2.19, we find that RS-DEC will be able to correct all tb − |Lfault| errors
present in each CR

j and will correctly output BS
j . Moreover, since R now knows

that at most tb − |Lfault| <
tb
2 errors are present in each CR

j , R concludes that

output BS
j is correct. Thus by combining all BS

j ’s, R will recover mS correctly.
So, in this case, the protocol will terminate in three phases.

This completes the proof of the correctness. 2

Lemma 6.14 (Communication Complexity) Protocol 3-Optimal-PRMT-Mobile-Mixed

sends mS containing ntb field elements by communicating O(n2) field elements.

Proof: During Phase I, S sends an RS codeword of length n for each BS
j , where size

of BS
j is 1 + tb

2 . So the total communication cost of Phase I is O

(
|mS|

tb
2

∗ n

)
= O(n2),

3This case is similar to Property 2.22.
4This case is similar to Property 2.23.
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as |mS| = ntb. In the second phase, R may either broadcast ”TERMINATE” signal or
a vector CR

j of length N ′. So in the worst case, the communication cost of Phase II is

O(n2). If Phase III is executed, then S broadcasts Lfault, where tb
2 +1 ≤ |Lfault| ≤ tb.

This incurs a communication cost of O(ntb). Thus the overall communication cost of
3-Optimal-PRMT-Mobile-Mixed is O(n2). 2

Theorem 6.15 Protocol 3-Optimal-PRMT-Mobile-Mixed is a communication optimal
PRMT protocol tolerating Amobile

(tb,tf ) .

Proof: From Theorem 6.2, we find that any three phase PRMT protocol over n =
2tb + tf + 1 wires must communicate Ω(n2) field elements to reliably send a message
containing ntb field elements against Amobile

(tb,tf ) . From Lemma 6.14, the communication

complexity of protocol 3-Optimal-PRMT-Mobile-Mixed is O(n2). Hence it is communi-
cation optimal. 2

6.4 Concluding Remarks and Open Problems

In this chapter, we have studied the issues related to possibility, feasibility and
optimality of PRMT tolerating Amobile

(tb,tf ) . Our results show that mobility of the mixed

adversary has no effect on the possibility of PRMT. However, mobility of the mixed
adversary does affect the optimality of PRMT protocols. The results for PRMT
tolerating Amobile

(tb,tf ) are summarized in Fig. 6.3.

Figure 6.3: Summary of the Results for PRMT in Undirected Synchronous Network
Tolerating Amobile

(tb,tf )

Number of Connectivity Lower Bound on Upper Bound
Phases (r) Requirement (n) Communication

Complexity

r ≤ 1 n ≥ 2tb + tf + 1 Ω
(

nℓ
n−(2tb+tf )

)
Broadcast protocol:

Theorem 6.1 Theorem 5.5 n = 2tb + tf + 1,
Communication

complexity = O(nℓ)

r ≥ 2 n ≥ 2tb + tf + 1 Ω
(

nℓ
n−(tb+tf )

)
Protocol

Theorem 6.1 Theorem 6.2 3-Optimal-PRMT-Mobile-Mixed:
n = 2tb + tf + 1, ℓ = Θ(ntb)

Communication

complexity = O
(

nℓ
tb

)

From Fig. 6.3, we find that protocol 3-Optimal-PRMT-Mobile-Mixed is communica-
tion optimal only if the message contains ℓ = Θ(ntb) field elements. This leads to the
following open question:

Open Problem 5 Let S and R be connected by n = 2tb + tf + 1 wires. Then does
there exist a multiphase (more than one phase) PRMT protocol which reliably sends a

message containing ℓ field elements, by communicating O
(

nℓ
tb

)
field elements, tolerating

Amobile
(tb,tf ) , for any value of ℓ?
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Chapter 7

PRMT in Directed Networks
Tolerating Static Byzantine
Adversary

Till now, all the results that we discussed are in the undirected network model, where
the communication link between any two nodes in the network is bi-directional. How-
ever, in practice, not every communication channel may admit bi-directional communi-
cation. For instance, a base-station may communicate to even a far-off hand-held device
but the other way round communication may not be possible. In such a scenario, it
is more appropriate to model the underlying network as a directed graph. Motivated
by this, Desmedt et al. [24, 87] introduced the problem of PRMT, PSMT, SRMT
and SSMT in directed network. The necessary and sufficient condition for PRMT in
undirected graph tolerating Astatic

tb
as given in Theorem 3.2 will also hold for undi-

rected graphs. However, to the best of our knowledge, nothing is known regarding the
optimality of PRMT in directed network. We completely resolve this issue in this
chapter.

We now give the formal description of the directed network model, which is used
in this chapter.

7.1 Directed Network Model

We assume that the underlying network is a connected, synchronous network repre-
sented by a directed graph where S and R are two non-adjacent nodes of the graph.
All the arcs in the network are reliable and secure but the nodes can be corrupted.
The intermediate nodes between S and R are oblivious, message passing nodes and
they do no computation of their own. Their only task is to pass information from their
predecessor node to their successor node.

We assume the presence of a static, threshold adversary Astatic
tb

, having unbounded
computing power, who can corrupt any set of tb nodes in the graph (excluding S and
R) in Byzantine fashion. Following the approach of [24], we abstract away the network
and assume that S and R are connected by node disjoint paths, also called as wires,
which are directed either from S to R or vice-versa. More specifically, we assume that
there are n wires from S to R, denoted by f1, . . . , fn and u wires from R to S, denoted
by b1, . . . , bu. Moreover, the wires from S to R are node disjoint from the wires which
are directed from R to S. The n wires from S to R are also called as top band, while
the u wires from R to S are called as bottom band. The adversary Astatic

tb
can control
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at most tb wires out of these n + u wires in Byzantine fashion.

7.2 Characterization of Communication Optimal PRMT
in Directed Network

We first begin with the following theorem:

Theorem 7.1 PRMT between S and R in an undirected synchronous network toler-
ating Astatic

tb
is possible iff there exists n ≥ 2tb + 1 wires in the top band.

Proof: The necessity follows from Theorem 3.2. For sufficiency, we can use broadcast
protocol. 2

The communication complexity of the broadcast protocol is O(nℓ). Now an interest-
ing question here is whether we can further reduce the communication complexity of
PRMT protocol in directed network. Any PRMT protocol which reliably sends a mes-
sage containing ℓ field elements against Astatic

tb
has a trivial lower bound of Ω(ℓ) on

communication complexity. This is because any PRMT protocol has to reliably send
the message. Thus any PRMT protocol which reliably sends a message containing ℓ
field elements and has a communication complexity of O(ℓ) field elements will be com-
munication optimal PRMT protocol. Indeed, in Chapter 3, we have designed a three
phase PRMT protocol called 3-Optimal-PRMT-Static-Byzantine, which reliably sends a
message containing ℓ field elements by communicating O(ℓ) field elements in undirected
network, tolerating Astatic

tb
. We now show that something similar can be also done in

directed network.
Before proceeding further, we stop for a moment and compare the directed network

model with the undirected network model. In undirected network model tolerating
Astatic

tb
, we assume that there exists n ≥ 2tb + 1 bi-directional wires between S and

R, of which at most tb wires could be under the control of Astatic
tb

. Thus S and R
can always do reliable communication between them by broadcasting information over
the n wires. This allows us to do error detection and correction and design a three
phase communication optimal PRMT protocol, which allows to send ℓ field elements by
communicating O(ℓ) field elements (see protocol 3-Optimal-PRMT-Static-Byzantine).

On the other hand, in directed network model, there are n wires in the top band and
u wires in the bottom band, where the wires in the top band are completely disjoint from
the wires in the bottom band. From Theorem 7.1, for any PRMT protocol tolerating
Astatic

tb
, n ≥ 2tb + 1. So S can always reliably send any information to R. But u can be

anything. In fact, u may be less than or equal to tb and it may happen that the entire
bottom band is corrupted. So in any multiphase PRMT protocol in directed network,
R may not always be able to reliably send feedback. This is in contrast to the case of
undirected network, where R can always do so by simply broadcasting the feedback.
It is this inherent difficulty, which makes the task of designing communication optimal
PRMT protocol little difficult in the case of directed network and hence call for some
new techniques. In the next theorem, we first characterize the digraphs, over which
communication optimal PRMT protocol is possible. To be more clear, we answer the
following question:

what are the necessary and sufficient structural conditions that the underly-
ing directed graph should satisfy for the possibility of communication optimal
PRMT protocol, which sends a message consisting of ℓ elements from F, by
communicating O(ℓ) field elements, tolerating Astatic

tb
?
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The following theorem completely resolves the above question.

Theorem 7.2 Communication optimal PRMT protocol, tolerating Astatic
tb

is possible
over a digraph iff there are n ≥ 2tb + 1 wires in the top band and u wires in the bottom
band such that (n− 2tb) + 2u = Θ(n).

Proof: Necessity: First of all, irrespective of the value of u, from Theorem 7.1,
n ≥ 2tb + 1. Hence the digraph must have n ≥ 2tb + 1 wires in the top band for the
existence of any PRMT that is communication optimal. Next we show that u must
satisfy (n − 2tb) + 2u = Θ(n) for the existence of any communication optimal PRMT
protocol. We have to prove this when u < tb because if u ≥ tb then (n−2tb)+2u = Θ(n)
is satisfied.

So let u < tb. Suppose both S and R in advance know that the entire bottom band
is corrupted. Under this assumption, any multiphase PRMT protocol virtually reduces
to a single phase PRMT protocol, where S is connected to R by n ≥ 2tb + 1 wires, of
which at most tb−u are corrupted. Now from Theorem 5.5, by substituting tf = 0, we

find that any single phase protocol must communicate Ω
(

nℓ
n−2tb

)
field elements for reli-

ably sending ℓ field elements, where S is connected to R by n ≥ 2tb+1 wires, of which at
most tb are corrupted. This implies that any single phase protocol must communicate

Ω
(

nℓ
n−2(tb−u)

)
field elements for reliably sending ℓ field elements, where S is connected

to R by n ≥ 2tb + 1 wires, of which at most tb−u are corrupted. Thus any multiphase

PRMT protocol must communicate Ω
(

nℓ
n−2(tb−u)

)
fields elements for reliably sending

ℓ field elements over a digraph. Therefore Ω
(

nℓ
n−2(tb−u)

)
defines a lower bound on the

communication complexity of any multiphase PRMT protocol sending ℓ field elements.
Note that this lower bound is derived by assuming that S and R in advance know that
the entire bottom band is corrupted. Any lower bound derived under this assumption
is trivially a lower bound for the more general case, where S and R does not have

this information in advance. Now it is easy to see that Ω
(

nℓ
n−2(tb−u)

)
will turn out to

beO(ℓ) only if (n−2tb)+2u = Θ(n). This completes the necessity proof of Theorem 7.2.

Sufficiency: Suppose there exists n = 2tb + 1 wires in the top band and u wires
in the bottom band, such that (n − 2tb) + 2u = Θ(n). We then design a three phase
PRMT protocol called 3-Optimal-PRMT-Static-Byzantine-Directed, which reliably sends
a message mS containing ℓ = Θ(ntb) field elements by communicating O(ntb) field
elements. This will complete the proof of Theorem 7.2. Protocol 3-Optimal-PRMT-
Static-Byzantine-Directed will be presented in Section 7.2.2.

7.2.1 Black Box Used in Our Protocol

Before presenting our three phase communication optimal PRMT protocol 3-Optimal-
PRMT-Static-Byzantine-Directed, we present another single phase protocol called 1-SP-
REL-Byzantine, which will be used as a black-box in 3-Optimal-PRMT-Static-Byzantine-
Directed. In protocol 1-SP-REL-Byzantine, there are n = 2tb + 1 wires in the top band
and S has a message mS, which we wants to send to R. The protocol has the following
properties: If the adversary does at most tb − b Byzantine corruptions, then R will be
able to recover mS at the end of the protocol. However, if more than tb − b Byzantine
faults occur, then R will fail to recover mS and will detect the presence of more than
tb − b Byzantine faults.
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By closely comparing the steps of protocol 1-SP-REL-Byzantine and protocol 2-SP-
REL-Mixed (given in Fig. 5.2), we find that both the protocols are similar, except with
the following differences:

1. Protocol 2-SP-REL-Mixed is executed against mixed adversary Astatic
(tb,tf ), while 1-

SP-REL-Byzantine is executed against Byzantine adversary Astatic
tb

.

2. In 2-SP-REL-Mixed, mS is divided into blocks of size k = (N − 2tb−T )+ tb
2 + kf ,

while in 1-SP-REL-Byzantine, mS is divided into blocks of size k = (n− 2tb) + b.

3. In 2-SP-REL-Mixed, R can reliably send back his findings to S (which is either
”ERROR1” or ”ERROR2” or ”SUCCESS” signal) by broadcasting. However, in
1-SP-REL-Byzantine, R has no option of reliably sending back his findings to S,
even by broadcasting, as there may not be sufficient honest wires in the bottom
band.

Protocol 1-SP-REL-Byzantine is formally presented in Fig. 7.1.

Figure 7.1: A Single Phase Protocol Based on Error Detection and Error Correction
Capability of RS Codes

Protocol 1-SP-REL-Byzantine (mS, ℓ, n, tb, b): n = 2tb + 1, 0 ≤ b ≤ tb

1. S breaks up mS into blocks BS
1 , . . . ,BS

z , each consisting of k field elements,
where k = (n − 2tb) + b. If ℓ is not an exact multiple of k, a default padding
is used to make ℓ mod k = 0.

2. For i = 1, . . . , z, corresponding to block BS
i , S computes RS codeword CS

i =
(cSi1, . . . , c

S
in) of length n and sends cSij , along the wire fj, for j = 1, . . . , n.

3. For i = 1, . . . , z, let R receive cRij , along the wire fj, for j = 1, . . . , n.

4. For i = 1, . . . , z, let CR
i = (cRi1, . . . , c

R
in). R executes RS-DEC(n,CR

i , tb−b, b, k).

5. If after correcting (tb − b) errors, the RS decoding algorithm does not detect
additional errors in any of the z received vectors, then R recovers BR

i = BS
i ,

for i = 1, . . . , z and concatenates these blocks to recover mR = mS.

6. If ∃i ∈ {1, 2, . . . , z} such that after correcting (tb − b) errors, the decoding
algorithm detects additional (at most b) errors in the ith received vector CR

i ,
then R generates “ERROR” signal, which means it has detected that more
than (tb − b) faults have occurred.

The proof of the properties of protocol 1-SP-REL-Byzantine follows using similar
argument as used to prove the properties of protocol 2-SP-REL-Mixed. So to avoid
repetition, we do not give the proof and state only the following lemmas:

Lemma 7.3 (Correctness) In protocol 1-SP-REL-Byzantine:

1. If at most (tb − b) Byzantine errors occur in the top band then R will be able to
recover mS.
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2. If more than (tb − b) Byzantine errors occur in the top band, then R will fail to
recover mS. However, in this case R will detect that more than (tb−b) Byzantine
errors have occurred in the top band.

Lemma 7.4 (Communication Complexity) The communication complexity of pro-

tocol 1-SP-REL-Byzantine is O
(

|mS|n
(n−2tb)+b

)
.

We are now well equipped to present our communication optimal PRMT protocol
3-Optimal-PRMT-Static-Byzantine, which we do in the next section.

7.2.2 A Three Phase Communication Optimal PRMT Protocol

In protocol 3-Optimal-PRMT-Static-Byzantine, S sets b = min(u
2 , tb

2 ) and executes pro-
tocol 1-SP-REL-Byzantine to reliably send mS. If R is able to recover the message at
the end of 1-SP-REL-Byzantine, then R sends SUCCESS signal to S through the bottom
band. On the other hand if R fails to recover the message at the end of 1-SP-REL-
Byzantine, then it implies that more than tb − b Byzantine errors have occurred in the
top band. This further implies that the majority of the wires in the bottom band are
honest. So R sends back the vector in which he has detected the presence of more than
tb − b Byzantine faults.

Now S waits for the feedback from R and only considers the feedback, which is
received over majority of the wires. But notice that S does not know the status of
the received feedback. However, the selection of the value of b in protocol 1-SP-REL-
Byzantine allows S to take proper response corresponding to the received feedback. The
complete formal specification is given in Fig. 7.2.

We now prove the properties of protocol 3-Optimal-PRMT-Static-Byzantine-Directed.

Theorem 7.5 (Correctness) Protocol 3-Optimal-PRMT-Static-Byzantine-Directed re-
liably sends mS in at most three phases tolerating Astatic

tb
.

Proof: We consider the following two cases:

1. At most (tb− b) Byzantine errors took place during Phase I: In this case,
from Lemma 7.3, R will be able to recover mS correctly at the end of Phase I. R
then sends SUCCESS through the bottom band and terminates the protocol. Since
it has recovered mS, it will simply neglect whatever it receives from S during
Phase III. Hence the theorem holds for this case.

2. More than (tb−b) Byzantine errors took place during Phase I: In this case,
from Lemma 7.3, R detects that more than (tb−b) Byzantine errors have occurred
during Phase I and sends ERROR signal along with the tuple (α,CR

α ) through the
bottom band. Here CR

α is the received vector in which R has detected more than
(tb− b) errors. Since more than (tb− b) Byzantine errors have occurred in the top
band, this implies that in the bottom band, there can be at most (b−1) corrupted
wires. Since b = min ( tb

2 , u
2 ), irrespective of whether b = u

2 or tb
2 , majority of the

wires in the bottom band will be honest. So S will correctly receive (α,CR
α ) and

ERROR signal over at least u
2 wires. So after locally comparing CR

α with CS
α , S

will come to know the identity of more than (tb − b) Byzantine corrupted wires
in the top band and adds them to the list Lfault. S then broadcasts Lfault to R
through entire top band. Since n = 2tb +1, R correctly receives Lfault and comes
to know the identity of more than (tb − b) Byzantine corrupted wires in the top
band. Finally, S re-sends the message by executing 1-SP-REL-Byzantine(mS, ℓ, n−
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Figure 7.2: A Three Phase Communication Optimal PRMT Protocol in Directed Net-
work Tolerating Astatic

tb

3-Optimal-PRMT-Static-Byzantine-Directed(mS, ℓ, n, u, tb)

Phase I: S to R: S executes 1-SP-REL-Byzantine(mS, ℓ, n, tb, b) with
b = min(u

2 , tb
2 ), n = 2tb + 1. In 1-SP-REL-Byzantine, let BS

1 , . . . ,BS
z be the

message blocks of mS and let CS
i be the RS codeword of length n corresponding to

BS
i , sent by S.

Phase II: R to S: Let R receive CR
1 , . . . , CR

z .

1. If R recovers mS after the execution of 1-SP-REL-Byzantine, then he sends
SUCCESS signal to S through the entire bottom band and terminates the pro-
tocol.

2. If R has detected more than (tb−b) faults in CR
α , where α ∈ {1, . . . , z}, then R

sends ERROR signal and the tuple (α,CR
α ) to S through the entire bottom band.

Phase III: S to R: Let S receive SUCCESS signal along us ≥ 0 wires and ERROR

signal along with a tuple of the form (index, vector of length n) through ue ≥ 0
wires. S now considers the following two cases:

• Case 1. us ≥
u
2 : S does nothing and terminates the protocol (see Theo-

rem 7.5).

• Case 2. ue ≥
u
2 : S checks whether it has received the same (index, vector of

length n) over at least u
2 wires out of the ue wires. If not, then S does nothing

and terminates the protocol (see Theorem 7.5). Otherwise, let S receive the
same tuple (β,Γ) through at least u

2 wires out of ue wires. In this case, S does
the following:

1. Compute E , which is the set of mismatches between CS
β and Γ. So E = |E|

is the number of mismatches between CS
β and Γ.

2. If E ≤ tb − b, then do nothing and terminate the protocol (see Theo-
rem 7.5).

3. If E > (tb − b), then consider the wires in E as faulty and add them to
a list Lfault. Ignore all the wires in Lfault from the top band for fur-
ther communication. Without loss of generality, let these be the last
|Lfault| wires in the top band. Re-send mS by executing 1-SP-REL-
Byzantine(mS, ℓ, n−|Lfault|, tb−|Lfault|, |Lfault|) over the first n−|Lfault|
wires. In addition, broadcast Lfault to R over entire top band and termi-
nate the protocol.

Message Recovery by R: If R had sent ERROR and a tuple (index, vector of
length n) to S during Phase II, then R will always correctly receive Lfault. Now
ignoring all information received over the wires in Lfault, R correctly recovers mS by
executing the steps of 1-SP-REL-Byzantine(mS, ℓ, n − |Lfault|, tb − |Lfault|, |Lfault|)
and terminates the protocol.
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|Lfault|, tb − |Lfault|, |Lfault|) over the first n − |Lfault| wires 1. Now since there
can be at most tb−|Lfault| Byzantine corrupted wires in the top band, by Lemma
7.3, R will be able to recover mS at the end of Phase III. Hence the theorem
holds for this case also. 2

Theorem 7.6 (Communication Complexity) Protocol 3-Optimal-PRMT-Static-Byzantine-

Directed is a communication optimal PRMT protocol which reliably sends a message
containing ℓ = Θ(ntb) field elements by communicating O(ntb) field elements tolerating
Astatic

tb
.

Proof: Since n = 2tb + 1, ℓ = |mS| = Θ(ntb), n− 2tb + 2u = Θ(n) and b = min(u
2 , tb

2 ),
from Lemma 7.4, the communication complexity of Phase I is O(ntb). During Phase
II, R either sends SUCCESS signal or a tuple (index, vector of length n), along
with ERROR signal over all the u wires in bottom band. This involves communication
of at most nu = O(ntb) field elements. During Phase III, S either sends noth-
ing or re-sends the message. Communication complexity of re-sending the message is

O(
(n−|Lfault|)|m

S|
|Lfault|

). Since |Lfault| > (tb− b), irrespective of whether b = u
2 or b = tb

2 , the

following holds: |Lfault| = Θ(tb) and n− |Lfault| = Θ(tb). Hence re-sending mS incurs
a communication complexity of O(ntb). Thus the total communication complexity of
3-Optimal-PRMT-Static-Byzantine-Directed is O(ntb). 2

7.3 Concluding Remarks and Open Problems

In this chapter, we have studied PRMT in directed network tolerating Astatic
tb

. Specif-
ically, we have characterized the class of digraphs over which PRMT protocol with
constant factor overhead is possible. However, the characterization holds only for static
Byzantine adversary. This brings forth the following open problems:

Open Problem 6 Let N be a directed network where there are n wires in the top band
and u wires in the bottom band, such that at most tb and tf wires are under the control
of a threshold static adversary Astatic

(tb,tf ) in Byzantine and failstop fashion respectively.

Then what are the necessary and sufficient conditions that n and u should satisfy for
the existence of any PRMT tolerating Astatic

(tb,tf ), which sends a message containing ℓ field

elements by communicating O(ℓ) field elements?

Open Problem 7 Let N be a directed network where there are n wires in the top band
and u wires in the bottom band, such that at most tb and tf wires are under the control
of a threshold mobile adversary Amobile

(tb,tf ) in Byzantine and failstop fashion respectively.

Then what are the necessary and sufficient conditions that n and u should satisfy for
the existence of any PRMT tolerating Amobile

(tb,tf ) , which sends a message containing ℓ field

elements by communicating O(ℓ) field elements?

Till now, we have focussed on PRMT where it is required that R should output the
message without any error. In the next chapter, we discuss about SRMT, where R is
allowed to output an incorrect message with a negligible error probability.

1Recall that in the protocol, we have assumed that the last |Lfault| wires are Byzantine corrupted.
This is without loss of generality.
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Chapter 8

SRMT in Undirected Networks
Tolerating Static Mixed
Adversary

In PRMT, it is required that R should correctly output the message at the end of the
protocol without any error. On the other hand, in SRMT a negligible error probability
is allowed in the outcome of the protocol. It is a well-known fact that in several
problem domains, allowing a negligible error probability in the outcome helps to a
great extent in arriving at more efficient and simpler solutions than their deterministic
counterpart. The problem domains range from famous number theoretic randomised
primality testing algorithms [65] to various distributed computation tasks like verifiable
secret sharing (VSS) [66, 8, 23, 52], multiparty computation (MPC) [66, 8, 9, 56] to
name a few. Motivated by this, Franklin et al. studied PRMT with negligible error
probability in [33]. The issue of possibility, feasibility and optimality of SRMT
in undirected synchronous network tolerating threshold static mixed adversary was
completely resolved in [75]. For the sake of completeness, we recall these results and
present them in the next section. The main purpose of recalling these results is to
make the thesis self contained. This is because several of these results and techniques
will be later used in other chapters of our thesis.

We now give the formal specification of the network settings used in this chapter.

8.1 Network Model and Adversary Settings

The network model used in this chapter is similar to the one used in Chapter 5. Thus
there are n bidirectional synchronous wires w1, . . . , wn between S and R, of which
at most tb and tf wires can be under the control of a static mixed adversary Astatic

(tb,tf )

in Byzantine and fail-stop fashion respectively. We assume that all computation and
communication are done over a finite field F, where F = GF (2κ). Here κ is the error
parameter 1. Thus each field element can be represented by O(κ) bits. Moreover,
without loss of generality, we assume that n = poly(κ).

8.1.1 Tools Used in SRMT and SSMT Protocols

In all the SRMT and SSMT protocols presented in this thesis, we will be using the
following tools:

1Recall that in SRMT, R should output the correct message, except with error probability 2−Ω(κ).
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Definition 8.1 (Unconditionally Reliable Authentication [66, 24, 33]) It is used
to send a message M over a wire such that if the wire is uncorrupted, then the re-
ceiver correctly gets M . On the other hand, if the wire is corrupted, then the re-
ceiver does not get M but is able to detect the corruption with very high probability.
Though there are several implementations for this well known primitive, we use the
following implementation in this thesis: Let a random, non-zero (a, b) ∈ F

2 be se-
curely established between the sender and the receiver in advance. The sender computes
x = URauth(M ; a, b) = aM + b and sends (M,x) to the receiver over the wire. Let the

receiver receive (M ′, x′) along the wire. Receiver verifies x′ ?
= URauth(M ′; a, b). If the

test fails then the receiver concludes that M ′ 6= M , otherwise M ′ = M . The tuple (a, b)
is called authentication key. The probability that M ′ 6= M , but still the receiver fails to
detect it is at most 1

|F| , which is negligible in our context. Note that the key a remains

information theoretically secure, even if the adversary knows (M,x) by eavesdropping
the wire.

Definition 8.2 (Unconditionally Secure Authentication [66, 24, 33]) The goal
here is similar to unconditionally reliable authentication. However, we now require an
additional requirement that M should be information theoretically secure, even if the
wire is under the control of the adversary. Again there are several implementations
for this well known primitive. In this thesis, we use the following implementation:
Let a random, non-zero (a, b, c) ∈ F

3 − {(0, 0, 0)} be securely established between the
sender and the receive in advance. The sender computes (x, y) = USauth(M ; a, b, c) =
(M + a, b(M + a) + c) and sends (x, y) to the receiver over the wire. Let the receiver

receive (x′, y′) along the wire. The receiver verifies y′
?
= bx′+c. If the test fails then the

receiver concludes that the wire is corrupted, else the receiver recovers x′−a. It is easy
to see that even if the adversary knows (x, y), then also M is information theoretically
secure. Moreover, if (x′, y′) 6= (x, y), then except with error probability 1

|F| (which is

negligible), the receiver will be able to detect it.

Definition 8.3 (Unconditional Hashing [9]) Let (v1, v2, . . . , vℓ) be a random vec-
tor from F

ℓ, where ℓ > 1 and k ∈ F − {0}. Then we define hash(k; v1, v2, . . . , vℓ) =
v1 + v2k + v3k

2 + . . . + vℓk
ℓ−1. Here k is called the hash key. The probability that

two different vectors map to the same hash value for a uniformly chosen hash key is at
most ℓ

|F| ≈ 2−Ω(κ). If the adversary knows only k and hash(k; v1, v2, . . . , vℓ), then ℓ− 1
elements in the vector will be information theoretically secure.

8.2 Characterization of SRMT and Bounds on the Com-
munication Complexity of SRMT

We now recall the existing results regarding the characterization of SRMT.

8.2.1 Characterization of SRMT in Undirected Networks

As stated earlier, SRMT problem was first defined in [33], where the authors studied
SRMT in the presence of a static Byzantine adversary. Specifically, the authors have
shown the following:

Theorem 8.4 ([33]) SRMT in an undirected synchronous network tolerating a thresh-
old static Byzantine adversary Astatic

tb
is possible iff there exists n ≥ 2tb+1 wires between

S and R.
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In [75], the author extended the above characterization for static mixed adversary
and showed the following:

Theorem 8.5 ([75]) SRMT in an undirected synchronous network tolerating a thresh-
old static mixed adversary Astatic

(tb,tf ) is possible iff there exists n ≥ 2tb+tf +1 wires between

S and R.

Comparison 8.6 (Connectivity Requirement of PRMT and SRMT) Comparing
Theorem 5.1 and Theorem 8.5, we find that the connectivity requirement of PRMT as
well as SRMT is same. That is, allowing a negligible error probability does not reduce
the connectivity requirement for reliable message transmission.

Though allowing a negligible error probability does not reduce the connectivity
requirement, it does reduce the communication complexity of RMT protocols. We first
consider the case of single phase protocols.

8.2.2 Lower Bound and Upper Bound for Single Phase SRMT

In [75], the author proved the lower bound on the communication complexity of single
phase SRMT tolerating Astatic

(tb,tf ), which is given by the following theorem:

Theorem 8.7 ([75]) Let S and R be connected by n ≥ 2tb + tf + 1 wires. Then any

single phase SRMT protocol must communicate Ω
(

nℓ
n−(tb+tf )

)
field elements to transmit

a message containing ℓ field elements tolerating Astatic
(tb,tf ). In terms of bits, any single

phase SRMT protocol must communicate Ω
(

nℓκ
n−(tb+tf )

)
bits to reliably send a message

containing ℓκ bits.

Comparison 8.8 (Communication Complexity of PRMT and SRMT) While the
lower bound on the communication complexity of any single phase PRMT tolerating

Astatic
(tb,tf ) is Ω

(
nℓ

(n−(2tb+tf )

)
field elements (see Theorem 5.5), the same for SRMT is

Ω
(

nℓ
(n−(tb+tf )

)
field elements (Theorem 8.7). Recall that as pointed out in Compari-

son 8.6, the connectivity requirement for both PRMT and SRMT tolerating Astatic
(tb,tf ) is

n ≥ 2tb + tf + 1. Assuming n = 2tb + tf + 1, the lower bound for single phase PRMT
and SRMT become Ω(nℓ) and Ω(nℓ

tb
) field elements respectively. Now if tb = Θ(n) then

the lower bound for single phase SRMT becomes Ω(ℓ) field elements. This implies that
for tb = Θ(n), communication of ℓ field elements requires transmission of Ω(nℓ) field
elements for PRMT and Ω(ℓ) field elements for SRMT. Now notice that PRMT and
SRMT tolerating Byzantine adversary Astatic

tb
(i.e., tf = 0) requires n ≥ 2tb + 1 wires.

If n = 2tb + 1, then tb = Θ(n) holds. Hence the conclusion is that in the presence of
Astatic

tb
the lower bound on the communication complexity of any single phase PRMT

and SRMT are Ω(nℓ) and Ω(ℓ) field elements respectively. This clearly shows that al-
lowing a negligible error probability helps in significant reduction in the lower bound on
the communication complexity of RMT protocols.

The author in [75] showed that the bound on the communication complexity as
given in Theorem 8.7 is asymptotically tight. Specifically, the author presented a com-
munication optimal single phase SRMT protocol over n = 2tb + tf + 1 wires, which
we call as 1-Optimal-SRMT-Static-Mixed. The protocol delivers a message containing
(tb + 1)n field elements by communicating O(n2) field elements. Before presenting the
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protocol, we will present a technique called Extrapolation Technique, which is used pro-
tocol 1-Optimal-SRMT-Static-Mixed. The same technique will be again used in several
other SRMT and SSMT protocols in subsequent chapters.

8.2.2.1 Extrapolation Technique

The settings used in the Extrapolation Technique are as follows:

1. S has a block Binit, consisting of ROW × COL random elements from F. Here
ROW and COL are variables.

2. The elements of Binit are assumed to be arranged in the form of a ROW ×COL
matrix, where for i = 1, . . . , ROW , the ith row of Binit is (rS

i,1, . . . , r
S
i,COL).

Now using the Extrapolation Technique, S constructs an N × COL matrix Bext

(where N > ROW ) by executing the steps given in Fig. 8.1.

Figure 8.1: Steps for the Extrapolation Technique

Extrapolation Technique(ROW,COL,N,Binit)

1. For j = 1, . . . , COL, S constructs a polynomial qS
j (x) of degree (ROW − 1),

passing through the elements of jth column of Binit. That is, qS
j (x) passes

through the points (1, rS
1,j), . . . , (ROW, rS

ROW,j).

2. For j = 1, . . . , COL, S evaluates the polynomial qS
j (x) at x = ROW +1, . . . , N

to get cSROW+1,j, . . . , c
S
N,j respectively.

3. Now Bext is the N × COL matrix, whose jth column is
(rS

1,j, . . . , r
S
ROW,j, c

S
ROW+1,j , . . . , c

S
N,j)

T .

Pictorially, the matrix Bext, as constructed from Binit using Extrapolation Technique,
is shown in Fig. 8.2.

Figure 8.2: The N ×COL Matrix Bext as Constructed from the ROW ×COL Matrix
Binit

rS
1,1 . . . rS

1,j . . . rS
1,COL

. . . . . . . . . . . . . . .

rS
i,1 . . . rS

i,j . . . rS
i,COL

. . . . . . . . . . . . . . .

rS
ROW,1 . . . rS

ROW,j . . . rS
ROW,COL

cSROW+1,1 . . . cSROW+1,j . . . cSROW+1,COL

. . . . . . . . . . . . . . .

cSN,1 . . . cSN,j . . . cSN,COL

The following results taken from [75] states the properties of the Extrapolation Tech-
nique.

Lemma 8.9 In Bext, all the N elements of any column can be uniquely generated from
any ROW elements of the same column.
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Proof: The proof follows from the simple observation that the N elements along any
column of Bext lie on a (ROW − 1) degree polynomial and any ROW points on a
(ROW −1) degree polynomial are enough to reconstruct the ROW degree polynomial.
2

Lemma 8.10 The elements of Binit can be uniquely determined from any ROW rows
of Bext.

Proof: From the construction of Bext, the elements of Binit are arranged in the first
ROW rows. If the first ROW rows are known then the lemma holds trivially. On the
other hand, if some other ROW rows are known, then from Lemma 8.9, the jth column,
1 ≤ j ≤ COL, of Bext can be completely generated from ROW elements of the same
column. Hence, knowledge of any ROW rows can reconstruct the whole matrix Bext

and hence the matrix Binit (which is just the first ROW rows of Bext). 2

We are now well equipped to present protocol 1-Optimal-SRMT-Static-Mixed, which we
do in the next section.

8.2.2.2 Protocol 1-Optimal-SRMT-Static-Mixed: Single Phase Communica-
tion Optimal SRMT Protocol Tolerating Astatic

(tb,tf )

Let S and R be connected by n = 2tb +tf +1 wires, denoted by w1, . . . , wn. Let S has a
message mS containing (tb+1)×n elements from F. We then present protocol 1-Optimal-
SRMT-Static-Mixed, which allows S to reliably send mS with very high probability in
a single phase by communicating O(n2) field elements. The protocol is given in Fig.
8.3.

We now prove the properties of protocol 1-Optimal-SRMT-Static-Mixed.

Lemma 8.11 In protocol 1-Optimal-SRMT-Static-Mixed if R concludes that FR
i is a

valid row of Bext, then except with error probability 2−Ω(κ), FR
i = FS

i .

Proof: The lemma is true without any error if wire wi is uncorrupted. So let wire
wi be a corrupted wire, who delivers FR

i 6= FS
i . In this case, if FR

i is considered as a
valid row of Bext, then it implies that Supporti ≥ tb + 1. Since there can be at most tb
Byzantine corrupted wires, this implies that there exists at least one honest wire, say
wj, which correctly and securely delivered the hash key keyR

j = keyS
j and hash value

vR
ij = vS

ij = hash(keyS
j ;FS

i ) = hash(keyR
j ;FS

i ), such that wj ∈ Supporti. Since wj ∈

Supporti, it implies that vR
ij = hash(keyR

j ;FR
i ). Since adversary does not know keyR

j

and vR
ij , he can ensure that vR

ij = hash(keyR
j ;FS

i ), as well as vR
ij = hash(keyR

j ;FR
i ),

where FR
i 6= FS

i , with probability at most n−1
|F| ≈ 2−Ω(κ), which is negligible in our

context. So with very high probability, wj will not belong to Supporti, which is a
contradiction. So with overwhelming probability FR

i = FS
i . 2

Lemma 8.12 In protocol 1-Optimal-SRMT-Static-Mixed, if R gets tb + 1 valid rows of
Bext then R can recover mS.

Proof: The proof follows from Lemma 8.10 and the fact that ROW = tb + 1 in
protocol 1-Optimal-SRMT-Static-Mixed. 2

Lemma 8.13 In protocol 1-Optimal-SRMT-Static-Mixed, except with error probability
2−Ω(κ), mR = mS.
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Figure 8.3: Single Phase Protocol 1-Optimal-SRMT-Static-Mixed Tolerating Astatic
(tb,tf )

Protocol 1-Optimal-SRMT-Static-Mixed

Phase I: S to R:

1. S sets ROW = tb + 1, COL = n,N = n and Binit = mS and executes Extrap-
olation Technique to generate an n× n matrix Bext.

2. For i = 1, . . . , n, S sends the following to R over wire wi:

(a) The ith row of Bext, denoted by FS
i ;

(b) A random, non-zero hash key keyS
i ;

(c) The hash values vS
ji, where vS

ji = hash(keyS
i ;FS

j ), for j = 1, . . . , n.

Message Recover by R:

1. Let F denote the set of wires that delivered nothing to R.

2. Let R receive the following over wire wi 6∈ F :

(a) The n-tuple FR
i ;

(b) A random, non-zero hash key keyR
i ;

(c) The values vR
ji , for j = 1, . . . , n.

3. For every wi 6∈ F , R computes Supporti = |{wj : wj 6∈ F and vR
ij =

hash(keyR
j ;FR

i )}|.

4. If Supporti ≥ tb + 1, then R considers FR
i to be a valid row of Bext.

5. If R has received tb + 1 valid rows, then R reconstructs the message mR from
them and terminates the protocol.

Proof: First of all notice that R will always output some message. This is because
there always exist n − (tb + tf ) = tb + 1 honest wires, which will always deliver valid
rows of Bext. Moreover, even if a wire which is under the control of the adversary has
delivered a valid row, then from Lemma 8.11, the row is indeed a valid row of Bext,
except with probability 2−Ω(κ). This implies that with very high probability, the tb + 1
valid rows used by R to recover mR are indeed the rows of Bext. Thus, except with
error probability 2−Ω(κ), mR = mS. 2

Lemma 8.14 In protocol 1-Optimal-SRMT-Static-Mixed, S communicates O(n2κ) bits.

Proof: Over each wire, S sends a row of Bext consisting of n elements, a hash key and
n hash values. So overall, S sends O(n2) field elements to R. Since each field element
can be represented by O(κ) bits, S communicates O(n2κ) bits.

Theorem 8.15 Protocol 1-Optimal-SRMT-Static-Mixed is a communication optimal
SRMT protocol, which reliably sends a message containing Θ(ntbκ) bits by commu-
nicating O(n2κ) bits, tolerating Astatic

(tb,tf ).
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Proof: The proof that 1-Optimal-SRMT-Static-Mixed is an SRMT protocol follows
from Lemma 8.11, Lemma 8.12 and Lemma 8.13. If n = 2tb+tf +1, then from Theorem
8.7, any single phase SRMT protocol tolerating Astatic

(tb,tf ) must communicate Ω(n2κ) bits

to reliably send ℓ = Θ(ntbκ) bits. Since the communication complexity of protocol
1-Optimal-SRMT-Static-Mixed is O(n2κ) bits, protocol 1-Optimal-SRMT-Static-Mixed is
a communication optimal SRMT protocol. 2

8.2.3 Lower Bound and Upper Bound for Multi Phase SRMT

If more than one phase is allowed, then the communication complexity of SRMT proto-
cols can be reduced. The lower bound on the communication complexity of multiphase
SRMT protocol tolerating Astatic

(tb,tf ) is given by the following theorem:

Theorem 8.16 Let S and R be connected by n ≥ 2tb + tf + 1 wires. Then any
multi phase SRMT protocol tolerating Astatic

(tb,tf ) must communicate Ω(ℓ) field elements to

transmit a message containing ℓ field elements tolerating Astatic
(tb,tf ). In terms of bits, any

multi phase SRMT protocol must communicate Ω(ℓκ) bits to reliably send a message
containing ℓκ bits.

Proof: Easy because any SRMT protocol has to at least send the message. 2

The bound given in the above theorem is asymptotically tight, as shown in the following
theorem:

Theorem 8.17 Let S and R be connected by n = 2tb + tf + 1 wires. Then there exists

an O(log
tf
tb

) phase SRMT protocol, tolerating Astatic
(tb,tf ), which reliably sends a message

containing ℓ = Θ(n3) field elements by communicating O(n3) field elements.

Proof: The proof follows from Corollary 5.17.2 and the fact that any PRMT protocol
is also an SRMT protocol. 2

8.3 Concluding Remarks and Open Problems

In this chapter, we have discussed about the possibility, feasibility and optimal-
ity of SRMT in undirected synchronous network tolerating Astatic

(tb,tf ). The results are

summarized in Fig. 8.4. The conclusion drawn from these results is the following:
Allowing negligible error probability in the reliability does not reduce the connectivity
requirement for reliable message transmission. However it does reduce the communica-
tion complexity of RMT protocols.

From Fig. 8.4, we find that protocol 1-Optimal-SRMT-Static-Mixed is communica-
tion optimal only if ℓ = Θ(ntb). This brings forth the following open question:

Open Problem 8 Let there exists n ≥ 2tb + tf + 1 wires between S and R under
the influence of Astatic

(tb,tf ). Then does there exist a single phase communication optimal

SRMT protocol, which reliably sends a message containing ℓ field elements (ℓ can be

anything) by communicating O
(

nℓ
n−(tb+tf )

)
field elements?

To show the tightness of the bound given in Theorem 8.16, we actually showed the
presence of a PRMT protocol, which takes O(log

tf
tb

) phases. This leads to the second
open problem of the chapter, which is as follows:
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Figure 8.4: Summary of the Results for SRMT in Undirected Synchronous Network
Tolerating Astatic

(tb,tf )

Number of Connectivity Lower Bound on Upper Bound
Phases (r) Requirement (n) Communication

Complexity

r = 1 n ≥ 2tb + tf + 1 Ω
(

nℓ
n−(tb+tf )

)
Protocol

Theorem 8.5 Theorem 8.7 1-Optimal-SRMT-Static-Mixed:
n = 2tb + tf + 1, ℓ = Θ(ntb)

Communication

complexity = O
(

nℓ
tb

)

r ≥ 2 n ≥ 2tb + tf + 1 Ω(ℓ) Theorem 8.17
Theorem 8.5 Theorem 8.16

Open Problem 9 Let S and R be connected by n = 2tb+tf +1 wires. Then does there
exist an SRMT protocol tolerating Astatic

(tb,tf ), which reliably sends a message containing

ℓ field elements by communicating O(ℓ) field elements and takes less than O(log
tf
tb

)
phases?

We do not discuss about SRMT in directed network at this point. This is because
our SRMT protocol in directed network will use some SSMT protocols in directed
networks as black-box. So for better understanding, we will discuss about SRMT and
SSMT in directed networks later in the same chapter.

With this, we come to the end of first part of our thesis. Till now, we have considered
only RMT protocols, where there is no issue of security. The next part deals with SMT
protocols, where we require both reliability as well as security.
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Part II

Results for PSMT and SSMT in
Synchronous Network
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Chapter 9

PSMT in Undirected Networks
Against Static Byzantine
Adversary

In this chapter, we focus on PSMT in undirected synchronous network, tolerating thresh-
old static Byzantine adversary, denoted by Astatic

tb
. The PSMT problem in this model

has been studied by several researchers [28, 70, 77, 4, 58, 30, 42]. Recall that in PSMT,
in addition to perfect reliability, we also require perfect security. The contribution of
this chapter is two fold. First, we present all relevant known bounds, thus making the
available literature more accessible. As a second contribution, we present a three phase
communication optimal PSMT protocol tolerating Astatic

tb
. Till the publication of this

result in [58], our three phase PSMT protocol was the only efficient communication op-
timal PSMT in undirected synchronous network tolerating Astatic

tb
. However, recently in

[42], Kurosawa et al. have improved the phase complexity of our protocol by reducing
the number of phases by one. Nevertheless, we still present our three phase protocol
to highlight some techniques, which will be later used in other PSMT protocols of the
thesis.

The network model and adversary settings used in this chapter are exactly same
as in Chapter 3. Thus, we assume that S and R are connected by n bi-directional
synchronous wires w1, . . . , wn, of which at most tb wires can be under the control
of Astatic

tb
. We now present the existing results for PSMT in undirected synchronous

network tolerating Astatic
tb

.

9.1 Existing Results for PSMT Tolerating Astatic
tb

We begin with the description of the existing results for single phase PSMT tolerating
Astatic

tb
.

9.1.1 Single Phase PSMT Tolerating Astatic
tb

The PSMT problem was first introduced in [28]. Dolev et al. [28] gave the following
necessary and sufficient condition for the existence of single phase PSMT tolerating
Astatic

tb
.

Theorem 9.1 ([28]) Any single phase PSMT in undirected synchronous network tol-
erating Astatic

tb
is possible iff there exists n ≥ 3tb + 1 wires between S and R.
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Proof (sketch): The necessity is proved by showing that in any single phase PSMT
protocol tolerating Astatic

tb
, the information sent by S over any n−2tb wires should have

full information about the message. Since in any single phase PSMT tolerating Astatic
tb

the adversary can passively listen at most tb wires, the above condition implies that in
any single phase PSMT, n − 2tb > tb should hold, otherwise adversary will also know
the secret message. This further implies that n > 3tb should hold.

The sufficiency is shown as follows: suppose there exists n = 3tb + 1 wires between
S and R. To securely send a message mS, sender S selects a random polynomial of
degree tb whose constant term is mS and computes an RS codeword of length n from
this polynomial. S then sends one component of the codeword to R over each wire. R
will receive 3tb + 1 points on a polynomial of degree tb and at most tb points could be
corrupted. However, by applying RS-DEC, R will be able to correct these errors and
recover the original polynomial and hence the message mS. The secrecy of mS follows
from the fact that Astatic

tb
will know only tb points on the polynomial, whose degree

is tb. Thus adversary will lack by one point to uniquely interpolate the polynomial,
implying information theoretic security for mS. 2

The above theorem resolves the issue of possibility of single phase PSMT tolerating
Astatic

tb
. The lower bound on the communication complexity of single phase PSMT

tolerating Astatic
tb

was proved in two independent works in [81, 30].

Theorem 9.2 ([81, 30]) Let S and R be connected by n ≥ 3tb + 1 wires. Then

any single phase PSMT protocol tolerating Astatic
tb

must communicate Ω
(

nℓ
n−3tb

)
field

elements to securely send a message containing ℓ field elements. Moreover, this bound
is tight.

Proof (sketch): The lower bound is derived by first showing that the communication
complexity of any single phase PSMT to securely send a message mS tolerating Astatic

tb
is not less than the share complexity (sum of the length of the shares) of a secret
sharing scheme, which generates n shares for mS, such that any set of n − 2tb shares
has full information about the message, while any set of tb shares has no information
about the message. Then it is shown that the share complexity (sum of the length of
the shares) of any secret sharing scheme, which generates n shares for mS containing
ℓ field elements, such that any set of n − 2tb shares has full information about the

message, while any set of tb shares has no information about the message is Ω
(

nℓ
n−3tb

)
.

This is done by using similar arguments as given in Lemma 6.11.
The tightness of the bound follows from the protocol which is sketched in Theorem

9.1, which securely sends a message containing ℓ = 1 field element by communicating
O(n) field elements, where S and R are connected by n = 3tb + 1 wires. 2

9.1.2 Multi Phase PSMT Tolerating Astatic
tb

The issue of possibility for multi phase PSMT tolerating Astatic
tb

was resolved in [28],
where the authors gave the following characterization:

Theorem 9.3 ([28]) Let r ≥ 2. Then any r-phase PSMT protocol in undirected syn-
chronous network tolerating Astatic

tb
is possible iff there exists n ≥ 2tb + 1 wires between

S and R.

Proof (sketch): The necessity is proved by showing that in any multiphase phase
PSMT protocol tolerating Astatic

tb
, the information sent by S over any n−tb wires should

109



have full information about the message. Since in any PSMT protocol tolerating Astatic
tb

the adversary can passively listen at most tb wires, the above condition implies that in
any multi phase PSMT protocol, n− tb > tb should hold, otherwise adversary will also
know the secret message. This further implies that n > 2tb should hold.

To show the sufficiency, Dolev et al. presented three PSMT protocols in [28] with
2tb + 1 bidirectional wires between S and R.

1. The first protocol requires tb + 1 phases and communicates O(n3ℓ) field elements
to securely send ℓ field elements;

2. The second protocol takes three phases and communicates O(n5ℓ) field elements
to securely send ℓ field elements;

3. The last protocol takes two phases and communicates O(n3ℓ) field elements to
securely send ℓ field elements. Unfortunately, in this protocol, S and R has to
perform exponential computation. 2

After the work of Dolev et al., several attempts were made to improve the com-
munication complexity of multi phase PSMT tolerating Astatic

tb
. The first improvement

was achieved by Sayeed et al. in [70], who presented a two phase, polynomial time
PSMT protocol in undirected synchronous network, where S and R are connected by
n = 2tb + 1 wires. The protocol of [70] requires a communication complexity of O(n3ℓ)
field elements to securely send ℓ field elements. This significantly improved the ineffi-
cient (third) protocol of [28]. In another work, Srinathan et al. [85] improved the first
protocol of [28] by designing a PSMT protocol with n = 2tb + 1 wires, which takes
O(log tb) phases and requires a communication complexity of O(n2ℓ log tb). However,
nothing was known regarding the communication complexity of multi phase PSMT tol-
erating Astatic

tb
. The major break through in this direction was made in [77], where the

authors presented the first, non trivial lower bound on the communication complexity
of two phase PSMT tolerating Astatic

tb
. In fact, this was the first lower bound on the

communication complexity which was proposed in the literature of RMT/SMT. The
lower bound as given in [77] is as follows:

Theorem 9.4 ([77]) Let S and R be connected by n ≥ 2tb + 1 wires. Then any two

phase PSMT protocol tolerating Astatic
tb

must communicate Ω
(

nℓ
n−2tb

)
field elements to

securely send a message containing ℓ field elements.

In another interesting work, Srinathan et al. [81] showed that the bound in Theorem
9.4 holds for any multi phase PSMT protocol tolerating Astatic

tb
. This result in stated

in the following theorem:

Theorem 9.5 ([81]) Let S and R be connected by n ≥ 2tb + 1 wires and let r ≥ 2.

Then any r-phase PSMT protocol tolerating Astatic
tb

must communicate Ω
(

nℓ
n−2tb

)
field

elements to securely send a message containing ℓ field elements.

The significance of Theorem 9.5 is the following: it shows that increasing the number
of interactions between S and R does not reduce the communication complexity of
PSMT protocols.

Srinathan et al. [77] claimed that the bound in Theorem 9.4 is asymptotically tight
by presenting a two phase PSMT protocol with n = 2tb +1 wires, which securely sends
ℓ = Θ(n) field elements by communicating O(nℓ) = O(n2) field elements. However, in
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[4], the authors showed that the two phase protocol of [77] does not provide perfect reli-
ability. Even though the two phase protocol of [77] does not provide perfect reliability,
it introduces a very novel idea, called Matching Technique (see Fig. 3.3), which reduces
the communication complexity of reliably sending a list of conflicts. This technique was
later used in several other works for designing PRMT and PSMT protocols tolerating
Astatic

tb
.

Saurabh et al. [4] then presented a new two phase PSMT protocol with n = 2tb +1,
tolerating Astatic

tb
, whose communication complexity asymptotically satisfies the bound

given in Theorem 9.4. Unfortunately, in their protocol, S and R has to do exponential
computation. Moreover, the protocol is communication optimal, only if the message is
exponentially large. We now summarize all protocols with n = 2tb + 1 in Fig. 9.1.

Figure 9.1: Existing PSMT Protocols in Undirected Synchronous Network with n =
2tb + 1 Wires Tolerating Astatic

tb

Reference Number of Communication Remark
Phases (r) Complexity

[28] tb + 1 O(n3ℓ) Non optimal communication complexity

[28] 3 O(n5ℓ) Non optimal communication complexity

[28] 2 O(n3ℓ) Non optimal communication complexity a

[70] 2 O(n3ℓ) Non optimal communication complexity b

[85] log tb O(n2ℓ log tb) Non optimal communication complexity

[77] 2 O(nℓ) Optimal communication complexity;
ℓ = Θ(tb)

c

[4] 2 O(nℓ) Optimal communication complexity d

a In this protocol, S and R has to do exponential computation.
b By using Matching Technique, the communication complexity of this protocol can be

made O(n2ℓ).
c In [4], the authors have shown that this protocol does not provide perfect reliability.
d In this protocol, S and R has to do exponential computation. Moreover, ℓ is expo-

nential in n.

9.2 A Three Phase Polynomial Time PSMT Protocol

From Fig. 9.1, we find that there does not exist any efficient, multi phase PSMT
protocol, tolerating Astatic

tb
with n = 2tb + 1 wires, having optimal communication

complexity. Motivated by this, we design a three phase communication optimal PSMT
protocol called 3-Optimal-PSMT-Static-Byzantine with n = 2tb + 1 wires, tolerating
Astatic

tb
. The protocol securely sends a message containing ℓ = Θ(n) field elements

by communicating O(n2) field elements. Though our protocol takes one more phase
than the two phase communication optimal PSMT protocol of [4], it has the following
advantages: in our protocol, S and R has to do polynomial computation. Moreover,
the message size is polynomial in n.

Before presenting the protocol, we present an algorithm which will be used in our
protocol. The algorithm will also be used later in several other PSMT and SSMT
protocols.
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9.2.1 Extracting Randomness

Suppose S and R by some means agree on a sequence of n random elements x =
(x1, . . . , xn) ∈ F

n, such that Astatic
tb

knows only n − f components of x, but has no
information about the other f (f > 0) components of x. However S and R does not
know which values are known to Astatic

tb
. The goal of S and R is to agree on a sequence

of f elements (y1, . . . , yf ) ∈ F
f , such that Astatic

tb
has no information about (y1, . . . , yf ).

This is done by executing algorithm EXTRAND, which was presented in [77]. The
algorithm is presented in Fig. 9.2.

Figure 9.2: Algorithm for Extracting Randomness

Algorithm EXTRANDn,f (x): Let V be a n×f Vandermonde matrix with elements
in F. This matrix is published as a part of the algorithm specification. S and R
both locally compute the product (y1, . . . , yf ) = (x1, . . . , xn)× V .

Lemma 9.6 ([77]) The f values computed in algorithm EXTRAND will be information
theoretically secure.

9.2.2 Protocol 3-Optimal-PSMT-Static-Byzantine

Let S and R be connected by n = 2tb + 1 wires and let mS be the message which S
wants to securely send to R. The message mS consists of tb + 1 = Θ(n) field elements,
denoted by mS

1 , . . . ,mS
tb+1.

The idea of protocol 3-Optimal-PSMT-Static-Byzantine is as follows: S and R in-
teracts with each other to establish an information theoretic secure pad of size tb + 1.
Once this is done, S can mask mS with the pad and reliably sends the masked message.
R on receiving the masked message, unmask it using the pad. In fact, this idea will be
used in all the subsequent PSMT and SSMT protocols, which are going to be presented
in this thesis. The only difference is how we establish the pad in the given settings.

In protocol 3-Optimal-PSMT-Static-Byzantine, the pad is established as follows:
Over each wire, S sends a random polynomial of degree tb and its n values distributed
over n wires. R on receiving the polynomials and values perform consistency checking
and constructs the conflict graph in the same way as done in Section 3.3.3. R then re-
liably sends back the conflict graph to S by using Matching Technique (see Fig. 3.3). S
on reliably receiving the graph identifies all wires which delivered incorrect polynomial
during first phase and reliably sends their identity to R. So both S and R will know the
polynomials which are exchanged correctly. Now at least tb+1 of these polynomials are
exchanged over honest wires and Astatic

tb
will have no information about the constant

term of these polynomials. So the constant term of these polynomials may act as the
one time pad. However, neither S nor R knows the exact identity of the honest wires.
Moreover, it may happen that some of the polynomials which are correctly exchanged
are passively listened by the adversary. So S and R applies algorithm EXTRAND on
the constant term of the polynomials which are correctly exchanged to generate a pad
of size tb + 1. The protocol is now formally presented in Fig. 9.3.

We now prove the properties of protocol 3-Optimal-PSMT-Static-Byzantine.

Lemma 9.7 (Perfect Reliability) In protocol 3-Optimal-PSMT-Static-Byzantine, R
will be able to correctly recover mS at the end of Phase III.
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Figure 9.3: A Three Phase Communication Optimal PSMT Protocol Tolerating Astatic
tb

Protocol 3-Optimal-PSMT-Static-Byzantine: n = 2tb + 1, mS = (mS

1 , . . . , mS

tb+1)

Phase I: S to R:

1. For i = 1, . . . , n, S selects a random polynomial pS

i (x) of degree tb.

2. S sends the following to R over wire wi, for i = 1, . . . , n:

(a) Polynomial pS

i (x);

(b) Value rS

ji = pS

j (i), for j = 1, . . . , n.

Phase II: R to S:

1. Let R receive the following over wire wi, for i = 1, . . . , n:

(a) Polynomial pR

i (x);

(b) Value rR

ji , for j = 1, . . . , n.

2. R constructs the conflict graph H and reliably sends it to S using Matching Technique a.

Phase III: S to R

1. S reliably receives the conflict graph H . Thus corresponding to each edge (wi, wj) in H , S
reliably receives the six-tuple (wi, wj , r

R

ij , p
R

i (j), rR

ji, p
R

j (i)).

2. S initializes LS

fault = LR

fault
b. Then for every received six-tuple (wi, wj , r

R

ij , p
R

i (j), rR

ji , p
R

j (i)),
S does the following computation:

(a) S checks rR

ij
?
= rS

ij or pR

i (j)
?
= pS

i (j). If the first test fails then S concludes that wj is
corrupted and adds wj to LS

fault. On the other hand if second test fails then S adds
wi to LS

fault.

(b) S checks rR

ji
?
= rS

ji or pR

j (i)
?
= pS

j (i). If the first test fails then S concludes that wi is
corrupted and adds wi to LS

fault. On the other hand if the second test fails then S
adds wj to LS

fault.

3. S constructs a vector P , consisting of all pS

i (0)’s, such that wi 6∈ LS

fault.

4. S computes PadS =EXTRAND|P|,tb+1(P) and Y S = PadS ⊕ mS.

5. S broadcasts LS

fault and Y S to R and terminates the protocol.

Message Recovery by R

1. R correctly receives LS

fault and identifies all corrupted wi’s which delivered incorrect pS

i (x)’s
during Phase I.

2. R neglects the polynomials received over the wires in LS

fault during Phase I and computes
PadS in the same way, as done by S.

3. R correctly receives Y S, computes mS = Y S ⊕ PadS and terminates the protocol.

a The conflict graph is constructed in the same way as done in Section 3.3.3.
b Recall that during Matching Technique, S receives LR

fault from R.

Proof: To show that R will be able to correctly recover mS, it is enough to show
that both S and R will agree on PadS at the end of Phase III. By the properties of
Matching Technique, S will correctly receive the conflict graph H and will identify all
corrupted wi who has delivered incorrect pR

i (x) 6= pS
i (x) to R during Phase I and will

include such wi’s in LS
fault (see Claim 3.12). Since S broadcasts LS

fault during Phase
III, R will also come to know the identity of such wi’s at the end of Phase III and
hence will neglect them. Thus at the end of Phase III, both S and R will agree on P
and hence on pad PadS. 2
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Lemma 9.8 (Perfect Secrecy) In protocol 3-Optimal-PSMT-Static-Byzantine, mS will
be information theoretically secure from Astatic

tb
, controlling at most tb wires.

Proof: From the protocol description, it is easy to see that mS will be information
theoretically secure, if the pad PadS is information theoretically secure. We now show
the same. First of all, notice that the set P will always contain all pS

i (0)’s, such that wi

is an honest wire, not under the control of Astatic
tb

. Moreover, there will be at least tb+1
such pS

i (0)’s, as there are at least tb + 1 honest wires. Furthermore, Astatic
tb

will have
no information about the pS

i (0)’s delivered over the honest wi’s. This is because pS
i (x)

is a polynomial of degree tb and Astatic
tb

gets at most tb distinct points on pS
i (x) during

Phase I. Also, if (wi, wj) is an edge in the conflict graph, then it implies that wj is
corrupted and hence it already knows pS

i (j). This is because no two honest wire will
conflict with each other. Thus throughout the protocol, Astatic

tb
will get only tb distinct

points on pS
i (x). However, since the degree of pS

i (x) is tb, the adversary will lack one
point to uniquely interpolate pS

i (x), implying information theoretic security for pS
i (0).

Thus there will be at least tb + 1 pS
i (0)’s in P, about which adversary will have no

information. But P may contain some pS
i (0)’s, such that wi is passively controlled by

the adversary. Now from the properties of algorithm EXTRAND, the pad PadS will be
information theoretically secure. 2

Lemma 9.9 (Communication Complexity) Protocol 3-Optimal-PSMT-Static-Byzantine

communicates O(n2) field elements.

Proof: During Phase I, S sends a polynomial of degree tb and n values over each
wire, incurring a total communication of O(n2) field elements. During Phase II,
R reliably sends conflict graph using Matching Technique. From Theorem 3.11, this
requires a communication complexity of O(n2) field elements. During Phase III, S
broadcasts LS

fault and Y S. Since |LS
fault| ≤ tb and |Y S| = tb +1, Phase III will incur a

communication cost of O(n2). Thus the overall communication complexity of protocol
3-Optimal-PSMT-Static-Byzantine is O(n2). 2

Theorem 9.10 Protocol 3-Optimal-PSMT-Static-Byzantine is a three phase communi-
cation optimal PSMT protocol which securely sends a message containing ℓ = Θ(n)
field elements by communicating O(n2) field elements.

Proof: The proof that 3-Optimal-PSMT-Static-Byzantine is a three phase PSMT pro-
tocol follows from Lemma 9.7 and Lemma 9.8. From Theorem 9.5, any three phase

PSMT protocol over n = 2tb + 1 wires must communicate Ω
(

nℓ
n−2tb

)
= Ω(nℓ) field

elements to securely send a message containing ℓ field elements against Astatic
tb

. Now
substituting ℓ = (tb + 1) = Θ(n), we find that any three phase PSMT protocol over
n = 2tb + 1 wires has to communicate Ω(n2) field elements. From Lemma 9.9, the to-
tal communication complexity of protocol 3-Optimal-PSMT-Static-Byzantine is O(n2).
Hence the protocol is communication optimal. 2

9.3 Two Phase Communication Optimal PSMT Protocol

Though protocol 3-Optimal-PSMT-Static-Byzantine is communication optimal, it is not
phase optimal. After the publication of protocol 3-Optimal-PSMT-Static-Byzantine in
[58], it remained an interesting and challenging open problem to design an efficient,
polynomial time, two phase communication optimal PSMT protocol tolerating Astatic

tb
,
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which securely sends a message containing ℓ field elements by communicating O(nℓ)
field elements, where S and R are connected by n = 2tb + 1 wires. Recently, Kurosawa
et al. [42] resolved this question by designing an efficient, polynomial time, two phase
communication optimal PSMT protocol tolerating Astatic

tb
, where S and R are connected

by n = 2tb + 1 wires. The protocol of Kurosawa et al. securely sends a message
containing ℓ = Θ(n) field elements by communicating O(nℓ) = O(n2) field elements.
This completely resolved the issue of optimality of multi phase PSMT tolerating
Astatic

tb
.

9.4 Open Problem

Though the two phase PSMT protocol of [42] and our three phase PSMT protocol
3-Optimal-PSMT-Static-Byzantine are communication optimal, they are optimal only if
ℓ = Θ(n). This brings forth the following open problem:

Open Problem 10 Let S and R be connected by n = 2tb + 1 wires. Then does there
exist an efficient, polynomial time multiphase PSMT protocol which securely sends a
message containing ℓ field elements by communicating O(nℓ) field elements, tolerating
Astatic

tb
, for any value of ℓ?
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Chapter 10

PSMT in Undirected Networks
Against Mobile Byzantine
Adversary

In this chapter, we study PSMT in undirected synchronous network, tolerating thresh-
old mobile Byzantine adversary, denoted by Amobile

tb
. PSMT in undirected network,

under the presence of static adversary has received quiet a bit of attention in the past
[28, 70, 77, 4, 81, 30, 42]. However, as stated in Chapter 4, studying PSMT in the
context of mobile adversary is well motivated. The issue of possibility of PSMT in
undirected synchronous network tolerating Amobile

tb
is resolved in [82]. In [82], the au-

thors have shown that connectivity requirement for PSMT in undirected synchronous
network is same against Amobile

tb
, as well as Astatic

tb
. This shows that if the adversary

does only Byzantine corruption, then mobility of the adversary does not affect the
possibility of PSMT. Since Amobile

tb
is more powerful than Astatic

tb
, the lower bound

on the communication complexity of PSMT against Astatic
tb

, as given in Theorem 9.3,

must hold against Amobile
tb

. This implies that if n = 2tb +1, then any two or more phase
PSMT must communicate Ω(nℓ) field elements to securely send a message containing
ℓ field elements against Amobile

tb
. Indeed, there exists a communication optimal PSMT

protocol against Amobile
tb

presented in [77], which achieves the above bound and takes
O(tb) phases. This shows that if the adversary does only Byzantine corruption, then
mobility of the adversary does not affect the optimality of PSMT.

In this chapter, we significantly improve the phase complexity of the communica-
tion optimal PSMT protocol of [77] tolerating Amobile

tb
. Specifically, we design a three

phase communication optimal PSMT protocol which sends a sufficiently large message
containing ℓ field elements by communicating O(nℓ) field elements, tolerating Amobile

tb
,

where S and R are connected by n = 2tb + 1 wires. Our three phase PSMT protocol
againstAmobile

tb
is different from the three phase communication optimal PSMT protocol

3-Optimal-PSMT-Static-Byzantine tolerating Astatic
tb

, presented in the last chapter.

10.1 Network Model and Adversary Settings

The network model and adversary settings used in this chapter is same as in Chapter
4. Thus, we assume that there are n bi-directional, synchronous wires w1, . . . , wn

between S and R. There exists a computationally unbounded adversary Amobile
tb

, who
may control different set of tb wires in Byzantine fashion, during different phases of
the protocol. Thus if some wire wj is under the control of Amobile

tb
in ith phase of a
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protocol, then it does not imply that wj will be corrupted in (i+1)th phase also, unless
Amobile

tb
controls wj in (i + 1)th phase also. Moreover, by controlling wj in ith phase,

the adversary Amobile
tb

will not get any information about the communication done over

wire wj in earlier phase(s), if Amobile
tb

has not controlled wj in earlier phase(s).

10.2 Existing Results for PSMT Tolerating Amobile
tb

Any single phase PSMT tolerating Astatic
tb

, will also be secure against Amobile
tb

. Thus

Theorem 9.1 and Theorem 9.2 will also hold against Amobile
tb

and this completely re-
solves the issue of possibility and optimality of single phase PSMT in undirected
synchronous network tolerating Amobile

tb
.

The characterization of multi phase PSMT tolerating Amobile
tb

was given in [82],
which is as follows:

Theorem 10.1 ([82]) Let r ≥ 2. Then any r-phase PSMT protocol in undirected
synchronous network tolerating Amobile

tb
is possible iff there exists n ≥ 2tb + 1 wires

between S and R.

Proof (sketch): Since Amobile
tb

is more powerful than Astatic
tb

, the necessity follows
from Theorem 9.3. To show the sufficiency, the authors in [82] showed that the two
phase PSMT protocol of [70], tolerating Astatic

tb
, will also work against Amobile

tb
. 2

Since Amobile
tb

is more powerful than Astatic
tb

, it implies that Theorem 9.5 must hold

against Amobile
tb

. This implies that if n = 2tb + 1, then any two or more phase PSMT
must communicate Ω(nℓ) field elements to securely send a message containing ℓ field
elements against Amobile

tb
. To the best of our knowledge, the only known PSMT protocol

against Amobile
tb

with n = 2tb + 1 wires, achieving the above bound is due to [77]. The
PSMT protocol of [77] takes O(tb) phases and securely sends a message containing
ℓ = Θ(n) field element by communicating O(nℓ) = O(n2) field elements.

10.3 A Three Phase Communication Optimal PSMT Tol-
erating Amobile

tb

Let S and R be connected by n = 2tb+1 wires. We then present a new, communication
optimal PSMT protocol called 3-Optimal-PSMT-Mobile-Byzantine, tolerating Amobile

tb
.

The protocol takes three phases and securely sends a message containing ℓ = n(tb +
1) = Θ(n2) field elements by communicating O(nℓ) = O(n3) field elements. This
significantly improves the O(tb) phase communication optimal PSMT protocol of [77].
However, our protocol achieves optimality only if ℓ = Θ(n2), where as the PSMT
protocol of [77] achieves optimality if ℓ = Θ(n). Before proceeding further, we state
the following remark.

Remark 10.2 (3-Optimal-PSMT-Mobile-Byzantine Will Not Work Against Amobile
tb

)
In the previous chapter, we have presented a three phase communication optimal PSMT
protocol 3-Optimal-PSMT-Static-Byzantine, tolerating Astatic

tb
. However, the protocol will

not work against Amobile
tb

. This is because the protocol uses Matching Technique during
second phase to reliably send the conflict graph. However, as shown in Section 4.3,
Matching Technique will fail to reliably send the conflict graph against Amobile

tb
.
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Protocol 3-Optimal-PSMT-Mobile-Byzantine uses the ideas presented in protocol 3-
Optimal-PSMT-Static-Byzantine, along with Union Technique (see Section 4.4.1). Let S
and R be connected by n = 2tb + 1 wires and let mS be the secret message containing
n(tb+1) field elements, denoted by mS

k,i, where k = 1, . . . , n and i = 1, . . . , tb+1. During
first phase, S sends random polynomial of degree tb over each wire and its n values
across n wires, as in protocol 3-Optimal-PSMT-Static-Byzantine. However, instead of
sending only one polynomial over each wire, S sends n polynomials over each wire and
their n values across n wires. During second phase, R performs consistency checking
on received values and constructs n conflict graphs and combines them into a single
conflict graph using Union Technique and reliably sends the single conflict graph to
S. The sender S then identifies all wires which have delivered at least one incorrect
polynomial during first phase and reliably sends the identity of these wires to R. Thus
both S and R will now agree on the wires, which have correctly delivered all the n
polynomials transmitted over them. There will be at least tb + 1 such wires. S and R
then extracts a pad of length n(tb + 1) and using the pad, S and R securely exchange
the message. The protocol is formally given in Fig. 10.1.

We now prove the properties of protocol 3-Optimal-PSMT-Mobile-Byzantine.

Lemma 10.3 (Perfect Reliability) In protocol 3-Optimal-PSMT-Mobile-Byzantine,
R will be able to correctly recover mS at the end of Phase III.

Proof: To show that R will be able to correctly recover mS, it is enough to show that
both S and R will agree on PadS at the end of Phase III. By the properties of Union
Technique, S will correctly receive the combined conflict graph HR and will identify
all corrupted wi who has delivered at least one incorrect pR

k,i(x) 6= pS
k,i(x) to R during

Phase I and will include such wi’s in Lfault (see Theorem 4.4). Since S broadcasts
Lfault during Phase III, R will also come to know the identity of such wi’s at the end
of Phase III and hence will neglect them. Thus at the end of Phase III, both S and
R will agree on P and hence on pad PadS. 2

Lemma 10.4 (Perfect Secrecy) In protocol 3-Optimal-PSMT-Mobile-Byzantine, mS

will be information theoretically secure from Amobile
tb

, controlling at most tb wires.

Proof: From the protocol description, it is easy to see that mS will be information
theoretically secure, if the pad PadS is information theoretically secure. We now show
the same. First of all, notice that the set P will always contain all pS

k,i(0)’s, k = 1, . . . , n,

such that wi is an honest wire during Phase I, not under the control of Amobile
tb

.
Moreover, there will be at least n(tb + 1) such pS

k,i(0)’s, k = 1, . . . , n, as there are

at least tb + 1 honest wires wi during Phase I. Furthermore, Amobile
tb

will have no
information about the pS

k,i(0)’s delivered over the honest wi’s. This is because pS
k,i(x) is

a polynomial of degree tb and Amobile
tb

gets at most tb distinct points on pS
k,i(x) during

Phase I. Also, if (wi, wj) is an edge in conflict graph Hk, then it implies that wj is
corrupted and hence it already knows pS

k,i(j). This is because no two honest wire will

conflict with each other. Thus throughout the protocol, Amobile
tb

will get only tb distinct
points on pS

k,i(x). However, since the degree of pS
k,i(x) is tb, the adversary will lack one

point to uniquely interpolate pS
k,i(x), implying information theoretic security for pS

k,i(0).

Thus there will be at least n(tb + 1) pS
k,i(0)’s in P, about which adversary will have no

information. But P may contain some pS
k,i(0)’s, such that wi is passively controlled by

the adversary. Now from the properties of algorithm EXTRAND, the pad PadS will be
information theoretically secure. 2
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Figure 10.1: Three Phase Communication Optimal PSMT Tolerating Amobile
tb

Protocol 3-Optimal-PSMT-Mobile-Byzantine: n = 2tb + 1, |mS| = n(tb + 1)

Phase I: S to R:

1. S selects n2 random polynomials of degree tb, denoted by pS

k,i(x), k = 1, . . . , n, i = 1, . . . , n.

2. For i = 1, . . . , n, S sends the following to R over wire wi:

(a) Polynomials pS

k,i(x), k = 1, . . . , n;

(b) Values rS

k,j,i, for 1 ≤ k, j ≤ n, where rS

k,j,i = pS

k,j(i).

Phase II: R to S:

1. Let R receive the following over wire wi, for i = 1, . . . , n (see Fig. 4.1 for the pictorial
representation):

(a) Polynomials pR

k,i(x), k = 1, . . . , n;

(b) Values rR

k,j,i, for 1 ≤ k, j ≤ n.

2. Using the received values, R constructs n conflict graphs H1, . . . , Hn. R then combines these
graphs into a single conflict graph HR using Union Technique, as explained in section 4.4.1.

3. R constructs the list of seven tuples X corresponding to HR (as explained in section 4.4.1)
and broadcasts X to S.

Phase III: S to R:

1. S reliably receives the list X. S then creates a list Lfault which is initialized to ∅.

2. For each seven tuple {wi, wj , γ, pR

γ,i(j), r
R

γ,i,j , p
R

γ,j(i), r
R

γ,j,i} ∈ X, S does the following:

(a) S checks pR

γ,i(j)
?
= pS

γ,i(j). If not, then S adds wi to Lfault.

(b) S checks rR

γ,i,j
?
= rS

γ,i,j . If not, then S adds wj to Lfault.

(c) S checks pR

γ,j(i)
?
= pS

γ,j(i). If not, then S adds wj to Lfault.

(d) S checks rR

γ,j,i
?
= rS

γ,j,i. If not, then S adds wi to Lfault.

3. S constructs a vector P , consisting of all pS

k,i(0)’s, for k = 1, . . . , n, such that wi 6∈ Lfault.

4. S computes PadS =EXTRAND|P|,n(tb+1)(P) and Y S = PadS ⊕ mS.

5. S broadcasts Lfault and Y S to R and terminates 3-Optimal-PSMT-Mobile-Byzantine.

Message Recovery by R:

1. R reliably receives Lfault and identifies all wi over which it had received at least one incorrect
polynomial pR

k,i(x) 6= pS

k,i(x) during Phase I.

2. R neglects all the polynomials pR

k,i(x), k = 1, . . . , n, received over each wi ∈ Lfault during
Phase I.

3. R computes PadS in the same way, as done by S.

4. R correctly receives Y S, computes mS = Y S ⊕ PadS and terminates the protocol.

Lemma 10.5 (Communication Complexity) Protocol
3-Optimal-PSMT-Mobile-Byzantine communicates O(n3) field elements.

Proof: During Phase I, S sends n polynomials of degree tb and n2 values over
each wire, incurring a total communication of O(n3) field elements. During Phase
II, R broadcasts the list X. As explained in Section 4.4.1, X contains O(n2) tuples.
Hence broadcasting X requires O(n3) communication complexity. During Phase III,
S broadcasts Lfault and Y S. Since |Lfault| ≤ tb and |Y S| = n(tb + 1), Phase III will
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incur a communication cost of O(n3). Thus the overall communication complexity of
protocol 3-Optimal-PSMT-Mobile-Byzantine is O(n3). 2

Theorem 10.6 Protocol 3-Optimal-PSMT-Mobile-Byzantine is a three phase commu-
nication optimal PSMT protocol tolerating Amobile

tb
, which securely sends a message

containing ℓ = Θ(n2) field elements by communicating O(n3) field elements.

Proof: The proof that 3-Optimal-PSMT-Mobile-Byzantine is a three phase PSMT pro-
tocol tolerating Amobile

tb
follows from Lemma 10.3 and Lemma 10.4. As mentioned

earlier, Theorem 9.5 will also hold against Amobile
tb

and hence any three phase PSMT

protocol over n = 2tb +1 wires must communicate Ω
(

nℓ
n−2tb

)
= Ω(nℓ) field elements to

securely send a message containing ℓ field elements against Amobile
tb

. Now substituting
ℓ = n(tb + 1) = Θ(n2), we find that any three phase PSMT protocol over n = 2tb + 1
wires has to communicate Ω(n3) field elements. From Lemma 10.5, the total commu-
nication complexity of protocol 3-Optimal-PSMT-Mobile-Byzantine is O(n3). Hence the
protocol is communication optimal. 2

10.4 Concluding Remarks and Open Problems

In this chapter, we presented a three phase communication optimal PSMT protocol
tolerating Amobile

tb
, thus significantly improving the O(tb) phase communication optimal

PSMT protocol of [77]. As mentioned in the last chapter, Kurosawa et al. presented
a two phase communication optimal PSMT protocol tolerating Astatic

tb
, which securely

sends a message containing ℓ = Θ(n) field elements by communicating O(nℓ) = O(n2)
field elements, where S and R are connected by n = 2tb + 1 wires. However, the
protocol will not work against Amobile

tb
because the protocol uses Matching Technique

and as explained in Section 4.3, the Matching Technique will not work against Amobile
tb

.
This brings forth a very interesting and challenging open problem, which is as follows:

Open Problem 11 Let S and R be connected by n = 2tb + 1 wires. Then does there
exist a two phase PSMT protocol which securely sends a message containing ℓ field
elements, by communicating O(nℓ) field elements, tolerating Amobile

tb
, for any value of

ℓ?
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Chapter 11

PSMT in Undirected Networks
Tolerating Static Mixed
Adversary

In this chapter, we study PSMT in undirected synchronous network, tolerating threshold
static mixed adversary. The static mixed adversary, denoted by Astatic

(tb,tf ,tp), corrupts

disjoint set of tb, tf and tp nodes in Byzantine, failstop and passive fashion respectively.
Studying PSMT in the context of Astatic

(tb,tf ,tp) is well motivated. In a real life network,

the adversary may do different type of corruptions. For example, a weakly protected
node may be Byzantine corrupted, while a strongly protected node may be passively
or failstop corrupted.

The characterization for single phase and multi phase PSMT tolerating Astatic
(tb,tf ,tp)

is given in [75]. In [75], the author has also derived the lower bound on the commu-
nication complexity of single and multi phase PSMT tolerating Astatic

(tb,tf ,tp). Moreover,

the author also presented a single phase communication optimal PSMT protocol tol-
erating Astatic

(tb,tf ,tp), thus completely resolving the issue of possibility and optimality

of single phase PSMT tolerating Astatic
(tb,tf ,tp). However, no multi phase communication

optimal PSMT protocol tolerating Astatic
(tb,tf ,tp) was presented. This left the problem of

designing multi phase communication optimal PSMT tolerating Astatic
(tb,tf ,tp) as open. In

this chapter, we settle this problem by designing a four phase communication optimal
PSMT protocol tolerating Astatic

(tb,tf ,tp). Interestingly, we find that the techniques used

to design our three phase communication optimal PSMT protocol against Astatic
tb

in
Chapter 9 cannot be extended in a straight forward manner to design communication
optimal PSMT protocol against Astatic

(tb,tf ,tp). Hence to design our PSMT protocol against

Astatic
(tb,tf ,tp), we use some different techniques. We now describe the network model and

adversary settings used in this chapter.

11.1 Network Model and Adversary Settings

The underlying network model is similar as in Chapter 5. However, instead of Astatic
(tb,tf ),

we assume the presence of mixed adversary Astatic
(tb,tf ,tp). Thus, we assume that S and R

are connected by n bidirectional, synchronous wires w1, . . . , wn, of which at most tb, tf
and tp wires can be under the control of a computationally unbounded Astatic

(tb,tf ,tp) in

Byzantine, failstop and passive fashion respectively. Moreover, once a wire is under the
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control of the adversary is some fashion, it will remain so for the rest of the protocol.
Furthermore, as a worst case assumption, we assume that the wires that are under
the control of the adversary in Byzantine, failstop and passive fashion are mutually
disjoint.

The characteristic of Byzantine corrupted and failstop corrupted wire is already
specified in Chapter 5. A wire which is controlled in passive fashion always deliver
correct information. However, the adversary Astatic

(tb,tf ,tp) will also know the complete

information which is delivered through a passively controlled wire. Since a Byzantine
corrupted wire is also a passively corrupted wire, it implies that Astatic

(tb,tf ,tp) can eavesdrop

at most tb + tp wires throughout the protocol.
We now recall the existing results for PSMT in the presence of Astatic

(tb,tf ,tp) from [75].

11.2 Existing Results for PSMT Tolerating Astatic
(tb,tf ,tp)

We first recall the existing results for single phase PSMT tolerating Astatic
(tb,tf ,tp).

11.2.1 Characterization and Lower Bound for Single Phase PSMT

The PSMT problem in the presence of Astatic
(tb,tf ,tp) was first studied in [75]. In [75],

Srinathan gave the following necessary and sufficient condition for the existence of
single phase PSMT tolerating Astatic

(tb,tf ,tp).

Theorem 11.1 ([75]) Any single phase PSMT in undirected synchronous network tol-
erating Astatic

(tb,tf ,tp) is possible iff there exists n ≥ 3tb + tf + tp + 1 wires between S and

R.

Proof (sketch): The necessity is proved by showing that in any single phase PSMT
protocol tolerating Astatic

(tb,tf ,tp), the information sent by S over any n − (2tb + tf ) wires

should have full information about the message. Since in any single phase PSMT
tolerating Astatic

(tb,tf ,tp) the adversary can passively listen at most tb + tp wires, the above

condition implies that in any single phase PSMT tolerating Astatic
(tb,tf ,tp), n− (2tb + tf ) >

(tb + tp) should hold, otherwise adversary will also know the secret message. This
further implies that n > (3tb + tf + tp) should hold.

The sufficiency is shown as follows: suppose there exists n = 3tb + tf + tp + 1
wires between S and R. To securely send a message mS, sender S selects a random
polynomial of degree tb + tp, whose constant term is mS and computes an RS codeword
of length n from this polynomial. S then sends one component of the codeword to R
over each wire. R will receive at least 3tb + tp + 1 points on a polynomial of degree
tb + tp and at most tb points could be corrupted. However, by applying RS-DEC, R
will be able to correct these errors and recover the original polynomial and hence the
message mS. The secrecy of mS follows from the fact that Astatic

(tb,tf ,tp) will know only

tb+tp points on the polynomial, whose degree is tb+tp. Thus adversary will lack by one
point to uniquely interpolate the polynomial, implying information theoretic security
for mS. 2

Comparison 11.2 (Theorem 9.1 and Theorem 11.1) The significance of Theo-
rem 11.1 over Theorem 9.1 is established by the following two facts:

1. Theorem 11.1 generalizes Theorem 9.1 as we get the later by substituting tf =
tp = 0 in the former.
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2. Theorem 11.1 shows the availability of more fault tolerance in comparison to
Theorem 9.1. For a clean interpretation of this statement, consider a network
with five wires between S and R. From Theorem 9.1, the network can tolerate
only one Byzantine corruption. However, from Theorem 11.1, the network can
tolerate one Byzantine corruption, along with one additional fault, which can be
either passive or fail-stop type. This example clearly justifies the need to study
PSMT in the context of mixed adversary. Had we treated the passive or fail-stop
corruption as Byzantine corruption, we would require seven wires between S and
R (from Theorem 9.1), which is much more than what is actually required.

In [75], the author gave the following lower bound on the communication complexity
of single phase PSMT tolerating Astatic

(tb,tf ,tp):

Theorem 11.3 ([75]) Let S and R be connected by n ≥ 3tb + tf + tp + 1 wires. Then

any single phase PSMT tolerating Astatic
(tb,tf ,tp) must communicate Ω

(
nℓ

n−(3tb+tf +tp)

)
field

elements to securely send a message containing ℓ field elements. Moreover, this bound
is tight.

Proof (sketch): The lower bound is derived by first showing that the communica-
tion complexity of any single phase PSMT to securely send a message mS tolerating
Astatic

(tb,tf ,tp) is not less than the share complexity (sum of the length of the shares) of a se-

cret sharing scheme, which generates n shares for mS, such that any set of n−(2tb +tf )
shares has full information about the message, while any set of tb + tp shares has no
information about the message. Then it is shown that the share complexity (sum of
the length of the shares) of any secret sharing scheme, which generates n shares for a
message mS containing ℓ field elements, such that any set of n − (2tb + tf ) shares has
full information about the message, while any set of tb + tp shares has no information

about the message is Ω
(

nℓ
n−(3tb+tf +tp)

)
. This is done by using similar arguments as

given in Lemma 6.11.
The tightness of the bound follows from the protocol which is sketched in Theorem

11.1, which securely sends a message containing ℓ = 1 field element by communicating
O(n) field elements, where S and R are connected by n = 3tb + tf + tp + 1 wires. 2

In the next section, we recall the existing results for multi phase PSMT tolerating
Astatic

(tb,tf ,tp).

11.2.2 Characterization and Lower Bound for Multi Phase PSMT

In [75], Srinathan gave the following characterization for multi phase PSMT tolerating
Astatic

(tb,tf ,tp).

Theorem 11.4 ([75]) Let r ≥ 2. Then any r-phase PSMT protocol tolerating Astatic
(tb,tf ,tp)

is possible iff there exists n ≥ 2tb + tf + tp + 1 wires between S and R.

Proof (sketch): The necessity is proved by showing that if there exists an r-phase
PSMT in undirected synchronous network tolerating Astatic

(tb,tf ,tp) with n = 2tb + tf + tp
wires between S and R, where r ≥ 2, then there exists an r-phase PSMT in undirected
synchronous network tolerating Astatic

tb
with n = 2tb wires between S and R, which

from Theorem 9.3 is not possible.
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To show the sufficiency, the author in [75] presented a two phase PSMT protocol
tolerating Astatic

(tb,tf ,tp), with n = 2tb + tf + tp +1 wires between S and R. Specifically, the

author showed how to extend the two phase PSMT protocol of [70] with n = 2tb + 1
wires tolerating Astatic

tb
, to tolerate Astatic

(tb,tf ,tp) over n = 2tb + tf + tp + 1 wires. 2

In [75], the author gave the following lower bound on the communication complexity
of multi phase PSMT tolerating Astatic

(tb,tf ,tp).

Theorem 11.5 ([75]) Let S and R be connected by n ≥ 2tb + tf + tp + 1 wires and
let r ≥ 2. Then any r-phase PSMT protocol tolerating Astatic

(tb,tf ,tp) must communicate

Ω
(

nℓ
n−(2tb+tf +tp)

)
field elements to securely send a message containing ℓ field elements.

To the best of our knowledge, no communication optimal multi phase PSMT proto-
col tolerating Astatic

(tb,tf ,tp) is known, which satisfies the bound given in Theorem 11.5. We

make inroads towards this by presenting a four phase communication optimal PSMT
protocol called 4-Optimal-PSMT-Static-Mixed, tolerating Astatic

(tb,tf ,tp), where S and R are

connected by n = 2tb + tf + tp + 1 wires. Before presenting the protocol, we show
why the three phase communication optimal PSMT protocol 3-Optimal-PSMT-Static-
Byzantine tolerating Astatic

tb
, cannot be extended in a straight forward manner to tolerate

Astatic
(tb,tf ,tp).

11.3 Limitations of Protocol 3-Optimal-PSMT-Static-Byzantine

Against Astatic
(tb,tf ,tp)

In Fig. 9.3, we presented a three phase communication optimal PSMT protocol called
3-Optimal-PSMT-Static-Byzantine, tolerating Astatic

tb
, where S and R are connected by

n = 2tb + 1 wires. The protocol securely sends a message containing ℓ = (tb + 1) =
Θ(n) field elements by communicating O(nℓ) = O(n2) field elements. Recall that the
underlying idea of protocol 3-Optimal-PSMT-Static-Byzantine is as follows: S sends one
random tb degree polynomial over each of the n wires and their n values distributed over
n wires. After a sequence of interaction between S and R according to the protocol,
the constant coefficients of the tb+1 polynomials which are not under the control of the
adversary, are established as an information theoretic secure ”one time pad” between S
and R. Moreover the communication complexity of the interaction is O(n2). Now using
this one time pad, S securely sends tb+1 = Θ(n) field elements to R by communicating
O(n2) field elements.

For tolerating Astatic
(tb,tf ,tp), S and R must be connected by at least n = 2tb + tf +

tp + 1 wires. Now if we use the same technique of sending polynomials as well as their
values (as used in protocol 3-Optimal-PSMT-Static-Byzantine), then S and R ends up
in establishing a secure ”one time pad” of length tb + 1 after communicating O(n2)
field elements. The reason is that Astatic

(tb,tf ,tp) can failstop tf wires and passively listen

the polynomials over (tb + tp) wires. Therefore only n− tf − tb− tp = tb +1 polynomials
will be unknown to the adversary. Since n = 2tb + tf + tp + 1, tb may not be Θ(n)
and can even be a constant. Thus the resulting PSMT protocol may send a message
of very small size with very high communication complexity of O(n2), which will not
be a communication optimal PSMT protocol against Astatic

(tb,tf ,tp).

Hence the techniques of protocol 3-Optimal-PSMT-Static-Byzantine for designing
communication optimal PSMT protocol againstAstatic

tb
cannot be extended in a straight-

forward manner for designing communication optimal PSMT protocol againstAstatic
(tb,tf ,tp).
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To achieve optimality, S should be able to securely establish a one time pad of size
tb + tf + tp, instead of tb + 1 by communicating O(n2) field elements. Thus we require
new techniques for designing communication optimal PSMT protocol against Astatic

(tb,tf ,tp),

which we explore in the sequel.

11.4 A Four Phase Communication Optimal PSMT Tol-
erating Astatic

(tb,tf ,tp)

Let S and R be connected by n = 2tb + tf + tp + 1 wires wi, 1 ≤ i ≤ n. We design
a four phase communication optimal PSMT protocol called 4-Optimal-PSMT-Static-
Mixed, which securely sends a message mS containing n field elements by communicat-
ing O(n2) field elements, tolerating Astatic

(tb,tf ,tp). We first design few sub-protocols and

finally combine them to obtain 4-Optimal-PSMT-Static-Mixed.

11.4.1 A Conditional Single Phase Protocol to Establish a One Time
Pad

Suppose A and B are connected by n = 2tb + tf + tp + 1 wires that are under the
influence of Astatic

(tb,tf ,tp). Here A can be S (R) and B can be R (S). Also assume that A

in advance knows the identity of at least tb
2 wires which are under the control of Astatic

(tb,tf ,tp)

in Byzantine fashion. Under this assumption, we design a single phase protocol called
Pad-Establishment-Static, which securely establishes a random one time pad of length
n between A and B, which is information theoretically secure from Astatic

(tb,tf ,tp). The

protocol is given in Fig. 11.1.
We now prove the properties of protocol Pad-Establishment-Static.

Lemma 11.6 (Correctness) Suppose A in advance knows the identity of at least tb
2

wires which are under the control of Astatic
(tb,tf ,tp) in Byzantine fashion. Then protocol Pad-

Establishment-Static correctly establishes the n tuple q = (qA
1 (0), . . . , qA

n (0)) between A
and B in a single phase, tolerating Astatic

(tb,tf ,tp).

Proof: From Lfault, B identifies |Lfault| ≥
tb
2 Byzantine corrupted wires and neglects

them. Among the remaining wires, at most tf may fail to deliver any information due
to fail-stop corruption. So in the worst case, N ′ = n−|Lfault|−tf . In the protocol, each
QA

j is RS encoded using a polynomial of degree tb−|Lfault|+ tp. Since B has neglected
information corresponding to |Lfault| Byzantine corrupted wires, the received vector
QB

j will differ from the original RS codeword QA
j in at most tb − |Lfault| locations.

Substituting N ′ = n− |Lfault| − tf , k = tb− |Lfault|+ tp + 1, c = tb− |Lfault| and d = 0
in the inequality of Theorem 2.19, we find that RS-DEC(N ′, QB

j , tb − |Lfault|, 0, tb −

|Lfault| + tp + 1) will be able to correct all the tb − |Lfault| ≤
tb
2 Byzantine errors in

QB
j . Thus B can recover the original polynomial qA

j (x) and hence qA
j (0). 2

Lemma 11.7 (Security) In protocol Pad-Establishment-Static, Astatic
(tb,tf ,tp) will get no

information about the pad q = (qA
1 (0), . . . , qA

n (0)).

Proof: In the protocol, the adversary gets at most tb− |Lfault|+ tp distinct points on
each polynomial qA

j (x) of degree tb − |Lfault| + tp. This implies information theoretic

security of each qA
j (0). 2

Lemma 11.8 (Communication Complexity) Protocol Pad-Establishment-Static com-
municates O(n2) field elements.
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Figure 11.1: Single Phase Protocol to Establish a One Time Pad of length n = 2tb +
tf + tp + 1

Protocol Pad-Establishment-Static: n = 2tb + tf + tp + 1

Assumption: A knows the identity of at least tb
2 wires, which are Byzantine

corrupted.

Computation by A :

1. A saves the identity of the wires which are known to be Byzantine cor-
rupted, in a list Lfault. According to the assumption, tb

2 ≤ |Lfault| ≤ tb.

2. A selects n random polynomials qA
j (x), 1 ≤ j ≤ n, over F, each of degree

tb − |Lfault|+ tp.

3. For j = 1, . . . , n, using qA
j (x), A computes an RS codeword QA

j =

(qA
j1, . . . , q

A
jn) of length n, where qA

ji = qA
j (i), for i = 1, . . . , n.

Communication by A :

1. For i = 1, . . . , n, if wi 6∈ Lfault, then A sends to B the ith component of
the n codewords, namely qA

1i , . . . , q
A
ni over wire wi.

2. A broadcasts Lfault to B.

Computation by B :

1. B correctly receives Lfault and neglects any information received over
wi ∈ Lfault.

2. Among the wires in {w1, . . . , wn} − Lfault, let wi1, . . . , wiN′ be the wires
that delivered information to B. Note that n − tf − |Lfault| ≤ N ′ ≤
n − |Lfault|. Moreover, N ′ is at least n − tf − |Lfault|, as among the
n − |Lfault| wires, at most tf wires may fail to deliver any information
due to fail-stop corruption.

3. For j = 1, . . . , n, let B receive qB
ji1

, . . . , qB
jiN′

over wires wi1 , . . . , wiN′ ,

respectively. Let QB
j = (qB

ji1
, . . . , qB

jiN′
).

4. For j = 1, . . . , n, B recovers qA
j (x) (and hence qA

j (0)) by executing RS-

DEC(N ′, QB
j , tb − |Lfault|, 0, tb − |Lfault|+ tp + 1).

The n tuple q = (qA
1 (0), . . . , qA

n (0)) is established correctly and securely between A
and B.

Proof: For each qA
j (x), 1 ≤ j ≤ n, A sends n − |Lfault| = O(n) values which in-

curs a total communication complexity of O(n2). Also communication complexity of
broadcasting Lfault is O(n2). 2
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11.4.2 A Three Phase Protocol to Identify at least tb
2

Byzantine Cor-
rupted Wires

As before, let A and B are connected by n = 2tb + tf + tp + 1 wires. We now design a
three phase protocol called Error-Identification-Static that has the following properties:

1. If at most tb
2 wires get Byzantine corrupted during first phase, then A securely

establishes a one time pad of length n with B at the end of second phase.

2. If more than tb
2 wires get Byzantine corrupted during first phase, then the pad

will not be established. However, either A comes to know the identity of at least
tb
2 Byzantine corrupted wires at the end of second phase or B comes to know
the identity of at least tb

2 Byzantine corrupted wires at the end of third phase,
depending upon the adversary behavior.

Thus the protocol creates a win-win situation against the adversary as follows: if
the adversary does at most tb

2 Byzantine faults in the first phase, then an information
theoretic secure one time pad is established between A and B. Otherwise, either A or
B will come to know the identity of more than tb

2 Byzantine corrupted wires.
Informally, the protocol works as follows: A selects n polynomials each of degree

tb + tp and sends an RS codeword of length n for each of these polynomials to B. B
applies RS-DEC to the received vectors, assuming the number of errors in the vectors to
be at most tb

2 and tries to recover the n polynomials. If corresponding to some vector,
B is unable to recover anything, then B concludes that more than tb

2 errors occurred in
that vector. In this case, B sends back this vector to A, who after comparing it with
its corresponding original codeword, finds the identity of at least tb

2 +1 corrupted wires.
Otherwise, B recovers n polynomials of degree tb + tp, but is unable to decide about
their correctness. In this case, B broadcasts the n error lists to A, that are output by
applying RS-DEC to the received vectors. A then verifies whether all the error lists
are “good” or not. If yes, then A concludes that B has correctly recovered all the
n polynomials. Otherwise, A identifies at least one polynomial that is not recovered
correctly by B because of more than tb

2 faults during Phase I. A then broadcasts to
B, the original codeword of that polynomial, generated by him during Phase I. This
broadcast enables B to identify more than tb

2 faults after local verification at the end
of Phase III. The protocol is now formally presented in Fig. 11.2.

We now proceed to formally prove the properties of protocol Error-Identification-
Static.

Lemma 11.9 In protocol Error-Identification-Static:

1. If at most tb
2 Byzantine errors occur during Phase I, then an information the-

oretically secure pad p = (pA
1 (0), . . . , pA

n (0)) of length n is established between A
and B at the end of Phase II.

2. If more than tb
2 Byzantine errors occur during Phase I, then either A or B comes

to know the identity of more than tb
2 corrupted wires at the end of Phase II or

Phase III respectively.

Proof: We prove the theorem for the worst case where during Phase I, tf wires failed to
deliver any information to B. Thus B receives information over N ′ = n−tf = 2tb+tp+1
wires during first phase. For j = 1, . . . , n, each of the received vector PB

j will contain
N ′ = 2tb + tp + 1 values, out of which at most tb could be corrupted. Also, each
PB

j corresponds to the RS codeword PA
j that is RS encoded using polynomial pA

j (x) of
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Figure 11.2: A Three Phase Protocol to Identify More than tb
2 Byzantine Faults

Protocol Error-Identification-Static

Phase I: (A to B) :

Computation by A :

1. A randomly selects n polynomials pA
1 (x), . . . , pA

n (x) over F, each of degree tb + tp.

2. For j = 1, . . . , n, A computes RS codeword PA

j = (pA

j1, . . . , p
A

jn), where for i =
1, . . . , n, pA

ji = pA

j (i).

Communication by A :

1. For i = 1, . . . , n, A sends the ith component of all n codewords, namely
pA

1i, . . . , p
A

ni to B over wire wi.

Phase II: (B to A) :

Computation by B :

1. Let B receive information over wires wi1 , . . . , wiN′
, where N ′ ≥ n − tf .

2. For j = 1, . . . , n, let B receive pB

ji1
, . . . , pB

jiN′
over wires wi1 , . . . , wi

N′
respectively.

Let PB

j = (pB

ji1
, . . . , pB

jiN′
).

3. For j = 1, . . . , n, B executes RS-DEC(N ′, PB

j ,
tb

2
, 0, tb + tp + 1).

Communication by B :

1. If ∃j ∈ {1, 2, . . . , n} such that RS-DEC(N ′, PB

j ,
tb

2
, 0, tb + tp + 1) does not output

any polynomial of degree tb + tp, then B broadcasts “ERROR” signal and vector
PB

j , along with its index j.

2. If for each PB

j , RS-DEC outputs some polynomial pB

j (x) of degree tb + tp and an
error list, then B proceeds as follows:

– For j = 1, . . . , n, let Error Listj denote the error list output by RS-DEC for PB

j .
Also let Lj be the number of pairs in Error Listj . By the property of RS-DEC

(as described in Chapter 2), Lj ≤ tb

2
will hold, where tb

2
is the number of errors

that RS-DEC is instructed to correct. B broadcasts Error Listj for j = 1, . . . , n.

Computation by A at the End of Phase II :

1. If A receives “ERROR” signal and index j along with PB

j , then A locally compares
PB

j with PA

j ( after restricting PA

j to wires wi1 , . . . , wiN′
), finds the identity of at least

tb

2
+ 1 faulty wires which delivered incorrect components of PA

j during first phase and
terminates the protocol.

2. If A receives n error-lists and all the n error lists are “good”, then A concludes that B
has recovered each pA

j (x), 1 ≤ j ≤ n correctly and terminates the protocol. Otherwise,
A finds at least one j ∈ {1, 2, . . . , n}, such that Error Listj is ”bad”. If there are
multiple such j’s, A randomly selects one. In this case, A concludes that B has
reconstructed pB

j (x) 6= pA

j (x) and initiates Phase III as follows:

Conditional Phase III: (A to B) :

1. If A has identified a j such that B has reconstructed pB

j (x) 6= pA

j (x), then A broadcasts
to B the index j and PA

j = (pA

j1, . . . , p
A

jn).

2. B correctly receives PA

j , compares it with the vector PB

j (which it had received during
Phase I), identifies more than tb

2
faulty wires and terminates the protocol.
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degree tb+tp. During Phase II, B tries to correct at most c = tb
2 and detect additional

d = 0 errors in each PB
j by applying RS-DEC. By substituting N ′ = 2tb + tp + 1, c =

tb
2 , d = 0 and k = tb + tp + 1 in the inequality of Theorem 2.19, we find that RS-
DEC(N ′, PB

j , tb
2 , 0, tb + tp + 1) will be able to correct at most tb

2 errors and detect no

additional errors in PB
j . Moreover, B has no information about the exact number of

Byzantine errors that occurred during Phase I (except that it is at most tb). Now
there are following two cases:

1. Case I: At most tb
2 Byzantine errors occurred during Phase I: In this case

at most tb
2 values in each PB

j could be corrupted. Hence for each PB
j , RS-DEC will

output pB
j (x) = pA(x) and a ”good” error list after successfully correcting all the

errors in PB
j . However, B will not know whether the recovered polynomials are

correct or not. This is because the number of actual errors that can happen (i.e
t′b) can be more than the error correction capability (i.e c) of RS-DEC. Moreover,
as RS-DEC has no capability of detecting additional errors (as d = 0 here), B is
not sure whether pB

j (x) is the original polynomial used for encoding PB
j and the

error list is ”good”. The situation here is similar to the one that arises in Example
2.16. Hence to know the status of the recovered polynomials, B broadcasts each
error list to A who will correctly receive them 1. When A gets the error lists
from B and finds them to be ”good”, he concludes that B has recovered each
pA

j (x) correctly. Hence the vector p = (pA
1 (0), . . . , pA

n (0)) is established correctly
between A and B.

The security of p follows from the fact that during Phase I, the adversary gets
at most tb + tp points (by passively listening over tb + tp wires) on each pA

j (x),

which is of degree tb + tp. Thus each pA
j (0) is information theoretically secure.

Also notice that each of the n error lists are ”good”, thus they leak no extra
information about pA

j (x)’s to Astatic
(tb,tf ,tp). This is because in this case, the values in

each error lists are indeed corrupted, which are already known to the adversary
and hence add no extra information to the knowledge of adversary.

2. Case II: More than tb
2 Byzantine errors occurred during Phase I: With-

out loss of generality, let pA
j (x) be one of the polynomials, corresponding to which

at least tb
2 + 1 values have been corrupted by adversary during Phase I. Thus

jth received vector PB
j will have more than tb

2 corrupted values. So B will fail to

correctly reconstruct pA
j (x) by executing RS-DEC(N ′, PB

j , tb
2 , 0, tb + tp + 1). Now

there are two possible cases:

(a) Suppose the values in PB
j are corrupted in such a way that RS-DEC, when

applied to PB
j , fails to output any tb + tp degree polynomial. In this case, B

knows that more than tb
2 values in PB

j are corrupted. However, he will not
know the exact identity of the corrupted wires, who delivered those corrupted
values. In order to facilitate A to find the identity of those corrupted wires,
B broadcasts PB

j to A, along with “ERROR” signal and index j. Once A

correctly receives these values and performs local comparison of PB
j with

PA
j , A will know the identity of all the corrupted wires (at least tb

2 +1) who

delivered incorrect components of PA
j to B during first phase.

1Any information broadcasted over n = 2tb + tf + tp + 1 will be received correctly at the receiving
end by taking majority, irrespective of adversary behavior.
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(b) Suppose the values in PB
j are corrupted in such a way that RS-DEC, when ap-

plied to PB
j , outputs a tb+tp degree polynomial pB

j (x), along with Error Listj.

In this case pB
j (x) 6= pA

j (x). Moreover, Error Listj is “bad” and contains a

correct component of PA
j in it (pointed as a corrupted value) 2. The reason

is that there are tb + tp +1 wires, which will deliver correct points on pA
j (x).

Among them at most tb + tp could lie on pB
j (x) as well, as pA

j (x) and pB
j (x)

(both of degree tb + tp) may have at most tb + tp common points lying on
them. But the remaining one honest value lies on only pA

j (x) and not lies

on pB
j (x). Hence that honest value will be considered as an error location

and will be included in Error Listj.

However as described in Case I, B will not know whether the recovered
polynomial is correct or not. Hence, B broadcasts Error Listj to A. Once
A correctly receives Error Listj and performs local verification, A will find
Error Listj to be ”bad” and will conclude that B has recovered incorrect
pA

j (x) because of more than tb
2 incorrect values in PB

j . But A will not know
the identity of these corrupted wires. To facilitate B to find out the identity
of corrupted wires, A will execute third phase, where he will broadcast PA

j

to B. After receiving PA
j correctly, B finds the identity of corrupted wires

(more than tb
2 ) after performing local comparison of PA

j and PB
j .

This completes the proof of the lemma. 2

Lemma 11.10 The communication complexity of protocol Error-Identification-Static is
O(n2tb).

Proof: During first phase, A sends an RS codeword of length n for n polynomials,
thus communicating O(n2) field elements. During second phase, in the worst case, B
broadcasts n error-lists, each containing at most tb

2 pairs, thus communicating O(n2tb)
field elements. Communication complexity of conditional third phase is O(n2) field
elements. Hence overall complexity is O(n2tb) field elements. 2.

11.4.2.1 Reducing the Communication Complexity of Error-Identification-

Static

In protocol Error-Identification-Static, the most communication oriented step is in Phase
II, where B may have to broadcast n error lists to reliably send them to A. This
incurs a communication cost of O(n2tb). We now present a nice trick to reduce the
communication complexity of sending n error-lists fromO(n2tb) toO(n2) during Phase
II of protocol Error-Identification-Static, without changing the properties of the protocol.

Let Error ListJ be the error-list with maximum number of pairs LJ , where J ∈
{1, 2, . . . , n}. If there are several error-lists with LJ pairs, then B arbitrarily selects one.
B then broadcasts only Error ListJ and sends the remaining error-lists concatenated
into a list Y , by executing protocol 1-PRMT-Mixed(Y, |Y |, n, tb, tf , Lj) with increased
throughput. A correctly receives Error ListJ and verifies whether it is ”good” .
If it is good, then A concludes that B has correctly recovered pA

J (x). Moreover, A
will identify LJ faulty wires from Error ListJ as all the pairs listed in Error ListJ
are indeed corrupted values. Now from Theorem 5.7, protocol 1-PRMT-Mixed with
increased throughput will correctly deliver the list Y containing the remaining error-
lists. The rest of the protocol will now be same.

2This case is similar to Property 2.25 as explained in Chapter 2.
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On the other hand, if A finds that Error ListJ is ”bad”, then A concludes that
B has not recovered pA

J (x) correctly. In this case, A fails to know LJ faults from
Error ListJ and hence 1-PRMT-Mixed will fail to deliver Y correctly. But A iden-
tifies one polynomial, namely pA

J (x), which is not recovered correctly by B (due to
more than tb

2 errors during Phase I). Note that while the properties of protocol Error-

Identification-Static (Lemma 11.9) remain intact by incorporating these changes, the
communication complexity reduces to O(n2). We now provide the complete descrip-
tion of Error-Identification-Static that incorporates the above mentioned changes for
attaining a communication complexity of O(n2) in Fig. 11.3.

We now prove the properties of protocol Error-Identification-Static.

Lemma 11.11 The communication complexity of new Error-Identification-Static (pre-
sented in Fig. 11.3) after incorporating new steps is O(n2).

Proof: During first phase, A sends an RS codeword of length n for n polynomials,
thus communicating O(n2) field elements. During second phase, broadcasting a single
error-list (Error ListJ) requires communicating O(n2) field elements. From Theorem
5.7, sending the remaining error-lists by executing 1-PRMT-Mixed(Y, |Y |, n, tb, tf , LJ)

with increased throughput will require communication of O
(
|Y |
LJ
∗ n
)

= O(n2) field

elements as |Y | ≤ (n − 1) × (2LJ). Communication complexity of conditional third
phase is O(n2) field elements. Hence overall complexity is O(n2) field elements. 2

Lemma 11.12 The properties given in Lemma 11.9 will hold for new Error-Identification-

Static (presented in Fig. 11.3) even after incorporating new steps.

Proof: If at most tb
2 Byzantine errors occur during Phase I, then each of the n error

lists will be ”good”. In this case, A on receiving Error ListJ will identify that it is
”good” and hence will know the identity of LJ Byzantine corrupted wires. So from
Theorem 5.7, protocol 1-PRMT-Mixed with increased throughput will correctly deliver
the remaining n−1 error lists. A will find all the remaining n−1 error lists to be ”good”
and hence he concludes that B has recovered each pA

j (x) correctly. Thus the vector

p = (pA
1 (0), . . . , pA

n (0)) will be established correctly between A and B. The secrecy of
p = (pA

1 (0), . . . , pA
n (0)) can be argued in the same way as done in Lemma 11.9.

Now consider the case when more than tb
2 wires are Byzantine corrupted during

Phase I. Then, we have the following two cases:

1. If there exists some j ∈ {1, 2, . . . , n} such that after applying RS-DEC on PB
j , B

does not obtain any tb + tp degree polynomial, then property 2 of Lemma 11.9
will follow from the proof of part (a) of Case II of Lemma 11.9.

2. If for each PB
j , RS-DEC outputs a polynomial of degree tb + tp, then we have the

following two sub-cases:

(a) Sub-Case I: If Error ListJ is ”good”, then it implies that B has correctly
recovered pA

J (x). In this case, A on receiving Error ListJ will also conclude
the same. Moreover, since each value in Error ListJ is indeed corrupted,
the wires which delivered those values to B during Phase I are Byzantine
corrupted. Thus A will know the identity of LJ Byzantine corrupted wires
from Error ListJ . Now, from Theorem 5.7, protocol 1-PRMT-Mixed with
increased throughput will correctly deliver the remaining n − 1 error lists,
concatenated to a list Y . Since more than tb

2 Byzantine errors have occurred
during Phase I, at least one of the error lists in the remaining n−1 error lists,
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Figure 11.3: A Three Phase Protocol to Identify More than tb
2 Byzantine Faults with

a Communication Complexity of O(n2)

Protocol Error-Identification-Static

Phase I: (A to B) : Same as presented in Fig. 11.2.

Phase II: (B to A) :

Computation by B: Same as presented in Fig. 11.2.

Communication by B:

1. If ∃j ∈ {1, 2, . . . , n} such that RS-DEC(N ′, PB

j ,
tb

2
, 0, tb + tp + 1) does not output any

polynomial of degree tb +tp, then B broadcasts “ERROR” signal and vector PB

j , along
with its index j.

2. If for each PB

j , RS-DEC outputs some polynomial pB

j (x) of degree tb + tp and an error
list, then B proceeds as follows:

(a) For j = 1, . . . , n, let Error Listj denote the error list output by RS-DEC for PB

j .
Also let Lj be the number of pairs in Error Listj . By the property of RS-DEC

(as described in Chapter 2), Lj ≤ tb

2
will hold, where tb

2
is the number of errors

that RS-DEC is instructed to correct.

(b) Let J ∈ {1, 2, . . . , n} be the smallest index, such that Error ListJ has maximum
number of pairs LJ .

(c) B concatenates all the error-lists, except Error ListJ to form a list Y .

(d) B broadcasts Error ListJ along with its index J to A.

(e) B sends the list Y by executing the protocol 1-PRMT-Mixed(Y, |Y |, n, tb, tf , Lj)
with increased throughput.

Computation by A at the End of Phase II :

1. If A receives “ERROR” signal and index j along with PB

j , then A locally compares
PA

j with PB

j (after restricting PA

j to wires wi1 , . . . , wi
N′

), finds the identity of at least
tb

2
+ 1 faulty wires which delivered incorrect components of PA

j during first phase and
terminates the protocol.

2. If A receives the index J and Error ListJ , then A locally verifies Error ListJ and
then performs the following steps:

(a) If Error ListJ is “bad” then A concludes that B has reconstructed pB

J (x) 6=
pA

J (x) and executes conditional Phase III.

(b) If Error ListJ is ”good” then A concludes that B has correctly recovered pB

J (x) =
pA

J (x). A also identifies LJ Byzantine corrupted wires from Error ListJ and
hence from Theorem 5.7, correctly receives Y delivered by 1-PRMT-Mixed.

(c) From Y , A obtains the remaining n−1 error lists. A then checks if the remaining
n − 1 error-lists are “good”. If yes then A concludes that B has recovered each
pA

j (x), 1 ≤ j ≤ n correctly and terminates the protocol. Otherwise, A finds at
least one j ∈ {1, 2, . . . , n} \ {J}, such that Error Listj is ”bad”. If there are
multiple such j’s, A randomly selects one. In this case, A concludes that B has
reconstructed pB

j (x) 6= pA

j (x) and initiates Phase III.

Conditional Phase III: (A to B) :

1. If A has identified an α (notice that α can be J or j) such that B has re-
constructed pB

α (x) 6= pA

α (x), then A broadcasts to B the index α and codeword
PA

α = (pA
α1, . . . , p

A
αn).

2. B correctly receives PA

α , compares it with the vector PB

α (which it had received during
Phase I), identifies more than tb

2
faulty wires and terminates the protocol.
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say Error Listj, will be ”bad”, which will be identified by A. In this case,
A will execute the conditional Phase III and hence at the end of Phase
III, B will know the identity of Byzantine corrupted wires (more than tb

2 ),
which delivered incorrect components of PA

j during Phase I. Thus property
2 of Lemma 11.9 will hold.

(b) Sub-Case II: If Error ListJ is ”bad”, then it implies that B has not cor-
rectly recovered pA

J (x) because of more than tb
2 corrupted values in PB

J . In
this case, A on receiving Error ListJ will conclude the same and will ex-
ecute conditional Phase III. At the end of Phase III, B will know the
identity of Byzantine corrupted wires (more than tb

2 ), which delivered incor-
rect components of PA

J during Phase I. Thus property 2 of Lemma 11.9
will hold in this case as well.

This completes the proof of the lemma. 2

11.4.3 Protocol 4-Optimal-PSMT-Static-Mixed

We now design a four phase communication optimal PSMT protocol called 4-Optimal-
PSMT-Static-Mixed tolerating Astatic

(tb,tf ,tp), where S and R are connected by n = 2tb+tf +

tp + 1 wires. The protocol securely sends a message mS containing n field elements by
communicating O(n2) field elements. The protocol uses Error-Identification-Static and
Pad-Establishment-Static as sub-protocols. By using these two sub-protocols, S and R
tries to establish an information theoretically secure pad containing n field elements.
Once this is done, S can mask the message by X-ORing it with the pad and broadcasts
the masked message to R. On receiving the masked message, R unmasks the message
by X-ORing the masked message with the pad. The protocol is presented in Fig. 11.4.

We now prove the properties of protocol 4-Optimal-PSMT-Static-Mixed.

Lemma 11.13 (Correctness) Protocol 4-Optimal-PSMT-Static-Mixed correctly deliv-
ers mS in four phases.

Proof: In the protocol, mS is masked by S using either the pad p or q. To prove the
lemma, we show that R will also get the same pad in four phases. In the protocol,
there are following two possibilities:

1. Case I: Error-Identification-Static terminates in two phases: Here there are
further two possibilities:

(a) Sub-Case (a): At the end of second phase, R concludes that
the pad p is correctly established with S: In this case, R broadcasts
“SUCCESS-R” signal to S during Phase III. So at the end of Phase III,
S will know that pad p is established between S and R.

(b) Sub-Case (b): At the end of Phase II, R identifies at least tb
2 + 1

Byzantine corrupted wires: In this case, with the knowledge of tb
2 +

1 Byzantine corrupted wires, R executes the single phase protocol Pad-
Establishment-Static to establish the pad q. From Lemma 11.6, S will cor-
rectly get the pad q at the end of Phase III.

2. Case II: Error-Identification-Static terminates in three phases: In this case,
S will identify at least tb

2 + 1 Byzantine corrupted wires at the end of Phase III
(Lemma 11.9). Now with the knowledge of tb

2 + 1 Byzantine corrupted wires, S
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Figure 11.4: A Four Phase Communication Optimal PSMT Protocol Tolerating
Astatic

(tb,tf ,tp), n = 2tb + tf + tp + 1, |mS| = n

Protocol 4-Optimal-PSMT-Static-Mixed-Protocol

R and S starts executing protocol Error-Identification-Static, where Phase I is ini-
tiated by R.

1. If at the end of Phase II of protocol Error-Identification-Static, R finds that
the pad p = (pR

1 (0), . . . , pR
n (0)) is established securely between R and S, then

R broadcasts “SUCCESS-R” signal to S during Phase III. S on receiving the
signal “SUCCESS-R”, computes Γ = mS⊕p, broadcasts Γ to R during Phase
IV and terminates the protocol. R correctly receives Γ, recovers mS = Γ⊕ p
and terminates the protocol.

2. If at the end of Phase II of protocol Error-Identification-Static, R identifies at
least tb

2 +1 Byzantine corrupted wires, then R securely establishes the one time
pad q = (qR

1 (0), . . . , qR
n (0)) with S at the end of Phase III by executing the

single phase protocol Pad-Establishment-Static. Once this is done, S computes
Γ = mS⊕q, broadcasts Γ to R during Phase IV and terminates the protocol.
R correctly receives Γ, recovers mS = Γ⊕ q and terminates the protocol.

3. If conditional Phase III of protocol Error-Identification-Static is executed, then
S identifies at least tb

2 +1 Byzantine corrupted wires at the end of third phase.
S then securely establishes the one time pad q = (qS

1 (0), . . . , qS
n(0)) with R

by executing the single phase protocol Pad-Establishment-Static during Phase
IV. Moreover, S also computes Γ = mS⊕ q, broadcasts Γ to R during Phase
IV and terminates the protocol. R gets the pad q at the end of Phase IV,
recovers mS = Γ⊕ q and terminates the protocol.

executes the single phase protocol Pad-Establishment-Static to establish the pad
q. From Lemma 11.6, R will correctly get the pad q at the end of Phase IV.

This completes the proof of the lemma. 2

Lemma 11.14 (Security) In protocol 4-Optimal-PSMT-Static-Mixed, mS will be in-
formation theoretically secure.

Proof: The secrecy of mS depends upon the secrecy of the pad, using which mS is
masked. If p is used as the masking pad, then secrecy of mS follows from the secrecy
of pad p (see Lemma 11.9). On the other hand, if q is used as the masking pad, then
secrecy of mS follows from the secrecy of pad q (see Lemma 11.7). 2

Lemma 11.15 (Communication Complexity) Communication complexity of pro-
tocol 4-Optimal-PSMT-Static-Mixed is O(n2).

Proof: From Lemma 11.11 and Lemma 11.8, establishing the pad by executing pro-
tocols Error-Identification-Static and Pad-Establishment-Static incurs a communication
cost of O(n2). Moreover, since the message size is n, the masked message Γ will also
contain n field elements and hence broadcasting it will require communicating O(n2)
field elements. Thus the communication complexity of the protocol is O(n2). 2

Theorem 11.16 Protocol 4-Optimal-PSMT-Static-Mixed is an efficient, four phase com-
munication optimal PSMT protocol tolerating Astatic

(tb,tf ,tp).
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Proof: The proof that 4-Optimal-PSMT-Static-Mixed is a four phase PSMT protocol
tolerating Astatic

(tb,tf ,tp) follows from Lemma 11.13 and Lemma 11.14. From Theorem 11.5,

any four phase PSMT protocol over n = 2tb+tf +tp+1 wires must communicate Ω(n2)
field elements to securely send a message containing n field elements against Astatic

(tb,tf ,tp).

From Lemma 11.15, the total communication complexity of protocol 4-Optimal-PSMT-
Static-Mixed is O(n2). Hence protocol is a communication optimal protocol tolerating
Astatic

(tb,tf ,tp). It is easy to see that both S and R performs polynomial computation in the

protocol. 2

Finally we state the following remark, which states how protocol 4-Optimal-PSMT-
Static-Mixed overcomes the limitation of protocol 3-Optimal-PSMT-Static againstAstatic

(tb,tf ,tp),

as stated in Section 11.3.

Remark 11.17 Note that 4-Optimal-PSMT-Static-Mixed sends only codeword of poly-
nomials, in contrast to the protocol 3-Optimal-PSMT-Static-Byzantine, which sends both
polynomial and its codeword. The advantage that we get by sending only codeword is
that we obtain one information theoretic secure value per codeword (after some inter-
mediate information exchanges and then applying RS decoding). In the next chapter,
we will show that this technique can be used to design communication optimal PSMT
protocols even against mobile mixed adversary.

11.5 Concluding Remarks and Open Problems

In this chapter, we presented a four phase communication optimal PSMT protocol
in undirected synchronous network tolerating Astatic

(tb,tf ,tp). This, along with Theorem

11.4 and Theorem 11.5 completely settles the issue of possibility, feasibility and
optimality of PSMT in undirected synchronous network tolerating Astatic

(tb,tf ,tp). These

results are summarized in Fig. 11.5.

Figure 11.5: Summary of the Results for PSMT in Undirected Synchronous Network
Tolerating Astatic

(tb,tf ,tp)

Number of Connectivity Lower Bound on Upper Bound
Phases (r) Requirement (n) Communication

Complexity

r = 1 n ≥ 3tb + tf + tp + 1 Ω
(

nℓ
n−(3tb+tf +tp)

)
Theorem 11.3

Theorem 11.1 Theorem 11.3

r ≥ 2 n ≥ 2tb + tf + tp + 1 Ω
(

nℓ
n−(2tb+tf +tp)

)
Protocol

Theorem 11.4 Theorem 11.5 4-Optimal-PSMT-Static-Mixed:
n = 2tb + tf + tp + 1, ℓ = n

Communication
complexity = O(nℓ) = O(n2)

From Fig. 11.5, we find that protocol 4-Optimal-PSMT-Static-Mixed is communi-
cation optimal only if the message contains ℓ = n field elements. This leads to the
following open problem:

Open Problem 12 Let S and R be connected by n = 2tb+tf +tp+1 wires. Then does
there exist a multiphase (two or more phase) PSMT protocol which securely sends a
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message containing ℓ field elements by communicating O(nℓ) field elements, tolerating
Astatic

(tb,tf ,tp), for any value of ℓ?
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Chapter 12

PSMT in Undirected Networks
Tolerating Mobile Mixed
Adversary

In the previous chapter, we have seen that it is worth to study PSMT in the context
of mixed adversary. Continuing this study further, in this chapter, we study PSMT in
undirected synchronous network, tolerating mobile mixed adversary. The mobile mixed
adversary, denoted by Amobile

(tb,tf ,tp), may control different set of tb, tf and tp wires in each

phase of the protocol. Since Amobile
(tb,tf ,tp) is more powerful than Astatic

(tb,tf ,tp), the characteri-

zation and lower bound on communication complexity of single phase and multi phase
PSMT tolerating Astatic

(tb,tf ,tp) will also hold for Amobile
(tb,tf ,tp). Unfortunately, neither the three

phase communication optimal PSMT protocol 3-Optimal-PSMT-Mobile-Byzantine toler-
atingAmobile

tb
(see Fig. 10.1), nor the four phase communication optimal PSMT protocol

4-Optimal-PSMT-Static-Mixed tolerating Astatic
(tb,tf ,tp) (see Fig. 11.4) can be extended in a

straight forward manner to design communication optimal PSMT tolerating Amobile
(tb,tf ,tp).

The contribution of this chapter is two fold: we first design a nine phase communi-
cation optimal PSMT protocol tolerating Amobile

(tb,tf ,tp), where S and R are connected by

n = 2tb + tf + tp + 1 wires. The protocol uses certain ideas used in protocol 4-Optimal-
PSMT-Static-Mixed. The protocol also uses protocol 3-Optimal-PRMT-Mobile-Mixed
(see Fig. 6.2) as a black box.

After the publication of the above protocol in [19], Kurosawa et al. [42] presented
a two phase communication optimal PSMT protocol tolerating Astatic

tb
, where S and

R are connected by n = 2tb + 1 wires. To design their protocol, Kurosawa et al.
introduced the concept of pseudo-basis, which was done for the first time in the litera-
ture of RMT/SMT. As a second contribution of this chapter, we design a three phase
communication PSMT protocol tolerating Amobile

(tb,tf ,tp), where S and R are connected by

n = 2tb + tf + tp + 1 wires. To design our three phase protocol, we extend the ideas
used in the two phase protocol of [42] to the case of mixed adversary.

We would like to stress that the techniques used in our nine phase and three phase
communication optimal PSMT protocol are completely independent and incomparable.
While our nine phase protocol requires more phases than our three phase protocol, our
nine phase protocol is communication optimal if ℓ = Θ(n), while our three phase
protocol is communication optimal if ℓ = Θ(n2). So we can decide which protocol to
execute, depending upon whether reduced communication complexity is desirable or
reduced phase complexity is desired.

We now discuss the network model and adversary settings used in this chapter.
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12.1 Network Model and Adversary Settings

The network model and adversary settings used in this chapter is similar to the one
used in Chapter 10. Thus we assume that there are n bi-directional, synchronous wires
w1, . . . , wn between S and R. However, instead of Amobile

tb
, we assume the presence

of a computationally unbounded mobile mixed adversary Amobile
(tb,tf ,tp), who may corrupt

different set of tb, tf and tp wires in Byzantine, failstop and passive fashion respectively,
during different phases of the protocol.

Though Amobile
(tb,tf ,tp) controls different set of wires in different phases of the protocol,

it does not allow the adversary to gain any information which has previously passed
(in earlier phases of the protocol) through the wires under its control in current phase.
The mobile mixed adversary gain information from the wires in a cumulative fashion.
For example, suppose during first phase of a protocol, Amobile

(1,1,1) controls w1, w2 and w3

in Byzantine, fail-stop and passive fashion respectively in a network, where S and R
are connected by wires w1, w2, . . . , w5. Now suppose during second phase, it controls
w2, w4 and w5 in Byzantine, fail-stop and passive fashion respectively. Then w1 and
w3 will behave correctly during second phase and adversary will have no access to
the information passing through them in second phase. At the end of second phase,
adversary will know the information which passed through w1 and w3 during first phase
and the information that passed through w2 and w5 during second phase.

12.2 Characterization and Lower Bound on Communica-

tion Complexity for PSMT Tolerating Amobile
(tb,tf ,tp)

Any single phase PSMT protocol tolerating Astatic
(tb,tf ,tp) will also work against Amobile

(tb,tf ,tp).

Thus Theorem 11.1 and Theorem 11.3 will also hold against Amobile
(tb,tf ,tp). This completely

resolves the issue of possibility and optimality of single phase PSMT in undirected
synchronous network tolerating Amobile

(tb,tf ,tp).

Since Amobile
(tb,tf ,tp) is more powerful than Astatic

(tb,tf ,tp), the necessary condition for multi

phase PSMT tolerating Astatic
(tb,tf ,tp), as given in Theorem 11.4 will also hold against

Amobile
(tb,tf ,tp). Similarly, the lower bound on communication complexity, as given in The-

orem 11.5 will also hold against Amobile
(tb,tf ,tp). To show that the sufficiency condition

for multi phase PSMT tolerating Astatic
(tb,tf ,tp), as given in Theorem 11.4, will also hold

againstAmobile
(tb,tf ,tp), we will design two communication optimal PSMT protocols tolerating

Amobile
(tb,tf ,tp) in the subsequent sections, where S and R are connected by n = 2tb+tf +tp+1

wires .
Before proceeding further, we show that neither protocol 3-Optimal-PSMT-Mobile-

Byzantine nor protocol 4-Optimal-PSMT-Static-Mixed, which are communication opti-
mal PSMT protocols tolerating Amobile

tb
and Astatic

(tb,tf ,tp) respectively, can be extended in a

straight forward manner to design communication optimal PSMT tolerating Amobile
(tb,tf ,tp).

12.3 Limitations of Protocol 3-Optimal-PSMT-Mobile-Byzantine

and 4-Optimal-PSMT-Static-Mixed Against Amobile
(tb,tf ,tp)

The reason why our three phase communication optimal PSMT protocol 3-Optimal-
PSMT-Mobile-Byzantine tolerating Amobile

tb
cannot be extended to design communication
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optimal PSMT tolerating Amobile
(tb,tf ,tp) is similar as given in Section 11.3. That is, if we

extend protocol 3-Optimal-PSMT-Mobile-Byzantine against Amobile
(tb,tf ,tp), then S and R will

end up sharing an information theoretically secure one time pad of size n(tb + 1) by
communicating O(n3) field elements. If n = 2tb + tf + tp + 1 then tb may not be Θ(n)
and can even be a constant. Thus the resulting PSMT protocol may send a message
of very small size with very high communication complexity of O(n3), which will not
be a communication optimal PSMT protocol against Amobile

(tb,tf ,tp).

The techniques used for designing protocol 4-Optimal-PSMT-Static-Mixed tolerat-
ing Astatic

(tb,tf ,tp) cannot be reused for designing communication optimal PSMT protocol

tolerating Amobile
(tb,tf ,tp). This is due to the failure of protocol Error-Identification-Static

to achieve its properties with a communication of O(n2) in the presence of Amobile
(tb,tf ,tp).

Recall that in Error-Identification-Static, B reliably sends n error lists during second
phase. This was done by broadcasting the error list with maximum number of pairs
LJ and then jointly sending the remaining n − 1 error lists by executing protocol 1-
PRMT-Mixed, with a block size of LJ . Also recall that when the maximum sized error
list is ”good”, then from the error list, A will know the identities of LJ wires, which
were Byzantine corrupted during first phase. Now since the adversary was static, the
same set of wires will be Byzantine corrupted in the second phase as well and hence A
could neglect them. This facilitated A to correctly recover the remaining n − 1 error
lists at the end of 1-PRMT-Mixed (see Theorem 5.7). However, this technique not work
against Amobile

(tb,tf ,tp). This is because the LJ wires which were Byzantine corrupted during

first phase, may not be under the control of Amobile
(tb,tf ,tp) in the second phase. In the worst

case, all these LJ wires may be completely honest and hence by neglecting them, A will
loose information sent through LJ honest wires. Thus protocol 1-PRMT-Mixed with
increased throughput will fail to correctly deliver the remaining n− 1 error lists to
A in the presence Amobile

(tb,tf ,tp). So even when the maximum sized error list is ”good”, A

will fail to reliably receive the remaining n− 1 error lists.
To reliably send the error lists in the presence Amobile

(tb,tf ,tp), B may broadcast all of

them to A. Though broadcasting the n error lists ensures their proper delivery, it
will increase the communication complexity of Error-Identification-Static from O(n2) to
O(n2tb). Thus the resultant PSMT protocol incorporating Error-Identification-Static
will not be a communication optimal PSMT protocol tolerating Amobile

(tb,tf ,tp). In order to

deal with this problem, we use our three phase communication optimal PRMT protocol
3-Optimal-PRMT-Mobile-Mixed (see Fig. 6.2) tolerating Amobile

(tb,tf ) . Using this protocol as

a black box, we design our nine phase communication optimal PSMT protocol tolerating
Amobile

(tb,tf ,tp), which is given in the next section.

12.4 Nine Phase Communication Optimal PSMT

Let S and R be connected by n = 2tb + tf + tp + 1 wires. We now present a nine
phase communication optimal PSMT protocol called 9-Optimal-PSMT-Mobile-Mixed,
which securely sends a message containing Θ(n) field elements by communicating O(n2)
field elements against Amobile

(tb,tf ,tp). The protocol uses few ideas from protocol 4-Optimal-

PSMT-Static-Mixed and uses protocol 3-Optimal-PRMT-Mobile-Mixed as a black-box.
The protocol establishes an information theoretically secure one time pad of length
either n − 1 = Θ(n) or n

2 = Θ(n) between S and R, depending upon the behavior of
the adversary, by communicating O(n2) field elements. Accordingly, S sends a message
containing either n− 1 or n

2 field elements by communicating O(n2) field elements.
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Note that according to the description provided in Fig. 6.2, protocol 3-Optimal-
PRMT-Mobile-Mixed is executed with 2tb + tf + 1 wires between S and R, tolerat-
ing Amobile

(tb,tf ) . So in protocol 9-Optimal-PSMT-Mobile-Mixed, protocol 3-Optimal-PRMT-

Mobile-Mixed is executed with any set of predefined 2tb + tf +1 wires between S and R.
Thus S and R neglects a pre-determined set of tp wires and runs protocol 3-Optimal-
PRMT-Mobile-Mixed on the remaining 2tb + tf + 1 wires. This does not affect the
correctness and working of protocol 9-Optimal-PSMT-Mobile-Mixed.

Informally, the idea of protocol 9-Optimal-PSMT-Mobile-Mixed is as follows: S sends
n random codewords to R, where each codeword is RS encoded using a random polyno-
mial of degree tb + tp. R assumes that at most tb

2 values are corrupted in each received
vector and tries to correct them. However, R will not know the status of the recovered
polynomials. So R reliably sends back only the first n

2 error lists. S on receiving these
lists can find out the status of these lists. If all the error lists are good, then S knows
that the first n

2 polynomials are correctly recovered by R and hence the constant term
of these polynomials acts as a pad of size n

2 .
On the other hand, if S finds any of the first n

2 error lists to be bad, then by
interacting with R, sender S finds out the identity of more than tb

2 +1 wires, which were
Byzantine corrupted during first phase. S then again reliably resends the components
of the last n

2 codewords which were transmitted over those corrupted wires. Note
that these values were already known to the adversary during the first phase and
hence does not provide any extra information about the last n

2 polynomials to the
adversary. However, R will now have sufficient correct values corresponding to the
last n

2 polynomials and hence R can correctly recover the last n
2 polynomials and the

constant term of these polynomials acts as a pad of size n
2 .

Protocol 9-Optimal-PSMT-Mobile-Mixed is given in Fig. 12.1, Fig. 12.2 and Fig.
12.3.

We now formally prove the properties of protocol 9-Optimal-PSMT-Mobile-Mixed.

Theorem 12.1 Protocol 9-Optimal-PSMT-Mobile-Mixed correctly and securely sends
a message containing Θ(n) field elements in at most nine phases by communicating
O(n2) field elements tolerating Amobile

(tb,tf ,tp).

Proof: We prove the theorem for the worst case where exactly tf wires (probably
different set) fails to deliver any information in each phase due to fail-stop corruption.
Thus each vector CR

j received during first phase will be of length N ′ = n − tf =

2tb + tp +1. Each CR
j corresponds to an RS codeword CS

j , encoded using a polynomial
of degree tb + tp. Now consider the following two cases:

1. Case I: At most tb
2 wires are Byzantine Corrupted During Phase I: In

this case, for each CR
j , RS-DEC(N ′, CR

j , tb
2 , 0, tb + tp + 1) will output the correct

pS
j (x) and a corresponding ”good” error list at the end of Phase II. But as

RS-DEC does not has extra error detecting capability apart from the capability
of correcting tb

2 errors, R will not know whether reconstructed pS
j (x)’s are cor-

rect or not. So R follows step 5 in Phase II and sends the first n
2 error lists

to S by executing protocol 3-Optimal-PRMT-Mobile-Mixed. By the correctness
of 3-Optimal-PRMT-Mobile-Mixed, S will correctly receive all the n

2 error lists
and will find all of them to be ”good”. So S will conclude that first n

2 poly-
nomials, namely pS

1 (x), . . . , pS
n
2
(x), are recovered correctly by R. Hence S uses

p = (pS
1 (0), . . . , pS

n
2
(0)) as a pad to blind a message mS of size n

2 and sends the

blinded message Γ to R by broadcasting it. Once R receives Γ, he can recover the
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Figure 12.1: A Nine Phase Communication Optimal PSMT Protocol Tolerating
Amobile

(tb,tf ,tp), n = 2tb + tf + tp + 1

Protocol 9-Optimal-PSMT-Mobile-Mixed

Phase I: S to R :

Computation by S:

1. S selects n random polynomials pS
1 (x), . . . , pS

n(x) over F, each of degree
tb + tp. Let for j = 1, . . . , n, pS

j (0) = sS
j , where sS

j is a random element
in F.

2. For j = 1, . . . , n, S computes an RS codeword CS
j = (cSj1, . . . , c

S
jn) of

length n using polynomial pS
j (x).

Communication by S:

1. For i = 1, . . . , n, S sends the ith component of all the n codewords, namely
cS1i, . . . , c

S
ni over wire wi.

Phase II: R to S :

Computation by R:

1. Let R receive information over wires wi1 , . . . , wiN′ , where n−tf ≤ N ′ ≤ n.

2. For j = 1, . . . , n, let R receive cRji1 , . . . , c
R
jiN′

over wires wi1 , . . . , wiN′

respectively. Let CR
j = (cRji1 , . . . , c

R
jiN′

).

3. For j = 1, . . . , n, R executes RS-DEC(N ′, CR
j , tb

2 , 0, tb + tp + 1).

4. If ∃J ∈ {1, 2, . . . , n}, such that RS-DEC(N ′, CR
J , tb

2 , 0, tb + tp + 1) does
not output any polynomial of degree tb + tp, then R broadcasts CR

J and
index J to S. If R executes this step then the remaining protocol will
follow the steps provided in Fig. 12.2.

5. If RS-DEC(N ′, CR
j , tb

2 , 0, tb + tp +1) outputs a polynomial pR
j (x) of degree

tb + tp, along with error list Error Listj containing at most tb
2 pairs, for

each j = 1, . . . , n, then R combines only the first n
2 error lists and

reliably sends them to S using three phase PRMT protocol 3-Optimal-
PRMT-Mobile-Mixed. This will occupy Phase II, Phase III and Phase
IV. If R executes this step then the remaining protocol will follow the
steps provided in Fig. 12.3.

message using Γ and the pad p = (pS
1 (0), . . . , pS

n
2
(0)). Thus in this case protocol

9-Optimal-PSMT-Mobile-Mixed sends n
2 field elements in five phases.

2. Case II: More than tb
2 wires are Byzantine Corrupted During Phase I:

This case may lead to further two subcases:

(a) RS-DEC outputs some polynomial pR
j (x) of degree tb + tp for each CR

j ;

(b) There exists a J ∈ {1, 2, . . . , n} for which RS-DEC fails to output any poly-
nomial.
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Figure 12.2: Remaining Execution of Protocol 9-Optimal-PSMT-Mobile-Mixed if R Ex-
ecutes Step 4 During Phase II. In this case, |mS| = n− 1

Execution I - Protocol 9-Optimal-PSMT-Mobile-Mixed Continued . . .
(This Part Will be Executed if R Executes Step 4 During Phase II)

Phase III: S to R :

Computation by S:

1. S correctly receives index J and vector CR
J .

2. After locally comparing CR
J with the corresponding original codeword

CS
J , S identifies at least tb

2 +1 wires which delivered incorrect components
of CS

J to R during Phase I. S saves the identity of these wires in a list
Lfault.

3. For j ∈ {1, 2, . . . , n}\{J}, S lists all cSji’s, which were sent during Phase
I over wi ∈ Lfault, in a list ReSendValues. Thus |ReSendValues| =
(n− 1)|Lfault| ≥ (n− 1)( tb

2 + 1).

4. S constructs a pad p consisting of n− 1 sS
j ’s with j ∈ {1, 2, . . . , n} \ {J}

where sS
j = pS

j (0).

5. With a message mS containing n − 1 field elements, S computes Γ =
mS ⊕ p.

Communication by S:

1. S reliably sends Lfault and Γ to R by broadcasting it.

2. S reliably re-sends the values in list ReSendValues to R by executing the
three phase PRMT protocol 3-Optimal-PRMT-Mobile-Mixed. This will run
in Phase III, Phase IV and Phase V. S then terminates 9-Optimal-
PSMT-Mobile-Mixed.

Message Recovery by R (At the end of Phase V):

1. R correctly receives Γ, Lfault and the values in ReSendValues.

2. From Lfault, R identifies |Lfault| >
tb
2 wires which had delivered incorrect

values during Phase I.

3. For j ∈ {1, 2, . . . , n} \ {J}, corresponding to each CR
j , R replaces the

cRji ’s, which were received during Phase I over wi ∈ Lfault, with the

corresponding actual cSji’s from the list ReSendValues.

4. After replacement, R knows that for each j ∈ {1, 2, . . . , n} − {J}, at
most tb − |Lfault| values could be corrupted in CR

j . R executes RS-

DEC(N ′, CR
j , tb − |Lfault|, 0, tb + tp + 1) to recover pS

j (x).

5. Once the pS
j (x)’s for j ∈ {1, 2, . . . , n} \ {J} are obtained, R constructs

the pad p in the same way as done by S.

6. R computes mS = Γ⊕p and terminates protocol 9-Optimal-PSMT-Mobile-
Mixed.
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Figure 12.3: Remaining Execution of Protocol 9-Optimal-PSMT-Mobile-Mixed if R Ex-
ecutes Step 5 During Phase II. In this Case, |mS| = n

2 .

Execution II - Protocol 9-Optimal-PSMT-Mobile-Mixed Continued . . .

(This Part Will be Executed if R Executes Step 5 During Phase II)

Local Computation by S (At the end of Phase IV):

1. S correctly receives the first n
2

error lists, sent by R using protocol 3-Optimal-PRMT-Mobile-

Mixed.

2. S then checks the status of these error lists.

(a) If all the n
2

error lists are ”good”, then S concludes that R has correctly recovered pS

j (x)
for j = 1, . . . , n

2
and an information theoretically secure pad p = (pS

1 (0), . . . , pS
n
2

(0))

is established with R. So, S considers a message mS containing n
2

field elements and
computes Γ = mS ⊕ p.

(b) Else ∃J ∈ {1, 2, . . . , n
2
}, such that Error ListJ is “bad”. In this case, S concludes

that more than tb

2
values have been changed in Jth codeword during Phase I.

Phase V: S to R:

1. If S has computed Γ, then S broadcasts Γ and a terminating signal to R.

2. Else S broadcasts index J along with “ERROR” signal, asking R to broadcast the Jth vector
CR

J as received by R during Phase I.

Local Computation by R (At the End of Phase V):

1. If R receives terminating signal and Γ, then R concludes that it has correctly recovered
pS

1 (x), . . . , pS
n
2

(x) during Phase I. R then forms the pad p = (pS

1 (0), . . . , pS
n
2

(0)), computes

mS = p ⊕ Γ and terminates protocol 9-Optimal-PSMT-Mobile-Mixed.

2. Else R receives index J and ”ERROR” signal. In this case, R concludes that more than tb

2

corrupted values are present in CR

J . So R executes Phase VI as follows:

Phase VI: R to S:

1. R broadcasts the vector CR

J to S.

Local Computation by S (At the End of Phase VI):

1. Upon receiving CR

J and comparing it with CS

J , S identifies more than tb

2
wires which were

Byzantine corrupted during Phase I and saves them in a list Lfault.

2. Corresponding to each j ∈ {n
2

+ 1, . . . , n} and each wi ∈ Lfault, S adds the value cSji to a
list ReSendValues.

3. With the pad p = (pS
n
2

+1(0), . . . , p
S

n(0)) and a message mS containing n
2

field elements, S

computes Γ = mS ⊕ p.

Phase VII: S to R:

1. S reliably sends Γ and Lfault to R by broadcasting them.

2. S reliably sends ReSendValues by executing the three phase PRMT protocol 3-Optimal-

PRMT-Mobile-Mixed and terminates protocol 9-Optimal-PSMT-Mobile-Mixed. Protocol 3-

Optimal-PRMT-Mobile-Mixed will run in Phase VII, Phase VIII and Phase IX.

Message Recovery by R at the End of Phase IX:

1. R recovers mS in the same way as in Execution I, given in Fig. 12.2. The only difference
is that R performs the computation with respect to vectors CR

n
2

+1, . . . , C
R

n .

While in first subcase, occurrence of more than tb
2 faults cannot be immediately

detected by R (as RS-DEC is applied with d = 0), in the second subcase, it can
be immediately detected by R.

Now in the first subcase, if more than tb
2 Byzantine errors occur in the codewords

of only last n
2 polynomials, i.e, for pS

j (x), such that j = n
2 + 1, . . . , n (this implies
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that at most tb
2 Byzantine errors took place in the first n

2 codewords), then the
proof is same as in Case I. On the other hand, if more than tb

2 faults occurs for
J th codeword, where J ∈ {1, 2, . . . , n

2 }, then the proof proceeds as follows:

• During Phase II, R reconstructs pR
J (x) 6= pS

J(x), J ∈ {1, 2, . . . , n
2 }: In

this case, Error ListJ is a “bad” error list. Since R reliably sends back
first n

2 error lists using 3-Optimal-PRMT-Mobile-Mixed, S correctly receives
Error ListJ and finds it to be ”bad”. S concludes that R has reconstructed
some pR

J (x) 6= pS
J(x). So S asks R to broadcast the J th vector CR

J , as re-
ceived during Phase I. On receiving CR

J , S compares it with its correspond-
ing original codeword CS

J and identifies |Lfault| ≥
tb
2 +1 wires which delivered

incorrect values to R during Phase I. Now by executing 3-Optimal-PRMT-
Mobile-Mixed, S re-sends the components of the last n

2 codewords, which
were sent through these corrupted wires during Phase I. S also broadcasts
the identity of these corrupted wires. Note that re-sending these values, does
not leak any additional information about the last n

2 pS
j (x)’s to Amobile

(tb,tf ,tp) as

the adversary already knew these values during Phase I. But now with the
new values received, R have N ′ = 2tb + tp + 1 components for each of the
last n

2 vectors and at most tb − |Lfault| ≤
tb
2 − 1 of these N ′ components

could be corrupted. By substituting N ′ = 2tb + tp + 1, c = tb − |Lfault|, d =
0 and k = tb + tp + 1 in the inequality of Theorem 2.19, we find that
RS-DEC(N ′, CR

j , tb − |Lfault|, 0, tb + tp + 1), can correct all the remaining

tb − |Lfault| < tb
2 errors present in CR

j and can output the corresponding

polynomial pS
j (x) where j ∈ {n

2 + 1, . . . , n}. R then considers the constant

term of these last n
2 pS

j (x)’s as the secret pad established with S. The secrecy

of the pad follows from the fact that at any stage of the execution, Amobile
(tb,tf ,tp)

will not get more than tb + tp points on the last n
2 pS

j (x)’s, each of which is
of degree tb + tp. Once R obtains the pad, he can compute the message from
the blinded message Γ. Thus in this case protocol 9-Optimal-PSMT-Mobile-
Mixed sends n

2 field elements in nine phases.

• During Phase II, R is Unable to Recover Some pR
J (x), Where J ∈

{1, . . . , n
2 }: In this case R broadcasts only the J th received codeword CR

J ,
from which S (after local verification) identifies at least tb

2 + 1 wires, which
delivered incorrect values to R during Phase I. Now the rest of the proof is
same as in the above case. The only difference is that here a pad of length
n− 1 will be established between S and R.

In protocol 9-Optimal-PSMT-Mobile-Mixed, S communicates O(n2) field elements
for sending n codewords during the first phase. In second phase R either sends a
codeword or n

2 error lists each of size at most tb
2 . Sending the codeword by broadcasting

requires O(n2) communication complexity. On the other hand, sending n
2 error lists

each of size at most tb
2 (so total n

2 ∗
tb
2 = Θ(ntb) field elements) using 3-Optimal-PRMT-

Mobile-Mixed also requires a communication of O(n2) field elements (see Lemma 6.14).
Similarly, re-sending Θ(ntb) values corresponding to the codewords by executing 3-
Optimal-PRMT-Mobile-Mixed requires communicating O(n2) field elements. It is easy
to see that no more than O(n2) field elements are communicated in any other phase as
well. Hence the overall communication complexity of the protocol is O(n2). 2

Theorem 12.2 Protocol 9-Optimal-PSMT-Mobile-Mixed is a nine phase communica-
tion optimal PSMT protocol tolerating Amobile

(tb,tf ,tp).
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Proof: As mentioned earlier, Theorem 11.5 will also hold against Amobile
(tb,tf ,tp). This

implies that any nine phase PSMT over n = 2tb + tf + tp + 1 wires must communi-
cate Ω(n2) field elements to securely send a message containing Θ(n) field elements
tolerating Amobile

(tb,tf ,tp). Since the total communication complexity of protocol 9-Optimal-

PSMT-Mobile-Mixed is O(n2), protocol 9-Optimal-PSMT-Mobile-Mixed is a communi-
cation optimal PSMT protocol tolerating Amobile

(tb,tf ,tp). 2

12.5 Three Phase Communication Optimal PSMT Proto-
col Tolerating Amobile

(tb,tf ,tp)

After the publication of protocol 9-Optimal-PSMT-Mobile-Mixed in [19], Kurosawa et al.
[42] presented a two phase communication optimal PSMT protocol tolerating Astatic

tb
,

where S and R are connected by n = 2tb +1 wires. To design their protocol, Kurosawa
et al. introduced the concept of pseudo-basis, which was done for the first time in the
literature of RMT/SMT. By extending this notion to the case of mixed adversary, we
now design a three phase communication PSMT protocol tolerating Amobile

(tb,tf ,tp), where S

and R are connected by n = 2tb + tf + tp + 1 wires.

12.5.1 Pseudo-Basis and Pseudo-Dimension

We now describe the notion of Pseudo-Basis and Pseudo-Dimension, a novel and inter-
esting concept, introduced by Kurosawa et.al. in [42]. These notions were introduced
with respect to Astatic

tb
to design a two phase polynomial time communication optimal

PSMT protocol tolerating Astatic
tb

. We now extend these notions for mixed adversary
and using them, we design our three phase communication optimal PSMT protocol
called 3-Optimal-PSMT-Mobile-Mixed, tolerating Amobile

(tb,tf ,tp).

Assumption 12.3 Without loss of generality, for the ease of exposition, we use the
following assumption in the following discussion and also in protocol 3-Optimal-PSMT-

Mobile-Mixed: if S (R) is expecting some information in some specific format from R
(S) along a wire in a phase and if no/syntactically incorrect information comes, then
S (R) substitutes some default value(s) from F in the desired format and proceeds with
his computation. Thus we separately do not consider the case when no/syntactically
incorrect information is received along a wire.

Now let A and B be two specific nodes (A (B) can be S or R) which are connected
by n = 2tb + tf + tp + 1 wires denoted by w1, . . . , wn, of which at most tb, tf and tp
wires can be corrupted in Byzantine, fail-stop and passive fashion respectively. Let C
be the set of all possible RS codewords of length n over F, which are RS encoded using
polynomials of degree tb + tp over F. Moreover, let α1, . . . , αn be the publicly known
elements from F, at which the polynomials are evaluated to compute the RS codewords
in C. It is easy to see that the hamming distance [45] of code C is n−(tb+tp) = tb+tf +1.
We may call the individual codewords in C as n-dimensional vectors. But it should be
noted that any codeword of length n is a vector of length n, but the reverse is not true.

If A sends several codewords, say γ codewords C1, . . . , Cγ ∈ C over the n wires by
transmitting ith component of all the codewords over ith wire wi, then the locations at
which Byzantine and fail-stop errors occur in these codewords are not random. This is
because for all the codewords, the Byzantine and fail-stop errors always occur at the
same tb + tf (or a smaller subset) locations. The concept of pseudo-basis is based on
this simple and interesting observation.
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Let B receive vectors Y1 . . . , Yγ over the n wires, such that for i = 1, . . . , γ,

Yi = Ci + Ei, (12.1)

where
Ei = (ei1, . . . , ein)

is an error vector introduced by the adversary. Since at most tb Byzantine and at
most tf fail-stop corruptions could occur, each Ei may have at most tb + tf non-zero
components. Let

support(Ei) = {j | eij 6= 0}. (12.2)

Then there exists a set {wj1, . . . , wj(tb+tf )
} of wires that are Byzantine and fail-stop

corrupted, such that each error vector Ei satisfies

support(Ei) ⊆ {j1, . . . , j(tb+tf )} (12.3)

This means that the space E spanned by the error vectors E1, . . . , Eγ has dimension
at most tb + tf . The notion of pseudo-basis exploits this idea.

Let V denote the n-dimensional vector space over F. We say that {E1, . . . , Eγ} is
the real error vector set of Y = {Y1, . . . , Yγ}. We also say that E is the real error vector
space if it is spanned by the real error vector set {E1, . . . , Eγ}.

For two vectors V1, V2 ∈ V, we write

V1 = V2 mod C (12.4)

if V1 − V2 ∈ C. Notice that for i = 1, . . . , γ, for every triplet (Yi, Ci, Ei),

Yi = Ei mod C (12.5)

holds, as Yi − Ei = Ci ∈ C. We say that {E1, . . . , Eγ} is an admissible error vector
set of Y if each Ei satisfies Yi = Ci + Ei, for some codeword Ci ∈ C and

|support(E1) ∪ . . . support(Eγ)| ≤ tb + tf (12.6)

We say that E is an admissible error vector space of Y if it is spanned by an
admissible error vector set {E1, . . . , Eγ}. Notice that for a given Y, there exists a
unique real error vector set and real error vector space, while there may exists several
admissible error vector set and corresponding admissible error vector space. Also notice
that the real error vector set (real error vector space) is also an admissible error vector
set (admissible error vector space) but the reverse may not be true. Even though an
admissible error vector set {E1, . . . , Eγ} for a given Y may not be unique, the results
presented in the sequel hold for any admissible error vector set.

We begin with the definition of linearly pseudo-express.

Definition 12.4 (Linearly Pseudo-Express [42]) We say that a vector Y ∈ Y is
linearly pseudo-expressed by {B1, . . . , Bk} if there exists some α = (a1, . . . , ak), such
that

Y = a1B1 + . . . + akBk mod C

We now state the following lemma:

Lemma 12.5 Let {E1, . . . , Eγ} be an admissible error vector set of Y. Then Ei is
linearly expressed by {Ej1, . . . , Ejk} iff Yi is linearly pseudo-expressed by {Yj1, . . . , Yjk}.
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Proof: Let Ei be linearly expressed by {Ej1, . . . , Ejk}. This implies that

Ei = a1Ej1 + . . . + akEjk

for some a1, . . . , ak. Since {E1, . . . , Eγ} is an admissible error vector set of Y, it implies
that for each i, Yi = Ci + Ei, where Ci is some codeword. Then in mod C, we have:

Yi − (a1Yj1 + . . . + akYjk)

= (Ci + Ei)− a1(Cj1 + Ej1)− . . .− ak(Cjk + Ejk)

= (Ci − a1Cj1 − . . .− akCjk) + (Ei − a1Ej1 − . . .− akEjk)

= (Ci − a1Cj1 − . . . − akCjk) + 0

= (Ci − a1Cj1 − . . .− akCjk)

Now notice that Ci, Cj1, . . . , Cjk are valid RS codewords belonging to C and hence
are encoded using polynomials of degree tb + tp. So from the linearity property of
polynomials, Ci − a1Cj1 − . . . − akCjk will also be a valid RS codeword belonging to C
and hence is encoded using polynomial of degree tb + tp. So Ci−a1Cj1− . . .−akCjk ∈ C.
Therefore, Yi−(a1Yj1+. . .+akYjk) ∈ C. Thus if Ei is linearly expressed by {Ej1, . . . , Ejk}
then Yi is linearly pseudo-expressed by {Yj1, . . . , Yjk}.

Next suppose that Yi is linearly pseudo-expressed by {Yj1, . . . , Yjk}. Then in mod
C, we have

Yi = (a1Yj1 + . . . + akYjk) mod C (12.7)

for some non-zero a1, . . . , ak. The above equation can be written as

(Ci + Ei) = {a1(Cj1 + Ej1) + . . . + ak(Cjk + Ejk)} mod C

⇒ (Ci − a1Cj1 − . . .− akCjk) + (Ei − a1Ej1 − . . .− akEjk) ∈ C

Now Ci, Cj1, . . . , Cjk are valid RS codewords, encoded using polynomials of degree
tb + tp. So from the linearity property of polynomials, we have

(Ci − a1Cj1 − . . .− akCjk) ∈ C (12.8)

The linearity property of polynomials also implies:

(Ei − a1Ej1 − . . .− akEjk) ∈ C

as the sum of a valid RS codeword (encoded using polynomial of degree tb + tp) with
another vector can be a valid RS codeword (encoded using polynomial of degree tb +tp)
only if the other vector is also a valid RS codeword (encoded using polynomial of degree
tb + tp). As the number of non-zero components in Ei, Ej1, . . . , Ejk is at most tb + tf , the
vector (Ei−a1Ej1−. . .−akEjk) will have at least n−(tb+tf ) ≥ tb+tp+1 zero components.
However, in C, there is only one codeword, namely 0-codeword (i.e. a tuple of length
n containing all 0’s) (0, . . . , 0), which has at least tb + tp + 1 zero components. This is
because each element of C represents n distinct points on a tb + tp degree polynomial

and tb + tp + 1 zero’s uniquely define the zero polynomial f(x) =
∑tb+tp

i=0 0xi. These
two facts together imply that the vector (Ei − a1Ej1 − . . .− akEjk) is an all zero vector
(0-codeword) which further implies that

Ei = a1Ej1 + . . . + akEjk
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This means that if Yi is linearly pseudo-expressed by {Yj1, . . . , Yjk}, then Ei is lin-
early expressed by {Ej1, . . . , Ejk}. 2

We next define pseudo-span.

Definition 12.6 (Pseudo-Span [42]) We say that {Yj1 . . . , Yjk} ⊂ Y pseudo-spans
Y if each Yi ∈ Y can be linearly pseudo-expressed by {Yj1 . . . , Yjk}. That is, each
Yi = (a1Yj1 + . . . + akYjk) mod C, for some a1, . . . , ak.

Definition 12.7 (Pseudo-Basis [42]) We say that {Yj1 . . . , Yjk} ⊂ Y is a pseudo-
basis of Y if it is the minimum subset of Y which pseudo-spans Y.

Definition 12.8 (Pseudo-Dimension [42]) If {Yj1 . . . , Yjk} ⊂ Y is a pseudo-basis
of Y and k = |{Yj1 . . . , Yjk}|, then we say that Y has pseudo-dimension k.

We now prove the following theorem:

Theorem 12.9 Let {E1, . . . , Eγ} be an admissible error vector set of Y. Then Be =
{Ej1, . . . , Ejk} ⊂ {E1, . . . , Eγ} is a basis of the admissible error vector space E iff By =
{Yj1, . . . , Yjk} ⊂ Y is a pseudo-basis of Y (Note that Be and By have the same indices).
In particular, the pseudo-dimension of Y is equal to the dimension of E.

Proof: Suppose that Be is a basis of E . This implies that Be is the minimum set which
spans E . Since Be spans E , from Lemma 12.5, By pseudo-spans Y. Next we show that
By is the minimum subset of Y which pseudo-spans Y. On the contrary, assume that
By is not minimum. That is, suppose that there exists a smaller subset of Y which
pseudo-spans Y. Then from Lemma 12.5, the corresponding subset of {E1, . . . , Eγ} also
spans E . However, this contradicts the fact that Be is a basis of E . This implies that
By is the minimum subset of Y which pseudo-spans Y, which further implies that By

is the pseudo-basis of Y.
Similarly, if By is a pseudo-basis of Y then Be is a basis of E . Hence the pseudo-

dimension of Y is equal to the dimension of E . 2

Since the real error vector set is also an admissible error vector set, we obtain the
following corollary of Theorem 12.9.

Corollary 12.9.1 Let {E1, . . . , Eγ} be the real error vector set of Y. If By = {Yj1, . . . ,
Yjk} ⊂ Y is a pseudo-basis of Y, then Be = {Ej1, . . . , Ejk} ⊂ {E1, . . . , Eγ} is a basis
of the real error vector space.

Let {E1, . . . , Eγ} be the real error vector set of Y and let {C1, . . . , Cγ} be the
corresponding original codewords which A sent. Then define

CORRUPTED = ∪γ
i=1support(Ei) (12.9)

Then CORRUPTED is the set of wires that the adversary has corrupted in Byzan-
tine and fail-stop fashion. We now state the following important theorem:

Theorem 12.10 Let By = {Yj1, . . . , Yjk} be the pseudo-basis of Y and let Cj1, . . . , Cjk

be the corresponding original codewords. Then

CORRUPTED = ∪i=k
i=1support(Yji − Cji)
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Proof: From the definition of CORRUPTED, we get

CORRUPTED = ∪γ
i=1support(Ei)

From Corollary 12.9.1, since {Yj1, . . . , Yjk} is the pseudo-basis of Y, it implies that
{Ej1, . . . , Ejk} is the basis of real error vector space. This implies that

∪γ
i=1support(Ei) = ∪i=k

i=1support(Eji)

The above relationship further implies that

CORRUPTED = ∪γ
i=1support(Ei)

= ∪i=k
i=1support(Eji)

= ∪i=k
i=1support(Yji −Xji)

2

Theorem 12.11 The pseudo-dimension of Y is at most tb + tf .

Proof: The dimension of the real error vector space is at most tb + tf because the
adversary can Byzantine and fail-stop corrupt at most tb and tf wires respectively.
Hence from Theorem 12.9, the pseudo-dimension of Y is at most tb + tf . 2

From the above discussion, we find that if B can correctly find the pseudo-basis of Y
and reliably sends it back to A, then A can identify the wires which are Byzantine and
fail-stop corrupted after doing the local computation. In the next section, we present
a polynomial time algorithm, which allows B to find the pseudo-basis of Y.

12.5.2 How to Find Pseudo-Basis

In [42], the authors have presented a polynomial time algorithm to find pseudo-basis
against Astatic

tb
. We now extend the algorithm against mixed adversary.

We first present a polynomial time algorithm which checks whether Y can be linearly
pseudo-expressed by {B1, . . . , Bk}. For a non-zero β = (a1, . . . , ak) ∈ F

k, we define
X(β) as

X(β) = Y − (a1B1 + . . . + akBk). (12.10)

It is clear that Y can be linearly pseudo-expressed by {B1, . . . , Bk} iff there exists
some non-zero β such that X(β) ∈ C. The algorithm for checking whether Y can be
linearly pseudo-expressed by {B1, . . . , Bk} is presented in Fig. 12.4. The algorithm will
output YES iff X(β) ∈ C for some non-zero β. In the algorithm, each xj(β) will be a
linear expression of (a1, . . . , ak), as Y,B are known and β is unknown. Similarly, each
coefficient of fβ(x) will be a linear expression of (a1, . . . , ak). Hence each fβ(αj) = xj(β)
will give a linear equation on (a1, . . . , ak). So we will get n − (tb + tp + 1) ≥ tb + tf
linear equations in (a1, . . . , ak). Moreover, in our context, k will be at most tb + tf , as
will be shown in the sequel. Thus if Y can be indeed linearly pseudo expressed by B,
then after solving these linear equations, some non-zero solution for β = (a1, . . . , ak)
will be obtained and the algorithm will output YES.

We now finally present the polynomial time algorithm which takes the set of
vectors Y received by B as input and finds in polynomial time, the pseudo-basis
B = {Yj1, . . . , Yjk} ⊂ Y, pseudo-dimension k = |B| ≤ tb + tf and an index set
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Figure 12.4: Algorithm to Check Whether Y Can be Linearly Pseudo-Expressed by B

Algorithm Pseudo-Linear-Express(Y,B = {B1, . . . , Bk})

1. Let β = (a1, . . . , ak), where a1, . . . , ak are unknown variables.

2. Let X(β) = (x1(β), . . . , xn(β)), where X(β) is given by Equation 12.10.

3. By using Lagrange interpolation, construct a polynomial fβ(x) of degree tb+tp
such that

fβ(αi) = xi(β)

for i = 1, . . . , tb + tp + 1.

4. Output YES iff the following set of linear equations on β has a non-zero
solution:

fβ(αtb+tp+2) = xtb+tp+2(β),

...

fβ(αn) = xn(β).

Otherwise output NO.

I = {j1, . . . , jk} ⊂ {1, . . . , γ} containing the indices of the vectors selected in B.
The algorithm uses algorithm Pseudo-Linear-Express as a black-box and is provided in
Fig. 12.5.

Figure 12.5: Algorithm to Find the Pseudo-Basis of Y

Algorithm Find-Pseudo-Basis(Y)

1. Let i = 1 and B = ∅.

2. While i ≤ γ and |B| < tb + tf , do:

(a) By using Algorithm Pseudo-Linear-Express, check whether Yi can be lin-
early pseudo-expressed by B. If NO, then add Yi to B.

(b) Set i← i + 1.

3. Output B as a pseudo-basis, k = |B| as the pseudo-dimension and index set
I, containing the indices of the k vectors selected in B.

Theorem 12.12 Algorithm Find-Pseudo-Basis correctly finds the pseudo-basis and pseudo-
dimension of Y.

Note 12.13 (Convention For Using Algorithm Find-Pseudo-Basis) In the rest of
the chapter, we will use the notation (k,B,I) = Find-Pseudo-basis(Y) while invoking
algorithm Find-Pseudo-Basis.
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12.5.3 Protocol 3-Optimal-PSMT-Mobile-Mixed Tolerating Amobile
(tb,tf ,tp)

Let S and R be connected by n = 2tb + tf + tp + 1 wires. We now present a three
phase communication optimal PSMT protocol called 3-Optimal-PSMT-Mobile-Mixed,
which securely sends a message containing n2 field elements by communicating O(n3)
field elements tolerating Amobile

(tb,tf ,tp). Since Astatic
(tb,tf ,tp) is a special type of Amobile

(tb,tf ,tp), the

protocol will also work against Astatic
(tb,tf ,tp).

In the protocol, S establishes a random, information theoretically secure one time
pad of size n2 with R. Once the pad is established, S uses the pad to blind the message
and sends the blinded message reliably to R. Let C denote the set of all possible RS
codewords of length n = 2tb + tf + tp + 1 encoded using polynomials of degree (tb + tp)
over F. We now present protocol 3-Optimal-PSMT-Mobile-Mixed, which is given in
Fig. 12.6. Recall that we are following Assumption 12.3 in protocol 3-Optimal-PSMT-
Mobile-Mixed.

We now prove the properties of protocol 3-Optimal-PSMT-Mobile-Mixed.

Lemma 12.14 (Perfect Reliability) In Protocol 3-Optimal-PSMT-Mobile-Mixed, R
will correctly recover mS.

Proof: First notice that R will correctly receive the blinded message Γ and list
CORRUPTED, as they are broadcasted by S. Now to prove that R correctly recovers
the message mS sent by S, we show that S and R shares the same pad Z. S and R
will share Z if:

1. I is same at both ends and

2. R is able to correctly recover polynomials FS
i (x) for i ∈ {1, . . . , P} \ I.

Since R sends the triplet (B, k,I) to S by broadcasting, I will be same at both
ends. Now we show that irrespective of the behavior of Amobile

(tb,tf ,tp), R will always recover

all the polynomials FS
i (x) for i ∈ {1, . . . , P} \ I. Since S correctly receives (B, k,I),

CORRUPTED will contain all the wires which were corrupted in Byzantine and fail-
stop fashion during Phase I. R also correctly receives CORRUPTED from S. Now
ignoring the values received over the wires in CORRUPTED during Phase I, R
recovers all the polynomials with the remaining values. This is possible because each
polynomial is of degree tb + tp and at least n − |CORRUPTED| ≥ n − (tb + tf ) =
tb + tp + 1 correct values on each polynomial, obtained over the wires in {w1, . . . , wn} \
CORRUPTED during Phase I, are available to R, at the end of Phase III. 2

Lemma 12.15 (Perfect Security) In Protocol 3-Optimal-PSMT-Mobile-Mixed, mS

will be information theoretically secure.

Proof: The message mS will be information theoretically secure from Amobile
(tb,tf ,tp) if the

pad Z is information theoretically secure. According to the protocol, Z contains FS
i (0)

iff i ∈ {1, . . . , P} \ I. Since (B, k,I) was sent by R by broadcasting, it may be eaves-
dropped by Amobile

(tb,tf ,tp) during its transmission. But for remaining polynomials FS
i (x)’s

where i ∈ {1, . . . , P} \ I, Amobile
(tb,tf ,tp) will know at most tb + tp points by eavesdropping

tb + tp wires during Phase I. Since the degree of each of these polynomials is tb + tp,
Amobile

(tb,tf ,tp) will lack one point on these polynomials to uniquely interpolate them and

hence each FS
i (0) with i ∈ {1, . . . , P} \ I will be information theoretically secure. 2
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Lemma 12.16 (Communication Complexity) Protocol 3-Optimal-PSMT-Mobile-Mixed

sends a message mS containing ℓ = n2 field elements by communicating O(n3) =

O
(

nℓ
n−(2tb+tf +tp)

)
= O(nℓ) field elements, tolerating Amobile

(tb,tf ,tp). Moreover, the protocol

is communication protocol.

Proof: During Phase I, S communicates P = n2 + tb + tf codewords to R which
requires communication of Pn = (n2+tb+tf ).n = O(n3) field elements. During Phase
II, R sends the triplet (B, q,I) through all the wires. This incurs a communication cost
of O((tb + tf ).n.n) = O(n3). The communication complexity of Phase III for sending
CORRUPTED and Γ is O(n2.n) = O(n3). Hence overall communication complexity
of the protocol is O(n3).

From Theorem 11.5, any three phase PSMT tolerating Astatic
(tb,tf ,tp) must communicate

Ω(n3) field elements to securely send a message containing ℓ = n2 field elements,
if S and R are connected by n = 2tb + tf + tp + 1 wires. Since Amobile

(tb,tf ,tp) is more

powerful than Astatic
(tb,tf ,tp), the same lower bound must hold against Amobile

(tb,tf ,tp). As the

total communication complexity of protocol 3-Optimal-PSMT-Mobile-Mixed is O(n3),
the protocol is a communication optimal PSMT protocol tolerating Amobile

(tb,tf ,tp). 2

12.6 Concluding Remarks and Open Problems

In this chapter, we completely resolved the issue of possibility, feasibility and
optimality of PSMT in undirected synchronous network tolerating Amobile

(tb,tf ,tp). These

results are summarized in Fig. 12.7.
From Fig. 12.7, we find that protocol 9-Optimal-PSMT-Mobile-Mixed, as well as

protocol 3-Optimal-PSMT-Mobile-Mixed is communication optimal only if the message
contains ℓ = Θ(n) and Θ(n2) field elements respectively. Also, protocol 3-Optimal-
PSMT-Mobile-Mixed requires three phases.

This leads to the following open problem:

Open Problem 13 Let S and R be connected by n = 2tb + tf + tp + 1 wires. Then
does there exist a two phase PSMT protocol which securely sends a message containing
ℓ field elements, by communicating O(nℓ) field elements, tolerating Amobile

(tb,tf ,tp), for any

value of ℓ?
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Figure 12.6: A Three Phase Communication Optimal PSMT Protocol Tolerating
Amobile

(tb,tf ,tp): n = 2tb + tf + tp + 1, |mS| = n2

Protocol 3-Optimal-PSMT-Mobile-Mixed

Phase I: S to R :

Computation by S:

1. Let P = n2 + tb + tf . S selects P random polynomials FS

1 (x), . . . , FS

P (x) over F, each
of degree (tb + tp).

2. For i = 1, . . . , P , S computes an RS codeword of length n, corresponding to Fi(x),
denoted by Ci = (ci1, . . . , cin).

Communication by S:

1. For j = 1, . . . , n, S sends jth component of all the P codewords, namely c1j , . . . , cPj

over wire wj .

Phase II: R to S :

Computation by R:

1. For i = 1, . . . , P , let R receive the vector Yi of length n, where Yi = Ci + Ei and Ei

is the error vector introduced by Byzantine and fail-stop corrupted wires. R does not
know Ci and Ei.

2. Let Y = {Y1, . . . , YP }. R executes (k,B, I) = Find-Pseudo-Basis(Y) to find pseudo-
basis B = {Yj1, . . . , Yjk} ⊂ Y, pseudo-dimension k = |B| and index set I =
{j1, . . . , jk} ⊂ {1, . . . , P}, where |I| ≤ (tb + tf ).

Communication by R:

1. R reliably sends the triplet (B, k, I) to S by broadcasting it.

Phase III: S to R :

Computation by S:

1. S correctly receives the triplet (B, k, I).

2. S finds Ej1 = Yj1 − Cj1, . . . , Ejk = Yjk − Cjk and computes CORRUPTED =
∪k

i=1support(Eji).

3. S concatenates all the FS

i (0)’s such that i ∈ {1, . . . , P} \ I and forms an information
theoretic secure pad Z of length at least n2 (since |I| ≤ tb + tf and P = n2 + tb + tf ,
this is possible).

4. Let Zn2 denote the first n2 elements of Z. S computes Γ = Zn2 ⊕ mS.

Communication by S:

1. S reliably sends (to R) Γ and list CORRUPTED containing the identity of Byzantine
and fail-stop corrupted wires by broadcasting them.

Local Computation by R at the End of Phase III :

1. R correctly receives Γ and the list CORRUPTED.

2. R ignores all information received over the wires in CORRUPTED during Phase I.

3. R then reconstructs all the polynomial FS

i (x) such that i ∈ {1, . . . , P} \ I, by consid-
ering the correct values on FS

i (x) received over remaining wires during Phase I.

4. Finally, R recovers pad Z (and hence Zn2) by concatenating FS

i (0)’s for all i ∈
{1, . . . , P} \ I and hence the message mS = Γ ⊕ Zn2 .
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Figure 12.7: Summary of the Results for PSMT in Undirected Synchronous Network
Tolerating Amobile

(tb,tf ,tp)

Number of Connectivity Lower Bound on Upper Bound
Phases (r) Requirement (n) Communication

Complexity

r = 1 n ≥ 3tb + tf + tp + 1 Ω
(

nℓ
n−(3tb+tf +tp)

)
Theorem 11.3

Theorem 11.1 Theorem 11.3

r ≥ 2 n ≥ 2tb + tf + tp + 1 Ω
(

nℓ
n−(2tb+tf +tp)

)
Protocol

Theorem 11.4 Theorem 11.5 9-Optimal-PSMT-Mobile-Mixed:
n = 2tb + tf + tp + 1, ℓ = Θ(n)

Communication
complexity = O(nℓ) = O(n2)

Protocol
3-Optimal-PSMT-Mobile-Mixed:
n = 2tb + tf + tp + 1, ℓ = Θ(n2)

Communication
complexity = O(nℓ) = O(n3)
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Chapter 13

PSMT in Directed Networks
Tolerating Static Byzantine
Adversary

In this chapter, we study PSMT in directed synchronous network tolerating threshold
static Byzantine adversary. As discussed in Chapter 7, in several practical scenarios, it
is appropriate to model the underlying network as directed graphs. Motivated by this,
Desmedt et al. [24] introduced the PSMT problem in directed network. In [24], the
authors have given the necessary and sufficient condition for the existence of PSMT
protocols in directed networks tolerating threshold static Byzantine adversary Astatic

tb
.

The PSMT protocols of [24] were significantly improved in [62]. However recently in
[88], the authors have shown that the PSMT protocols of [24] and [62] do not provide
perfect secrecy. Specifically, they specified an adversary strategy against the PSMT
protocols of [24, 62], which they called as guessing attack, which allows the adversary
to gain some extra information about the secret message of S. This re-opens the issue
of possibility of PSMT in directed networks.

In this chapter, we re-visit the PSMT problem in directed network tolerating Astatic
tb

.
We design new PSMT protocols tolerating Astatic

tb
, which satisfies the characterization

given by [24]. Our protocols are perfectly secure against guessing attack. Moreover,
we also show that our protocols are communication optimal. For this, we derive non-
trivial lower bound on the communication complexity of PSMT protocols in directed
networks, tolerating Astatic

tb
. In short, we completely resolve the issue of possibility,

feasibility and optimality of PSMT in directed synchronous networks tolerating
Astatic

tb
. To the best of our knowledge, this is the first ever attempt in the literature of

PSMT in directed networks.
We now briefly describe the network model and adversary settings used in this

chapter.

13.1 Network Model and Adversary Settings

The network model and adversary settings used in this chapter are exactly same as
in Chapter 7. Thus, we assume that there are n wires directed from S to R, denoted
by f1, . . . , fn and u wires, directed from R to S, denoted by b1, . . . , bu. Moreover, the
wires from S to R are node disjoint from the wires which are directed from R to S.
The n wires from S to R are also called as top band, while the u wires from R to S are
called as bottom band. We assume the presence of a static, threshold adversary Astatic

tb
,
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having unbounded computing power, who can control at most tb wires, out of n + u
wires in Byzantine fashion.

In the next section, we recall the existing results for PSMT in directed synchronous
networks tolerating Astatic

tb
.

13.2 Existing Results for PSMT in Directed Network

We now summarize the existing results for PSMT in directed networks tolerating
Astatic

tb
.

1. In [24], it is shown that any PSMT protocol tolerating Astatic
tb

is possible iff
there exists n = max (3tb − 2u + 1, 2tb + 1) wires in the top band. To show the
sufficiency of this condition, the authors in [24] presented an inefficient PSMT
protocol. Moreover, the authors presented an efficient PSMT protocol provided
there exists n = max (3tb − u + 1, 2tb + 1) wires in the top band.

2. The PSMT protocols of [24] were significantly improved by Patra et al. [62],
who presented an efficient three phase PSMT protocol tolerating Astatic

tb
, in the

presence of n = max (3tb − 2u + 1, 2tb + 1) wires in the top band. The au-
thors in [62] presented another three phase efficient PSMT protocol with n =
max (3tb − u + 1, 2tb + 1) wires in the top band, which significantly improves
the efficient PSMT protocol of [24] in the same settings. Independently, in
[87], the authors presented an efficient PSMT protocol in the presence of n =
max (3tb − 2u + 1, 2tb + 1) wires in the top band.

3. In [62], the authors claimed that for the existence of any two phase PSMT protocol
in directed network tolerating Astatic

tb
, there should exist 2tb + 1 wires in the top

band, as well as in the bottom band (the wires in the top band and the bottom
band need not be disjoint in this case).

4. In [88], the authors showed that none of the PSMT protocol presented in [24, 62],
tolerating Astatic

tb
, provides perfect security. Specifically, the authors in [88] pre-

sented guessing attack against the PSMT protocols of [24, 62], tolerating Astatic
tb

and showed that the guessing attack allows the adversary to get extra information
about the secret message.

In the next section, we give an overview of our results presented in this chapter.

13.3 Overview of Our Results for PSMT in Directed Net-
works

In this chapter, we show the following:

1. We show that the condition for two phase PSMT in directed network as given in
[62] is sufficient but not necessary. On the other hand, the condition for PSMT
in directed network as given in [24] is necessary but not sufficient for two phase
PSMT. This brings forth the question that what is the necessary and sufficient
condition for two phase PSMT in directed network tolerating Astatic

tb
. We settle

this question by showing that two phase PSMT in directed network tolerating
Astatic

tb
is possible iff there exists n = max (3tb − u + 1, 2tb + 1) wires, instead of

n = max (3tb − 2u + 1, 2t + 1) wires in the top band. We also design a two phase
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PSMT protocol called 2-Optimal-PSMT-Static-Byzantine-Directed in the presence
of max (3tb − u + 1, 2tb + 1) wires in the top band. Furthermore, we show that
our two phase PSMT protocol is communication optimal. For this, we derive
non-trivial lower bound on the communication complexity of two phase PSMT
in directed network tolerating Astatic

tb
. Specifically, we show that any two phase

PSMT protocol in directed network which securely sends a message mS ∈ F
ℓ

containing ℓ field elements against Astatic
tb

must communicate:

(a) Ω
(

Nℓ
N−3tb

)
field elements where 0 < u ≤ tb, n ≥ 3tb−u+1 and N = n+u ≥

3tb + 1.

(b) Ω
(

nℓ
n−2tb

)
field elements where u > tb and n ≥ 2tb + 1.

2. We then propose two new PSMT protocols called 3-Optimal-PSMT-Static-Byzantine-
Directed and 6-Optimal-PSMT-Static-Byzantine-Directed, which are secure against
guessing attack of [88] and which requires n = max (3tb − 2u + 1, 2t + 1) wires in
the top band, thus satisfying the characterization of PSMT in directed network
given by [24]. Specifically, protocol 3-Optimal-PSMT-Static-Byzantine-Directed
works in the presence of 0 < u ≤ tb

2 and n = 3tb − 2u + 1 wires in the bottom
and top band respectively. The protocol securely sends a message mS containing
ℓ = n2u field elements by communicating O(n3u) = O(nℓ) field elements.

On the other hand protocol 6-Optimal-PSMT-Static-Byzantine-Directed works in
the presence of n = 2tb + 1 and tb

2 < u ≤ tb wires in the top and bottom band re-
spectively. The protocol securely sends a message mS containing ℓ = n2u field el-

ements by communicating O
(

n3u
2u−tb

)
= O

(
nℓ

2u−tb+1

)
field elements. Interestingly,

when u = tb
2 + Θ(t), then protocol 6-Optimal-PSMT-Static-Byzantine-Directed se-

curely sends ℓ field elements by communicating O(ℓ) field elements.

3. We also show that protocol 3-Optimal-PSMT-Static-Byzantine-Directed and 6-
Optimal-PSMT-Static-Byzantine-Directed are communication optimal. For this,
we derive non-trivial lower bound on the communication complexity of three or
more phase PSMT protocol in directed networks tolerating Astatic

tb
. Specifically,

we show that if there exists u wires in the bottom band and n = max(3tb − 2u +
1, 2tb + 1) wires in the top band, then any three or more phase PSMT protocol
that securely sends a message mS containing ℓ field elements from F tolerating
Astatic

tb
must communicate:

(a) Ω( nℓ
n−(3tb−2u)) field elements when 0 < u ≤ tb;

(b) Ω(ℓ) field elements when u > tb.

Remark 13.1 (On the Non-Zero Value of u) All the results and protocols that are
discussed in this chapter considers u > 0. If u = 0, then all the wires are directed only
from S to R. In this case, only single phase PSMT is possible. However, the issue of
possibility, feasibility and optimality of single phase PSMT tolerating Astatic

t is
already settled in [28, 81, 30] (see Chapter 9).

13.4 Tools Used in Our Protocols

In this chapter, we will use protocol 3-Optimal-PRMT-Static-Byzantine-Directed (see Fig.
7.2) as a black-box. Protocol 3-Optimal-PRMT-Static-Byzantine-Directed is a communi-
cation optimal PRMT protocol which reliably sends a message containing ℓ = Θ(ntb)
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field elements by communicating O(ntb) field elements tolerating Astatic
tb

, provided there
exists n = 2tb + 1 wires in the top band and u wires in the bottom band, such that
n− 2tb + 2u = Θ(n).

In this chapter, we also use the concept of pseudo-basis, which was discussed in
Section 12.5.1. In section 12.5.1, we explained the idea of pseudo-basis and pseudo-
dimension in the context of mixed corruption. However, the same ideas will also for
only Byzantine corruption. More specifically, let A and B be two specific nodes, which
are connected by L wires denoted by w1, . . . , wL, of which at most tb wires can be
corrupted in Byzantine fashion by Astatic

tb
. Let C be the set of all possible RS codewords

of length L over F, such that the hamming distance [45] of code C is at least tb + 1.
This implies that each codeword in C is RS encoded using polynomial of degree at most
deg = L − (tb + 1). Moreover, in our PSMT protocols, deg will be at least tb. Now
suppose A sends several codewords, say γ codewords C1, . . . , Cγ ∈ C over the L wires
by transmitting the ith component of all the codewords over ith wire wi. Let B receive
the vectors Y = {Y1 . . . , Yγ} over the L wires, such that for i = 1, . . . , γ,

Yi = Ci + Ei, (13.1)

where
Ei = (ei1, . . . , eiL)

is an error vector introduced by the adversary. Then by using Algorithm Find-Pseudo-
Basis (see Fig. 12.5), B will be able to compute the pseudo-basis and pseudo-dimension
of Y. Moreover, pseudo-dimension of Y will be at most tb. Specifically, algorithm Find-
Pseudo-Basis will output the pseudo-basis B ⊂ Y, the pseudo-dimension k = |B| ≤ tb
and index set I, containing the indices of the vectors from Y which are listed in B.
Moreover, if By = {Yj1, . . . , Yjk} ⊂ Y is the pseudo-basis of Y and if Cj1, . . . , Cjk are
the corresponding original codewords, then

CORRUPTED = ∪i=k
i=1support(Yji − Cji),

where CORRUPTED is the set of wires which are corrupted by Astatic
tb

.
In the next section, we discuss about two phase PSMT in directed network tolerating

Astatic
tb

.

13.5 Two Phase PSMT in Directed Synchronous Network

Tolerating Astatic
tb

In this section, we prove the necessary and sufficient condition for the existence of
any two phase PSMT in directed network tolerating Astatic

tb
. We then derive the lower

bound on the communication complexity of any two phase PSMT protocol in directed
networks tolerating Astatic

tb
. We then show that the bound is asymptotically tight by

designing a two phase communication optimal PSMT protocol in directed network.

13.5.1 Characterization of Two Phase PSMT in Directed Network

Before proceeding further, we recall the following theorems from [24] and [62].

Theorem 13.2 ([24, 87]) PSMT in directed network tolerating Astatic
tb

is possible iff
there exists n = max (3tb − 2u + 1, 2tb + 1) wires in the top band.
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Theorem 13.3 ([62]) Two phase PSMT in directed network tolerating Astatic
tb

is pos-
sible iff there exists n ≥ 2tb + 1 wires in the top band and u ≥ 2tb + 1 wires in the
bottom band.

We now show that the condition given in Theorem 13.2 is necessary for two phase
PSMT in directed network tolerating Astatic

tb
, but not sufficient. On the other hand, the

condition given in Theorem 13.3 is sufficient for two phase PSMT in directed network
tolerating Astatic

tb
, but not necessary. This brings forth the following question:

What is the necessary and sufficient condition for the existence of any two
phase PSMT in directed network tolerating Astatic

tb
?

We resolve the above question by proving the following theorem:

Theorem 13.4 Let there are disjoint set of n wires in the top band and u wires in the
bottom band such that Astatic

tb
controls at most tb of these n+u wires. Then there exists

a two phase PSMT tolerating Astatic
tb

iff n ≥ max(3tb − u + 1, 2tb + 1).

Proof: Sufficiency: Let n = max (3tb − u + 1, 2tb + 1) and u > 0. Also let δ =
max (u, tb) and N = n + u. We now design a two phase PSMT protocol called 2-
Optimal-PSMT-Static-Byzantine-Directed, which securely sends a message mS, contain-
ing ℓ = (δ + 1 − tb) field elements by communicating (N + n(δ + 1 − tb)) field ele-
ments. In 2-Optimal-PSMT-Static-Byzantine-Directed, C is the set of all possible RS
codewords of length N , encoded using all possible polynomials of degree δ over F, for
fixed α1, . . . , αn+u. Here αi is associated with wire fi for i = 1, . . . , n and αn+i is asso-
ciated with bi for i = 1, . . . , u. The hamming distance [45] between any two codeword
in C is N − δ = n + u− δ ≥ 2tb + 1.

Informally, 2-Optimal-PSMT-Static-Byzantine-Directed works as follows: S and R
communicate with each other to agree on a random polynomial of degree δ, ensuring
that Astatic

tb
knows tb points on it. Once this is done, both S and R generates a common

information theoretic secure pad of length (δ + 1 − tb), which is completely unknown
to Astatic

tb
. Then, S blinds the message with the pad and reliably sends the blinded

message to R. The protocol is formally presented in Fig. 13.1.
We now prove the properties of protocol 2-Optimal-PSMT-Static-Byzantine-Directed.

Theorem 13.5 (Perfect Reliability) In protocol 2-Optimal-PSMT-Static-Byzantine-

Directed, R will correctly recover mS at the end of Phase II.

Proof: From the protocol, it is clear that CR and CS will differ in at most tb locations.
Now there are following two cases:

1. u < tb: This implies that δ = tb and n = 3tb − u + 1 and hence N = 3tb + 1. So
substituting N = 3tb+1 and k = δ+1 = tb+1 in Theorem 2.19, we find that R will
correctly recover FS(x) and hence CS after executing RS-DEC(N,CR, tb, 0, δ+1).
Thus both S and R will agree on CS and hence on ZS. Since ΓS is broadcasted
over at least 2tb + 1 wires, R will correctly receive ΓR = ΓS and hence recover
mS = ΓR ⊕ ZR.

2. u ≥ tb: This implies that δ = u and n = 2tb + 1 and hence N = 2tb + 1 + u.
So substituting N = 2tb + 1 + u and k = δ + 1 = u + 1 in Theorem 2.19,
we find that R will correctly recover FS(x) and hence CS after executing RS-
DEC(N,CR, tb, 0, δ + 1). The proof now follows using similar argument as above.
2
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Figure 13.1: A Two Phase Communication Optimal PSMT Protocol Tolerating Astatic
tb

Protocol 2-Optimal-PSMT-Static-Byzantine-Directed

Phase I: R to S: R selects a random vector V R = (vR
1 , . . . , vR

u ) over F and sends
vR
i to S along wire bi, for i = 1, . . . , u.

Phase II: S to R:

1. Let S receive V S. S then selects a codeword CS from C such that the last u
components of CS are same as V S. This is always possible because δ ≥ u and
every RS codeword in C corresponds to a unique δ degree polynomial. Let CS

corresponds to polynomial FS(x) of degree δ.

2. For i = 1, . . . , n, S sends the ith component of CS over wire fi in top band.

3. S computes ΓS = mS ⊕ ZS where ZS = EXTRANDδ+1,δ+1−tb(C
S
(δ+1)) and

CS
(δ+1) denotes the first δ+1 components of CS. /* For the details of algorithm

EXTRAND, see Fig. 9.2 */

4. S broadcasts the blinded message ΓS over the entire top band and terminates
the protocol.

Local Computation by R At The End of Phase II:

1. After receiving information over the top band, R possesses a vector CR of
length N , where N = n + u, by combining the values received over the top
band and values sent over the bottom band.

2. R executes RS-DEC(N,CR, tb, 0, δ+1) and recovers FR(x) = FS(x) and hence
CS.

3. R computes ZR = ZS in the same way as done by S.

4. R correctly receives ΓR = ΓS and recovers mR = mS by computing mR =
ΓR ⊕ ZR.

Theorem 13.6 (Perfect Security) Protocol 2-Optimal-PSMT-Static-Byzantine-Directed

is a PSMT protocol.

Proof: In the protocol, Astatic
tb

will know at most tb points on FS(x). However, the
degree of FS(x) is δ. Thus adversary will lack δ + 1− tb points to uniquely interpolate
FS(x). This implies that δ+1−tb components of CS

δ+1 will be information theoretically

secure. So from the properties of EXTRAND, the pad ZS will be information theoreti-
cally secure. This further implies that mS will be information theoretically secure, as
mS is blinded with the pad ZS. 2

Protocol 2-Optimal-PSMT-Static-Byzantine-Directed, along with Theorem 13.5 and The-
orem 13.6 shows the sufficiency of the condition given in Theorem 13.4. We now proceed
to the necessity proof of Theorem 13.4.
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Necessity: The necessity proof is divided into two cases: (a) 0 < u ≤ tb and (b)
u > tb. If u > tb, then the necessary condition says that there should exist n = 2tb + 1
wires in the top band. From Theorem 7.1, n = 2tb + 1 wires from S to R are necessary
for any PRMT protocol tolerating Astatic

tb
. So it is obviously necessary for PSMT.

Next we show that if 0 < u ≤ tb, then n = 3tb − u + 1 wires in the top band are
necessary for the existence of any two phase PSMT protocol tolerating Astatic

tb
. The

proof is by contradiction. So assume that there exists a two phase PSMT protocol
with 0 < u ≤ tb wires in the bottom band and n = 3tb − u wires in the top band,
tolerating Astatic

tb
. Let Π2Phase be an execution of the two phase PSMT protocol where

S sends message m. Let A2Phase
tb

be an adversarial strategy in Π2Phase. Given Π2Phase

and A2Phase
tb

, we show that there exist an execution Π1Phase of a single phase PSMT

protocol over N = n + u = 3tb wires from S to R and an adversarial strategy A1Phase
tb

in Π1Phase, such that the views of S and R in Π2Phase are identical to the views of
S and R (respectively) in Π1Phase. Now by the property of two phase PSMT, R will
recover m in Π2Phase tolerating any strategy A2Phase

tb
. Since the views are identical,

R should also recover m in Π1Phase tolerating A1Phase
tb

. But by Theorem 9.1, we show

that R can not recover m in Π1Phase tolerating A1Phase
tb

. This in turn implies that R

will fail to recover m in Π2Phase tolerating A2Phase
tb

, thus showing a contradiction.

We now describe the executions Π2Phase, Π1Phase and the adversary strategies
A2Phase

tb
and A1Phase

tb
. The random coin flips of S, R and Astatic

tb
in Π2Phase as well

as in Π1Phase are RS, RR and RA respectively. Since Π2Phase is an instance of a two
phase PSMT, without loss of generality, the computation and communication during
Π2Phase are as follows:

1. Phase I: R to S: R uses RR to generate β1, . . . , βu and sends βi to S through
wire bi, 1 ≤ i ≤ u.

2. Phase II: S to R: Let S receive β′
i through wire bi. Based on the received

information, message m and coin flip RS, S computes α1, α2, . . . , αn and sends
αi to R through wire fi, 1 ≤ i ≤ n.

3. Computation by R at the end of Phase II: Let R receive α′
i through wire

fi. Thus the view of R at the end of Phase II is [α′
1, . . . , α

′
n, β1, . . . , βu], while

view of S is [α1, . . . , αn, β′
1, . . . , β

′
u]. R performs local computation according to

the protocol specification and correctly recovers m.

Now we present Π1Phase where there exists N = n + u = 3tb wires w1, . . . , wN from S
to R.

1. Phase I: S to R: S uses RS to generate β′
1, . . . , β

′
u (which he can do with

non-zero probability). Now assuming that β′
1, . . . , β

′
u would have been received

through the bottom band in Π2Phase, S performs the same computation as
in Π2Phase and generates α1, . . . , αn. Finally, S sends αi to R through wire
wi, 1 ≤ i ≤ n and β′

i through wire wn+i, 1 ≤ i ≤ u.

2. Computation by R at the end of Phase I: Let R receive α′′
i through wire

wi, 1 ≤ i ≤ n and β′′
i through wire wn+i, 1 ≤ i ≤ u. Now R performs the same

computation as in Π2Phase to recover m.

Now consider the following strategy A2Phase
tb

in Π2Phase: Astatic
tb

corrupts entire bottom
band and first tb−u wires from top band and ensures that β′

i 6= βi for 1 ≤ i ≤ u and α′
i 6=

αi for 1 ≤ i ≤ tb−u. So, the views of S and R are (α1, . . . , αtb−u, αtb−u+1, . . . , αn, β′
1, . . . , β

′
u)

and (α′
1, . . . , α

′
tb−u, αtb−u+1, . . . , αn, β1, . . . , βu) respectively.
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Now consider the following strategy A1Phase
tb

in Π1Phase: Astatic
tb

corrupts last u
wires and first tb − u wires and ensures that β′′

i = βi for 1 ≤ i ≤ u and α′′
i = α′

i,
for 1 ≤ i ≤ (tb − u). Since all other wires are honest, it holds that α′′

i = αi for
tb − u + 1 ≤ i ≤ n. Hence in this case, the views of S and R will be exactly same as
in the execution Π2Phase where A2Phase

tb
is the adversary strategy. If in Π2Phase, R is

able to recover m, same should hold for Π1Phase. But from Theorem 9.1, single phase
PSMT over 3tb wires is impossible tolerating tb faults done by Astatic

tb
. Hence by the

argument given before, this leads to a contradiction to our assumption that Π2Phase is
an execution of two phase PSMT. Therefore for 0 < u ≤ tb, the condition n ≥ 3tb−u+1
should hold for two phase PSMT. This completes the necessity proof. 2

13.5.2 Lower Bound on Communication Complexity of Two Phase
PSMT

We now derive the lower bound on the communication complexity of two phase PSMT
in directed networks, tolerating Astatic

tb
. We then show that this bound is asymptotically

tight. The lower bound on the communication complexity is given by the following
theorem:

Theorem 13.7 Suppose there exists u wires in the bottom band and n = max(3tb −
u+1, 2tb +1) wires in the top band. Then any two phase PSMT protocol which securely
sends a message m ∈ F

ℓ containing ℓ field elements against Astatic
tb

must communicate:

1. Ω
(

Nℓ
N−3tb

)
field elements where 0 < u ≤ tb, n ≥ 3tb−u+1 and N = n+u ≥ 3tb+1.

2. Ω
(

nℓ
n−2tb

)
field elements where u > tb and n ≥ 2tb + 1.

Proof: We first prove part 1 of this theorem. This proof is heavily based on the
necessity proof of Theorem 13.4. Following the same line of argument, we can show
that when n = 3tb − u + 1 and 0 < u ≤ tb, then for every possible pair of Π2Phase

and A2Phase
tb

there exist a pair Π1Phase and A1Phase
tb

(with non-zero probability) such
that the view of S and R are same in both the scenarios. It is easy to see that the
communication cost are also same in Π1Phase and Π2Phase. It implies that for every
two phase PSMT protocol sending mS with n ≥ 3tb − u + 1 and 0 < u ≤ tb wires in
top and bottom band respectively, there exist a single phase PSMT sending mS with
N = n + u wires (from S to R) with same communication cost. Now any single phase

PSMT protocol sending mS over N ≥ 3tb +1 wires must communicate Ω
(

Nℓ
N−3tb

)
field

elements (see Theorem 9.2). Hence any two phase PSMT protocol must communicate

Ω
(

Nℓ
N−3tb

)
field elements for sending mS.

We now proceed to prove part 2 of the theorem. Any PSMT protocol has to de-
liver the message correctly. Thus any PSMT protocol is also a PRMT protocol. Now
neglecting the communication from R to S, any two phase PRMT can be reduced to
single phase PRMT by following the conversion shown in [77] (see proof of Theorem
2 of [77]). Now from [77], any single phase PRMT protocol over n = 2tb + 1 wires
has to communicate Ω( nℓ

n−2tb
) field elements. So any two phase PSMT protocol has to

communicate Ω( nℓ
n−2tb

) field elements as well. 2

We next show that our two phase PSMT protocol 2-Optimal-PSMT-Static-Byzantine-
Directed asymptotically satisfies the bound given in Theorem 13.7. Thus, we show that
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protocol 2-Optimal-PSMT-Static-Byzantine-Directed is a communication optimal PSMT
protocol.

Theorem 13.8 Protocol 2-Optimal-PSMT-Static-Byzantine-Directed is a communica-
tion optimal PSMT protocol and asymptotically satisfies the bound given in Theorem
13.7.

Proof: In protocol 2-Optimal-PSMT-Static-Byzantine-Directed, the communication
complexity of Phase I is u. On the other hand, the communication complexity of
Phase II is n(δ + 1 − tb) + n. Thus the communication complexity of protocol 2-
Optimal-PSMT-Static-Byzantine-Directed is O(n(δ + 1 − tb) + N) to securely send a
message mS containing (δ + 1− tb) field elements.

If u ≤ tb, then δ = tb and so protocol 2-Optimal-PSMT-Static-Byzantine-Directed
securely sends a message mS containing one field element by communicating O(N)
field elements, where N = 3tb +1. From Theorem 13.7, if u ≤ tb and N = 3tb +1, then
any two phase PSMT protocol must communicate Ω(N) field elements to securely send
a message containing single field element. This implies that protocol 2-Optimal-PSMT-
Static-Byzantine-Directed is communication optimal, when 0 < u ≤ tb.

If u > tb, then δ = u and so protocol 2-Optimal-PSMT-Static-Byzantine-Directed
securely sends a message mS containing (u + 1) − tb field elements by communicating
O(n(u + 1 − tb)) field elements, where n = 2tb + 1. From Theorem 13.7, if u > tb and
n = 2tb + 1, then any two phase PSMT protocol must communicate Ω(n(u + 1 − tb))
field elements to securely send a message containing (u + 1 − tb) field elements. This
implies that protocol 2-Optimal-PSMT-Static-Byzantine-Directed is communication op-
timal, when u > tb. 2

We now move our discussion towards multiphase (more than two phase) PSMT proto-
cols in directed networks tolerating Astatic

tb
. Before that, we briefly recall the guessing

attack proposed in [88] against the PSMT protocol of [24, 62] in directed networks.

13.6 Guessing Attack Against PSMT Protocol of [24, 62]

in Directed Networks

In [88], Yang et al. presented guessing attack against the PSMT protocols of [24,
62] in directed networks tolerating Astatic

tb
, which allows the adversary to gain extra

information about the secret message. In this section, we briefly discuss this attack.
We then show that our proposed two phase PSMT protocol 2-Optimal-PSMT-Static-
Byzantine-Directed is secure against guessing attack.

We now present a Guessing Attack that takes advantage of how the feedback chan-
nels (i.e., the wires in the bottom band) are normally used. The current description of
the attack is taken from [88]. In most protocols that work on networks with feedback
channels, the feedbacks are used by the receiver R to seek for help from S, when R
does not have enough information to recover the message (i.e., for reliability purpose).
In guessing attack, the adversary does the following: since the adversary can choose to
corrupt some feedback paths, it can simulate how R uses the feedback channels and
learn from S the information it needs to recover the message with better probability
than guessing. This allows the adversary to breach perfect privacy, as we describe now
in more detail.

Here we give an example of how Guessing Attack breaches perfect secrecy of one
of Desmedt and Wang’s PSMT protocols given in [24]. We call the protocol as DW
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protocol. A similar attack can be mounted on their other PSMT protocols. The current
PSMT protocol corresponds to [24, Theorem 5]. First we shall sketch the DW protocol
and then we show that it does not provide perfect secrecy.

1. Condition for the DW protocol: there are 3tb ≥ 2tb + 1 wires in top band
and one wire in bottom band 1.

2. Sketch of the DW protocol: Let f1, ..., f3tb be the wires in the top band and
b1 be the wire in the bottom band.

(a) ...

(b) S chooses a keyS ∈R F. S selects a random tb degree polynomial fS(x) over
F, such that fS(0) = keyS and computes the shares v = (s1, ..., s3tb) of keyS.
Here si = fS(i), for i = 1, . . . , 3tb. S sends si to R via wire fi.

(c) Let vR = (sR
1 , ..., sR

3tb
) be the shares that R receive. If R finds that there

are at most tb−1 errors (using error-correcting code), R recovers keyR from
the shares, sends ‘stop’ to S via wire b1; otherwise, R sends vR to S via wire
b1.

(d) If S receives vS = (sS
1 , ..., sS

3tb
) from wire b1, then S broadcasts P = {i : sS

i 6=
si} (|P | = tb) via top band; otherwise, S broadcasts ‘stop’.

(e) ...

(f) S broadcasts keyS + mS via top band, where mS is the secret message.

(g) ...

The above single feedback channel protocol is the basis of the main PSMT protocols
in [24]. We observe that this DW protocol is perfectly reliable, so in the above sketch
we did not describe how R recovers the message (see [24] for the entire protocol). Now
we show that using a Guessing Attack, the adversary can learn the message mS with
probability better than guessing.

Theorem 13.9 ([88]) The above DW protocol is not a PSMT protocol from S to R.

Proof: Due to the fact that keyS ∈R F, if the DW protocol is perfectly secure, then
the probability that the adversary guesses keyS is 1

|F| . That is, Astatic
tb

learns nothing

from the shares it gets, and can only guess a uniformly random number keyX ∈ F,
and with probability 1

|F| , keyX = keyS. We call this a random guess. Now we show a

Guessing Attack by which the adversary can learn keyS with a probability better than
1
|F| . The formal steps of the attack are given in Fig. 13.2.

In this Guessing Attack, Astatic
tb

guesses a share sX
tb

and two keys keyX
1 and keyX

2 . It
is straightforward that S will broadcast P if and only if S finds exactly tb errors in vX ,
and the tb errors can only be either (sX

tb+1, ..., s
X
2tb

) or (sX
2tb+1, ..., s

X
3tb

). That is, the guess

is successful if sX
tb

= stb and one of the two keys is correct (i.e., keyX
i = keyS, i ∈ {1, 2}).

Thus the probability T that the guess is successful is

T =
1

|F|
×

(
2×

1

|F|

)
=

2

|F|2
.

1This condition is sufficient for PSMT, but is stronger than the necessary condition. See [24] for
more details.

164



Figure 13.2: Guessing Attack on DW Protocol

DW-Guessing Attack

Astatic
tb

chooses to control wires f1, . . . , ftb−1 and wire b1 from top band and bottom
band respectively. Thus Astatic

tb
is able to get the shares (s1, ..., stb−1) in Step 2b of

DW protocol. With these tb − 1 shares, Astatic
tb

does the following:

1. Astatic
tb

chooses a share sX
tb
∈R F and two keys keyX

1 , keyX
2 ∈R F (keyX

1 6=
keyX

2 ).

2. Corresponding to keyX
1 , the adversary assumes that (s1, ..., stb−1, s

X
tb

) are tb
shares of keyX

1 and thus using Lagrange interpolation, Astatic
tb

gets another tb
shares (sX

tb+1, ..., s
X
2tb

) of keyX
1 .

3. Similarly, corresponding to keyX
2 , the adversary assumes that (s1, ..., stb−1, s

X
tb

)
are tb shares of keyX

2 and thus using Lagrange interpolation, Astatic
tb

gets an-
other tb shares (sX

2tb+1, ..., s
X
3tb

) of keyX
2 .

4. Astatic
tb

sets vX = (s1, ..., stb−1, s
X
tb

, ..., sX
3tb

).

5. In each execution step of the DW protocol, Astatic
tb

acts passively on wires
f1, . . . , ftb−1. Thus R sends ‘stop’ to S in Step 2c of DW protocol.

6. On the feedback path b1 that is under the control of Astatic
tb

, the adversary
ignores what R sends and forwards vX to S.

7. Then in Step 2d of DW protocol, if S finds exactly tb errors in vS = vX ,
then S broadcasts P = {i : sX

i 6= si}, according to which Astatic
tb

recovers
keyS = keyX

j (j ∈ {1, 2}); otherwise, S broadcasts ‘stop’ and Astatic
tb

randomly

guesses a keyX .

If the guess fails, then Astatic
tb

will use a random guess with probability 1
|F| to get

keyX = keyS. Thus, the total probability G that Astatic
tb

learns keyS by performing
Guessing Attack is

G = T + (1− T )×
1

|F|
>

1

|F|
.

Therefore, Astatic
tb

can learn keyS with a probability better than 1
|F| and simultaneously

recover mS with probability better than guessing. Hence the DW protocol is not per-
fectly secure. 2

Note that in [87], Wang and Desmedt provided a new PSMT protocol that uses in-
duction when S receives tuples of shares in feedbacks. When S notices that Guessing
Attack may happen according to the feedbacks it receives, it uses an induction and
re-sends the message without revealing the message to the adversary (0-private). The
property of the threshold adversary allows the induction to be continued until the
message is transmitted 0-reliably. Thus the protocol in [87] enables perfect security.
For details of the PSMT protocol tolerating a threshold adversary, we refer to [87,
Theorem 4.2].

As we have seen above, the basic idea of Guessing Attack is to replace the feedbacks
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from R to S on the feedback channel with something that may reveal the message.
There is some probability associated with this guessing of being successful.

Besides the Desmedt-Wang protocols, Yang et al. [88] observed that all the PSMT
protocols in directed networks against Astatic

tb
as given in [62] do not guarantee perfect

privacy when the Guessing Attack takes place. For complete details, see [88].

13.6.1 Security of Two Phase PSMT Protocol Against Guessing At-
tack

In the guessing attack, the feedback sent by R is dependent on the information which
S has sent to it, which is further dependent on the secret message. So the adversary
can modify the feedback (without letting S know about it) and wait for S’s response
regarding the feedback. From S’s response, the adversary will come to know about the
status of the incorrect feedback that he has sent to S. This further allows the adversary
to get extra information about the message.

In protocol 2-Optimal-PSMT-Static-Byzantine-Directed, the information sent by R
is not any feedback information and it is a complete random information. So unlike
DW protocol, S does not have to make any response about the received information.
Rather, S assumes the received information to be a genuine information and uses it to
construct the one time pad, about which the adversary will have no extra information,
other than guessing. In this way, protocol 2-Optimal-PSMT-Static-Byzantine-Directed
is secure against guessing attack.

Similarly, all the PSMT protocols in undirected networks presented in earlier chap-
ters of this thesis are secure against guessing attack. This is because in all these
protocols, R reliably sends back the feedback by broadcasting. So S always correctly
receives the feedback, as all the wires are bi-directional and there are sufficient number
of wires for reliable communication.

The vulnerability of the PSMT protocols of [24] and [62] against guessing attack
bring forth the issue of designing efficient PSMT protocols in directed networks tol-
erating Astatic

tb
, which are secure against guessing attack. We proceed to do so in the

next section.

13.7 New Multi Phase PSMT Protocols Secure Against

Guessing Attack

In this section, we propose new multiphase (more than two phase) PSMT protocols in
directed networks, tolerating Astatic

tb
, which are secure against guessing attack. We also

show that the communication complexity of our proposed protocols are asymptotically
tight. For this, we derive non trivial lower bound on the communication complexity
of multiphase PSMT protocols in directed networks. Our PSMT protocols satisfy the
characterization of PSMT in directed networks given in [24]. Thus our protocols require
u > 0 wires in the bottom band and n = max (3tb − 2u + 1, 2tb + 1) wires in the top
band.

13.7.1 Three Phase PSMT with 0 < u ≤ tb
2

and n = 3tb − 2u + 1

In this section, we present a three phase PSMT protocol called 3-Optimal-PSMT-Static-
Byzantine-Directed, which securely sends a message mS containing ℓ = n2u field ele-
ments by communicating O(n3u) = O(nℓ) field elements.
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Informally the protocol works as follows: S tries to correctly establish an informa-
tion theoretically secure one time pad of size n2u with R. Let C denote the set of all
RS codewords of length n = 3tb − 2u + 1 over F, encoded using all possible polynomials
of degree tb over F, for fixed α1, . . . , αn. Here αi is associated with wire fi. Hence the
hamming distance between any two codewords in C is n − tb = 2tb − 2u + 1 ≥ tb + 1.
In protocol 3-Optimal-PSMT-Static-Byzantine-Directed, S selects a number of random
codewords from C and sends them across the n wires. R receives the vectors and finds
the pseudo-basis of the received vectors. R will be able to do so, as the hamming dis-
tance between any two codewords in C is at least tb +1. R then sends the pseudo-basis,
pseudo-dimension and index set through the bottom band.

We say that a pseudo-basis, pseudo-dimension and index set triple received over a
wire in bottom band is valid iff all the vectors listed in pseudo-basis differs from the
corresponding original codewords (sent by S) in at most tb locations. Note that S has
no knowledge on whether the original pseudo-basis generated by R is received by him.
This is because there may not not be enough number of honest wires in the bottom
band to reliably receive the pseudo-basis generated by R. So S broadcasts all the valid
triple of (pseudo basis, pseudo-dimension and index set) as received by him along with
the corresponding list of corrupted wires. Now R correctly receives all the pseudo-basis,
pseudo-dimension and index set (as received by S), along with their corresponding list
of corrupted wires.

R checks whether the pseudo-basis generated by him is present in the received list
of pseudo-basis. If yes then he knows the set of corrupted wires and can recover all the
original codewords (sent by S) by neglecting the values received over those corrupted
wires during first phase. Otherwise R learns that entire bottom band is corrupted and
hence in the top band there are at most tb−u Byzantine faults. So R can correct these
tb − u errors in each vector, received during first phase and thus can recover all the
original codewords. Hence in any case S and R will agree on all the codewords chosen
by S.

The above steps are enough to ensure perfect reliability. But during the transmis-
sion of pseudo-basis over u wires, Astatic

tb
can generate u distinct valid pseudo-basis

each containing at most tb disjoint vectors (this he can do by guessing with non-zero
probability, as in the case of guessing attack). This will make the protocol vulnerable
against guessing attack. To deal with this situation, initially S should send sufficient
number of codewords such that after removing all the utb codewords corresponding to
the vectors appearing in the received list of valid pseudo-basis, the remaining codewords
can be used to construct an information theoretic secure pad of size n2u. Once the
pad is established, S uses the pad to blind the message and sends the blinded message
reliably to R. The protocol is now formally given in Fig. 13.3.

We now formally prove the properties of protocol 3-Optimal-PSMT-Static-Byzantine-
Directed.

Theorem 13.10 (Perfect Reliability) Protocol 3-Optimal-PSMT-Static-Byzantine-Directed

provides perfect reliability.

Proof: First note that since n = 3tb − 2u + 1 ≥ 2tb + 1, any information broadcast
by S over the top band will be received by R correctly. This implies that R correctly
receives blinded message Γ and either one of the following two (depending upon what
S has broadcasted during Phase III): all quadruples (Bj, pj ,Ij, CORRUPTEDj) or
the message “Entire Bottom band is corrupted”. Now to prove that R correctly
recovers the message mS sent by S, we show that S and R shares the same pad Z. S
and R will share Z if
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1. Λ is same at both ends and

2. R is able to recover all the polynomials Fi(x) for i 6∈ Λ.

Since S broadcasts all valid triples to R, Λ will be same at both ends. Now we show
that irrespective of the behavior of Astatic

tb
, R will always recover all the polynomials

Fi(x) for i 6∈ Λ.
If Astatic

tb
spares (either does not control or behave passively) at least one wire, say

bj, in the bottom band, then S will correctly receive (Bj, pj ,Ij) = (B, p,I) and hence
CORRUPTEDj will contain all the wires which were corrupted during first phase (see
the properties of pseudo-basis). In this case, R will correctly receive CORRUPTEDj,
from which it identifies all wires (at most tb) which were corrupted during first phase.
R ignores the values received over those wires during Phase I and with the remaining
values (at least tb + 1) all the polynomials can be recovered correctly.

On the other hand, if Astatic
tb

corrupts the entire bottom band such that either S
detects that all the received triples are invalid or R detects that his original triple is not
present in the list of triples received by S (at the end of Phase II), then R concludes
that entire bottom band is corrupted. Hence R applies RS decoding on the received
vector Yi’s to correct tb−u errors (see Theorem 2.19) and reconstruct polynomial Fi(x)
for i 6∈ Λ. Hence the theorem. 2

Theorem 13.11 (Perfect Security) In Protocol 3-Optimal-PSMT-Static-Byzantine-

Directed, mS will be information theoretically secure.

Proof: The message mS will be information theoretically secure from Astatic
tb

if the
pad Z is information theoretically secure. According to the protocol, Z contains Fi(0)
iff i 6∈ Λ. Notice that Λ = ∪j {I

j|(Bj , pj ,Ij) is a valid triple}. Now a valid triple
(Bj, pj ,Ij) can be either the original triple (B, p,I) sent by R or it may be different
from (B, p,I) and generated by Astatic

tb
(who can guess it with non-zero probability).

In the former case (Bj, pj ,Ij) may be eavesdropped by Astatic
tb

during its transmission
over the bottom band. In later case, Astatic

tb
knows (Bj, pj ,Ij) since he himself has

generated them. Hence it is possible that all Fi(0)’s with i ∈ Λ are already exposed to
Astatic

tb
. But for remaining polynomials, Astatic

tb
knows at most tb points on them (by

listening during first phase) and hence constant term of each Fi(x) with i 6∈ Λ will be
information theoretically secure. 2

Theorem 13.12 Protocol 3-Optimal-PSMT-Static-Byzantine-Directed sends a message

mS containing ℓ = n2u field elements by communicating O(n3u) = O
(

nℓ
n−(3tb−2u)

)
=

O(nℓ) field elements.

Proof: During Phase I, S communicates P = n2u + utb codewords to R which
requires communication complexity of Pn = n3u + nutb = O(n3u) field elements.
In Phase II, R sends the triple (B, p,I) through the bottom band. This incurs a
communication cost of O(ntb.u+1.u+tb.u) = O(n2u). In the worst case, it may happen
that over every wire in bottom band, S receives a distinct valid triple (Bj , pj,Ij). Then
communication complexity of Phase III for sending the triples will be O(n2u.n) =
O(n3u). Since message is of size n2u, broadcasting the blinded message Γ results in a
communication cost of O(n3u). Hence overall communication complexity of protocol
3-Optimal-PSMT-Static-Byzantine-Directed is O(n3u). 2
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13.7.2 Six Phase PSMT when tb
2

< u ≤ tb and n = 2tb + 1

If tb
2 < u ≤ tb, then n = max (3tb − 2u + 1, 2tb + 1) = 2tb + 1. In this section, we

present a six phase PSMT protocol called 6-Optimal-PSMT-Static-Byzantine-Directed
where n = 2tb +1 and tb

2 < u ≤ tb. Protocol 6-Optimal-PSMT-Static-Byzantine-Directed
securely sends a message mS containing ℓ = n2u field elements by communicating

O
(

nℓ
n−(3tb−2u)

)
= O

(
n3u

2u−tb

)
= O

(
nℓ

2u−tb+1

)
field elements. Interestingly, when u =

tb
2 + Θ(tb), then Protocol 6-Optimal-PSMT-Static-Byzantine-Directed securely sends ℓ
field elements by communicating O(ℓ) field elements.

Protocol 6-Optimal-PSMT-Static-Byzantine-Directed achieves it’s goal by allowing
S and R to share n2u

2u−tb+1 common polynomials each of degree 2u, such that Astatic
tb

knows only tb points on each of them. Once this is done, both S and R can generate
an information theoretic pad of length n2u by using EXTRAND algorithm. S can then
blind the message and sends it to R. However, note that S cannot send the blinded
message to R by broadcasting it over the entire top band, as done in protocol 3-
Optimal-PSMT-Static-Byzantine-Directed. Because the communication complexity will
then become O(n3u). So S reliably sends the blinded message by using the protocol
3-Optimal-PRMT-Static-Byzantine-Directed given in Fig. 7.2, which takes three phases.
Since here n = 2tb + 1 and (n − 2tb) + 2u = Θ(n), we can execute 3-Optimal-PRMT-
Static-Byzantine-Directed. R can recover the message since he knows the pad.

In 6-Optimal-PSMT-Static-Byzantine-Directed, C denotes the set of all possible RS
codewords of length N = n + u = 2tb + 1 + u encoded using all possible polynomials of
degree 2u > tb over F. Hence the hamming distance between any two codeword in C is
N − 2u = 2tb − u + 1 ≥ tb + 1. Protocol 6-Optimal-PSMT-Static-Byzantine-Directed is
formally given in Fig. 13.4.

We now prove the properties of protocol 6-Optimal-PSMT-Static-Byzantine-Directed.

Theorem 13.13 (Perfect Reliability) In protocol 6-Optimal-PSMT-Static-Byzantine-

Directed, R correctly recovers mS.

Proof: First note that for each codeword Ci, the corresponding vector Yi of length
N , possessed by R, differs from Ci only at tb locations. This is because Astatic

tb
con-

trols at most tb wires, including top band and bottom band. With this observation,
the correctness proof of this theorem simply follows from the correctness proof of
protocol 3-Optimal-PSMT-Static-Byzantine-Directed, protocol 3-Optimal-PRMT-Static-
Byzantine-Directed and algorithm EXTRAND. 2

Theorem 13.14 (Perfect Security) In Protocol 6-Optimal-PSMT-Static-Byzantine-

Directed, mS will be information theoretically secure.

Proof: The secrecy of the message follows using similar argument as in Theorem 13.11
and the properties of EXTRAND algorithm. Notice that in the protocol, each codeword
Ci, such that i 6∈ Λ corresponds to a 2u degree polynomial and adversary will know
at most tb points on the polynomial. This implies that 2u + 1 − tb coefficients of the
polynomial and hence 2u + 1 − tb components of Ci will be information theoretically
secure. This is why S extracts a random pad Zi of size 2u + 1− tb from each Ci, such
that i 6∈ Λ. 2

Theorem 13.15 Protocol 6-Optimal-PSMT-Static-Byzantine-Directed securely sends a

message mS containing ℓ = n2u field elements by communicating O
(

nℓ
n−(3tb−2u)

)
=

O
(

nℓ
2u−tb+1

)
field elements.
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Proof: During Phase I, R sends Q = n2u
2u−tb+1 + utb vectors, each of size u, thus

communicating Qu = O( n2u2

2u−tb+1 + u2tb) field elements. During Phase II, S com-

municates Q = n2u
2u−tb+1 + utb codewords to R which incurs a communication cost of

Qn = n3u
2u−tb+1 +nutb field elements. In Phase III, R sends the triple (B, p,I) through

the bottom band. This incurs a communication cost of O(ntb.u+1.u+ tb.u) = O(n2u).
In worst case it may happen that over every wire in bottom band, S receives a distinct
valid triple (Bj, pj ,Ij). Then communication complexity of Phase IV for sending the
triples using protocol 3-Optimal-PRMT-Static-Byzantine-Directed will be O(n2u). Simi-
larly sending the blinded message Γ of size n2u using protocol 3-Optimal-PRMT-Static-
Byzantine-Directed results in a communication cost of O(n2u). Hence overall communi-

cation complexity of protocol 6-Optimal-PSMT-Static-Byzantine-Directed is O( n3u
2u−tb+1).

2

13.7.3 Six Phase PSMT Protocol when u > tb and n = 2tb + 1

If u > tb, then from [24], we require n = max (3tb − 2u + 1, 2tb + 1) = 2tb + 1 wires
in the top band for the existence of any multiphase (more than two phase) PSMT
protocol. If u = tb and n = 2tb + 1 = Θ(tb), then from Theorem 13.15, protocol 6-
Optimal-PSMT-Static-Byzantine-Directed securely sends ℓ = n2u = Θ(n3) field elements
by communicating O(n3) field elements. Hence, if u > tb and n ≥ 2tb + 1, then S
and R can execute 6-Optimal-PSMT-Static-Byzantine-Directed by considering the first
2tb + 1 wires in the top band and first tb wires in the bottom band. Thus, we have the
following theorem:

Theorem 13.16 Suppose n ≥ 2tb + 1 and u > tb. Then there exists a six phase
PSMT protocol tolerating Astatic

tb
, which securely sends ℓ (ℓ = Θ(n3)) field elements by

communicating O(ℓ) field elements.

We now show that protocol 3-Optimal-PSMT-Static-Byzantine-Directed and 6-Optimal-
PSMT-Static-Byzantine-Directed are communication optimal. For this, we derive non-
trivial lower bound on the communication complexity of multiphase PSMT protocols
in directed networks tolerating Astatic

tb
.

13.8 Lower Bound on Communication Complexity of Multi
Phase PSMT

Recall that from Theorem 13.2, any three or more phase PSMT protocol requires
n = max (3tb − 2u + 1, 2tb + 1) wires in the top band to tolerate Astatic

tb
. To build our

lower bound argument for three or more phase PSMT protocol, we need the concept
of secret sharing and Maximum Distance Separable (MDS) codes [45].

Definition 13.17 (x-out-of-n Secret Sharing Scheme (SSS) [71]) An x-out-of-n
Secret Sharing Scheme (SSS) is a probabilistic function S : F → F

n with the property
that for any M ∈ F and S(M) = (s1, . . . , sn), no information on M can be inferred
from any x elements of (s1, . . . , sn) and M can be recovered from any x + 1 elements
in (s1, . . . , sn).

The set of all possible (s1, . . . , sn) can be viewed as a code and its elements as
codewords [24]. If the code is a Maximum Distance Separable (MDS) code [45, 24] (e.g
RS code), then it can correct c errors and simultaneously detect d additional errors
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iff n − x > 2c + d [45, 24]. An x-out-of-n SSS is called MDS x-out-of-n SSS if it is
constructed from a MDS code. MDS SSSs can be constructed from any MDS codes, for
example RS codes [45, 46, 24]. So we have the following theorem on the error correction
and detection capability of MDS x-out-of-n SSS:

Theorem 13.18 ([45, 24]) Any MDS x-out-of-n SSS can correct c errors and detect
d additional errors in a codeword iff n− x > 2c + d.

We next give the following definition:

Definition 13.19 ((α, β, γ,m, ℓ)-SSS) Given a secret m containing ℓ field elements
from F, an (α, β, γ,m, ℓ)-SSS generates α shares of m, such that any set of β shares
has full information about the secret m, while any set of γ shares has no information
about the secret m, where α > β > γ.

Now the lower bound on the communication complexity of multiphase PSMT in
directed network is given by the following theorem:

Theorem 13.20 Suppose there exists u wires in the bottom band and n ≥ max(3tb −
2u + 1, 2tb + 1) wires in the top band. Then any three or more phase PSMT protocol
that securely sends a message m containing ℓ field elements from F tolerating Astatic

tb
must communicate:

1. Ω( nℓ
n−(3tb−2u)) field elements when 0 < u ≤ tb;

2. Ω(ℓ) field elements when u > tb.

Proof: We first prove part 1 of the theorem. The outline of the proof strategy is as
follows: we first show that the communication complexity of any three or more phase
PSMT protocol tolerating Astatic

tb
to send a message m ∈ F

ℓ is not less than the share
complexity (sum of all the shares) of an (n, (n − 2(tb − u)), tb,m, ℓ)-SSS (see Lemma
13.21). We then show that the share complexity of any (n, (n− 2(tb−u)), tb,m, ℓ)-SSS
is Ω( nℓ

n−(3tb−2u)) field elements (see Lemma 13.22). Part 1 of Theorem 13.20 will then
follow from Lemma 13.21 and Lemma 13.22. So we now proceed to prove Lemma 13.21.

Lemma 13.21 Let 0 < u ≤ tb and n = max(3tb− 2u+1, 2tb +1). Then the communi-
cation complexity of any three or more phase PSMT protocol tolerating Astatic

tb
to send

a message m ∈ F
ℓ is not less than the share complexity (sum of all the shares) of an

(n, (n− 2(tb − u)), tb,m, ℓ)-SSS.

Proof: Let Π be a PSMT protocol which runs for p ≥ 3 phases. Without loss of
generality, let the view of S in Π, denoted by viewS

Π be drawn from a probability
distribution that depends on the message m, the coin flips RS of S, the coin flips RR

of R and the coin flips RA of Astatic
tb

. Without loss of generality, we assume that the
value of RA will determine the choice of faulty wires controlled by Astatic

tb
. Without loss

of generality, we assume that S is silent in even phases and R is silent in odd phases
[24]. Now consider the following possible strategy for Astatic

tb
in Π:

1. First Astatic
tb

uses RA to choose a value r.

2. If r = 0, then Astatic
tb

uses RA to choose tb wires fj1, fj2, . . . , fjtb
from the top

band and behaves passively over these paths. This means the adversary proceeds
according to protocol Π.
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3. If r = 1, then Astatic
tb

uses RA to choose tb − u wires fj1, fj2, . . . , fjtb−u
from the

top band and all the u wires from the bottom band. In this case Astatic
tb

corrupts
all the u wires in the bottom band and the tb − u wires fj1, fj2 , . . . , fjtb−u

from

the top band. Astatic
tb

also uses RA to choose a message m ∈ F according to the
same probability distribution from which the actual message m was drawn. Now
over the corrupted wires, Astatic

tb
behaves in the following way:

(a) Over the wires fj1, fj2 , . . . , fjtb−u
, it ignores what S sends in odd phases of

Π and simulates what S would send to R if m would have been the message.

(b) Over the paths in the bottom band, it ignores what R sends to S in even
phases of Π and simulates what R would send to S when r = 0.

Astatic
tb

can behave in the above manner with non-zero probability. Now let αS
i,j be

the values that S sends on wire fi in phase j of protocol Π. Let αS
i = (αS

i,1, . . . , α
S
i,p) i.e.

αS
i is the concatenation of the values sent by S over wire fi during the execution of Π.

We can view αS
i ’s as the shares of message m. Now if r = 0, due to the fact that Π is a

PSMT protocol, Astatic
tb

should not get any information on m from any tb shares from
the set {αS

1 , . . . , αS
n}. This implies that (αS

1 , . . . , αS
n) is an x-out-of-n SSS for x ≥ tb.

Note that when x > tb, it is still ensured that tb shares from the set {αS
1 , . . . , αS

n} do
not reveal any information on m. Now if r = 1, due to the fact that Π is also a PRMT
protocol, R must be able to correct any tb − u errors in the shares (αS

1 , . . . , αS
n) and

thus recover the message m. Summing up, (αS
1 , . . . , αS

n) is an MDS x-out-of-n SSS with
the capability of correcting tb−u error where x ≥ tb. Now by Theorem 13.18, an MDS
x-out-of-n SSS can correct (tb − u) errors if

n− x > 2(tb − u) ⇒ x < n− 2(tb − u)⇒ x + 1 ≤ n− 2(tb − u). (13.2)

This shows that the communication done by S (alone) is equivalent to the share com-
plexity (sum of all the shares) of an (n, (n − 2(t−u)), tb,m, ℓ)-SSS. Thus ignoring the
communication done by R, we can say that the communication done in protocol Π is not
less than the share complexity (sum of all the shares) of an (n, (n− 2(tb−u)), tb,m, ℓ)-
SSS. 2

Lemma 13.22 The share complexity of any (n, (n−2(tb−u)), tb,m, ℓ)-SSS is Ω( nℓ
n−(3tb−2u))

field elements.

Proof: We define the following notations:

1. M denotes the message space from where the message m is selected. In our
context, M = F

ℓ.

2. For i = 1, . . . , n, Xm
i denotes the set of all possible ith share corresponding to

message m ∈M, that could be generated by any (n, (n− 2(tb−u)), tb,m, ℓ)-SSS.

3. For j ≥ i, Mm
i,j ⊆ Xm

i ×Xm
i+1 × . . .×Xm

j denotes the set of all possible {ith, (i +

1)th, . . . , jth} shares, corresponding to message m ∈M, that could be generated
by any (n, (n− 2(tb − u)), tb,m, ℓ)-SSS.

4. Mi,j =
⋃

m∈M Mm
i,j and Xi =

⋃
m∈M Xm

i . We call Xi as the capacity of ith share

and Mi,j as the capacity of the set of {ith, (i + 1)th, . . . , jth} shares.
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To generate n shares for message m, any (n, (n − 2(tb − u)), tb,m, ℓ)-SSS would
select one element from the set Xi, as the ith share of m, for i = 1, . . . , n. Each
element of the set Xi can be represented by log |Xi| bits. Thus, the share complexity
corresponding to message m will be Σn

i=1 log |Xi| bits. In the sequel, we show that

Σn
i=1 log |Xi| ≥

(
nℓ log(|F|)

n−(3tb−2u)

)
.

From the property of a (n, (n − 2(tb − u)), tb,m, ℓ)-SSS, any set of tb shares is
independent of the message. Thus, for any two messages m1,m2 ∈ M, the following
should hold:

Mm1
2tb−2u+1,3tb−2u = Mm2

2tb−2u+1,3tb−2u. (13.3)

Though we focussed on specific set of tb shares, namely {(2tb−2u+1)th, . . . , (3tb−2u)th},
the above relation should hold for any selection of tb shares. Also, from the property of
a (n, (n− 2(tb − u)), tb,m, ℓ)-SSS, any set of n− 2(tb − u) shares have full information
about m and uniquely determine m. Thus,

Mm1
2tb−2u+1,n ∩Mm2

2tb−2u+1,n = ∅. (13.4)

Again, though we focussed on specific set of n− (2tb − 2u) shares, namely {(2tb − 2u +
1)th, . . . , nth}, the above relation should hold for any selection of n− (2tb − 2u) shares.
From (13.3), Mm

2tb−2u+1,3tb−2u will be same for all m. Thus, (13.4) will hold only if
Mm

3tb−2u+1,n is unique for every m. Hence,

|M3tb−2u+1,n| = |M|. (13.5)

From the definition of Xi and Mi,j, we get Πn
i=3tb−2u+1|Xi| ≥ |M3tb−2u+1,n|. Combining

this with (13.5), we get
Πn

i=3tb−2u+1|Xi| ≥ |M|. (13.6)

Let g = n − (3tb − 2u). The inequality in (13.6) holds for any set of of g shares D,
where |D| = g; i.e., Πi∈D|Xi| ≥ |M|. In particular, we consider n such sets (consist-
ing of g shares), namely D0, . . . ,Dn−1 where Dk consists of {(kg + 1)th mod n, (kg +
2)th mod n, . . . , (kg + g)th mod n} shares. Thus for each Dk, Πi∈Dk

|Xi| ≥ |M| holds.
Taking product over all Dk’s, we obtain Πn−1

k=0Πj∈Dk
|Xj | ≥ |M|

n. Now notice that
the ith share is accounted exactly g times in total in D0, . . . ,Dn−1. Thus, we get
|M|n ≤ Πn−1

k=0Πj∈Dk
|Xj| = (Πn

i=1|Xi|)
g. Taking log, we obtain

n log(|M|) ≤ gΣn
i=1 log(|Xi|)

⇒ Σn
i=1 log(|Xi|) ≥

(
nℓ log(|F|)

g

)

As log(|M|) = ℓ log(|F|) and g = n − (3tb − 2u), from the above inequality, we get

Σn
i=1 log(|Xi|) ≥

(
nℓ log(|F|)

n−(3tb−2u)

)
. As mentioned earlier, Σn

i=1 log(|Xi|) denotes the share

complexity in bits of distributing n shares of a message m using any (n, (n − 2(tb −
u)), tb,m, ℓ)-SSS. From the above inequality, the share complexity of (n, (n − 2(tb −

u)), tb,m, ℓ)-SSS is Ω
(

nℓ log(|F|)
n−(3tb−2u)

)
bits. Now each field element from F can be repre-

sented by log(|F|) bits. Thus the share complexity is Ω
(

nℓ
n−(3tb−2u)

)
field elements.

Part 1 of Theorem 13.20 now follows from Lemma 13.21 and Lemma 13.22. Now part 2
simply follows from the fact that any PSMT protocol has to send at least the message
and hence Ω(ℓ) field elements. 2

In the light of Theorem 13.20, we now state the following theorems:
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Theorem 13.23 Protocol 3-Optimal-PSMT-Static-Byzantine-Directed is a communica-
tion optimal PSMT protocol.

Proof: From Theorem 13.12, if n = 3tb − 2u + 1 and 0 < u ≤ tb
2 , then protocol 3-

Optimal-PSMT-Static-Byzantine-Directed sends a message mS containing ℓ = n2u field

elements by communicating O(n3u) = O
(

nℓ
n−(3tb−2u)

)
= O(nℓ) field elements. From

Theorem 13.20, if n = 3tb−2u+1 and 0 < u ≤ tb
2 , then any three phase PSMT protocol

must communicate Ω
(

nℓ
n−(3tb−2u)

)
= Ω(nℓ) field elements to securely send a message

containing ℓ = n2u field elements. Thus protocol 3-Optimal-PSMT-Static-Byzantine-
Directed is a communication optimal PSMT protocol. 2

Theorem 13.24 Protocol 6-Optimal-PSMT-Static-Byzantine-Directed is a communica-
tion optimal PSMT protocol.

Proof: From Theorem 13.15, if n = 2tb + 1 and tb
2 < u ≤ tb, then protocol 6-Optimal-

PSMT-Static-Byzantine-Directed sends a message mS containing ℓ = n2u field elements

by communicating O
(

n3u
2u−tb

)
= O

(
nℓ

n−(3tb−2u)

)
= O

(
nℓ

2u−tb+1

)
field elements. From

Theorem 13.20, if n = 2tb +1 and tb
2 < u ≤ tb, then any six phase PSMT protocol must

communicate Ω
(

nℓ
n−(3tb−2u)

)
= Ω

(
nℓ

2u−tb+1

)
field elements to securely send a message

containing ℓ = n2u field elements. Thus protocol 6-Optimal-PSMT-Static-Byzantine-
Directed is a communication optimal PSMT protocol for the case when tb

2 < u ≤ tb.
On the other hand, if n = 2tb + 1 and u > tb then from Theorem 13.16, protocol

6-Optimal-PSMT-Static-Byzantine-Directed securely sends a message containing Θ(n3)
field elements by communicating O(n3) field elements. From Theorem 13.20, if n =
2tb + 1 and u > tb then any six phase PSMT protocol must communicate Ω(n3) field
elements to securely send a message containing n3 field elements. Thus protocol 6-
Optimal-PSMT-Static-Byzantine-Directed is a communication optimal PSMT protocol
for the case when u > tb. 2

13.9 Concluding Remarks and Open Problems

In this chapter, we re-visited the PSMT problem in directed synchronous network,
tolerating Astatic

tb
. Specifically, we presented new PSMT protocols in directed graphs

tolerating Astatic
tb

, which are secure against guessing attack of [88]. Moreover, we also
showed that the communication complexity of our protocols are asymptotically optimal.
This completely settles the issue of possibility, feasibility and optimality of
PSMT protocols in directed synchronous network, tolerating Astatic

tb
. The summary of

our results (marked with *) is as follows:

# Phases Characterization Lower Bound on Communication Complexity

1 n ≥ 3tb + 1 [28] Ω( nℓ
n−3tb

) [30, 81]

2 If 0 < u ≤ tb then n ≥ 3tb − u + 1* Ω( Nℓ
N−3tb

); N = n + u*

If u > tb then n ≥ 2tb + 1* Ω( nℓ
n−2tb

)*

3 If 0 < u ≤ tb then n ≥ max(3tb − 2u + 1, 2tb + 1) [24] Ω( nℓ
n−(3tb−2u)

)*

If u > tb then n ≥ 2tb + 1 [24] Ω(ℓ)*

Open Problem 14 This paper leaves few open problems which are as follows:
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1. Protocol 2-Optimal-PSMT-Static-Byzantine-Directed, 3-Optimal-PSMT-Static-Byzantine-

Directed and 6-Optimal-PSMT-Static-Byzantine-Directed are communication opti-
mal only for sufficiently large messages. It would be interesting to design commu-
nication optimal PSMT protocols, which are communication optimal for messages
of any length.

2. Reducing the phase complexity of protocol 6-Optimal-PSMT-Static-Byzantine-Directed

is another interesting problem.

3. In this paper, we have only considered static and Byzantine adversary. It would
be interesting to consider the problem of PSMT in directed synchronous network
in other adversarial settings such as mobile adversary and mixed adversary.
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Figure 13.3: Three Phase PSMT Protocol: ℓ = n2u, n = 3tb − 2u + 1, 0 < u ≤ tb
2 ; C is

the set of all possible RS codewords of length n encoded by polynomials of degree tb
Protocol 3-Optimal-PSMT-Static-Byzantine-Directed (mS, ℓ, n, u, tb)

Phase I: S to R:

1. S selects P = n2u + utb = ℓ + utb random codewords C1, . . . , CP from C.

2. For i = 1, . . . , P , let Ci = (ci1, . . . , cin) and Fi(x) be the corresponding tb degree polynomial.

3. For i = 1, . . . , P , S sends cij to R along wire fj , for j = 1, . . . , n.

Phase II: R to S

1. For i = 1, . . . , P , let R receive the vector Yi = Ci + Ei corresponding to codeword Ci and
let Y = {Y1, . . . , YP}. Here Ei is the error introduced in Ci.

2. R invokes (p,B, I) = Find-Pseudo-basis(Y) to find pseudo-basis B = {Ya1
, . . . , Yap} ⊂ Y,

pseudo-dimension p = |B| and index set I = {a1, . . . , ap} ⊂ {1, . . . , P}.

3. R broadcasts (B, p, I) to S through the bottom band.

Phase III: S to R

1. S may receive different triples over different wires. For j = 1, . . . , u, let S receive (Bj , pj , Ij)
over wire bj in bottom band. Let Bj = {Y j

a
j
1

, . . . , Y
j

a
j

pj

} and Ij = {aj
1, . . . , a

j

pj}.

2. S considers the triple (Bj , pj , Ij) as valid iff pj = |Bj |, pj ≤ tb and every vector of length n

listed in Bj is different from the corresponding original codeword in at most tb locations.

3. For every valid triple (Bj , pj , Ij), S finds E
j

a
j
1

= Y
j

a
j
1

− C
a

j
1

, . . . , E
j

a
j

pj

= Y
j

a
j

pj

− C
a

j

pj
and

computes CORRUPTEDj = ∪pj

α=1support(Ej

a
j
α

).

4. S computes Λ = ∪j {Ij |(Bj , pj , Ij) is a valid triple}. Then S concatenates all the Fi(0)’s
such i 6∈ Λ and forms an information theoretic secure pad Z of length at least n2u (since
|Λ| ≤ utb and P = n2u + utb, this is possible).

5. Now S broadcasts the following to R:

(a) If there is no valid triple, then the message “Entire Bottom band is corrupted”;

(b) Every valid triple (Bj , pj , Ij) and the corresponding list of corrupted wires
CORRUPTEDj ;

(c) Blinded message Γ = Zℓ ⊕ mS where Zℓ contains first ℓ elements from Z.

Local Computation by R at the End of Phase III:

1. R correctly receives all information sent by S in Phase III and computes Λ in same way as
done by S.

2. If either R gets the message “Entire Bottom band is corrupted” or if R finds his original
triple (B, p, I) is not present in the list of valid triples sent by S, then R does the following:

(a) Conclude that entire bottom band is corrupted and hence in the top band there are at
most tb − u faults.

(b) Recover all Fi(x) such that i 6∈ Λ by executing RS-DEC(n,Yi, tb − u, 0, tb + 1).

(c) Recover pad Z (and hence Zℓ) by concatenating Fi(0)’s for all i 6∈ Λ.

(d) Recover mS = Γ ⊕ Zℓ, where Γ is received correctly from S.

3. If R finds that his original triple (B, p, I) is present in the list of valid triples sent by S,
then R does following:

(a) Let (Bj , pj , Ij) be same as (B, p, I).

(b) Identify all the wires in CORRUPTEDj (|CORRUPTEDj | ≤ tb) as the corrupted
wires in Phase I.

(c) Ignore all information received over the wires in CORRUPTEDj

(|CORRUPTEDj | ≤ tb) during Phase I.

(d) Reconstruct all the polynomial Fi(x) such that i 6∈ Λ by considering the correct values
of Fi(x) received over the remaining wires (which are at least tb + 1) during Phase I.

(e) Recover mS in the same way as described in step 2 of Local Computation.176



Figure 13.4: Six Phase PSMT Protocol: n = 2tb + 1, tb
2

< u ≤ tb, ℓ = n2u; C denotes the set of all possible
RS codewords of length N = n + u = 2tb + 1 + u encoded using all possible polynomials of degree 2u > tb

Protocol 6-Optimal-PSMT-Static-Byzantine-Directed(mS, ℓ, n, u, tb)

Phase I: R to S: R selects Q = n2u
2u−tb+1

+ utb = ℓ
2u−tb+1

+ utb random vectors R1, . . . , RQ of length u,

such that Ri = (ri1, . . . , riu). Now R sends the jth component of all the vectors to S along wire bj .

Phase II: S to R: S receives R̄1, . . . , R̄Q and selects Q codewords C1, . . . , CQ from C such that the last u
components of Ci are same as in R̄i. This is always possible because every codeword Ci corresponds to a
2u degree polynomial Fi(x). Now S sends the jth component of all the codewords to R over wire fj .

Phase III: R to S

1. After receiving information over the top band, R possesses a vector of length N (by combining
the values sent over the bottom band and the values received over the top band) Yi = Ci + Ei

corresponding to Ci, such that Yi is different from Ci in at most tb locations. Let Y = {Y1, . . . , YQ}.

2. Now R does same computation and communication as in Phase II of protocol 3-Optimal-PSMT-

Static-Byzantine-Directed. The only difference is that here Y contains vectors {Y1, . . . , YQ} of
length N = 2tb + 1 + u, whereas in 3-Optimal-PSMT-Static-Byzantine-Directed, Y contains vectors
{Y1, . . . , YP } of length n = 3t − 2u + 1. Notice that FindPseudo-basis will still be able to find out
pseudo-basis. This is because the code C used here has a hamming distance of at least tb + 1.

Phase IV: S to R

1. With respect to the triples received through the bottom band, S performs the same computation
(not communication) as done in Phase III of Protocol 3-Optimal-PSMT-Static-Byzantine-Directed.
That means S identifies the valid triples and for each valid triple (Bj , pj , Ij), S finds the list of
corrupted wires CORRUPTEDj. But here are following differences: (i) the pad Z is generated in
a different manner, (ii) the valid triples, their corresponding list of corrupted wires and the blinded
message are sent in a different manner.

2. Generation of pad Z:

(a) S computes Λ = ∪j {Ij |(Bj , pj ,Ij) is a valid triple}.

(b) S computes Zi = (zi
1, . . . , zi

2u−tb+1) = EXTRANDN,2u−tb+1(Ci) for each i 6∈ Λ.

(c) Since |Λ| ≤ utb and Q = n2u
2u−tb+1

+ utb, S has generated at least n2u
2u−tb+1

Zis. Hence

concatenating all Zi, S obtains a pad Z of length at least n2u.

3. Communication done by S:

(a) If there is no valid triple, then S simply broadcasts the message “Entire Bottom band is

corrupted” over all the wires in top band.

(b) S merges all the quadruples (Bj , pj ,Ij , CORRUPTEDj) such that (Bj , pj , Ij) is a valid triple
into a list called L and sends it to R reliably by executing the protocol 3-Optimal-PRMT-Static-

Byzantine-Directed.

(c) S sends the blinded message Γ = Zℓ⊕mS by executing another instance of protocol 3-Optimal-

PRMT-Static-Byzantine-Directed where Zℓ contains first ℓ elements from Z.

(d) Since n = 2tb + 1 and n − 2tb + 2u = Θ(n), 3-Optimal-PRMT-Static-Byzantine-Directed sends
the message in three phases. R receives all information communicated by S during Phase

IV at the end of Phase VI.

Local Computation by R At The End of Phase VI:

1. R correctly receives all the information that S had sent during Phase IV and computes Λ in the
same manner as done by S.

2. If either R gets the message “Entire Bottom band is corrupted” or if R finds his original triple
(B, p,I) is not present in the list of valid triples sent by S, then R does the following:

(a) Conclude that entire bottom band is corrupted and hence in the top band there are at most
tb − u faults.

(b) Neglect last u components of all Yi and then recover all Ci such that i 6∈ Λ by applying RS
decoding algorithm on truncated Yi and correcting tb − u Byzantine faults.

(c) Compute pad Z in the same way as done by S and recovers mS = Γ ⊕ Zℓ.

3. If R finds that his original triple (B, p,I) is present in the list of valid triples sent by S and if
(Bj , pj ,Ij) is same as (B, p,I), then R does the following:

(a) Identify all the wires in CORRUPTEDj as the corrupted wires.

(b) Ignore all information communicated over the wires in CORRUPTEDj. Reconstruct all
Ci such that i 6∈ Λ. This is possible because |CORRUPTEDj| ≤ tb. Hence N −
|CORRUPTEDj| ≥ (tb +1+u) ≥ 2u+1 and each codeword Ci is encoded using a polynomial
of degree 2u.

(c) Recover the message mS in the same way as described in step 2 of Local Computation.
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Chapter 14

SSMT in Undirected Networks
Tolerating Static Mixed
Adversary

In this chapter, we study SSMT in undirected synchronous network tolerating threshold
static mixed adversary Astatic

(tb,tf ,tp). The characterization for single phase and multi phase

SSMT tolerating Astatic
(tb,tf ,tp) is given in [75]. In [75], the author has also derived the lower

bound on the communication complexity of single and multi phase SSMT tolerating
Astatic

(tb,tf ,tp). Moreover, the author also presented a single phase communication optimal

SSMT protocol tolerating Astatic
(tb,tf ,tp), thus completely resolving the issue of possibility

and optimality of single phase SSMT tolerating Astatic
(tb,tf ,tp). However, no multi phase

communication optimal SSMT protocol tolerating Astatic
(tb,tf ,tp) was presented. This left the

problem of designing multi phase communication optimal SSMT tolerating Astatic
(tb,tf ,tp)

as open. In this chapter, we settle this problem by designing a communication optimal
SSMT protocol tolerating Astatic

(tb,tf ,tp). We now briefly describe the network model and

adversary settings used in this chapter.

14.1 Network Model and Adversary Settings

The network model used in this chapter is similar to the one used in Chapter 11.
Thus, we assume that S and R are connected by n parallel and synchronous bi-
directional node disjoint paths/channels w1, w2, . . . , wn, also called as wires. The ad-
versary Astatic

(tb,tf ,tp), having unbounded computing power can corrupt up to tb, tf and tp
wires in Byzantine, failstop and passive fashion respectively. Moreover, as a worst case
assumption, we assume that the wires that are under the control of the adversary in
Byzantine, failstop and passive fashion are mutually disjoint.

All our SSMT protocols will have a negligible error error probability of 2−Ω(κ) in
reliability. To bound the error probability by 2−Ω(κ), all computation and communi-
cation in our protocols are performed over a finite field F = GF (2κ). Thus each field
element from F can be represented by O(κ) bits. Moreover, without loss of generality,
we assume that n = poly(κ).

We now recall the existing results for SSMT tolerating Astatic
(tb,tf ,tp) from [75].
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14.2 Existing Results for SSMT Tolerating Astatic
(tb,tf ,tp)

We now recall the existing results for SSMT in undirected synchronous network toler-
ating Astatic

(tb,tf ,tp). We first begin with single phase SSMT.

14.2.1 Existing Results for Single Phase SSMT

SSMT problem was first introduced in [33], where the authors studied SSMT in undi-
rected synchronous network tolerating threshold static Byzantine adversary Astatic

tb
.

The authors in [33] gave the following characterization.

Theorem 14.1 ([33]) Let r ≥ 1. Then any r-phase SSMT protocol in undirected
synchronous network tolerating Astatic

tb
is possible iff there exists n ≥ 2tb + 1 wires

between S and R.

Extending the above result for the case of mixed adversary Astatic
(tb,tf ,tp), Srinathan

[75] gave the following characterization:

Theorem 14.2 ([75]) Any single phase SSMT protocol in undirected synchronous net-
work tolerating Astatic

(tb,tf ,tp) is possible iff there exists n ≥ 2tb + tf + tp + 1 wires between

S and R.

The lower bound on the communication complexity of single phase SSMT tolerating
Astatic

(tb,tf ,tp) is given by the following theorem.

Theorem 14.3 ([75]) Let S and R be connected by n ≥ 2tb + tf + tp + 1 wires. Then

any single phase SSMT protocol tolerating Astatic
(tb,tf ,tp), must communicate Ω

(
nℓ

n−(2tb+tf +tp)

)

field elements to securely send a message containing ℓ field elements. In terms of bits,

any single phase SSMT must communicate Ω
(

nℓκ
n−(2tb+tf +tp)

)
bits to securely send a

message containing ℓκ bits.

Proof (sketch): The lower bound is derived by first arguing that the communication
done in any single phase SSMT tolerating Astatic

(tb,tf ,tp) to send a message m containing ℓ

field elements, is not less than the share complexity (sum of the length of the shares)
of generating n shares for m, such that any set of (tb + tp) shares has no information
about m, while any set of n− (tb + tf ) shares has full information about m. Then it is
shown that share complexity of any secret sharing scheme with the above mentioned

property is at least Ω
(

nℓ
n−(2tb+tf +tp)

)
field elements. 2

Comparison 14.4 (Possibility of Single Phase PSMT and SSMT) From The-
orem 11.1, single phase PSMT protocol tolerating Astatic

(tb,tf ,tp) is possible iff there exists

n ≥ 3tb + tf + tp + 1 wires between S and R. But from Theorem 14.2, we find that
single phase SSMT tolerating Astatic

(tb,tf ,tp) is possible iff there exists n ≥ 2tb + tf + tp + 1

wires between S and R. This shows that allowing a negligible error probability (only
in the reliability), significantly helps in the possibility of single phase secure message
transmission protocols.

Comparison 14.5 (Complexity of Single Phase SSMT and PSMT) From The-
orem 11.3, any single phase PSMT tolerating Astatic

(tb,tf ,tp) over n ≥ 3tb+tf+tp+1 wires has

to communicate Ω
(

nℓ
n−(3tb+tf +tp)

)
field elements to securely send a message containing
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ℓ field elements. From Theorem 14.3, any single phase SSMT tolerating Astatic
(tb,tf ,tp) over

n ≥ 2tb + tf + tp + 1 wires has to communicate Ω
(

nℓ
n−(2tb+tf +tp)

)
field elements to

securely send a message containing ℓ field elements. Let us fix n = 3tb + tf + tp + 1
such that both PSMT and SSMT is possible (notice that with n = 2tb + tf + tp + 1
wires, SSMT is possible but PSMT is not possible). With n = 3tb + tf + tp + 1, the

lower bounds for PSMT and SSMT become Ω (nℓ) and Ω
(

nℓ
tb

)
field elements respec-

tively. Specifically, if we consider Astatic
tb

then n must be at least 3tb + 1 for PSMT to
be possible (notice that SSMT requires only 2tb + 1 wires for tolerating Astatic

tb
). With

n = 3tb + 1, the lower bounds for single phase PSMT and SSMT become Ω (nℓ) and
Ω (ℓ) field elements respectively, for now tb = Θ(n). Hence with n = 3tb + 1 while
SSMT can be achieved with constant factor overhead tolerating Astatic

tb
, PSMT can not

be achieved. This shows the power of allowing a negligible error probability (only in the
reliability) in single phase secure message transmission.

In [75], the author presented a single phase SSMT protocol tolerating Astatic
(tb,tf ,tp),

which asymptotically satisfies the bound given in Theorem 14.3. For the sake of com-
pleteness, we recall this protocol. Another reason for recalling the protocol is that it
will be used as a black box in our multi phase communication optimal SSMT protocol
(which is the main contribution of this chapter).

14.2.1.1 Single Phase Communication Optimal SSMT Against Astatic
(tb,tf ,tp) [75]

In [75], the author presented a single phase communication optimal SSMT protocol in
the presence of n = 2tb + tf + tp +1 wires, which we call 1-Optimal-SSMT-Static-Mixed.
The protocol tolerates Astatic

(tb,tf ,tp) and securely sends a message containing (tb+tf+tp)κ =

Θ(nκ) bits by communicating O(n2κ) bits. Let mS be the secret message containing
tb + tf + tp field elements. The protocol uses Extrapolation Technique (see Fig. 8.1) and
is formally presented in Fig. 14.1.

We now prove the properties of protocol 1-Optimal-SSMT-Static-Mixed.

Lemma 14.6 In protocol 1-Optimal-SSMT-Static-Mixed if R concludes that FR
i is a

valid row of BS, then except with error probability 2−Ω(κ), FR
i = FS

i .

Proof: The lemma is true without any error if wire wi is uncorrupted. So let wire
wi be a corrupted wire, who delivers FR

i 6= FS
i . In this case, if FR

i is considered as
a valid row of BS, then it implies that Supporti ≥ tb + +tp + 1. Now out of these
(tb + tp + 1) wires, at most tb + tp wires can be under the control of Astatic

(tb,tf ,tp) in

Byzantine and passive fashion respectively. This implies that there exists at least one
wire, say wj, which correctly and securely delivered the hash key αR

j = αS
j and hash

value vR
ij = vS

ij = hash(αS
j ;FS

i ) = hash(αR
j ;FS

i ), such that wj ∈ Supporti. Since

wj ∈ Supporti, it implies that vR
ij = hash(αR

j ;FR
i ). Since adversary does not know αR

j

and vR
ij , he can ensure that vR

ij = hash(αR
j ;FS

i ), as well as vR
ij = hash(αR

j ;FR
i ), where

FR
i 6= FS

i , with probability at most
n+tp−1

|F| ≈ 2−Ω(κ), which is negligible in our context.
So with very high probability, wj will not belong to Supporti, which is a contradiction.
So with overwhelming probability FR

i = FS
i . 2

Lemma 14.7 In protocol 1-Optimal-SSMT-Static-Mixed, if R gets tb+tp+1 valid rows
of BS then R can recover mS.
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Figure 14.1: Single Phase Communication Optimal SSMT Protocol Tolerating
Astatic

(tb,tf ,tp): n = 2tb + tf + tp + 1, |mS| = (tb + tf + tp)

Protocol 1-Optimal-SSMT-Static-Mixed

Computation and Communication by S:

1. S sets ROW = tb + tp + 1, COL = n + tp and N = n. S then forms a matrix
Binit, consisting of ROW × COL random, non-zero elements from F. S then
executes the steps in Extrapolation Technique to generate an N × COL =
n× (n + tp) matrix Bext from Binit. Let BS = Bext.

2. For i = 1, . . . , n, S selects a random, secret, non-zero hash key αS
i , correspond-

ing to wire wi.

3. For i = 1, . . . , n, S sends the following to R over wire wi:

(a) The ith row of BS, denoted by FS
i ;

(b) The hash key αS
i and

(c) The hash values vS
ji, where vS

ji = hash(αS
i ;FS

j ), for j = 1, . . . , n.

4. S computes
PS = EXTRANDn(n+tp),tb+tf +tp(B

S).

5. S then computes C = PS⊕mS, broadcasts C to R and terminates the protocol.

Message Recovery by R:

1. Let F denote the set of wires that delivered nothing to R, where |F| ≤ tf .

2. Let R receive the following over wire wi 6∈ F :

(a) The (n + tp)-tuple, denoted by FR
i ;

(b) The hash key αR
i and

(c) The hash values vR
ji , for j = 1, . . . , n.

3. For every wi 6∈ F , R computes Supporti = |{wj : wj 6∈ F and vR
ij =

hash(αR
j ;FR

i )}|.

4. If Supporti ≥ tb + tp + 1, then R considers FR
i to be a valid row of BS.

5. If R has received ROW = tb + tp + 1 valid rows, then R reconstructs the
message mR from them and terminates the protocol.

Proof: The proof follows from Lemma 8.10 and the fact that ROW = tb + tp + 1 in
protocol 1-Optimal-SSMT-Static-Mixed. 2

Lemma 14.8 In protocol 1-Optimal-SSMT-Static-Mixed, except with error probability
2−Ω(κ), mR = mS.
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Proof: First of all notice that R will always output some message. This is because
at most tb wires may deliver invalid row and at most tf wires may not deliver any row
of BS. However there always exist n− (tb + tf ) = tb + tp + 1 wires, which will always
correctly deliver valid rows of BS. Moreover, even if a wire which is under the control
of the adversary in Byzantine fashion has delivered a valid row, then from Lemma 14.6,
the row is indeed a valid row of BS, except with probability 2−Ω(κ). This implies that
with very high probability, the tb + tp + 1 valid rows used by R to recover mR are
indeed the rows of BS. Thus, except with error probability 2−Ω(κ), mR = mS. 2

Lemma 14.9 In protocol 1-Optimal-SSMT-Static-Mixed, mS will be information theo-
retically secure.

Proof: Notice that Astatic
(tb,tf ,tp) can eavesdrop at most tb + tp wires. Without loss

of generality, let these be the first tb + tp wires. So Astatic
(tb,tf ,tp) will know the vectors

FS
1 , . . . , FS

tb+tp , from which it will come to know tb + tp rows of BS(x), which are

insufficient to reconstruct BS.
The adversary Astatic

(tb,tf ,tp) will also know tb + tp hash values corresponding to each

FS
1 , . . . , FS

n . Since the vectors FS
1 , . . . , FS

tb+tp are already known to Astatic
(tb,tf ,tp), the tb + tp

hash values corresponding to them does not add anything new to Astatic
(tb,tf ,tp)’s view.

Moreover, since ROW = tb + tp +1, from the properties of Extrapolation Technique (see
Lemma 8.10) the vectors FS

tb+tp+2, . . . , F
S
n can be expressed as a linear combination of

vectors FS
1 , . . . , FS

tb+tp+1. So the tb + tp hash values corresponding to FS
tb+tp+2, . . . , F

S
n

can always be expressed as a linear combination of the tb+tp hash values corresponding
to FS

1 , . . . , FS
tb+tp+1, which are known to the adversary. So, out of the tb+tp hash values

corresponding to each FS
i , 1 ≤ i ≤ n, which are known to Astatic

(tb,tf ,tp), only the tb + tp

hash values corresponding to FS
tb+tp+1 add to Astatic

(tb,tf ,tp)’s view. But FS
tb+tp+1 is of length

n+ tp. So from the properties of hashing, (n+ tp)− (tb + tp) = tb + tf + tp +1 elements
of FS

tb+tp+1 will be information theoretically secure. This implies that tb + tf + tp + 1

elements of BS will be information theoretically secure. So from the properties of
algorithm EXTRAND, the elements in PS are information theoretically secure. This
further implies information theoretic security of mS. 2

Lemma 14.10 In protocol 1-Optimal-SSMT-Static-Mixed, S communicates O(n2κ) bits.

Proof: Over each wire, S sends a row of BS consisting of n + tp elements, a hash
key and n hash values. So overall, S sends O(n2) field elements to R. Since each field
element can be represented by O(κ) bits, S communicates O(n2κ) bits.

Theorem 14.11 Protocol 1-Optimal-SSMT-Static-Mixed is a single phase communica-
tion optimal SSMT protocol, which securely sends a message containing Θ(nκ) bits by
communicating O(n2κ) bits, tolerating Astatic

(tb,tf ,tp).

Proof: The proof that 1-Optimal-SSMT-Static-Mixed is a single phase SSMT protocol
follows from Lemma 14.6, Lemma 14.7, Lemma 14.8 and Lemma 14.9. If n = 2tb + tf +
tp + 1, then from Theorem 14.3, any single phase SSMT protocol tolerating Astatic

(tb,tf ,tp)

must communicate Ω(n2κ) bits to securely send ℓ = (tb + tf + tp) = Θ(nκ) bits. Since
the communication complexity of protocol 1-Optimal-SSMT-Static-Mixed isO(n2κ) bits,
protocol 1-Optimal-SSMT-Static-Mixed is a communication optimal SSMT protocol. 2
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14.2.1.2 Protocol 1-Optimal-SSMT-Static-Mixed and Lower Bound on Com-
munication Complexity of Single Phase SSMT Tolerating Astatic

tb
[43]

Notice that any single phase SSMT tolerating Astatic
tb

is possible iff n ≥ 2tb + 1. Let S
and R be connected by n = 2tb + 1 wires. Then from [43], for any single phase SSMT
protocol tolerating Astatic

tb
, the following must hold

|Xi| ≥
|S − 1|

δ
+ 1 (14.1)

where S denotes the set of possible secret messages from which S intends to send one
element to R, Xi denotes the set of possible data sent through the ith wire in the
protocol and 0 < δ < 1

2 is the error probability of the protocol. In any single phase
SSMT protocol, one element from Xi is sent through the ith wire. Now each element
of Xi can be represented by log(|Xi|) bits. Similarly, each message from S can be
represented by log(|S|) bits. Thus inequality (14.1) says that any single phase SSMT
protocol must communicate Ω(n log(|Xi|)) bits to securely send log(|S|) bits with error
probability of at most 0 < δ < 1

2 .
In [43], the authors have proposed a near optimum single phase SSMT protocol

whose total communication complexity approximately matches the bound given in in-
equality (14.1). However, the computation done by R in their protocol is exponential
in n. We now show that if we execute protocol 1-Optimal-SSMT-Static-Mixed in the
presence of only Astatic

tb
over n = 2tb + 1 wires, then it satisfies the lower bound given

in inequality (14.1).
If we execute protocol 1-Optimal-SSMT-Static-Mixed in the presence of Astatic

tb
over

n = 2tb + 1 wires (i.e., tf = tp = 0), then the protocol securely sends tb + 1 = Θ(n)
field elements (if n = 2tb + 1, then tb = Θ(n)) by communicating O(n2) field elements.
Recall that each field element can be represented by O(κ) bits. So in the presence of
Astatic

tb
, the protocol will securely send Θ(nκ) bits by communicating O(n2κ) bits.

We now show that the communication complexity of protocol 1-Optimal-SSMT-
Static-Mixed in the presence of Astatic

tb
over n = 2tb + 1 wires satisfies the bound given

in inequality (14.1). In the protocol, message space is F
tb+1. So S = F

tb+1 and thus
log(|S|) = (tb+1) log(|F|) = (tb+1)κ. Substituting δ = 2−κ and value of S in inequality

(14.1), we get |Xi| ≥
|Ftb+1|−1

2−κ +1 and thus log(|Xi|) ≥ κ+(tb +1)κ. So according to the
lower bound given by inequality (14.1), any single phase SSMT over n = 2tb + 1 wires
in the presence of Astatic

tb
must communicate Ω(n(tb + 1)κ) = Ω(n2κ) bits to securely

send (tb+1)κ) = Θ(nκ) bits. However, the total communication complexity of protocol
1-Optimal-SSMT-Static-Mixed in the presence of Astatic

tb
over n = 2tb +1 wires is O(n2κ)

bits. Thus the protocol will be an efficient, single phase communication optimal SSMT
tolerating Astatic

tb
.

In the next section, we present the existing results for multi phase SSMT in undi-
rected synchronous network tolerating Astatic

(tb,tf ,tp).

14.2.2 Existing Results for Multi Phase SSMT

In [75], the author gave the following characterization for multi phase SSMT tolerating
Astatic

(tb,tf ,tp).

Theorem 14.12 ([75]) Let r ≥ 2. Then any r-phase SSMT protocol in undirected
synchronous network tolerating Astatic

(tb,tf ,tp) is possible iff there exists n ≥ tb + tf +

max (tp, tb) + 1 wires between S and R.
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The lower bound on the communication complexity of multi phase SSMT tolerating
Astatic

(tb,tf ,tp) is given by the following theorem, which is taken from [75].

Theorem 14.13 ([75]) Let S and R be connected by n ≥ tb+tf +max (tp, tb)+1 wires
and let r ≥ 2. Then any r-phase SSMT protocol tolerating Astatic

(tb,tf ,tp), must communicate

Ω
(

nℓ
n−(tb+tf +tp)

)
field elements to securely send a message containing ℓ field elements.

In terms of bits, any multi phase SSMT must communicate Ω
(

nℓκ
n−(tb+tf +tp)

)
bits to

securely send a message containing ℓκ bits.

Comparison 14.14 (Possibility of Multi Phase PSMT and SSMT) From The-
orem 11.4, any r-phase PSMT protocol tolerating Astatic

(tb,tf ,tp) is possible iff there ex-

ists n ≥ 2tb + tf + tp + 1 wires between S and R, where r ≥ 2. From Theorem
14.12, any r-phase SSMT protocol tolerating Astatic

(tb,tf ,tp) is possible iff there exists n ≥

tb + max (tb, tp) + tf + 1 wires between S and R, where r ≥ 2. Therefore, except when
either tb = 0 or tp = 0, allowing a negligible error probability (only in the reliabil-
ity), significantly helps in the possibility of multiphase secure message transmission
protocol.

Comparison 14.15 (Complexity of Multi Phase SSMT and PSMT) From The-
orem 11.5, any multiphase PSMT tolerating Astatic

(tb,tf ,tp) over n ≥ 2tb+tf +tp+1 wires has

to communicate Ω
(

nℓ
n−(2tb+tf +tp)

)
field elements to securely send a message containing

ℓ field elements. From Theorem 14.13, any multi phase SSMT tolerating Astatic
(tb,tf ,tp) over

n ≥ tb + max (tb, tp) + tf + 1 wires has to communicate Ω
(

nℓ
n−(tb+tf +tp)

)
field elements

to securely send a message containing ℓ field elements.
Let us fix n = 2tb + tf + tp + 1 for which both multi phase PSMT and SSMT is

possible. With n = 2tb + tf + tp + 1, the lower bounds for PSMT and SSMT become

Ω (nℓ) and Ω
(

nℓ
tb

)
field elements respectively. Particularly, if we consider Astatic

tb
then n

must be at least 2tb +1 for both multi phase PSMT and SSMT to be possible. With n =
2tb + 1, the lower bounds for PSMT and SSMT become Ω (nℓ) and Ω (ℓ) field elements
respectively, for now tb = Θ(n). Hence with n = 2tb+1 while SSMT can be achieved with
constant factor overhead tolerating Astatic

tb
, PSMT can not be achieved with constant

factor overhead tolerating Astatic
tb

. This shows the power of allowing a negligible error
probability (only in the reliability) in multiphase secure message transmission.

14.2.2.1 Existing Three Phase SSMT Protocol Tolerating Astatic
(tb,tf ,tp) [75]

To show the sufficiency of the condition given in Theorem 14.12, the author in [75]
presented a three phase SSMT protocol with n = tb+max (tb, tp)+ tf +1 wires between
S and R. The protocol securely sends a single element from F by communicating O(n2)
field elements, tolerating Astatic

(tb,tf ,tp). We call the protocol as protocol 3-SSMT-Static-

Mixed and present it in Fig. 14.2. The protocol uses certain ideas used in the SSMT
protocol of [33].

The following theorem taken from [75] states that protocol 3-SSMT-Static-Mixed is
an SSMT protocol.

Theorem 14.16 ([75]) Protocol 3-SSMT-Static-Mixed is a three phase SSMT protocol
which securely sends a single field element by communicating O(n2) field elements.
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Figure 14.2: Three Phase SSMT Protocol Tolerating Astatic
(tb,tf ,tp): n = tb + tf +

max (tb, tp) + 1, |mS| = 1

Protocol 3-SSMT-Static-Mixed

Phase I: S to R:

1. S sends to R two random, non-zero elements ρS
i1 and ρS

i2 along wire wi, for
i = 1, . . . , n.

Phase II: R to S:

1. Let R receive values along n′ ≥ (n − tf ) wires. R neglects the remaining
(n− n′) wires.

2. Let R receive ρR
i1 and ρR

i2 along wire wi, if wi is not neglected by R.

3. R chooses uniformly at random a non-zero element K ∈ F. R then broadcasts
to S the following:

(a) Identities of the (n − n′) wires neglected by R;

(b) The random K and

(c) The values ui = (KρR
i1 + ρR

i2) for all i such that wi is not neglected by R.

Phase III: S to R:

1. S correctly receives the identities of the (n− n′) wires neglected by R during
Phase II and S eliminates these wires. a

2. S also correctly receives K and the values ui for each i, such that wire wi is
not eliminated by R.

3. S then computes the set H, where H = {wi|ui = (KρS
i1 + ρS

i2)}.

4. S also computes the secret pad ρS where ρS =
∑

wi∈H ρS
i2.

5. S then broadcasts the set H and the blinded message Z = mS ⊕ ρS to R,
where mS is the secret message, which S wants to send securely to R.

Message Recovery by R

1. R correctly receives H and computes his version of ρR (which is equal to ρS

with very high probability).

2. R correctly receives the blinded message Z and outputs mR = Z ⊕ ρR.

a Irrespective of the values of tb and tp, n is at least 2tb + tf + 1 and any information
which is broadcast over these many wires will be received correctly by taking the
majority.
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From Theorem 14.13 and Theorem 14.16, we find that protocol 3-SSMT-Static-
Mixed is not a communication optimal SSMT protocol. To the best of our knowl-
edge, there exists no multi phase communication optimal SSMT protocol in undirected
synchronous network tolerating Astatic

(tb,tf ,tp). So in the next section, we present a new

multiphase communication optimal SSMT protocol in undirected synchronous network
tolerating Astatic

(tb,tf ,tp). This will completely resolve the issue of optimality of multi

phase SSMT in undirected synchronous networks.

14.3 A Four Phase Communication Optimal SSMT

Let S and R be connected by n = tb +max (tb, tp)+ tf +1 wires. We then design a four
phase communication optimal SSMT protocol called 4-Optimal-SSMT-Static-Mixed, tol-
erating Astatic

(tb,tf ,tp). The total communication complexity of the protocol is O(n3) field

elements. If tb ≤ tp, then the protocol securely sends a message mS containing n2 field
elements. On the other hand, if tp > tb then the protocol securely sends a message mS

containing (tp− tb)n
2 field elements. Protocol 4-Optimal-SSMT-Static-Mixed uses three

phase SSMT protocol 3-SSMT-Static-Mixed (see Fig. 14.2) and single phase SRMT
protocol 1-Optimal-SRMT-Static-Mixed (see Fig. 8.3) as a black box.

The high level idea of protocol 4-Optimal-SSMT-Static-Mixed is as follows: During
first phase, R sends a random n2-tuple to S over each wire. R also hashes each n2-tuple
by a random hash key. R then securely sends all the hash keys and hash values by
using the three phase SSMT protocol 3-SSMT-Static-Mixed. Now using the hash keys
and hash values, S can find out the wires who have correctly delivered the n2-tuples,
sent by R.

If tb ≤ tp, then n = tb + tp + tf +1 and so there exists at least one honest wire, who
will correctly and securely deliver the n2-tuple to S. On the other hand, if tb > tp, then
there exists at least (tb − tp) honest wires, who will correctly and securely deliver the
n2-tuple to S. Accordingly, S applies EXTRAND on the n2 tuples which are correctly
received by S and generates a pad of size either n2 field elements or (tb − tp)n

2 field
elements. Accordingly, S takes a message of size either n2 or (tb − tp)n

2 and mask the
message using the pad. If the masked message is of size n2, then S reliably sends it
by broadcasting it to R. Otherwise S reliably sends the masked message by invoking
single phase SRMT protocol 1-Optimal-SRMT-Static-Mixed. Protocol 4-Optimal-SSMT-
Static-Mixed is now formally presented in Fig. 14.4.

We now prove the properties of protocol 4-Optimal-SSMT-Static-Mixed.

Claim 14.17 In protocol 4-Optimal-SSMT-Static-Mixed, S will correctly receive each
ρR

i and yR
i , except with error probability 2−Ω(κ). Moreover, the adversary will have no

information about these values.

Proof: The proof follows from the fact that in protocol 4-Optimal-SSMT-Static-Mixed,
R sends each ρR

i and yR
i by executing three phase SSMT protocol 3-SSMT-Static-Mixed.

The rest now follows from the properties of protocol 3-SSMT-Static-Mixed (see Theorem
14.16). 2

Claim 14.18 In protocol 4-Optimal-SSMT-Static-Mixed, if wi is corrupted and delivers
incorrect n2-tuple, then except with error probability 2−Ω(κ), S will include wire wi in
Lfault.

Proof: From the previous claim, ρS
i = ρR

i and yS
i = yR

i , except with error probability
2−Ω(κ). Moreover, adversary will have no information about the hash value and hash
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key. Now suppose that wire wi is corrupted and delivers incorrect n2-tuple. Then
from the property of hashing, S will be able to detect it, except with error probability
n2

|F| ≈ 2−Ω(κ). So except with error probability 2−Ω(κ), S will include wire wi in Lfault.
2

Claim 14.19 In protocol 4-Optimal-SSMT-Static-Mixed, if the masked message d is
broadcast then it will be delivered correctly without any error. On the other hand, if the
masked message d is sent by executing protocol 1-Optimal-SRMT-Static-Mixed, then it
will be delivered correctly, except with error probability 2−Ω(κ).

Proof: Notice that irrespective of the value of tb and tp, n ≥ 2tb + tf + 1 and so any
value broadcasted over n wires will be delivered correctly. Thus, if d is broadcasted
then it will be delivered correctly. On the other hand, if d is sent by executing protocol
1-Optimal-SRMT-Static-Mixed, then by the property of 1-Optimal-SRMT-Static-Mixed,
it will be delivered correctly, except with error probability 2−Ω(κ). 2

Lemma 14.20 In protocol 4-Optimal-SSMT-Static-Mixed, the message mS will be in-
formation theoretically secure.

Proof: First of all by the properties of 3-SSMT-Static-Mixed, ρR
i ’s and yR

i ’s will be
information theoretically secure. The proof is now divided into the following two cases:

1. Case I: If tp ≥ tb: In this case, n = tb + tp + tf + 1. In the worst case, the
adversary can passively listen the contents over tb + tp wires and block tf wires.
So there will be only one honest wire wi and hence the adversary will have no
information about the n2-tuple sent over wi. In this case, S generates a random
pad of length n2 and sends mS containing n2 field elements, using this pad. Now
the proof follows from the secrecy property of EXTRAND and working of the
protocol.

2. Case II: If tb > tp: In this case, n = 2tb+tf +1. In the worst case, the adversary
can passively listen the contents of at most tb + tp wires and block tf wires. So
there will be (tb − tp) wires which will not be under the control of the adversary
and hence the adversary will have no information about the n2-tuples sent over
these wires. In this case, S generates a random pad of length (tb − tp)n

2 and
sends mS containing (tb − tp)n

2 field elements, using this pad. Now the proof
follows from the secrecy property of EXTRAND and working of the protocol. 2

Lemma 14.21 The communication complexity of protocol 4-Optimal-SSMT-Static-Mixed

is O(n3) field elements.

Proof: During Phase I, R sends n2 random field elements over each of the n wires
causing a communication complexity of O(n3) field elements. R also invokes 2n parallel
executions of protocol 3-SSMT-Static-Mixed, each having a communication complexity
of O(n2) field elements (see Theorem 14.16). This incurs total communication cost of
O(n3) field elements. During Phase IV, S sends d to R. If tp ≥ tb, then d will consist
of n2 field elements and hence broadcasting it to R incurs a communication complexity
of O(n3). On the other hand, if tb > tp, then d consist of (tb − tp)n

2 field elements. In

this case, S will send d by invoking
(tb−tp)

tb
×n parallel executions of single phase SRMT

protocol. Since, each execution of the single phase SRMT protocol has a communication
complexity of O(n2) field elements (see Lemma 8.14), total communication complexity

for sending d will be O
(

(tb−tp)n3

tb

)
, which is O(n3). Thus, overall communication

complexity of protocol 4-Optimal-SSMT-Static-Mixed is O(n3) field elements. 2
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Theorem 14.22 Protocol 4-Optimal-SSMT-Static-Mixed is a four phase communica-
tion optimal SSMT protocol tolerating Astatic

(tb,tf ,tp).

Proof: The proof that protocol 4-Optimal-SSMT-Static-Mixed is a four phase SSMT
protocol follows from the protocol steps and Claim 14.17, Claim 14.18, Claim 14.19
and Lemma 14.20. We now show that the protocol is communication optimal.

Protocol 4-Optimal-SSMT-Static-Mixed sends (tb − tp)n
2κ bits (if tb > tp) or n2κ

bits (if tb ≤ tp), by communicating O(n3κ) bits, where n = tb +max(tb, tp)+ to + tf +1.
From Theorem 14.13, if tb ≥ tp (in this case n = 2tb + tf + 1), then any four phase
SSMT protocol needs to communicate Ω(n3κ) bits to securely send (tb − tp)n

2κ bits.
Similarly, if tp > tb (in this case, n = tb + tp + tf + 1), then any four phase SSMT
protocol needs to communicate Ω(n3κ) bits in order to securely send n2κ bits. Since
the total communication complexity of 4-Optimal-SSMT-Static-Mixed in both the cases
is O(n3κ) bits, the protocol is communication optimal. 2

14.3.1 SSMT with Constant Factor Overhead Tolerating Astatic
tb

From Theorem 14.22, we get the following corollary:

Corollary 14.22.1 If protocol 4-Optimal-SSMT-Static-Mixed is executed only in the
presence of Byzantine adversary Astatic

tb
(i.e., tf = tp = 0), then it achieves security

with “constant factor overhead” in four phases by securely sending Θ(n3) field elements
with a communication complexity of O(n3) field elements.

Proof: If protocol 4-Optimal-SSMT-Static-Mixed is executed only in the presence of
Astatic

tb
(i.e., tf = tp = 0) then it sends tbn

2 = Θ(n3) field elements in four phases
by communicating O(n3) field elements (if tf = tp = 0, then n = 2tb + 1 and so
tb = Θ(n)). Thus we get secrecy with constant factor overhead in four phases when
4-Optimal-SSMT-Static-Mixed is executed under the presence of Astatic

tb
. 2

14.4 Concluding Remarks and Open Problems

In this chapter, we presented a four phase communication optimal SSMT protocol
in undirected synchronous network tolerating Astatic

(tb,tf ,tp). This, along with Theorem

14.12 and Theorem 14.13 completely settles the issue of possibility, feasibility and
optimality of SSMT in undirected synchronous network tolerating Astatic

(tb,tf ,tp). The

results for SSMT in undirected synchronous network are summarized in Fig. 14.3.

Figure 14.3: Summary of the Results for SSMT in Undirected Synchronous Network
Tolerating Astatic

(tb,tf ,tp)

Number of Connectivity Lower Bound on Upper Bound
Phases (r) Requirement (n) Communication

Complexity

r = 1 n ≥ 2tb + tf + tp + 1 Ω
(

nℓ
n−(2tb+tf +tp)

)
Theorem 14.11

Theorem 14.2 Theorem 14.3

r ≥ 2 n ≥ tb + tf + max (tb, tp) + 1 Ω
(

nℓ
n−(tb+tf +tp)

)
Theorem 14.22

Theorem 14.12 Theorem 14.13

This chapter leaves two open problems:
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Open Problem 15 Protocols 4-Optimal-SSMT-Static-Mixed and 1-Optimal-SSMT-Static-

Mixed are asymptotically communication optimal. It would be interesting to design
communication optimal SSMT protocols which are optimal for messages of any size.

Open Problem 16 Protocol 4-Optimal-SSMT-Static-Mixed takes four phases. How-
ever, the lower bound given in Theorem 14.13 holds for any multi phase SSMT pro-
tocol. So it is an interesting open problem to reduce the phase complexity of protocol
4-Optimal-SSMT-Static-Mixed, while keeping the communication complexity same. In
general, it is an interesting open problem to come up with an efficient two phase com-
munication optimal SSMT protocol tolerating Astatic

(tb,tf ,tp).
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Figure 14.4: Four Phase Communication Optimal SSMT Protocol Tolerating Astatic
(tb,tf ,tp):

n = tb + tf + max (tb, tp) + 1. If tb ≤ tp, then |mS| = n2, else |mS| = (tb − tp)n
2

Protocol 4-Optimal-SSMT-Static-Mixed

Phase I: R to S:

1. For i = 1, . . . , n, R selects a random, non-zero n2-tuple (rR

i,1, . . . , r
R

i,n2).

2. For i = 1, . . . , n, corresponding to wire wi, R selects a random, non-zero hash key ρR

i .

3. For i = 1, . . . , n, R computes yR

i = hash(ρR

i ; rR

i,1, . . . , r
R

i,n2).

4. For i = 1, . . . , n, R sends (rR

i,1, . . . , r
R

i,n2) to S over wire wi.

5. In addition to the above communication, R executes 2n instances of 3-SSMT-Static-Mixed

to securely send ρR

1 , . . . , ρR

n , yR

1 , . . . , yR

n . This will occupy Phase I, II and III. a

The instances of 3-SSMT-Static-Mixed, executed during Phase I will terminate at the end of
Phase III.

Phase IV: S to R:

1. Let F denote the set of wires which delivered no information to S. Let S receive the n2-tuple
(rS

i,1, . . . , r
S

i,n2) over wire wi 6∈ F .

2. Let S receive ρS

1 , . . . , ρS

n, yS

1 , . . . , yS

n at the end of 2n instances of 3-SSMT-Static-Mixed.

3. For every wi 6∈ F , S verifies whether yS

i
?
= hash(ρS

i ; rS

i,1, . . . , r
S

i,n2). If the test fails, then S
adds wi to a list Lfault.

4. S sets Lhonest = W \ (Lfault ∪ F). Here W is the set of n wires w1, . . . , wn.

5. If tp ≥ tb, then S computes a random pad ZS of size n2 field elements from the n2|Lhonest|
field elements which are received over the wires in Lhonest as follows:

Z
S = EXTRANDn2|Lhonest|,n

2(rS

i,j |wi ∈ Lhonest, 1 ≤ j ≤ n
2).

6. If tb > tp, then S computes a random pad ZS of size (tb − tp)n
2 as follows:

Z
S = EXTRANDn2|Lhonest|,(tb−tp)n2(rS

i,j |wi ∈ Lhonest, 1 ≤ j ≤ n
2).

7. S computes d = mS ⊕ ZS.

8. If tp ≥ tb then d is of size n2, so S broadcasts d to R.

9. If tb > tp then d consists of (tb − tp)n
2 field elements. In this case, S reliably sends d to R

by invoking
(tb−tp)

tb
× n parallel executions of 1-Optimal-SRMT-Static-Mixed. b

10. S also broadcasts the set Lfault and F to R.

Message recovery by R

1. R correctly receives Lfault and F and sets Lhonest = W \ (Lfault ∪ F).

2. R correctly receives d with certainty (probability one) when tp ≥ tb and with high probability
when tb > tp.

3. If tb ≤ tp, then R computes ZR of size n2 field elements as follows:

Z
R = EXTRANDn2|Lhonest|,n

2(rR

i,j |wi ∈ Lhonest, 1 ≤ j ≤ n
2).

4. If tb > tp, then R computes ZR of size (tb − tp)n
2 field elements as follows:

Z
R = EXTRANDn2|Lhonest|,(tb−tp)n2(rR

i,j |wi ∈ Lhonest, 1 ≤ j ≤ n
2).

5. Once ZR is computed, R recovers mR by computing mR = ZR ⊕ d.

a Recall that in a single instance of 3-SSMT-Static-Mixed, only one element can be
sent securely.

b This is possible because n is at least 2tb + tf +1, which is sufficient for single phase
SRMT. Since a single instance of 1-Optimal-SRMT-Static-Mixed reliably sends ntb
field elements, vector d consisting of (tb−tp)n

2 field elements can be communicated

by S by invoking the single phase SRMT protocol
(tb−tp)

tb
× n times parallely.
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Chapter 15

SRMT and SSMT in Directed
Networks Tolerating Static
Byzantine Adversary

The SRMT and SSMT problem in directed network was first introduced in [24], where
the authors have given the necessary and sufficient condition for SRMT and SSMT in
directed network tolerating Astatic

tb
. Desmedt et al. [24, 87] also presented an SSMT

protocol, satisfying their characterization. The authors in [24, 87] claimed that their
protocol is efficient and has polynomial computational and communication complexity.
However, in this chapter, we show that it is not so. That is, we specify an adver-
sary strategy, which may cause the protocol to have exponential computational and
communication complexity 1. We then present new and efficient SRMT and SSMT
protocols, satisfying the characterization of [24, 87]. Finally we show that the our
proposed protocols are communication optimal by deriving lower bound on the com-
munication complexity of SRMT and SSMT protocols in directed network. To the best
of our knowledge, our protocols are the first communication optimal SRMT and SSMT
protocols in directed networks.

We now discuss the network model and adversary settings used in this chapter.

15.1 Network Model and Adversary Settings

The network model and adversary settings used in this chapter are same as in Chapter
7. Specifically, we assume that there are n wires directed from S to R, denoted by
f1, . . . , fn, which are also called as top band. Moreover, we assume that there are u
wires directed from R to S, denoted by b1, . . . , bu, which are also called as bottom band.
Furthermore, we assume that the wires in the top band are node disjoint from the wires
in the bottom band. We assume the presence of a computationally unbounded static
Byzantine adversary Astatic

tb
, who can corrupt at most tb wires, out of n + u wires. We

assume that n = max (2tb − u + 1, tb + 1), u ≤ tb and n + u = 2tb + 1. From Theorem
15.1, this is the minimum number of wires required for the possibility of SRMT and
SSMT in directed network, tolerating Astatic

tb
.

To bound the error probability 2 of our SRMT and SSMT protocols by 2−Ω(κ), we
assume that all computation and communication is done over a finite field F, where

1In fact, this is applicable for the SRMT and SSMT protocols presented in [54].
2Recall that in SRMT and SSMT, R should output the correct message, except with error proba-

bility 2−Ω(κ).
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F = GF (2κ). Here κ is the error parameter . Thus each field element can be represented
by O(κ) bits. Moreover, without loss of generality, we assume that n = poly(κ).

15.1.1 Comparison of Our Model with the Model of [84, 72, 80]

In this thesis, for directed networks, we considered ”wired” network model, where it
is assumed that the intermediary nodes between S and R are just message forwarding
nodes. Under this assumption, we abstract the network in the form of directed wires,
directed either from S to R or R to S. The same abstraction is done in [24]. However,
in an arbitrary directed network, if the intermediate nodes (other than S and R) are
allowed to carry out computation and communication (beyond just acting as a message
forwarding node), as in the case of a virtual private network (VPN), then the wired
abstraction results in loss of generality. The insufficiency of wired abstraction in such
a network model is pointed out in [84, 72, 80] where characterizations for SRMT and
SSMT over the arbitrary network, treating entire graph in its full form are also reported.
While authors in [72] have considered threshold adversary, the authors of [84, 80]
have considered non-threshold 3 adversary for their characterization. However, it is
likely to take exponential time to verify whether a given arbitrary directed network
satisfies the characterization given in [84, 72, 80] for the possibility of SRMT and
SSMT. Moreover, the protocols given in [84, 72, 80] require exponential computational
and communication complexity and are highly non-intuitive.

It should be noted that abstracting the underlying network to a bunch of wires is
incomparable to treating the network in its full form. Both are sensible and practical.
We need to decide which model to follow based on the characteristic of given underlying
network. In this thesis, we considered the wire model, as it is relatively simple. More-
over, it is relatively easy to design protocols in wire model, in comparison to design
protocols by considering the graph in its entirety.

We now present the existing results for SRMT and SSMT in directed synchronous
networks tolerating Astatic

tb
.

15.2 Existing Results for SRMT and SSMT in Directed

Network

As mentioned earlier, SRMT and SSMT in directed network was first studied by
Desmedt et al. [24]. Specifically, they gave the following characterization:

Theorem 15.1 ([24, 87]) Suppose there exists u ≤ tb wires in the bottom band and
n wires in the top band, such that the wires in the top band are disjoint from the wires
in the bottom band. Then any SRMT/SSMT protocol tolerating Astatic

tb
is possible iff

n = max (2tb − u + 1, tb + 1).

In [87], the authors presented an SSMT protocol, satisfying the above characteri-
zation. Moreover, the authors claimed that their protocol is efficient (see Theorem 3.4
of [87]). To the best of our knowledge, these are the only results for SRMT and SSMT
in directed networks.

3A non-threshold adversary is a generalized form of the threshold adversary.
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15.3 Overview of Our Results for SRMT and SSMT in
Directed Network

We now summarize the contributions of this chapter:

1. We first show that the SSMT protocol presented in [24, 87] is inefficient. We do
this by specifying an adversary strategy, which may cause the protocol to have
exponential computational and communication complexity. In fact, we show that
the same adversary strategy is applicable for the SRMT and SSMT protocols
presented in [54], thus making the SRMT and SSMT protocols of [54] to have
exponential computational and communication complexity.

2. We then present new and efficient SRMT and SSMT protocols. These protocols
are achieved by making several modifications to the SRMT and SSMT protocols
presented in [54]. In fact, these modifications when applied to the SSMT protocol
of [24, 87] will make it efficient. In short, our SRMT and SSMT protocols have
the following properties:

(a) Our SRMT protocol takes O(u) phases and reliably sends a message contain-
ing Θ(n3κ) bits by overall communicating O(n3κ) bits. Thus, our SRMT
protocol achieves reliability with constant factor overhead.

(b) Our SSMT protocol takes O(u) phases and has a communication complexity
of O(n3κ) bits. If the entire bottom band is corrupted, then the protocol
securely sends a message containing Θ(n2uκ) bits. Otherwise, the protocol
securely sends a message containing Θ(n2κ) bits.

3. Finally, we show that our SRMT and SSMT protocols are asymptotically com-
munication optimal. For this, we derive the lower bound on the communication
complexity of SRMT and SSMT protocols in directed networks. Specifically, we
show the following:

(a) Any SRMT protocol must communicate Ω(ℓκ) bits to reliably send a message
containing ℓκ bits.

(b) If the entire bottom band is corrupted then any SSMT protocol must com-
municate Ω(nℓ

u κ) bits to securely send a message containing ℓκ bits. On the
other hand, if the entire bottom band is not corrupted then any SSMT pro-
tocol must communicate Ω(nℓκ) bits to securely send a message containing
ℓκ bits.

15.3.1 Overview of Our Protocols

We first design a three phase SSMT protocol called 3-SSMT-Static-Byzantine-Directed,
which sends a message containing Θ(n

3 ) field elements by communicating O(n3) field
elements. Then using this protocol as a black-box, we design a six phase protocol called
6-Pad, which securely establishes a random, one time pad between S and R. Then
using protocol 6-Pad as a black-box, we design our communication optimal SRMT
protocol called u-Optimal-SRMT-Static-Byzantine-Directed, which takes O(u) phases.
Finally, using protocol 6-Pad and protocol u-Optimal-SRMT-Static-Byzantine-Directed
as a black-box, we design our O(u) phase communication optimal SSMT protocol called
u-Optimal-SSMT-Static-Byzantine-Directed.
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The idea behind protocol u-Optimal-SSMT-Static-Byzantine-Directed is as follows:
we first execute protocol 6-Pad to securely establish a one time pad between S and R.
Then using this pad, S masks the secret message and reliably sends the masked message
by using the protocol u-Optimal-SRMT-Static-Byzantine-Directed. After receiving the
masked message, R can unmask the message by using the pad.

15.3.2 The Roadmap

The chapter is organized as follows: in the next section, we specify the tools that are
used in our protocols. In Section 15.5, we present our three phase SSMT protocol
called 3-SSMT-Static-Byzantine-Directed. In Section 15.5.3, we show the inefficiency of
the SRMT and SSMT protocols of [24, 54, 87]. Section 15.6 presents our six phase pad
establishment protocol 6-Pad. Our communication optimal SRMT protocol is presented
in Section 15.7. In Section 15.8, we present our communication optimal SSMT protocol.
The lower bounds on the communication complexity of SRMT and SSMT protocols
are presented in Section 15.9. The chapter ends with a conclusion and directions for
further research.

15.4 Tools Used in Our SRMT and SSMT Protocols

To design our SRMT and SSMT protocols, we use the following tools in this chapter:

1. Unconditionally Reliable Authentication: see Definition 8.1.

2. Unconditionally Secure Authentication: see Definition 8.2.

3. Unconditional Hashing: see Definition 8.3.

4. Extracting Randomness: see Fig. 9.2.

5. Extrapolation Technique: see Section 8.2.2.

15.5 A Three Phase SSMT Protocol in Directed Network
Tolerating Astatic

tb

We now present a three phase SSMT protocol called 3-SSMT-Static-Byzantine-Directed.
The protocol securely sends a message mS containing n

3 field elements by communi-
cating O(n3) field elements. The protocol will be later used in our communication
optimal SRMT and SSMT protocol. The protocol uses certain ideas from the SSMT
protocol of [24]. In addition, the protocol also uses certain new ideas proposed by us.
Before presenting protocol 3-SSMT-Static-Byzantine-Directed, we present another three
phase SSMT protocol called 3-SSMT-Static-Byzantine-Directed-Exponential, which re-
quires exponential communication and computational complexity. The main reason
for presenting 3-SSMT-Static-Byzantine-Directed-Exponential is to present the underly-
ing principle, which we try to simulate in protocol 3-SSMT-Static-Byzantine-Directed,
while maintaining polynomial computation and communication complexity. A proto-
col some what similar to protocol 3-SSMT-Static-Byzantine-Directed-Exponential is also
presented in [24]. So in the next section, we first present protocol 3-SSMT-Static-
Byzantine-Directed-Exponential.
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15.5.1 A Three Phase Exponential SSMT Protocol

Let P1, . . . ,Pk denote the enumeration of all possible tb + 1-sized subset of the wire
set {f1, . . . , fn, b1, . . . , bu}. Thus k =

(2tb+1
tb+1

)
, as n + u = 2tb + 1. Since there are at

least tb + 1 honest wires including top and bottom band, there exists at least one path
set, say Pi, where Pi contains all tb + 1 honest wires. Moreover, each path set Pj will
have at least one wire from top band, as there can be at most tb wires in the bottom
band. If some how S and R comes to know the identity of the honest path set Pi,
which consists of only honest wires, then S and R can share an n-tuple over each wire
in Pi. Then adding all such n-tuples, S and R can agree on an n-tuple, about which
adversary will have no information. Finally, using the elements of the resultant n-tuple
as encryption and authentication keys, S can reliably and securely send mS over all
the wires in the top band, which are present in Pi.

Since, neither S nor R will know the exact identity of honest path set Pi in advance,
they have to parallely do the above procedure for all paths sets P1, . . . ,Pk. During this
process, if the adversary tries to change the information over the wires in any path
set then with very high probability, R will detect this and will neglect the information
which is exchanged over the wires in that path set. The protocol is given in Fig. 15.1.

We now prove the properties of protocol 3-SSMT-Static-Byzantine-Directed-Exponential.

Lemma 15.2 In protocol 3-SSMT-Static-Byzantine-Directed-Exponential, adversary will
have no information about mS.

Proof: Every path set Pm will have at least one honest wire, either in the top band
or in the bottom band. So the adversary will have no information about the n-tuple
which is exchanged between S and R over that wire. As a result, the adversary will
have no information about the keys used by S, corresponding to the path set Pm. The
rest now follows from the properties of USauth. 2

Lemma 15.3 In protocol 3-SSMT-Static-Byzantine-Directed-Exponential, R will always
terminate.

Proof: The proof follows from the fact that there exists at least one path set Pm,
which will contain only honest wires. 2

Lemma 15.4 In protocol 3-SSMT-Static-Byzantine-Directed-Exponential, if R outputs
mR then except with error probability 2−Ω(κ), mR = mS.

Proof: Suppose R outputs mR from SR
m , corresponding to path set Pm. Since there is

at least one honest wire in Pm and the adversary has no information about the n-tuple
which is exchanged between S and R over that wire, it implies that the adversary has no
information about the keys computed by S and R, corresponding to path set Pm. If the
path set Pm is completely honest or if the adversary is passively controlling the wires
under its control in Pm, then S and R will have the same keys and hence mR = mS.
On the other hand, if the adversary has modified the tuples which are exchanged over
the wires under its control in Pm, then S and R will have different keys. But still,
as explained above, the adversary will have no information about the keys. So from
the properties of USauth, the adversary can make the verification process successful
at R’s end with negligible probability of 2−Ω(κ). Thus mR = mS, except with error
probability 2−Ω(κ). 2

Lemma 15.5 Protocol 3-SSMT-Static-Byzantine-Directed-Exponential requires exponen-
tial computation and communication complexity.
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Figure 15.1: Protocol 3-SSMT-Static-Byzantine-Directed-Exponential: A Three Phase
Exponential SSMT Protocol, mS = {mS

1 , . . . ,mS
n
3
}, |mS| = n

3

Phase I: S to R: S parallely does the following computation and communication
corresponding to each path set Pm, for m = 1, . . . , k:

1. Corresponding to each fi ∈ Pm, S selects a random non-zero n-tuple
(xS

1,i,m, . . . , xS
n,i,m) and sends (xS

1,i,m, . . . , xS
n,i,m) to R over wire fi.

Phase II: R to S: R parallely does the following computation and communica-
tion, corresponding to each path set Pm, for m = 1, . . . , k:

1. Let R receive non-zero n-tuple (xR
1,i,m, . . . , xR

n,i,m) from S, over wire fi, corre-
sponding to each fi ∈ Pm.

2. Corresponding to each bi ∈ Pm, R selects a random non-zero n-tuple
(yR

1,i,m, . . . , yR
n,i,m) and sends (yR

1,i,m, . . . , yR
n,i,m) to S over wire bi.

Phase III: S to R: S parallely does the following computation and communication
corresponding to each path set Pm, for m = 1, . . . , k:

1. Let S receive non-zero n-tuple (yS
1,i,m, . . . , yS

n,i,m) from R, over wire bi, corre-
sponding to each bi ∈ Pm.

2. For i = 1, . . . , n, S computes his version of n keys CSi,m =
∑

fj∈Pm
xS

i,j,m +
∑

bj∈Pm
yS

i,j,m.

3. For each element of mS, S takes three elements from the keys computed in the
previous step and computes the set SS

m = {(cSi,m, dS
i,m) : i = 1, . . . , n

3 } where

(cSi,m, dS
i,m) = USauth(mS

i ; CS3i−2,m, CS3i−1,m, CS3i,m), for i = 1, . . . , n
3 .

4. S sends the set SS
m to R over all the top band wires in the set Pm and termi-

nates the protocol.

Message Recovery by R: If R receives SR
m = {(cRi,m, dR

i,m) : i = 1, . . . , n
3 } over

all fj’s in path set Pm, then corresponding to path set Pm, R does the following
computation:

1. For i = 1, . . . , n, R computes his version of n keys CRi,m =
∑

fj∈Pm
xR

i,j,m +
∑

bj∈Pm
yR

i,j,m.

2. For i = 1, . . . , n
3 , R checks whether dR

i,m
?
= CR3i−1,mcRi,m + CR3i,m.

3. If the above test passes for all i = 1, . . . , n
3 , then R computes mR

i = cRi,m −

CR3i−2,m. R then concatenates mR
1 , . . . ,mR

n
3

to recover mR and terminates.

We now proceed to the discussion of protocol 3-SSMT-Static-Byzantine-Directed,
which is an efficient three phase SSMT protocol. The principle used in 3-SSMT-Static-
Byzantine-Directed is similar to protocol 3-SSMT-Static-Byzantine-Directed-Exponential.
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However, instead of working with all possible tb +1-sized subset of wires, S and R uses
certain mechanism, which allows them to work with at most u path sets, thus making
the communication and computation complexity of the protocol polynomial.

15.5.2 A Three Phase Efficient SSMT Protocol

In protocol 3-SSMT-Static-Byzantine-Directed, R first tries to find whether there exists
tb +1 honest wires in the top band. In order to facilitate R to do so, S tries to send mS

using two different methods. If there exists tb + 1 honest wires in the top band then
the first method would be successful. However, if there are less that tb +1 honest wires
in the top band, then with very high probability R will detect this and will conclude
that at least one honest wire is present in the bottom band. So S and R interacts
for two more phases and S tries to again send mS using the second method in the
third phase. The second method tries to follow the principle used in protocol 3-SSMT-
Static-Byzantine-Directed, however ensuring that the communication and computation
complexity is polynomial in n.

We now begin with the description of protocol 3-SSMT-Static-Byzantine-Directed,
phase by phase. However, instead of describing the entire protocol in a single shot, we
prefer to discuss each phase individually. This would help the reader to understand the
nuances and ideas used in each phase. So we begin with the description of first phase
of protocol 3-SSMT-Static-Byzantine-Directed, which is given in the next subsection.

15.5.2.1 Phase I of Protocol 3-SSMT-Static-Byzantine-Directed

During the first phase of the protocol, S tries to send mS using the first method. S
also sends some additional information, which might be useful during second phase, if
at all it is executed. Phase I of protocol 3-SSMT-Static-Byzantine-Directed is formally
given in Fig. 15.2.

We now prove the properties of Phase I of protocol 3-SSMT-Static-Byzantine-
Directed.

Claim 15.6 In Protocol 3-SSMT-Static-Byzantine-Directed, if R concludes that FR
i is

a valid row of T , then except with error probability 2−Ω(κ), FR
i = FS

i .

Proof: The lemma is true without any error if wire fi is uncorrupted. So let wire
fi be a corrupted wire, who delivers FR

i 6= FS
i . In this case, if FR

i is considered as
a valid row of T , then it implies that Supporti ≥ tb + 1. Since there can be at most
tb corrupted wires in the top band, this implies that there exists at least one honest
wire, say fj, which correctly and securely delivered the hash key αR

j = αS
j and hash

value vR
ij = vS

ij = hash(αS
j ;FS

i ) = hash(αR
j ;FS

i ), such that fj ∈ Supporti. Since

fj ∈ Supporti, it implies that vR
ij = hash(αR

j ;FR
i ). Since adversary does not know αR

j

and vR
ij , he can ensure that vR

ij = hash(αR
j ;FS

i ), as well as vR
ij = hash(αR

j ;FR
i ), where

FR
i 6= FS

i , with probability at most n−1+tb
|F| ≈ 2−Ω(κ), which is negligible in our context.

So with very high probability, fj will not belong to Supporti, which is a contradiction.
So with overwhelming probability FR

i = FS
i . 2

Claim 15.7 During Phase I, at least n coefficients of MS(x) are information theo-
retically secure.

Proof: We consider the worst case, when Astatic
tb

controls at most tb wires in the
top band. Without loss of generality, let these be the first tb wires. So Astatic

tb
will
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Figure 15.2: Phase I of Protocol 3-SSMT-Static-Byzantine-Directed

Phase I: S to R: S does the following computation and communication:

1. S selects a random polynomial MS(x) over F of degree n − 1 + tb such that
the lower order n

3 coefficients of MS(x) are elements of mS.

2. S computes MS(1), . . . ,MS(n + tb).

3. S then selects n + tb random polynomials fS
1 (x), . . . , fS

n+tb
(x) over F, each of

degree tb, such that for i = 1, . . . , n + tb, fS
i (0) = MS(i).

4. S evaluates each fS
i (x) at x = 1, . . . , n to form an n-tuple fS

i =
[fS

i (1), . . . , fS
i (n)].

5. S constructs an (n) × (n + tb) matrix T where ith column of T contains the
n-tuple fS

i , for i = 1, . . . , n + tb. The matrix T is pictorially shown in Fig.
15.3. Let FS

i = [fS
1 (i), . . . , fS

n+tb
(i)] denote the ith row of T , for i = 1, . . . , n.

6. For i = 1, . . . , n, S sends the following to R along wire fi:

(a) The vector FS
i ;

(b) A random non-zero hash key αS
i and

(c) The n-tuple [vS
1i, . . . , v

S
ni], where for j = 1, . . . , n, vS

ji = hash(αS
i ;FS

j ).

7. In addition to all above computation and communication, S also selects a
random non-zero (n + 1)-tuple (xS

1,i, . . . , x
S
n+1,i), which is independent of FS

i ,

corresponding to every wire fi, for i = 1, . . . , n. S then sends (xS
1,i, . . . , x

S
n+1,i)

to R over wire fi.

Computation by R at the end of Phase I:

1. Let R receive the following over wire fi, for i = 1, . . . , n:

(a) The vector FR
i ;

(b) The hash key αR
i ;

(c) The n tuple [vR
1i , . . . , v

R
ni] and

(d) The (n + 1)-tuple (xR
1,i, . . . , x

R
n+1,i).

2. For i = 1, . . . , n, R computes Supporti = |{fj : vR
ij = hash(αR

j ;FR
i )}|. If

Supporti ≥ tb + 1, then R concludes that FR
i is a valid row of T . Otherwise,

R concludes that FR
i is an invalid row of T .

3. If R has received tb + 1 valid rows, then R reconstructs the secret mR from
them and terminates the protocol. Otherwise, R proceeds to execute Phase
II.

know the vectors FS
1 , FS

2 , . . . , FS
tb

, from which it will come to know tb distinct points
on the polynomials fS

1 (x), . . . , fS
n+tb

(x). But each fS
i (x) is of degree tb and so Astatic

tb
will lack by one point to uniquely reconstruct each fS

i (x). However, Astatic
tb

will also
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Figure 15.3: Matrix T as Computed by S During Phase I of 3-SSMT-Static-Byzantine-
Directed

.

MS(x), Lower order n
3 coefficients of MS(x) are elements of mS

MS(1) MS(2) . . . MS(n + tb)

fS
1 (x) fS

2 (x) . . . fS
n+tb

(x)
fS
1 (0) = MS(1) fS

2 (0) = MS(2) . . . fS
n+tb

(0) = MS(n + tb)

fS
1 (1) fS

2 (1) . . . fS
n+tb

(1)
fS
1 (2) fS

2 (2) . . . fS
n+tb

(2)
. . . . . . . . . . . .

fS
1 (i) fS

2 (i) . . . fS
n+tb

(i)
. . . . . . . . . . . .

fS
1 (n) fS

2 (n) . . . fS
n+tb

(n)

know tb hash values corresponding to each FS
1 , . . . , FS

n . Since the vectors FS
1 , . . . , FS

tb
are already known to Astatic

tb
, the tb hash values corresponding to them does not add

anything new to Astatic
tb

’s view. Moreover, the vectors FS
tb+2, . . . , F

S
n can be expressed

as a linear combination of vectors FS
1 , . . . , FS

tb+1. So the tb hash values corresponding

to FS
tb+2, . . . , F

S
n can always be expressed as a linear combination of the tb hash values

corresponding to FS
1 , . . . , FS

tb+1, which are known to the adversary. So, out of the tb
hash values corresponding to each FS

i (x), 1 ≤ i ≤ n, which are known to Astatic
tb

, only
the tb hash values corresponding to FS

tb+1(x) add to Astatic
tb

’s view. But FS
tb+1 is of length

n + tb. So from the properties of hashing, (n + tb)− tb = n coefficients of FS
tb+1 will be

information theoretically secure. This further implies that n coefficients of MS(x) are
information theoretically secure. 2

Claim 15.8 If R gets tb + 1 valid rows of T then R can recover mS.

Proof: If R gets tb + 1 valid rows, then from them, R gets tb + 1 distinct points
on each fS

i (x). Since each fS
i (x) is of degree tb, using the tb + 1 valid rows, R can

reconstruct each fS
i (x) and hence fS

i (0) = MS(i). Now using the MS(i)’s, R can
interpolate MS(x) and recover mS. 2

Lemma 15.9 In protocol 3-SSMT-Static-Byzantine-Directed if R recovers mR at the
end of Phase I, then except with probability 2−Ω(κ), mR = mS. Moreover, Astatic

tb
will

have no information about mR.

Proof: If R recovers mR at the end of Phase I, then it implies that R has received
tb + 1 valid rows. From Claim 15.6, all these rows are indeed the rows of T sent by
S, except with probability 2−Ω(κ). So from Claim 15.8, except with probability 2−Ω(κ),
mR = mS. Moreover, from Claim 15.7, Astatic

tb
will have no information about mR. 2

Lemma 15.10 If there exists tb + 1 honest wires in the top band then R will always
be able to recover mS at the end of Phase I of 3-SSMT-Static-Byzantine-Directed.
Otherwise, with very high probability, R will detect this. During Phase I of 3-SSMT-

Static-Byzantine-Directed, S communicates O(n2κ) bits.

Proof: If there exists tb+1 honest wires in the top band then R will receive tb+1 valid
rows of T over them and hence from Claim 15.8, R will correctly recover mR = mS.
On the other hand if there exists less than tb + 1 honest wires in the top band then
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from the proof of Claim 15.6, R will receive less than tb + 1 valid rows with very high
probability. So with very high probability, R will detect that there are at most tb
honest wires in the top band.

During Phase I, S sends Θ(n) elements from F over each wire. So Phase I requires
a communication complexity of O(n2κ) bits. 2

If R is unable to recover mR at the end of Phase I, then R concludes that there are at
most tb honest wires in the top band. This further implies that there exists at least one
honest wire in the bottom band. So R interacts with S so as to enable S to re-send mS

using the second method. The next subsection describes the second phase of protocol
3-SSMT-Static-Byzantine-Directed.

15.5.2.2 Phase II of Protocol 3-SSMT-Static-Byzantine-Directed

If the first method to deliver mS fails at the end of Phase I, then in the second method,
S and R interacts to securely establish a vector of length n during Phase II. Once this
is done, S can use the elements of the vector as encryption and authentication keys (as
in protocol 3-SSMT-Static-Byzantine-Directed-Exponential) and using them, S reliably
and securely sends mS during Phase III.

Securely establishing a vector of length n is not easy, considering the fact that S
and R do not know the identity of corrupted wires. Also it is very difficult for R
(S) to reliably send any information to S (R). In the case of undirected graphs, there
exists at least 2tb + 1 bi-directional wires between S and R (which are necessary and
sufficient for the existence of any SRMT/SSMT protocol tolerating Astatic

tb
) and so it is

very easy to do reliable communication by simply sending the information through all
the wires. However here, in the worst case, we may have tb + 1 and tb wires in top and
bottom band respectively. In protocol 3-SSMT-Static-Byzantine-Directed-Exponential,
S and R could easily establish the vector, as they tried all possible subsets of size
tb + 1 and there exists one subset consisting of all honest wires. However, we cannot
use the same approach here, as we want to keep the computation and communication
complexity polynomial. So we require completely different techniques to reliably and
securely establish the keys.

Recall that during Phase I, S has sent an (n + 1)-tuple over each wire in the top
band. These tuples were not used in the first method (during Phase I) to send mS. So
R now use these tuples in the second phase. R does not know which wires in the top
band correctly delivered the (n + 1)-tuples. In order to facilitate S to find out which
tuples were delivered properly, R hashes each received (n + 1)-tuple with a random
hash key and sends back the hash values and hash keys to S through the entire bottom
band. Since there exists at least one honest wire in the bottom band, it will correctly
deliver the hash keys and hash values. In addition to this, R also sends a random
(n + u)-tuple over each wire. Furthermore, each (n + u)-tuple is hashed by u random
hash keys, one corresponding to each wire in the bottom band.

Till now, this part of the computation and communication is some what similar to
what is done during protocol 3-SSMT-Static-Byzantine-Directed-Exponential. However,
there are certain additional steps which are incorporated here. First of all, S and R
have exchanged tuples over all the wires in top band and bottom band, rather than
considering (tb + 1)-sized subsets of wires. In addition to this, R sends the hash value
of each tuple received over the top band and each tuple sent over the bottom band.
Finally, the size of the tuples which are exchanged over the top and bottom band are
different. They are so to maintain the secrecy of mS, which will be delivered during
third phase. More specifically, each tuple received over the top band is hashed by only
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one key. So keeping the length of the tuples which are exchanged over top band as
n+1 maintains the secrecy of its first n elements. On the other hand, each tuple in the
bottom band is hashed by u random keys. So keeping the length of the tuples which
are exchanged over bottom band as n + u maintains the secrecy of its first n elements.

Now as mentioned above, the information sent by R may not reach reliably to S.
In the worst case, there can be only one honest wire in the bottom band but S will not
know its identity. Now according to the information received from R, sender S divides
the bottom band into acceptable sets B1, . . . ,Bk, where 1 ≤ k ≤ u. The division is at
the heart of the protocol. Informally, the division is done as follows: S considers a wire
bi in the bottom band and adds wire bj from the bottom band in the set Bi if bj and bi

are pairwise consistent. Here, by pair wise consistency we mean that that the hash key
and hash value received by S over wire bj is consistent with the (n + u)-tuple received
by S over wire bi and vice-versa. Notice that if bj is an honest wire and if bi and bj are
pairwise consistent, then with very high probability, the (n + u)-tuple received by S
over wire bi is not modified. This is because the adversary does not know the hash key
and hash value sent by R over wire bj, corresponding to the original ith (n + u)-tuple.

Now after computing the set Bi, S computes the corresponding set Fi. Recall that
R has sent the hash value of each (n+1)-tuple received over the top band, through the
entire bottom band. So S considers the hash values (corresponding to the top band
tuples), received over wire bi and adds all such fj’s in Fi, such that the (n + 1)-tuple
sent over wire fj during Phase I is consistent with the jth hash value, received over
wire bi. Notice that if fj is a corrupted wire and if the (n + 1)-tuple sent over wire fj

is modified during Phase I, then with very high probability, fj will not be added to
Fi, provided bi is an honest wire. This is because if bi is an honest wire then adversary
will not know the jth hash key and hash value, which is sent by R over wire bi.

Finally, S considers the set Bi as acceptable, if there are at least tb + 1 wires in
total in Fi and Bi. It is easy to see that there will be at most u acceptable sets, one
corresponding to each wire in the bottom band. Moreover, if bi is an honest wire in
the bottom band, then Bi will always be an acceptable set, as all honest wires in top
band and bottom band will be present in Fi and Bi respectively. It is this division of
the bottom band, which makes S now to work with u path sets, instead of

(2tb+1
tb+1

)
path

sets. The formal details of Phase II of protocol 3-SSMT-Static-Byzantine-Directed are
given in Fig. 15.4.

Remark 15.11 The three phase efficient SSMT protocol of [24] as well as [54] also
divides the bottom band into subsets during second phase, according to some what dif-
ferent criteria. In [24], as well as in [54], the authors claimed that their criteria will
create at most u subsets of the bottom band. However, in the subsequent section, we
will show that it is not so. In the worst case, there can be O(3u) subsets of the bottom
band, thus making the communication and computational complexity of their protocol
exponential. On the other hand, our criteria for division of bottom band always result in
at most u subsets of the bottom band. It is this difference in the criteria of the division
of the bottom band, which makes the communication and computational complexity of
our protocol 3-SSMT-Static-Byzantine-Directed polynomial.

We now prove the properties of Phase II of 3-SSMT-Static-Byzantine-Directed.

Claim 15.12 If bi is an honest wire in the bottom band and bi ∈ Bj, corresponding to
some wire bj in the bottom band, then except with error probability 2−Ω(κ), the random
(n + u)-tuple that S has received along wire bj is not modified.
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Figure 15.4: Phase II of Protocol 3-SSMT-Static-Byzantine-Directed

Phase II: R to S: R does the following computation and communication:

1. For i = 1, . . . , n, R chooses a random, non-zero hash key rR

i , corresponding to wire fi.

2. R computes the set βR = {(rR

i , γR

i ) : i = 1, . . . , n}, where γR

i = hash(rR

i ; xR

1,i, . . . , x
R

n+1,i).
Recall that (xR

1,i, . . . , x
R

n+1,i) denotes the (n + 1)-tuple which R has received during Phase
I over wire fi, for i = 1, . . . , n.

3. For i = 1, . . . , u, R selects a random non-zero (n + u)-tuple (yR

1,i, . . . , y
R

n+u,i).

4. Corresponding to the (n+u)-tuple (yR

1,i, . . . , y
R

n+u,i), R selects u random non-zero hash keys
{keyR

i,j : j = 1, . . . , u} from F.

5. For i = 1, . . . , u, R sends the following to S through wire bi:

(a) βR;

(b) The (n + u)-tuple (yR

1,i, . . . , y
R

n+u,i);

(c) The 2-tuple (keyR

j,i, α
R

j,i), where αR

j,i = hash(keyR

j,i; y
R

1,j , . . . , y
R

n+u,j), for j = 1, . . . , u.

Computation by S at the end of Phase II:

1. Let S receive the following over wire bi, for i = 1, . . . , u:

(a) βS

i = {(rR

i,j , γ
R

i,j) : j = 1, . . . , n};

(b) The (n + u)-tuple (yS

1,i, . . . , y
S

n+u,i);

(c) The 2-tuple (keyS

j,i, α
S

j,i), for j = 1, . . . , u.

2. For i = 1, . . . , u, corresponding to wire bi, S computes Bi and Fi as follows:

(a) S adds wire bj ∈ {b1, . . . , bu} to Bi (which is initially ∅) if bi, bj are found to be pair-wise
consistent by satisfying both the following conditions:

i. αS

i,j = hash(keyS

i,j ; y
S

1,i, . . . , y
S

n+u,i);

ii. αS

j,i = hash(keyS

j,i; y
S

1,j , . . . , y
S

n+u,j).

(b) S adds wire fj to Fi (which is initially ∅), if γS

i,j = hash(rS

i,j ; x
S

1,j , . . . , x
S

n+1,j).

(c) If |Fi| + |Bi| ≤ tb then S concludes that Bi is an unacceptable set, otherwise Bi is an
acceptable set.

Proof: The claim holds without any error if wire bj is honest. We now show that
the claim even holds for a corrupted wire bj with very high probability. So let bj be
a corrupted wire, such that the (n + u)-tuple received by S over wire bj is modified;
i.e., (yS

1,j, . . . , y
S
n+u,j) 6= (yR

1,j, . . . , y
R
n+u,j). Since bi ∈ Bj is an honest wire, it implies

that keyS
j,i = keyR

j,i and αS
j,i = αR

j,i = hash(keyR
j,i; y

R
1,j, . . . , y

R
n+u,j). Moreover, Astatic

tb

will have no information about (keyS
j,i, α

S
j,i). Furthermore, since bi ∈ Bj, it implies

that αS
j,i = hash(keyS

j,i; y
S
1,j, . . . , y

S
n+u,j). However, from the properties of hashing,

without knowing keyS
j,i, the adversary can ensure that hash(keyS

j,i; y
S
1,j , . . . , y

S
n+u,j) =

hash(keyS
j,i; y

R
1,j, . . . , y

R
n+u,j), even if (yS

1,j, . . . , y
S
n+u,j) 6= (yR

1,j , . . . , y
R
n+u,j) with proba-

bility at most n+u
|F|−1 ≈ 2−Ω(κ), which is negligible in our context. 2

Claim 15.13 If bi is an honest wire in the bottom band then Bi will be always consid-
ered as an acceptable set.

Proof: Let fi1, . . . , fiT and bi1, . . . , biB denote the honest wires in the top and bot-
tom band respectively. Now |{fi1 , . . . , fiT }| + |{bi1 , . . . , biB}| ≥ tb + 1. Moreover
|{fi1 , . . . , fiT }| ≥ 1. Furthermore according to the condition given in the claim, |{bi1 , . . . ,
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biB}| ≥ 1. To prove the claim we show that the wires bi1 , . . . , biB will be present in
Bi and the wires fi1 , . . . , fiT will be present in the corresponding Fi. So |Fi| + |Bi| =
|{fi1 , . . . , fiT }|+ |{bi1 , . . . , biB}| ≥ tb + 1 and thus Bi will be an acceptable set.

First of all notice that all the wires bi1, . . . , biB (including bi) will be present in Bi.
This is because any two wires bj, bk in the set {bi1 , . . . , biB} will be pairwise consistent
because the following conditions are satisfied (as both these wires are honest):

1. αS
j,k = hash(keyS

j,k; y
S
1,j, . . . , y

S
n+u,j);

2. αS
k,j = hash(keyS

k,j; y
S
1,k, . . . , y

S
n+u,k).

So the wires bi1 , . . . , biB will be present in Bi. Since the wires fi1 , . . . , fiT are honest,
the (n + 1)-tuple received by R over these wires are the same as sent by S. That is,
(xR

1,j, . . . , x
R
n+1,j) = (xS

1,j , . . . , x
S
n+1,j), for every j ∈ {i1, . . . , iT }. This implies that

γR
j = hash(rR

j ;xR
1,j , . . . , x

R
n+1,j) = hash(rR

j ;xS
1,j , . . . , x

S
n+1,j), for every j ∈ {i1, . . . , iT }.

Since the wires bi1 , . . . , biB are honest, they will correctly deliver βR and hence βS
i = βR,

as wire bi is honest. This implies that (γS
i,j , r

S
i,j) = (γR

j , rR
j ) for every j ∈ {i1, . . . , iT }.

So when S executes step 2(b) of the computation at the end of Phase II with respect
to βS

i , all the wires fi1, . . . , fiT will be added in Fi. 2

Claim 15.14 Let bi be an honest wire in the bottom band. Then with very high prob-
ability, the (n + 1)-tuple received by R at the end of Phase I over the wires in Fi are
not modified.

Proof: Let bi be an honest wire in the bottom band. Then |Fi| ≥ 1. This is because
from the proof of the previous claim, |Bi| + |Fi| ≥ tb + 1 and there can be at most tb
wires in Bi. Now let fj be an honest wire from the top band, which is present in Fi.
Since fj is honest, it implies that it will correctly deliver the (n + 1)-tuple to R. On
the other hand, let fj be a corrupted wire in the top band, such that fj has modified
the (n + 1)-tuple sent by S over fj. That is (xR

1,j , . . . , x
R
n+1,j) 6= (xS

1,j , . . . , x
S
n+1,j). We

now show that except with probability 2−Ω(κ), fj will not be present in Fi.
Notice that when modifying the (n + 1)-tuple over wire fj, the adversary has no

idea about the random hash key rR
j , corresponding to wire fj, which is going to be

selected by R during Phase II. Now γR
j = hash(rR

j ;xR
1,j , . . . , x

R
n+1,j). Since wire bi

is honest, it will correctly deliver βR and hence (rR
j , γR

j ). So βS
i = βR and hence

(rS
ij , γ

S
ij) = (rR

j , γR
j ). Since (xR

1,j, . . . , x
R
n+1,j) 6= (xS

1,j, . . . , x
S
n+1,j) and adversary has no

information about rR
j , from the properties of hashing, except with probability n

|F| ≈

2−Ω(κ), γS
ij 6= hash(rS

ij ;x
S
1,j , . . . , x

S
n+1,j). Thus except with probability 2−Ω(κ), fj will

not be present in Fi. 2

Claim 15.15 Let Bi be an acceptable set. If bj is an honest wire in Bi, then the
adversary will have no information about the first n values from the (n+u)-tuple which
is sent by R over wire bj . Similarly, if fj is an honest wire in Fi, then the adversary
will have no information about the first n values from the (n + 1)-tuple which is sent
by S over wire fj.

Proof: Let Bi be an acceptable set and let bj be an honest wire in Bi. Since bj

is an honest wire, the adversary will not know the (n + u)-tuple which R will send
over wire bj . Now notice that during Phase II, R hashes the (n + u)-tuple which is
going to be sent over wire bj, by u random hash keys and sends one (hash key, hash
value) pair through each wire in the bottom band. In the worst case, the entire bottom
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band, except wire bj may be under the control of the adversary. So in the worst case,
adversary will know u− 1 distinct hash values, corresponding to the (n + u)-tuple sent
over wire bj . So from the properties of hashing, the adversary will have no information
about the first n values from the (n + u)-tuple which is sent by R over wire bj .

Now suppose there exists an honest wire, say fj, in Fi. So the adversary will not
know the (n + 1)-tuple which S has sent over wire fj. Now notice that during Phase
II, R hashes the (n + 1)-tuple received over wire fj by a random hash key rR

j , adds

the pair (rR
j , γR

j ) to βR and sends βR over all the wires in the bottom band. So
even if the entire bottom band is under the control of the adversary, the adversary
will know only one hash value corresponding to the (n + 1)-tuple which was sent by
S over wire fj. So from the properties of hashing, the adversary will have no infor-
mation about the first n values from the (n+1)-tuple which is sent by S over wire fj. 2

We now summarize the properties of set Bi,Fi, corresponding to an honest wire bi in
the bottom band.

Lemma 15.16 Let bi be an honest wire in the bottom band. Then Bi and corresponding
Fi will have the following properties:

1. Bi will be an acceptable set.

2. All honest wires in the bottom band will be present in Bi, while all the honest
wires in the top band will be present in Fi.

3. With very high probability, the (n + u)-tuple received by S at the end of Phase
II over the wires in Bi are not modified.

4. With very high probability, the (n + 1)-tuple received by R at the end of Phase I
over the wires in Fi are not modified.

5. The adversary will have no information about the first n values from the (n+u)-
tuples which are exchanged over the honest wire(s) in Bi. The adversary will also
have no information about the first n values from the (n + 1)-tuples which are
exchanged over the honest wire(s) in Fi.

Proof: Follows from the proof of Claim 15.12, Claim 15.13, Claim 15.14 and Claim
15.15. 2

We now prove the properties of set Bi,Fi, corresponding to a wire bi in the bottom
band, such that bi is under the control of the adversary.

Claim 15.17 Let bi be a corrupted wire in the bottom band, such that there exists an
honest wire in Bi. Then the adversary can modify the (n+u)-tuple which are exchanged
over the corrupted wires in Bi, other than bi, without letting S know about it.

Proof: Let bj be an honest wire present in Bi. Then from the proof of Claim 15.12, the
(n+u)-tuple is correctly exchanged between S and R over wire bi with very high prob-
ability. However, it does not imply that the (n + u)-tuple are correctly exchanged over
other corrupted wires (if any) in Bi. More specifically, let bk be a corrupted wire in the
bottom band, other than bi, such that (yS

1,k, . . . , y
S
n+u,k) 6= (yR

1,k, . . . , y
R
n+u,k). Since bi is

also under the control of the adversary, the adversary will know (keyR
k,i, α

R
k,i). Moreover,

the adversary can modify the pair such that (keyS
k,i, α

S
k,i) 6= (keyR

k,i, α
R
k,i) and αS

k,i =
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hash(keyS
k,i; y

S
1,k, . . . , y

S
n+u,k). Furthermore, adversary does not modify (keyR

i,k, α
R
i,k)

and thus (keyS
i,k, α

S
i,k) = (keyR

i,k, α
R
i,k), where αS

i,k = hash(keyS
i,k; yS

1,i, . . . , y
S
n+u,i). If the

adversary behaves in this manner, then bi and bk will be pairwise consistent, while bk

and bj will not be pair-wise consistent. But still bk will be included in Bi and neither
S nor R will know that the (n + u)-tuple exchanged over wire bk ∈ Bi is corrupted. 2

Claim 15.18 Let bi be a corrupted wire in the bottom band and let fj be a corrupted
wire in the top band, which is present in Fi. Then the adversary can modify the (n+1)-
tuple which is exchanged over corrupted wire fj, without letting S and R know about
it.

Proof: Let fj be a corrupted wire in the top band, such that (xR
1,j, . . . , x

R
n+1,j) 6=

(xS
1,j, . . . , x

S
n+1,j). Since bi is also under the control of the adversary, it implies that

βR and hence (rR
j , γR

j ) is also known to the adversary. Now notice that γR
j =

hash(rR
j ;xR

1,j , . . . , x
R
n+1,j). During the transmission of βR over bi, the adversary can

simply change the jth pair in βR, such that (rS
i,j, γ

S
i,j) 6= (rR

j , γR
j ) and γS

i,j = hash(rS
i,j ;x

S
1,j ,

. . . , xS
n+1,j). The adversary can do so because he knows (xS

1,j , . . . , x
S
n+1,j) and rR

j and
bi is under his control. So even though the (n + 1)-tuple is not correctly exchanged
over fj, still fj can be present in Bi. 2

We now summarize the properties of set Bi,Fi, corresponding to a wire bi in the bottom
band, such that bi is under the control of the adversary.

Lemma 15.19 Let bi be a wire in the bottom band such that bi is under the control
of the adversary. Moreover, let Bi be an acceptable set. Then Bi and corresponding Fi

will have the following properties:

1. There will exist at least one honest wire, either from the top band or bottom band,
which will be present in Fi or Bi respectively.

2. If there exists an honest wire in Fi, then the (n + 1)-tuple is correctly exchanged
between S and R over that wire. Moreover, adversary will have no information
about the first n values of the (n + 1)-tuple.

3. If there exists an honest wire in Bi, then the (n + u)-tuple is correctly exchanged
between S and R over that wire. Moreover, adversary will have no information
about the first n values of the (n + u)-tuple.

4. If there exists an honest wire in Bi, then with very high probability the (n+u)-tuple
is correctly exchanged between S and R over wire bi. However, the adversary can
modify the (n+u)-tuple which are exchanged over the corrupted wires in Bi, other
than bi, without letting S know about it.

5. If there is no honest wire in Bi, then the adversary can always modify the (n+u)-
tuple which are exchanged over the corrupted wires in Bi, without letting S know
about it.

6. Irrespective of the number of honest wires in the top band, the adversary can
always modify the (n+1)-tuple which is exchanged over a corrupted wire (if any)
in Fi, without letting S and R know about it.
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Proof: Since Bi is an acceptable set, it implies that |Bi| + |Fi| ≥ tb + 1. In the
worst case there can tb corrupted wires including top and bottom band. This implies
that there exists at least one honest wire, which is present either in Fi or Bi. This
proves the first property.

Let fj be an honest wire present in Fi. It implies that the (n+1)-tuple is correctly
exchanged between S and R over wire fj. Moreover, from the proof of Claim 15.15,
adversary will have no information about the first n values of the (n + 1)-tuple. This
proves the second property.

Let bj be an honest wire present in Bi. It implies that the (n + u)-tuple is correctly
exchanged between S and R over wire bj. Moreover, from the proof of Claim 15.15,
adversary will have no information about the first n values of the (n + u)-tuple. This
proves the third property.

The fourth property follows from the proof of Claim 15.17.
We now prove the fifth property. The corrupted wires in the bottom band can

behave in such a way that even though there does not exist any honest wire in Bi, still
Bi becomes an acceptable set. We consider a possible setting and adversarial behavior
in which it is possible. The setting can be easily generalized. More specifically, suppose
u = tb and there exists tb − 1 corrupted wires in the bottom band, who modify the
(n+u)-tuple exchanged over them. Moreover, as explained in the proof of Claim 15.17,
the adversary can control these tb−1 wires in such a way that from S’s point of view, all
the tb − 1 corrupted wires are pairwise consistent. Furthermore, adversary can ensure
that none of these tb−1 corrupted wires are pair wise consistent with the single honest
wire which is present in the bottom band. That is, if bj is an honest wire in the bottom
band, then the adversary can simply modify (keyR

j,k, α
R
j,k), over all tb−1 corrupted bk’s,

thus making bj not pair-wise consistent with any of the tb − 1 corrupted wires. Now
as a result of such adversarial behavior, only corrupted wires (which are tb− 1) will be
present in Bi. In order that Bi becomes acceptable, there should be at least two wires
in Fi. Notice that in the scenario we are considering, there are tb honest wires in the
top band, who will correctly deliver the (n + 1)-tuples to R. So if bi correctly delivers
βR without doing any modification, then βS

i = βR and hence S will include all the tb
honest wires from the top band in Fi and hence Bi will become acceptable. This proves
the fifth property.

The last property follows from the proof of Claim 15.18. 2

Remark 15.20 (Difference Between Corrupted and Honest Acceptable Set)
Comparing Lemma 15.16 and Lemma 15.19, we find that in case of honest bi, the
(n + 1)-tuples and (n + u)-tuples are exchanged correctly between S and R over all the
wires in Fi and Bi respectively with very high probability. Moreover, there will be at
least tb + 1 (honest) wires distributed in Fi and Bi, such that adversary will have no
information about the first n values of the tuples that are exchanged over those wires.
On the other hand, in the case of corrupted bi, the (n + 1)-tuples and (n + u)-tuples
are exchanged correctly between S and R only over the honest wires in Fi and Bi re-
spectively. Moreover, there will be at least one (honest) wire either in Fi or Bi, such
that the adversary will have no information about the first n values of the tuple that is
exchanged over that wire.

Lemma 15.21 In protocol 3-SSMT-Static-Byzantine-Directed, there can be at most u
acceptable sets.

Proof: The proof follows from the fact corresponding to each wire bi in the bottom
band, there is only one Bi and Fi. 2
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Lemma 15.22 In protocol 3-SSMT-Static-Byzantine-Directed, R communicates O(n2κ)
bits during Phase II.

Proof: During Phase II, R sends O(n) field elements over each wire. This requires
a communication complexity of O(nuκ) = O(n2κ) bits, as u = O(n). 2

Finally before proceeding further to the description of third phase of the protocol, we
note that R executes Phase II only if he could not recover mS at the end of Phase I.
However, even if R recovers mS at the end of Phase I, he has no way to signal this to
S. This is because there are at most tb wires in the bottom band and in the worst case,
entire bottom band may be under the control of the adversary. So even if R does not
execute Phase II and does no communication to S, in the worst case the adversary
may simply control some wire(s) in the bottom band and pass some information to
S, which may lead S to construct some valid acceptable set(s), corresponding to those
wire(s)!! Fortunately the properties of hashing ensures that this happens with very
negligible probability, as shown in the next lemma.

Lemma 15.23 Suppose in protocol 3-SSMT-Static-Byzantine-Directed, R recovers mS

at the end of Phase I and does no communication over the bottom band. Then the prob-
ability that the adversary corrupts bottom band and sends some arbitrary information
to S which leads to the construction of acceptable set is at most 2−Ω(κ).

Proof: Consider the following settings: there are tb + 2 wires in the top band and
tb − 1 wires in the bottom band, such that the entire bottom band and one wire from
the top band are under the control of the adversary. Suppose R recovers mS at the end
of Phase I itself and so does not execute Phase II. However, the adversary may do
the following: the adversary selects tb−1 arbitrary (n+u)-tuples and (tb−1)2 random
hash keys and put these values over the wires in the bottom band in such a way, as if
R has executed Phase II using the (n + u)-tuples and (tb− 1)2 random hash keys. So
it is easy to see that all the wires in the bottom band will be pairwise consistent and
thus |Bi| = tb− 1, for i = 1, . . . , tb− 1. However, in order that any of these Bi becomes
an acceptable set, the adversary has to ensure that the corresponding |Fi| ≥ 2.

Now notice that the adversary will know the (n + 1)-tuple which is exchanged over
the single wire in the top band which is under the control of the adversary. So the
adversary can always produce the hash value of this tuple, corresponding to any hash
key. However, the adversary will have no information about the (n + 1)-tuples which
are exchanged over the tb + 1 honest wires in the top band. The probability that the
adversary will be able to produce the hash value of the (n + 1)-tuple, corresponding
to any of these tb + 1 honest wires, for a given hash key is same as the probability of
correctly guessing the corresponding (n + 1)-tuple, which is 1

|F|n+1 ≈ 2−Ω(κ).

Now the adversary may do the following: he selects tb + 2 hash keys, one corre-
sponding to each wire in the top band. The adversary also guesses the (n + 1)-tuple
which S would have sent over each honest wire in the top band and computes the hash
value of those tuples, as if the tuples are received by R. The adversary also computes
the hash value of the (n + 1)-tuple, which S has sent over the wire under its control
in the top band. Thus the adversary computes βR, as if βR is computed by R. The
adversary is sure that at least one (hash-key, hash-value) pair in the computed βR,
namely the one corresponding to the corrupted wire in the top band is correct. The re-
maining (hash-key, hash-value) pair in the computed βR (corresponding to the honest
wires in the top band) may be correct, depending upon the guess of the adversary. The
adversary then sends the computed βR to S over the entire bottom band. On receiving
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βS
i = βR, S will add the corrupted wire in the top band to the set Fi. Moreover, if the

adversary has successfully guessed the (n + 1)-tuple which was sent over some honest
wire fj, then the jth (hash-key, hash-value) pair in βS

i would be correct and hence fj

will be added in Fi, thus making |Fi| = 2 and hence Bi as an acceptable set. However,
this happens with probability 2−Ω(κ). 2

We now proceed towards the discussion of third phase, which is given in the next
subsection.

15.5.2.3 Phase III of Protocol 3-SSMT-Static-Byzantine-Directed

Notice that at the end of second phase, S could have u acceptable sets. S will not
know which of these acceptable sets contains only honest wires. From S’s view point,
all acceptable set may look valid. So S assumes that all the acceptable sets are valid and
tries to compute separate encryption key and authentication key from each acceptable
set. Specifically, S considers the wires in each acceptable Bi and corresponding Fi as
a valid path set and using them, S does the same computation and communication as
done in Phase III of protocol 3-SSMT-Static-Byzantine-Directed-Exponential. However,
instead of dealing with

(2tb+1
tb+1

)
path sets, S has to only consider u path sets. In the

same way, R recovers the message at the end of third phase by performing similar
computation, as it does at the end of Phase III of 3-SSMT-Static-Byzantine-Directed-
Exponential.

The secrecy of the protocol follows from the fact that corresponding to every ac-
ceptable Bi, there exists at least one honest wire, either in Bi or corresponding Fi, such
that the adversary will have no information about the first n values of the tuple which
is exchanged correctly between S and R over the honest wire. So adversary will have
no information about the n-tuple (whose elements are considered as the authentication
and encryption keys), computed by S from the tuples, which are exchanged over the
wires in Bi and Fi. Moreover, if the tuples are not correctly exchanged between S
and R over the wires in Bi and Fi, then S and R will end up with different version
of authentication and encryption keys. So except with negligible error probability, the
verification at R’s end will fail. This ensures reliability. The Phase III of protocol
3-SSMT-Static-Byzantine-Directed is formally presented in Fig. 15.5.

We now prove the properties of Phase III of protocol 3-SSMT-Static-Byzantine-
Directed.

Lemma 15.24 In protocol 3-SSMT-Static-Byzantine-Directed, mS will be information
theoretically secure at the end of Phase III.

Proof: In protocol 3-SSMT-Static-Byzantine-Directed, during Phase III, S encrypts
and authenticates mS by using the tuples, which are exchanged between S and R over
the wires in Bl and Fl, if Bl is an acceptable set. Now as stated in Remark 15.20,
irrespective of whether wire bl is honest or corrupted, there exists at least one honest
wire, either in Bl or Fl, such that the adversary will have no information about the
first n elements of the tuple which is exchanged between S and R over that honest
wire. Since the keys CS1,l, . . . , C

S
n,l are computed by adding the first n elements of the all

the tuples which are exchanged between S and R over the wires in Bl or Fl, it implies
that CS1,l, . . . , C

S
n,l will be information theoretically secure. Since CS1,l, . . . , C

S
n,l are used

as encryption and authentication keys, by the properties of USauth, it follows that mS

will be information theoretically secure at the end of Phase III. 2
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Figure 15.5: Phase III of Protocol 3-SSMT-Static-Byzantine-Directed

Phase III: S to R: For each acceptable set Bl and corresponding set Fl, S does
the following computation and communication:

1. S considers the first n elements from the (n + 1)-tuples which it had sent over
the wires in Fl during Phase I and the first n elements from the (n + u)-
tuples which S has received over the wires in Bl during Phase II. By using
them, S computes his version of n keys CS1,l =

∑
fj∈Fl

xS
1,j +

∑
bj∈Bl

yS
1,j, C

S
2,l =

∑
fj∈Fl

xS
2,j +

∑
bj∈Bl

yS
2,j, . . ., CSn,l =

∑
fj∈Fl

xS
n,j +

∑
bj∈Bl

yS
n,j.

2. For each element of mS (recall that |mS| = n
3 ), S takes three elements from the

keys computed in the previous step and computes the set SS
l = {(cSi,l, d

S
i,l) : i =

1, . . . , n
3 } where (cSi,l, d

S
i,l) = USauth(mS

i ; CS3i−2,l, C
S
3i−1,l, C

S
3i,l), for i = 1, . . . , n

3 .

3. S sends the set Fl,Bl and SS
l to R over all the wires in the set Fl and terminates

the protocol.

Message Recovery by R:

1. Let R receive the sets FR
j,l,B

R
j,l and SR

j,l along wire fj, for j = 1, . . . , n. In the
worst case, l = 1, . . . , u. R then executes the following steps.

2. If for some j ∈ {1, 2, . . . , n} and some l ∈ {1, 2, . . . , u}, |FR
j,l|+ |B

R
j,l| ≤ tb, then

R concludes that wire fj is corrupted and neglects wire fj.

3. If fj is not neglected, then for each FR
j,l,B

R
j,l and SR

j,l received along wire fj, R
does the following:

(a) Let SR
j,l = {(cRj,i,l, d

R
j,i,l) : i = 1, . . . , n

3 }.

(b) By using the index of the wires in FR
j,l and BR

j,l, R computes his version

of n keys CRj,1,l, . . . , C
R
j,n,l.

(c) For i = 1, . . . , n
3 , R applies the verification process of USauth on

cRj,i,l, d
R
j,i,l, C

R
j,3i−2,l, C

R
j,3i−1,l and CRj,3i,l.

(d) If the verification is successful for all i = 1, . . . , n
3 , then R recovers mR

j,i,l

from cRj,i,l, for i = 1, . . . , n
3 .

(e) Finally, R concatenates mR
j,1,l, . . . ,m

R
j, n

3
,l to reconstruct the message mR

and terminates the protocol.

Lemma 15.25 In protocol 3-SSMT-Static-Byzantine-Directed, mR = mS, except with
error probability 2−Ω(κ).

Proof: Let FR
j,l,B

R
j,l and SR

j,l denote the sets, which passes the verification test in step

3 of message recovery. This implies that R has recovered mR from SR
j,l after computing

his keys from the tuples which are exchanged between S and R over the wires in
FR

j,l and BR
j,l. Now notice that there exists at least one honest wire, which is present

in either FR
j,l or BR

j,l, such that adversary will have no information about the first n
elements of the tuple exchanged over that wire. So the keys computed by R from
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FR
j,l and BR

j,l will be information theoretically secure. Moreover, as explained in the

previous lemma, the keys which are used by S for encrypting and authenticating mS

will also be information theoretically secure. Now irrespective of whether the tuples are
correctly exchanged between S and R over all the wires in FR

j,l and BR
j,l, the adversary

will have no information about the keys used by S and the keys used by R. So from the
properties of USauth, if at all R outputs mR from SR

j,l, then except with probability

2−Ω(κ), mR = mS. 2

Lemma 15.26 In protocol 3-SSMT-Static-Byzantine-Directed, there always exist a wire
fj in the top band, such that FR

j,l,B
R
j,l and SR

j,l received by R over wire fj will satisfy
the verification process.

Proof: The proof simply follows from the fact that there exists at least tb + 1 honest
wires including top and bottom band and these tb + 1 honest wires will form some
acceptable set Bl and corresponding Fl. The rest now follows from the protocol code
for Phase III. 2

Lemma 15.27 During Phase III, S communicates O(n3κ) bits.

Proof: During Phase III, corresponding to an acceptable set Bl, S sends the iden-
tity of Bl,Fl and the encryption, authentication of mS along all the wires in Fl. This
requires a communication complexity of O(n2) field elements and hence O(n2κ) bits.
Now there can be u = O(n) acceptable sets. So the worst case communication com-
plexity of Phase III is O(n3κ) bits. 2

We now summarize the properties of protocol 3-SSMT-Static-Byzantine-Directed by the
following theorem.

Theorem 15.28 Protocol 3-SSMT-Static-Byzantine-Directed is a valid SSMT protocol,
which sends a message containing n

3 κ bits by communicating O(n3κ) bits and takes at
most three phases.

Finally, before ending our discussion on three phase SSMT, we discuss about the
three phase SSMT protocol of [24] and [54] and show that the computational and com-
munication complexity of both the protocols are exponential, as opposed to polynomial,
as claimed in [24] and [54].

15.5.3 Inefficiency of the Three Phase SSMT Protocol of [24, 54, 87]

In [54], the authors presented a three phase SSMT protocol called ΠExisting
modified (see Page

314 of [54]). The protocol securely sends a message containing n
3 field elements. The

idea of the protocol is similar to the three phase SSMT protocol of [24, 87] 4 except that
the SSMT protocol of [24, 87] sends a single message. The authors in [54] called the
three phase SSMT protocol of [24, 87] as ΠExisting. The authors in [54], as well as in [24,
87] claimed that their three phase SSMT protocol requires polynomial computational
and communication complexity 5. However, we now show that the computational and
communication complexity of the SSMT protocols of [24, 54, 87] are exponential.

4The three phase SSMT protocol presented in [24] and [87] are same.
5[54] claimed that their three phase SSMT protocol requires a communication complexity of O(n3κ)

bits, where as [24, 87] claimed that their SSMT protocol is efficient, requiring polynomial computational
and communication complexity.
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We specifically consider protocol ΠExisting
modified and show an adversarial behavior, which

may result S to communicate exponential number of bits during third phase. The
behavior also causes S and R to perform exponential computation during Phase III
and at the end of Phase III respectively. A similar behavior can cause the same result
for the SSMT protocol ΠExisting.

The three phase SSMT protocol ΠExisting
modified of [54] is same as protocol 3-SSMT-Static-

Byzantine-Directed presented in the previous section, except for the computation which
is done by S at the end of Phase II. Specifically, in protocol ΠExisting

modified, S divides the
bottom band at the end of Phase II, using some what different criteria, as shown in
Fig. 15.6.

Figure 15.6: Computation by S at the End of Phase II of Protocol ΠExisting
modified in [54]

S does the Following Computation at the End of Phase II:

1. Let S receive the following over wire bi, for i = 1, . . . , u:

(a) βS
i = {(rR

i,j , γ
R
i,j) : j = 1, . . . , n};

(b) The (n + u)-tuple (yS
1,i, . . . , y

S
n+u,i);

(c) The 2-tuple (keyS
j,i, α

S
j,i), for j = 1, . . . , u.

2. S divides the bottom band {b1, . . . , bu} into subsets B1, . . . ,Bk, such that for
l = 1, . . . , k, every two wires bi, bj ∈ Bl are pair-wise consistent by satisfying
the following conditions:

(a) βS
i = βS

j ;

(b) αS
i,j = hash(keyS

i,j ; y
S
1,i, . . . , y

S
n+u,i);

(c) αS
j,i = hash(keyS

j,i; y
S
1,j, . . . , y

S
n+u,j).

3. For l = 1, . . . , k, S computes the set Fl, corresponding to Bl as follows:

(a) Let bi ∈ Bl.

(b) S adds wire fj in Fl if γS
i,j = hash(rS

i,j ;x
S
1,j , . . . , x

S
n+1,j).

4. For l = 1, . . . , k, if |Fl|+ Bl ≥ tb + 1 then S considers Bl as an acceptable set,
otherwise S considers Bl as unacceptable.

In [54], the authors claimed that there can be at most u acceptable sets, one corre-
sponding to each wire in the bottom band. However, we now show that this is not true.
In fact, we show that in the worst case there can be O(3tb) acceptable sets. Before
doing so, we first present few concepts from graph theory.

Definition 15.29 (Maximal Clique and Maximal Independent Set [1, 2]) A
maximal clique in a graph is a clique that cannot be extended by adding one more vertex
to the clique. Complimentarily a maximal independent set is an independent set which
cannot be extended by adding one more vertex to the independent set. If S is a maximal
independent set in some graph, then it is a maximal clique in the complementary graph.
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Definition 15.30 (Tuŕan Graph[3]) The Tuŕan Graph T (n, r) is a graph formed
by partitioning a set of n vertices into r subsets, with sizes as equal as possible, and
connecting two vertices by an edge whenever they belong to different subsets. That is,
it is a complete r-partite graph

K⌈n/r⌉,⌈n/r⌉,...,⌊n/r⌋,⌊n/r⌋

The following result from [47] states the upper bound on the number of maximal
cliques that can be possible in any graph.

Theorem 15.31 ([47, 1, 2]) Any graph with n vertices can have at most 3
n
3 maximal

cliques.

The Tuŕan graph T (n, ⌈n/3⌉), also called as Moon-Moser graph satisfies the
bound given in the above theorem, as shown in the following example:

Example 15.32 (Largest Number of Maximal Cliques Possible in a Graph)
Let G be a graph with n vertices, which is a disjoint union of n/3 triangle graphs. Any
maximal independent set in this graph is formed by choosing one vertex from each tri-
angle. It is easy to see that there will be 3n/3 maximal independent sets in G. Moreover,
these maximal independent sets will be maximal clique in the complementary graph G.
Thus G will have exactly 3n/3 maximal cliques. The graph G is nothing, but the Tuŕan
graph T (n, ⌈n/3⌉), which is also called as Moon-Moser graph.

Now we return back to the computation done by S at the end of Phase II in
protocol ΠExisting

modified, as given in Fig. 15.6. We define the following graph:

Definition 15.33 (Consistency Graph) Let G = (V,E) be an undirected graph
where V = {b1, . . . , bu} and (bi, bj) ∈ E iff bi, bj are pairwise consistent and satisfies
the following conditions:

1. βS
i = βS

j ;

2. αS
i,j = hash(keyS

i,j ; y
S
1,i, . . . , y

S
n+u,i);

3. αS
j,i = hash(keyS

j,i; y
S
1,j, . . . , y

S
n+u,j).

Then the graph G is called the consistency graph.

We next claim that each Bl computed by S in ΠExisting
modified is a maximal clique in the

consistency graph G.

Claim 15.34 Each Bl computed by S in Fig. 15.6 is a maximal clique in consistency
graph G.

Proof: Follows from the definition of maximal clique, consistency graph and the steps
executed to compute Bl. 2

Claim 15.35 Let bi be a wire in the bottom band which is under the control of the ad-
versary and let bj be another wire in the bottom band (other than bi). Then irrespective
of whether bj is under the control of the adversary or not, the adversary can control the

behavior of bi during Phase II of ΠExisting
modified and decide whether bi is consistent with bj

or not.
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Proof: First of all, in order that bi, bj are pair-wise consistent, the following must
hold:

1. βS
i = βS

j ;

2. αS
i,j = hash(keyS

i,j ; y
S
1,i, . . . , y

S
n+u,i);

3. αS
j,i = hash(keyS

j,i; y
S
1,j, . . . , y

S
n+u,j).

Since bi is under the control of the adversary, the following information is completely
under his control:

1. βS
i ;

2. The (n + u)-tuple (yS
1,i, . . . , y

S
n+u,i);

3. The pairs (keyS
j,i;α

S
j,i), for all j = 1, . . . , u.

Now let bj be a specific wire in the bottom band (other than bi). If bj is also
under the control of the adversary, then the adversary can always control bi, bj and
decide whether bi, bj are consistent or inconsistent. On the other hand, even if bj is
honest, the adversary can control bi and decide whether bi are bj are consistent or
inconsistent. Specifically, if adversary wants that bi and bj are consistent, then the
adversary does not modify the information passed over wire bi. That is, βS

i = βR
i ,

(yS
1,i, . . . , y

S
n+u,i) = (yR

1,i, . . . , y
R
n+u,i) and (keyS

j,i;α
S
j,i) = (keyR

j,i;α
R
j,i). Since bj is anyway

honest, this implies that bi, bj will be pairwise consistent.
On the other hand, suppose adversary wants bi, bj to be inconsistent. The adversary

can do so by arbitrarily changing (keyS
j,i;α

S
j,i), such that (keyS

j,i;α
S
j,i) 6= (keyR

j,i;α
R
j,i). In

this case, bi, bj will not not be consistent. 2

Lemma 15.36 The adversary can behave during Phase II of protocol ΠExisting
modified in

such a way that it results in O(3tb) acceptable sets.

Proof: To prove the lemma, we consider the following specific network settings and
adversarial behavior. However, the settings and the behavior can be easily generalized.
Suppose n = tb + 1 and u = tb. Moreover, without loss of generality, let f1, . . . , ftb and
btb be the honest wires in the top band and bottom band respectively. Furthermore,
let ftb+1 and b1, . . . , btb−1 be the wires under the control of the adversary in top band
and bottom band respectively.

Now suppose that the adversary controls b1, . . . , btb−1 in such a way that none of
these wires are pairwise consistent with the honest wire btb . That is, vertex btb becomes
an isolated vertex in the consistency graph. As explained in Claim 15.35, the adversary
can always control b1, . . . , btb−1 in such a way which causes this situation. Moreover, let
the adversary controls b1, . . . , btb−1 in such a way that the consistency graph induced
by the vertex set {b1, . . . , btb−1} results in a Tuŕan graph T (tb−1, ⌈(tb−1)/3⌉). Again,
since the wires b1, . . . , btb−1 are under the control of the adversary, the adversary can
control these wires so as to create the above situation. Now as stated in Theorem 15.31
and shown in Example 15.32, the graph T (tb− 1, ⌈(tb− 1)/3⌉) will have 3tb−1 = O(3tb)
maximal cliques. Moreover, from Claim 15.34, each of these maximal cliques will be
considered as a distinct Bl by S. Thus, S will get O(3tb) distinct Bl’s at the end of
Phase II. Next we show that the adversary can control b1, . . . , btb−1 in such a way
that each of these O(3tb) distinct Bl’s become valid acceptable sets.
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Recall that during Phase II, R sends βR over the entire bottom band. Suppose
that the adversary does not modify βR during its transmission over wires b1, . . . , btb−1.
In this case, all the honest wires in the top band, namely f1, . . . , ftb will be added in
each Fl. Since each Bl contains at least one wire, it implies that |Fl| + |Bl| ≥ tb + 1
will hold for all Bl’s. Thus each Bl will be considered as acceptable. Thus there will
be O(3tb) acceptable sets. 2

Since Phase III of protocol ΠExisting
modified is same as Phase III of protocol 3-SSMT-Static-

Byzantine-Directed, where S tried to send mS using all possible acceptable sets, we have
the following theorem:

Theorem 15.37 In protocol ΠExisting
modified, S and R may have to do exponential compu-

tation. Moreover, S may do exponential communication.

Proof: As explained in previous lemma, S and R may end up with exponential
number of acceptable sets in protocol ΠExisting

modified. Thus they have to do exponential
computation. It is easy to see that in this case, S has to do exponential communication
during Phase III, as S has to send mS, corresponding to each acceptable set by using
the keys computed from it. 2

Now as in protocol ΠExisting
modified, the adversary may control the bottom band in such a way

that S may end up with exponential number of acceptable sets at the end of Phase
II of the three phase efficient SSMT protocol ΠExisting of [24, 87]. We capture this by
the following theorem statement.

Theorem 15.38 In protocol ΠExisting, S and R may have to do exponential compu-
tation. Moreover, S may do exponential communication.

Since protocol ΠExisting
modified is used as a black-box in other SRMT and SSMT protocols

of [54], it will make the computational and communication complexity of all SRMT
and SSMT protocols of [54] exponential.

Remark 15.39 (Difference Between 3-SSMT-Static-Byzantine-Directed and ΠExisting
modified)

The main difference between Phase II of protocol 3-SSMT-Static-Byzantine-Directed

and ΠExisting
modified is the way S divides the bottom band. In ΠExisting

modified, it is required that all
the wires in a Bl should be pairwise consistent, thus making Bl a maximal clique. On
the other hand, in 3-SSMT-Static-Byzantine-Directed, it is required that all the wires in
a Bl should be pairwise consistent only with wire bl. It is this subtle difference which
results in at most u acceptable sets (one corresponding to each wire in the bottom band)
in protocol 3-SSMT-Static-Byzantine-Directed.

Though protocol 3-SSMT-Static-Byzantine-Directed is an efficient SSMT protocol,
it is not a communication optimal protocol. We can further reduce the communication
complexity of SSMT protocols by increasing the number of phases in the protocol,
which will further lead us to the design of a communication optimal SSMT protocol.
In order to design our communication optimal protocol, we require few more black box,
which we describe in the subsequent sections.

15.6 Six Phase Statistically Secure Pad Establishment Pro-

tocol

We now propose a six phase protocol called 6-Pad, which correctly establishes a random
non-zero one time pad between S and R with very high probability by communicating
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O(n3) field elements. Moreover, the pad will be information theoretically secure. If
the entire bottom band is corrupted, then the size of the pad is Θ(n2u) field elements.
Otherwise the size of the pad is Θ(n2) field elements. Before presenting protocol 6-Pad,
we present another protocol called 1-Pad, which will be used as a black-box in protocol
6-Pad.

15.6.1 Single Phase Conditional Pad Establishment Protocol

Suppose S and R somehow in advance knows that full bottom band is corrupted. This
implies that at most tb − u wires in the top band are corrupted. This further implies
that there exists at least tb+1 honest wires in the top band. Under this assumption, we
design a single phase protocol called 1-Pad which allows S and R to correctly establish
a non-zero random one time pad of size Θ(n2u) with very high probability by com-
municating O(n3) field elements. Moreover, the pad will be information theoretically
secure.

The idea of the protocol is similar to the one used in Phase I of protocol 3-SSMT-
Static-Byzantine-Directed. Recall that Phase I of protocol 3-SSMT-Static-Byzantine-
Directed would be successful if there exists at least tb + 1 honest wires in the top band
(see Lemma 15.10). Now in 1-Pad we have tb + 1 honest wires in the top band. So if
we execute Phase I of 3-SSMT-Static-Byzantine-Directed then it would be successful.
Protocol 1-Pad is based on this principle. The protocol uses Extrapolation Technique
(see Fig. 8.1). Protocol 1-Pad is formally given in Fig. 15.7.

We now prove the properties of protocol 1-Pad.

Claim 15.40 In protocol 1-Pad if R concludes that FR
i is a valid row of BS then except

with probability 2−Ω(κ), FR
i = FS

i .

Proof: The proof follows using similar argument as in Claim 15.6. 2

Claim 15.41 In protocol 1-Pad, PS will be information theoretically secure.

Proof: Recall that in protocol 1-Pad, there are at most tb − u wires in the top band
which can be under the control of the adversary. Now using similar argument as in
Claim 15.7, it follows that [(tb + 1) − (tb − u)]n2 = (u + 1)n2 elements of VS will be
information theoretically secure. The rest now follows from the properties of algorithm
EXTRAND. 2

Claim 15.42 If R gets tb + 1 valid rows of BS then R can recover PS.

Proof: Follows using similar argument as in Claim 15.8. 2

Claim 15.43 If R outputs PR then except with error probability 2−Ω(κ), PR = PS.

Proof: If R outputs PR, then it implies that R has received tb + 1 valid rows.
From Claim 15.40, all these rows are indeed the rows of BS sent by S with very high
probability. So from Claim 15.42, with very high probability, PR = PS. 2

Theorem 15.44 If the entire bottom band is corrupted, then protocol 1-Pad securely
establishes a random non-zero pad of size Θ(n2uκ) bits by communicating O(n3κ) bits.

Proof: Over each wire, S sends O(n2) field elements. This incurs a communication
complexity of O(n3) field elements and hence O(n3κ) bits. The rest of the properties
of protocol 1-Pad follows from Claim 15.40, Claim 15.41, Claim 15.42 and Claim 15.43.
2
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Figure 15.7: Single Phase Protocol 1-Pad

Computation and Communication by S:

1. S sets ROW = tb + 1, COL = c = n2 + tb − u and N = n. S then forms
a matrix Binit, consisting of ROW × COL random, non-zero elements from
F. S then executes the steps in Extrapolation Technique to generate an n × c
matrix Bext from Binit. Let BS = Bext.

2. For i = 1, . . . , n, S selects a random non-zero hash key αS
i , corresponding to

wire fi.

3. For i = 1, . . . , n, S sends the following to R over wire fi:

(a) The ith row of BS, denoted by FS
i ;

(b) The hash key αS
i and

(c) The hash values vS
ji, where vS

ji = hash(αS
i ;FS

j ), for j = 1, . . . , n.

4. Let VS denote the concatenation of the elements of the first tb +1 rows of BS.
S computes

PS = EXTRAND|VS|,(u+1)n2(VS).

5. The vector PS denotes the information theoretically secure random pad of size
Θ(n2u) which will be correctly established with R with very high probability.

Computation by R:

1. For i = 1, . . . , n, let R receive the following over wire fi:

(a) The c-tuple, denoted by FR
i ;

(b) The hash key αR
i and

(c) The hash values vR
ji , for j = 1, . . . , n.

2. For i = 1, . . . , n, R computes

Supporti = |{j : hash(αR
j ;FR

i ) = vR
ij }|.

3. If Supporti ≥ tb+1, then R concludes that FR
i is a valid row of BS. Otherwise,

R concludes that FR
i is an invalid row.

4. Using tb + 1 valid rows, R constructs the n × c array BR. From BR, R
computes VR, from which it finally computes PR and terminates.

15.6.2 A Six Phase Pad Establishment Protocol

We now present our six phase pad establishment protocol 6-Pad. The main idea of
the protocol is as follows: S and R interacts to find whether there the entire bottom
band is corrupted or not. If they find that the entire bottom band is corrupted then
S and R executes the single phase protocol 1-Pad to establish a pad of size Θ(n2u)
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field elements. On the other hand if S and R finds that the entire bottom band is not
corrupted then they apply EXTRAND on the information exchanged between them to
establish a pad of size Θ(n2) field elements.

Now as in the case of protocol 3-SSMT-Static-Byzantine-Directed, we present pro-
tocol 6-Pad phase by phase. This will help the reader to understand the protocol
conceptually. We begin with the description of the first two phases.

15.6.2.1 First Two Phases of Protocol 6-Pad

The first two phases of protocol 6-Pad are similar as in protocol 3-SSMT-Static-Byzantine-
Directed, except that now the first phase is initiated by R. During first phase, R sends
a random (n2 + 1)-tuple to S over each wire. During second phase, S sends a random
(n2 + tb)-tuple to R over each wire. In addition to this, S and R also exchanges the
hash values of the exchanged tuples, as in protocol 3-SSMT-Static-Byzantine-Directed.
The formal details of first two phases of 6-Pad are given in Fig. 15.8.

At the end of Phase II of protocol 6-Pad, R divides the top band using similar
principle as used by S to divide the bottom band during protocol 3-SSMT-Static-
Byzantine-Directed. We now state the following lemmas, whose proofs are similar to
the one given for protocol 3-SSMT-Static-Byzantine-Directed.

Lemma 15.45 Let fi be an honest wire in the top band. Then Fi and corresponding
Bi will have the following properties:

1. Fi will be an acceptable set.

2. All honest wires in the bottom band will be present in Bi, while all the honest
wires in the top band will be present in Fi.

3. With very high probability, the (n2 + tb)-tuple received by R at the end of Phase
II over the wires in Fi are not modified.

4. With very high probability, the (n2 + 1)-tuple received by S at the end of Phase
I over the wires in Bi are not modified.

5. The adversary will have no information about the first n2 values of the (n2 + tb)-
tuples which are exchanged over the honest wire(s) in Fi. The adversary will also
have no information about the first n2 values of the (n2 + 1)-tuples which are
exchanged over the honest wires in Bi.

Lemma 15.46 Let fi be a wire in the top band such that fi is under the control of the
adversary. Moreover, let Fi be an acceptable set. Then Fi and corresponding Bi will
have the following properties:

1. There will exist at least one honest wire, either from the top band or bottom band,
which will be present in Fi or Bi respectively.

2. If there exists an honest wire in Fi, then the (n2 + tb)-tuple is correctly exchanged
between S and R over that wire. Moreover, adversary will have no information
about the first n2 values of the (n2 + tb)-tuple.

3. If there exists an honest wire in Bi, then the (n2 + 1)-tuple is correctly exchanged
between S and R over that wire. Moreover, adversary will have no information
about the first n2 values of the (n2 + 1)-tuple.

217



Figure 15.8: First Two Phases of Protocol 6-Pad

Phase I: R to S:

1. For i = 1, . . . , u, R selects a random non-zero (n2 +1)-tuple (yR
1,i, . . . , y

R
n2+1,i),

corresponding to wire bi and sends (yR
1,i, . . . , y

R
n2+1,i) to S over wire bi.

Phase II: S to R:

1. Let S receive (yS
1,i, . . . , y

S
n2+1,i) along wire bi, for i = 1, . . . , u.

2. For i = 1, . . . , u, S selects a random non-zero hash key rS
i , corresponding to

wire bi.

3. S computes the set βS = {(rS
i , γS

i ) : i = 1, . . . , u}, where γS
i =

hash(rS
i ; yS

1,i, . . . , y
S
n2+1,i).

4. S associates a random non-zero (n2 + tb)-tuple (xS
1,i, . . . , x

S
n2+tb,i) with wire fi,

for i = 1, . . . , n.

5. For i = 1, . . . , n, corresponding to wire fi, S chooses n random, non-zero hash
key keyS

i,j, for j = 1, . . . , n.

6. For i = 1, . . . , n, S sends the following to R over wire fi:

(a) βS;

(b) The (n2 + tb)-tuple (xS
1,i, . . . , x

S
n2+tb,i);

(c) The pairs {(keyS
j,i, α

S
j,i) : j = 1, . . . , n}, where αS

j,i =

hash(keyS
j,i;x

S
1,j , . . . , x

S
n2+tb,j).

Computation by R at the end of Phase II:

1. Let R receive the following over wire fi, for i = 1, . . . , n:

(a) βS
i = {(rR

i,j , γ
R
i,j) : j = 1, . . . , u};

(b) The (n2 + tb)-tuple (xR
1,i, . . . , x

R
n2+tb,i);

(c) The pairs {(keyR
j,i, α

R
j,i) : j = 1, . . . , n}

2. For i = 1, . . . , n, corresponding to wire fi, S computes the set Fi and Bi as
follows:

(a) R adds wire fj ∈ {f1, . . . , fn} to Fi (which is initially ∅) if fi, fj are found
to be pairwise consistent by satisfying the following conditions:

i. αR
i,j = hash(keyR

i,j ;x
R
1,i, . . . , x

R
n2+tb,i) and

ii. αR
j,i = hash(keyR

j,i;x
R
1,j, . . . , x

R
n2+tb,j).

(b) R adds wire bj to Bi (which is initially ∅) if γR
i,j =

hash(rR
i,j ; y

R
1,j, . . . , y

R
n2+1,j).

(c) If |Fi|+ |Bi| ≥ tb +1 then R considers Fi as an acceptable set. Otherwise
R considers Fi as unacceptable.
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4. If there exists an honest wire in Fi, then with very high probability the (n2 + tb)-
tuple is correctly exchanged between S and R over wire fi. However, the adversary
can modify the (n2 + tb)-tuples which are exchanged over the corrupted wires in
Fi, other than fi, without letting S and R know about it.

5. If there is no honest wire in Fi, then the adversary can always modify the (n2+tb)-
tuples which are exchanged over the corrupted wires in Fi, without letting S and
R know about it.

6. Irrespective of the number of honest wires in the bottom band, the adversary can
always modify the (n2+1)-tuple which is exchanged over a corrupted wire (if any)
in Bi, without letting S and R know about it.

Lemma 15.47 In protocol 6-Pad, there can be at most n acceptable sets.

Lemma 15.48 In protocol 6-Pad, R communicates O(n2u) field elements during Phase
I and S communicates O(n3) field elements during Phase II.

We now proceed to the description of the remaining phases of the protocol 6-Pad
which are given in the next subsection.

15.6.2.2 Remaining Phases of Protocol 6-Pad

Corresponding to each acceptable set Fl, R concatenates the tuples which are ex-
changed over the wires in Fl and Bl. R then hashes the resultant tuple and sends the
hash value, along with the identity of Fl and Bl to S through all the wires in Bl. If
the entire bottom band is corrupted, then S will not receive the correct hash value and
with very high probability, S will come to know this. This is because there will exist at
least one honest wire, either in Fl and Bl, such that adversary will have no information
about the first n2 element of the tuple exchanged over the honest wire. In this case, S
notifies about his finding to R and then executes protocol 1-Pad to establish a pad of
size Θ(n2u).

On the other hand, if there exists at least one honest wire in the bottom band, then
S will correctly receive a valid hash value, along with the identity of corresponding Fl

and Bl. S then notifies R about the identity of Fl and Bl. S also applies EXTRAND on
the tuples which are exchanged along the wires in Fl and Bl to extract an information
theoretically secure pad of size n2. Application of EXTRAND is required because it
may happen that Fl and Bl contains tb + 1 wires in total, out of which tb are under
the control of the adversary. So there will be only one honest wire and the adversary
will not know the first n2 elements of the tuple which is exchanged over that honest
wire. Since S and R will not know the exact identity of the honest wire, they apply
EXTRAND.

Notice that it is not easy for S to notify R about its finding. This is because there
can be only tb + 1 wires in the top band and in the worst case, tb of them can be
corrupted. To deal with this problem, S notifies R about its finding using protocol 3-
SSMT-Static-Byzantine-Directed. Since 3-SSMT-Static-Byzantine-Directed is an SSMT
protocol, it will securely and hence correctly deliver the notification to R. The formal
details of the remaining phases of protocol 6-Pad are given in Fig. 15.9.

We now prove the properties of remaining phases of protocol 6-Pad, as given in Fig.
15.9.

Claim 15.49 Let Fl be an acceptable set. Then adversary will have no information
about n2 − 1 elements of VR

l .
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Figure 15.9: Remaining Phases of Protocol 6-Pad

Phase III: R to S: For each acceptable set Fl and the corresponding set Bl, R does the following:

1. Let VR

l denote the concatenation of the first n2 elements from (n2 + 1)-tuples and (n2 + tb)-
tuples, which R has sent and received over the wires in Bl and Fl respectively.

2. Corresponding to vector VR

l , R selects a random non-zero hash key KR

l .

3. R computes δR

l = hash(KR

l ;VR

l ) and sends Bl,Fl and the 2-tuple (KR

l , δR

l ) to S through all
the wires in Bl.

Computation by S at the end of Phase III: Now using the hash value(s) received from R,
the sender S tries to find whether there exists at least one uncorrupted wire in the bottom band.
For this, S does the following:

1. Let S receive the index set FS

i,l and BS

i,l and the 2-tuple (KS

i,l, δ
S

i,l) along wire bi, for i =
1, . . . , u. Here l ≤ n.

2. If for some i ∈ {1, . . . , u} and some l ≤ n, |FS

i,l| + |BS

i,l| ≤ tb, then S concludes that wire bi

is corrupted and neglects it.

3. If bi is not neglected during previous step then for each FS

i,l, B
S

i,l and the tuple (KS

i,l, δ
S

i,l)
received along wire bi, S does the following:

(a) Let VS

i,l denote the concatenation of first n2 values of the (n2 +1)-tuples and (n2 + tb)-
tuples, which S has received and sent over the wires in BS

i,l and FS

i,l respectively.

(b) S now checks δS

i,l

?
= hash(KS

i,l;V
S

i,l).

(c) If the test fails for all received FS

i,l, B
S

i,l and the tuple (KS

i,l, δ
S

i,l) then S concludes that
wire bi is corrupted and neglects all the values received along bi.

(d) If the test succeeds for some FS

i,l, B
S

i,l and the tuple (KS

i,l, δ
S

i,l) then then S does the
following:

i. S concludes that the tuples are correctly exchanged between S and R along the
wires in BS

i,l and FS

i,l.

ii. S applies EXTRAND on VS

i,l to generate a vector PS

1 of size n2 − 1.

iii. Finally S terminates 6-Pad by sending a special predefined ”success” signal, along
with the index of the wires in the set BS

i,l and FS

i,l to R by executing the protocol
3-SSMT-Static-Byzantine-Directed.

iv. At the end of 3-SSMT-Static-Byzantine-Directed, R securely (and hence correctly)
receives the set BS

i,l and FS

i,l, computes PR

1 and terminates 6-Pad. Since 3-SSMT-

Static-Byzantine-Directed takes three phases, R will terminate 6-Pad at the end
of Phase VI.

4. If all the wires in the bottom band get discarded, then S concludes that entire bottom band
is corrupted. In this case, S does the following:

(a) S sends a special predefined ”failure” signal to R by executing the three phase protocol
3-SSMT-Static-Byzantine-Directed.

(b) Parallely, S establishes a secure pad PS

2 of size Θ(n2u) field elements with R by
executing single phase Protocol 1-Pad.

(c) At the end of 3-SSMT-Static-Byzantine-Directed, R will know that the entire bottom
band is corrupted.

(d) Parallely at the end of 1-Pad, R will output the pad PR
2 of size Θ(n2u) field elements.

Since 3-SSMT-Static-Byzantine-Directed takes three phases, R will terminate 6-Pad at
the end of Phase VI.
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Proof: Since Fl is an acceptable set, it implies that there exists at least one honest
wire, either in Fl or corresponding set Bl. Moreover, from Lemma 15.45 and Lemma
15.46, adversary will have no information about the first n2 elements of the tuple which
is exchanged over that honest wire. So VR

l , which is the concatenation of the first n2

elements from the tuples which are exchanged between S and R along the wires in Fl

and Bl will have n2 elements which will be unknown to the adversary. Now during
Phase III, R sends one hash value of VR

l along the wires in Bl. So from the properties
of hashing, it still holds that n2−1 elements of VR

l are information theoretically secure.
2

Claim 15.50 If at all S computes a pad PS
1 of size n2 − 1 field elements, then R will

correctly output PR
1 = PS

1 , except with probability 2−Ω(κ).

Proof: Suppose S computes PS
1 from FS

i,l, B
S
i,l and the tuple (KS

i,l, δ
S
i,l). This implies

that VS
i,l computed from the tuples exchanged over the wires in FS

i,l and BS
i,l satisfies

δS
i,l = hash(KS

i,l;V
S
i,l). Now from the proof of the previous claim, n2 − 1 elements of

VS
i,l are information theoretically secure. So from the properties of hashing, it implies

that the tuples are exchanged correctly between S and R along the wires in FS
i,l and

BS
i,l, except with probability 2−Ω(κ). Now S communicates the identity of the wires in

FS
i,l and BS

i,l to R by executing protocol 3-SSMT-Static-Byzantine-Directed. From the
properties of 3-SSMT-Static-Byzantine-Directed, R will correctly receive the identity of
the wires in FS

i,l and BS
i,l except with probability 2−Ω(κ). So PR

1 = PS
1 , except with

probability 2−Ω(κ). 2

Claim 15.51 If at all S computes a pad PS
2 of size Θ(n2u) field elements, then R will

correctly output PR
2 = PS

2 , except with probability 2−Ω(κ).

Proof: The reason that S computes a pad PS
2 of size Θ(n2u) field elements is that

all the wires in bottom band get rejected by S at the end of Phase III. This implies
that S finds the entire bottom band to be corrupted, which S notifies to R by sending
”failure” signal to R by executing protocol 3-SSMT-Static-Byzantine-Directed. From
the properties of 3-SSMT-Static-Byzantine-Directed, R will correctly receive the ”fail-
ure” signal and concludes that the entire bottom band is corrupted, except with error
probability 2−Ω(κ). Now to establish the pad PS

2 , S executes the single phase protocol
protocol 1-Pad. So from the properties of 1-Pad, R will correctly output PR

2 = PS
2 at

the end of 1-Pad, except with probability 2−Ω(κ). 2

Claim 15.52 Irrespective of whether S and R agrees on a pad of size n2−1 or Θ(n2u),
the pad will be information theoretically secure.

Proof: If S and R agrees on a pad of size n2−1, it implies that the pad is computed by
applying EXTRAND on some VS

i,l. From the proof of Claim 15.50 and Claim 15.49, at

least n2−1 elements of VS
i,l are information theoretically secure. So from the properties

of EXTRAND, the computed pad of size n2−1 will be information theoretically secure.
On the other hand if the agreed pad is of size Θ(n2u) then it implies that the pad

is established by executing the protocol 1-Pad. In this case, security of the pad follows
from the security of protocol 1-Pad. 2

Claim 15.53 In the steps given in Fig. 15.9, S and R has to communicate O(n3)
field elements.
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Proof: During Phase III, corresponding to an acceptable set Fl, R has to send the
index of the wires in Fl,Bl and the tuple (KR

l , δR
l ) through all the wires in Bl. This

requires a communication complexity of O(nu) field elements. Since there can be n
acceptable sets, it implies that R has to communicate O(n2u) = O(n3) field elements
during Phase III. During Phase IV, S will execute protocol 3-SSMT-Static-Byzantine-
Directed to notify either ”success” or ”failure” signal to R. From Theorem 15.28, this
requires a communication complexity of O(n3) field elements. Thus S and R has to
communicate O(n3) field elements in the steps given in Fig. 15.9. 2

Claim 15.54 Protocol 6-Pad terminates in six phases.

Proof: Follows from the steps given in Fig. 15.8 and Fig. 15.9. 2

Theorem 15.55 (Properties of Protocol 6-Pad) Protocol 6-Pad has the following
properties:

1. If the entire bottom band is corrupted, then S and R correctly establishes a pad of
size Θ(n2uκ) bits in six phases by communicating O(n3κ) bits, except with error
probability 2−Ω(κ). Moreover, the pad will be information theoretically secure.

2. If there exists at least one honest wire in the bottom band, then S and R correctly
establishes a pad of size Θ(n2κ) bits in six phases by communicating O(n3κ)
bits, except with error probability 2−Ω(κ). Moreover, the pad will be information
theoretically secure.

Proof: Follows from Claim 15.49, Claim 15.50, Claim 15.51, Claim 15.52, Claim
15.53 and Claim 15.54. 2

15.7 Communication Optimal SRMT Protocol in Directed

Network

We now present an SRMT protocol called u-Optimal-SRMT-Static-Byzantine-Directed
which sends a message mS containing ℓ field elements by communicating O(ℓ) field
elements with very high probability, where ℓ = (tb −

u
2 + 1)n2 = Θ(n3). The total

communication complexity of the protocol is O(n3) field elements and the protocol
terminates in O(u) phases. Thus the protocol achieves reliability with constant factor
overhead.

The idea behind the protocol is to create a win-win situation with the adversary as
follows: if the adversary corrupts at most tb −

u
2 wires in the top band, then majority

of the wires in the top band will be honest and R recovers the message from the
information which it receives from the honest wires in the top band. On the other
hand, if more than tb −

u
2 wires are corrupted in the top band, then majority wires in

the bottom band will be honest and so both S and R comes to know about the identity
of corrupted wires in the top band by using the honest wires in the bottom band. After
knowing the identity of corrupted wires in the top band, S re-sends mS so that R can
recover it correctly.

15.7.1 Pre-Processing Step of the Protocol

As a part of pre-processing step of protocol u-Optimal-SRMT-Static-Byzantine-Directed,
S and R securely establishes Θ(n2) random non-zero elements from F with each other in
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advance with very high probability by executing the six phase protocol 6-Pad. This will
require a communication complexity of O(n3) field elements. Let the set of elements in
the established pad be denoted by K, which we call as global key set. The elements
in K will be used by S and R as authentication and hash keys to reliably exchange the
outcome of certain steps during the execution of the protocol u-Optimal-SRMT-Static-
Byzantine-Directed. Note that the elements in K need not be distinct, but they are
randomly selected from F. We assume that initially all the elements in K are marked as
”unused”. Each time S (R) needs a key(s) for hashing or authentication, then the first
”unused” element(s) from K is/are selected as key(s). In order to do the verification,
R (S) also uses the same element(s) from K as keys. Once the verification is done,
the element(s) is/are marked as ”used” Thus we can view K as a global set, which is
parallely used and updated by both S and R. We now describe protocol u-Optimal-
SRMT-Static-Byzantine-Directed phase by phase. We begin with the description of first
two phases, which is is given in the next section.

15.7.2 First Two Phases of the Protocol

The first two phases of protocol u-Optimal-SRMT-Static-Byzantine-Directed are given
in Fig. 15.10.

We now prove the properties of first two phases of protocol u-Optimal-SRMT-Static-
Byzantine-Directed.

Claim 15.56 Let fi be a corrupted wire which has delivered FR
i 6= FS

i to R and let fj

be an honest wire. Then except with error probability 2−Ω(κ), the arc (fi, fj) ∈ E
R.

Proof: Since fj is honest, it correctly and securely delivers αR
j = αS

j and vR
ij = vS

ij =

hash(αS
j ;FS

i ) to R. If FR
i 6= FS

i , then in order that (fi, fj) 6∈ E
R, hash(αS

j ;FS
i ) =

hash(αS
j ;FR

i ) should hold, even if FR
i 6= FS

i . But from the property of hashing, this

can happen with probability at most n2−1
|F| ≈ 2−Ω(κ), which is negligible. 2

Claim 15.57 Let fi be a corrupted wire which has delivered FR
i 6= FS

i to R. Then
except with probability 2−Ω(κ), there will exist at least one arc (fi, fj) ∈ E

R, such that
wire fj is honest.

Proof: The proof follows from the previous claim and the fact there exists at least
one honest wire in the top band. 2

Claim 15.58 In protocol u-Optimal-SRMT-Static-Byzantine-Directed, S communicates
O(n3) field elements during Phase I, while R communicates O(n3) field elements
during Phase II.

Proof: During Phase I, S communicates O(n2) field elements over each wire. This
incurs a total communication complexity of O(n3) field elements. During Phase II,
R sends the conflict list over the entire bottom band. In the worst case, the size of
the conflict list may be O(n2) field elements. So sending it over entire bottom band
requires a communication cost of O(n2u) = O(n3) field elements, as u = O(n). 2

Claim 15.59 In protocol u-Optimal-SRMT-Static-Byzantine-Directed, if there exists at
most tb−

u
2 corrupted wires in the top band, then each wire fi ∈ P

R will deliver correct

FR
i = FS

i to R, except with probability 2−Ω(κ).
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Figure 15.10: First Two Phases of Protocol u-Optimal-SRMT-Static-Byzantine-Directed:
|mS| = (tb −

u
2 + 1)n2

Phase I: S to R: S does the following computation and communication:

1. S sets ROW = (tb −
u
2 + 1), COL = n2, N = n and Binit = mS and executes

Extrapolation Technique to construct an n× n2 matrix Bext = BS from Binit.

2. For i = 1, . . . , n, S selects a random, non-zero hash key αS
i corresponding to

wire fi.

3. For i = 1, . . . , n, S sends the following to R over wire fi:

(a) The n2-tuple FS
i , which is the ith row of BS.

(b) The hash key αS
i and

(c) The hash values vS
ji, where vS

ji = hash(αS
i ;FS

j ), for j = 1, . . . , n.

Phase II: R to S: R does the following computation and communication:

1. For i = 1, . . . , n, let R receive the following from S over wire fi:

(a) The n2-tuple FR
i ;

(b) The hash key αR
i and

(c) The hash values vR
ji , for j = 1, . . . , n.

2. For i = 1, . . . , n, R computes Supporti = |{j : vR
ij = hash(αR

j ;FR
i )}|.

3. Let PR denote the set of wires fi, such that Supporti ≥ (tb −
u
2 + 1).

4. R constructs a directed graph GR = (VR, ER), called conflict graph, where
VR = {f1, f2, . . . , fn} and arc (fi, fj) ∈ E

R if vR
ij 6= hash(αR

j ;FR
i ).

5. Corresponding to graph GR, R constructs a conflict list YR of five
tuples where for each arc (fi, fj) ∈ ER, there exists a five tuple
(fi, fj, α

R
j , hash(αR

j ;FR
i ), vR

ij ) in YR.

6. R sends YR to S through all the wires in the bottom band.
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Proof: Suppose there exists tb−
u
2 corrupted wires in the top band. Let fi ∈ P

R. If fi

is honest then it implies that FR
i = FS

i . On the other hand let fi be a corrupted wire,
who has delivered FR

i 6= FS
i . Since fi ∈ P

R, it implies that |Supporti| ≥ (tb −
u
2 + 1),

which further implies that there exists at least one honest wire, say fj, such that
j ∈ Supporti. This further implies that vR

ij = hash(αR
j ;FR

i ). However, since fj is an

honest wire, it implies that αR
j = αS

j and vR
ij = vS

ij , where vS
ij = hash(αS

j ;FS
i ). Since

the adversary does not know αS
j , it follows from the properties of hashing that the

adversary can ensure that hash(αS
j ;FS

i ) = hash(αS
j ;FR

i ), even if FR
i = FS

i , except

with probability n2−1
|F| ≈ 2−Ω(κ). Thus except with probability 2−Ω(κ), fi 6∈ P

R. 2

Lemma 15.60 In protocol u-Optimal-SRMT-Static-Byzantine-Directed, if there exists
at most tb−

u
2 corrupted wires in the top band, then except with error probability 2−Ω(κ),

R can correctly recover mR = mS by using the FR
i ’s delivered by fi’s in PR.

Proof: If there exists at most tb −
u
2 corrupted wires in the top band then from the

proof of Claim 15.59, each fi ∈ P
R has delivered correct FR

i = FS
i , except with error

probability 2−Ω(κ). Moreover, there will be at least tb−
u
2 +1 wires in PR, as all honest

wires in the top band will be present in PR. Since ROW = (tb−
u
2 +1), from the prop-

erties of Extrapolation Technique (see Lemma 8.10), by using the n2-tuples delivered by
the wires in PR, R can reconstruct BS and hence Binit. Now the elements of Binit are
nothing but the elements of mS. 2

Lemma 15.60 shows that if some how R can find out whether there are at most tb−
u
2

corrupted wires in the top band, then R can recover mS by using the n2-tuples delivered
by the wires in PR. In order to find the status of the top band, R constructs the conflict
list and sends it to S. We now proceed to the description of Phase III of protocol u-
Optimal-SRMT-Static-Byzantine-Directed, which is given in the next section.

15.7.3 Phase III and Phase IV of the Protocol

S waits for a conflict list, which is received identically through at least u
2 + 1 wires.

If S does not receive any conflict list identically through at least u
2 + 1 wires, then S

concludes that at least u
2 + 1 wires are corrupted in the bottom band. This further

implies that at most tb −
u
2 − 1 wires are corrupted in the top band. In this case, the

protocol proceeds as shown in Fig. 15.11.
The correctness of the protocol in this execution sequence is proved in Lemma 15.61.

Lemma 15.61 If S does not receive the same conflict list through at least u
2 +1 wires in

the bottom band then except with error probability 2−Ω(κ), R correctly recovers mS from
the n2-tuples delivered by the wires in PR. Moreover, in this case, u-Optimal-SRMT-

Static-Byzantine-Directed terminates in three phases. Furthermore, S will communicate
O(n) field elements during Phase III.

Proof: If S does not receive the same conflict list through at least u
2 + 1 wires in the

bottom band, then it implies that at least u
2 +1 wires in the bottom band are corrupted

which further implies that at most tb−
u
2 −1 wires in the top band are corrupted. This

further implies that each wire fi ∈ P
R has delivered correct FR

i = FS
i to R during

Phase I, except with probability 2−Ω(κ) (see Claim 15.59). Moreover, from the proof
of Lemma of 15.60, R can correctly recover mR = mS by using the FR

i ’s delivered by
fi’s in PR, except with error probability 2−Ω(κ).
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Figure 15.11: Execution of u-Optimal-SRMT-Static-Byzantine-Directed If S Does Not
Receive u

2 + 1 Identical Conflict Lists Through the Bottom Band

Phase III: S to R:

1. By selecting two elements from the global key set K as authentication keys,
S authenticates a unique special predetermined signal ”terminate1” and sends
it to R over the entire top band. Moreover, S terminates u-Optimal-SRMT-
Static-Byzantine-Directed.

Computation by R at the End of Phase III:

1. R correctly receives the ”terminate1” signal with very high probability and
concludes that at most tb −

u
2 wires have delivered incorrect values during

Phase I.

2. By using the n2-tuples received along the wires in PR during Phase I, R con-
structs the matrix BR. From BR, R recovers mR and terminates u-Optimal-
SRMT-Static-Byzantine-Directed.

Since S authenticates the ”terminate1” signal by using the keys from global key set
K, the keys will be unknown to the adversary. So except with error probability 2−Ω(κ),
R will receive the ”terminate1” signal and will conclude that at most tb −

u
2 − 1 wires

in the top band are corrupted. Now as explained above, R will correctly recover mS

from the n2-tuples delivered by the wires in PR.
It is easy to see that in this case, protocol u-Optimal-SRMT-Static-Byzantine-Directed

terminates in three phases. Since S only sends the authentication of ”terminate1” sig-
nal over each wire during Phase III, it will require a communication cost of O(n) field
elements. 2

If S receives a unique conflict list, say YS, through at least u
2 + 1 wires in the bottom

band then S cannot conclude anything about the status of the top band and bottom
band. That is, S cannot determine whether the received conflict list is a genuine conflict
list or not. S considers the received conflict list as genuine and from it, after doing local
comparison, S tries to find the number of corrupted wires, which delivered incorrect
FS

i ’s to R during Phase I. S saves the identity of such wires in a list LS
fault. The steps

performed by S to compute LS
fault from YS is shown in Fig. 15.12.

Before proceeding further, we make the following claims:

Claim 15.62 Let majority of the wires in the bottom band are honest and let fi be a
corrupted wire in the top band who has delivered FR

i 6= FS
i to R during Phase I. Then

except with error probability 2−Ω(κ), S will include fi in LS
fault at the end of Phase II.

Proof: Let fi be a corrupted wire in the top band who has delivered FR
i 6= FS

i to R
during Phase I. Then from Claim 15.57, except with error probability 2−Ω(κ), there
will exist at least one arc (fi, fj) in the conflict graph, such that fj is an honest wire.
This further implies that the five tuple (fi, fj , α

R
j , hash(αR

j ;FR
i ), vR

ij ) will be present

in the conflict list YR, except with error probability 2−Ω(κ), such that αR
j = αS

j ,

vR
ij = vS

ij, but hash(αR
j ;FR

i ) 6= vR
ij . Now if the majority of the wires in the bottom
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Figure 15.12: Local Computation by S at the End of Phase II if S Receives u
2 + 1

Identical Conflict Lists Through the Bottom Band

Local Computation by S at the End of Phase II:

1. Let S receive the conflict list YS through at least u
2 + 1 wires in the bottom

band, where YS is a collection of five-tuple of the form (fi, fj, α
′S
j , γ′S

ij , v′Sij ).

2. S creates a list LS
fault, which is initialized to ∅.

3. For each five-tuple (fi, fj , α
′S
j , γ′S

ij , v′Sij ) in YS, S does the following computa-
tion:

(a) S checks α′S
j

?
= αS

j and v′Sij
?
= vS

ij .

(b) If any of the above test fails then S concludes that wire fj has delivered
incorrect values to R during Phase I and adds fj to a list LS

fault

(c) If fj is not added to LS
fault then S checks γ′S

ij
?
= hash(αS

j ;FS
i ).

(d) If the above test fails then S concludes that wire fi has delivered incorrect
FR

i 6= FS
i to R during Phase I and adds fi to LS

fault.

band are honest then S will correctly receive YS = YR through the majority wires
in the bottom band. This implies that S will correctly receive (fi, fj , α

′S
j , γ′S

ij , v′Sij ) =

(fi, fj, α
R
j , hash(αR

j ;FR
i ), vR

ij ). So after doing the local comparison, S will find that

α′S
j = αS

j and v′Sij = vS
ij and hence fj will not be added in LS

fault. But S will find that

γ′S
ij 6= hash(αS

j ;FS
i ). So S will add wire fi in LS

fault. 2

Claim 15.63 Let majority of the wires in the bottom band are honest. Then S will
not include any honest fi in LS

fault at the end of Phase II.

Proof: First of all notice that if at all a five tuple (fi, fj, α
R
j , hash(αR

j ;FR
i ), vR

ij ) is

present in the conflict list YR, then at least one of the wires fi or fj is corrupted.
This is because no two honest wires will conflict each other. Now suppose fi is the
corrupted wire. If majority of the wires in the bottom band are honest then S will
correctly receive YS = YR through the majority wires in the bottom band. Now as
shown in the previous claim, after doing local comparison, S will find out that wire fi

is corrupted and includes only fi in LS
fault. 2

After finding LS
fault, S proceeds as follows: If LS

fault contains at most tb−
u
2 wires then

S can conclude that R has received sufficient information during Phase I to recover
mS. This is because if at all YS is a valid conflict list, which was indeed sent by R then
the wires in LS

fault are indeed genuinely corrupted, who delivered incorrect FS
i ’s to R

during Phase I (see Claim 15.62) and there are at most tb−
u
2 such FS

i ’s. This implies
that the remaining tb−

u
2 + 1 wires have delivered correct FS

i ’s, which are sufficient to
reconstruct the matrix BS and hence the message mS.

On the other hand, if YS is not a valid conflict list, then it implies that majority of
wires in the bottom band are corrupted, which further implies that majority of wires
in the top band are honest. So the wires in PR have delivered correct FS

i ’s during
Phase I with very high probability.
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Thus if S finds that LS
fault contains at most tb−

u
2 wires then the main goal of S will

be to some how reliably send back the received conflict list YS and the corresponding
list LS

fault, so that R can find out whether S has correctly received the original conflict

list YR through the majority wires in the bottom band. This is what S does during
Phase III, as shown in Fig. 15.13. Notice that Fig. 15.13 represents the execution
sequence when S finds that there are at most tb −

u
2 wires in the list LS

fault. The

execution sequence when LS
fault contains more than tb−

u
2 wires will be discussed after

wards.
We now prove the properties of protocol u-Optimal-SRMT-Static-Byzantine-Directed,

if the protocol follows the steps given in Fig. 15.13.

Lemma 15.64 If S receives the same conflict list through at least u
2 + 1 wires in the

bottom band and if the size of resultant LS
fault is at most (tb−

u
2 ) then except with error

probability 2−Ω(κ), R will correctly output mR = mS at the end of Phase III. In this
case, protocol u-Optimal-SRMT-Static-Byzantine-Directed will terminate in three phases
and S will communicate O(n3) field elements during Phase III.

Proof: Let S receive the conflict graph YS through at least u
2 +1 wires in the bottom

band and let LS
fault be the corresponding list computed by S from YS. Moreover, let

|LS
fault| ≤ (tb −

u
2 ). Now there are two possibilities:

1. YS = YR: In this case, except with probability 2−Ω(κ), S will find out all cor-
rupted fi’s, who have delivered FR

i 6= FS
i during Phase I and includes them in

LS
fault (see Claim 15.62). Moreover, from Claim 15.63, only corrupted fi’s will be

included in LS
fault. Since |LS

fault| ≤ (tb −
u
2 ), it implies that at least (tb −

u
2 ) + 1

fi’s delivered correct FS
i ’s during Phase I. Now during Phase III, S sends the

received YS, corresponding LS
fault, authentication of YS and the authentication

of LS
fault through the entire top band. Notice that the authentication keys used

to authenticate YS and LS
fault belong to K and so adversary does not have any

information about them. Moreover, there exists at least one honest wire in the
top band. So from the properties of URauth, R will correctly receive LS

fault with

very high probability. By neglecting the wires in LS
fault, R will be left with at

least (tb −
u
2 + 1) wires in the top band and each of them has delivered correct

FS
i with very high probability. Now it is easy to see that using these FS

i ’s, R will
correctly recover BS and hence mS. It is easy to see that in this case protocol
u-Optimal-SRMT-Static-Byzantine-Directed terminates at the end of Phase III.

2. YS 6= YR: This implies that at least u
2 +1 wires in the bottom band are corrupted,

which further implies that at most tb−
u
2 −1 wires are corrupted in the top band.

So from Claim 15.59, all wires in PR have delivered correct FR
i ’s during Phase

I with very high probability. Moreover, if somehow R comes to know that there
are at most tb −

u
2 − 1 corrupted wires in the top band, then from the proof of

Lemma 15.60, R can recover mS correctly with very high probability by using
the FR

i ’s delivered by the wires in PR. We now show that at the end of Phase
III, with very high probability, R will come to know that at most tb−

u
2 −1 wires

are corrupted in the top band.

Note that S computes LS
fault by doing local comparisons on the values in YS.

Also YS
auth and LS

faultauth
are obtained by applying URauth function to the ele-

ments of YS and LS
fault respectively, where the keys for authentication are selected
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from secret, global key set K. So adversary will have no information about the
authentication keys used for authenticating YS and LS

fault. During Phase III, S

sends (YS, LS
fault,Y

S
auth, LS

faultauth
) to R through the top band.

Now suppose that some wire fi delivers (YR
i , LR

faulti
,YR

i,auth, LR
faulti,auth

). If fi is

honest, then YR
i = YS 6= YR. So R will neglect wire fi. On the other hand if fi is

corrupted, then the adversary can ensure that YR
i 6= Y

S but YR
i = YR. However,

from the properties of URauth, without knowing the authentication keys used
by S for authenticating YS, the adversary cannot produce the authentication
of YR

i = YR, except with probability 2−Ω(κ). So except with error probability
2−Ω(κ), wire fi will be caught and hence will be discarded by R. This further
implies that except with error probability all wires in top band will be discarded
by R and hence R will conclude that S has not received YR through at least u

2 +1
wires in the bottom band. Now as explained above, R can recover mS correctly
with very high probability by using the FR

i ’s delivered by the wires in PR. It is
easy to see that in this case protocol u-Optimal-SRMT-Static-Byzantine-Directed
terminates at the end of Phase III.

Notice that if S executes Phase III as given in Fig. 15.13, then S sends (YS, LS
fault,

YS
auth, LS

faultauth
) through entire top band. It is easy to see that this requires a commu-

nication complexity of O(n3) field elements, as |YS| = O(n2). 2

Now we draw our attention to the execution of u-Optimal-SRMT-Static-Byzantine-
Directed when S receive YS through u

2 + 1 wires in the bottom band and the resultant
LS

fault has more than (tb −
u
2 ) wires. In this case, S cannot say anything about the

status of top band. To find whether indeed YS = YR, S authenticates YS and LS
fault,

sends it to R and wait for the feedback. If indeed YS = YR then the wires in LS
fault are

indeed corrupted and so S and R ignores them and further continue with the protocol.
The steps for further computation and communication will be discusses later. However,
if YS 6= YR then with very high probability, R will detect this. In this case, R can
easily recover mS by using the FR

i ’s delivered by the wires in PR during Phase I. So
R recovers mS and asks S to terminate the protocol. The formal details are presented
in Fig. 15.14.

We now prove the properties of protocol u-Optimal-SRMT-Static-Byzantine-Directed,
if the protocol follows the steps given in Fig. 15.14.

Lemma 15.65 If S receives the same conflict list YS through at least u
2 + 1 wires in

the bottom band and if the size of resultant LS
fault is more than (tb −

u
2 + 1) then:

1. If YS = YR then both R and S will come to know about this at the end of Phase
III and Phase IV respectively. Moreover, both S and R will come to know the
identity of |LS

fault| ≥ (tb −
u
2 + 1) corrupted wires in the top band. Furthermore,

both S and R will know that the majority of the wires in the bottom band are
honest.

2. If YS 6= YR then except with probability 2−Ω(κ), R will come to know this at the
end of Phase III. Moreover, R will recover mR at the end of Phase III by
using the FR

i ’s delivered by the wires in PR. Furthermore, S will terminate the
protocol at the end of Phase IV.

3. During Phase III, S will communicate O(n3) field elements while during Phase
IV, R will communicate O(u) field elements.
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Proof: Let S receive the same conflict list YS through at least u
2 + 1 wires in the

bottom band at the end of Phase II. Moreover, let the resultant LS
fault computed

from YS be of size more than (tb −
u
2 + 1). Now there are two possible cases:

1. YS = YR: This case is similar to the case YS = YR in the proof of Lemma 15.64.
Specifically, at the end of Phase III, R will conclude that S has correctly received
YR over the majority wires in the bottom band during Phase II. Moreover,
except with error probability 2−Ω(κ), R will correctly receive LS

fault. Furthermore,

each wire in LS
fault will be indeed corrupted. So R will remove the wires in LS

fault

from his consideration for all future computation and communication. Since
|Lfault| ≥ (tb −

u
2 + 1), this implies that in the bottom band, there will be at

most u
2 −1 corrupted wires and hence R concludes that the majority of the wires

in the bottom band are honest. Since in this case R authenticates ”continue”
signal and sends to S, at the end of end of Phase IV, S will correctly receive the
signal over at least u

2 + 1 wires in the bottom band and thus will conclude that
YS = YR. So S will also remove the wires in LS

fault from his consideration for all
future computation and communication and will conclude that majority of the
wires in the bottom band are honest. This proves the first part of the lemma.

2. YS 6= YR: This case is similar to the case YS 6= YR in the proof of Lemma

15.64. Specifically, at the end of Phase III, except with probability 2−Ω(κ),
R will conclude that S has not correctly received YR over the majority wires
in the bottom band during Phase II. This further implies that there are at
most tb −

u
2 − 1 corrupted wires in the top band, which further implies that the

FR
i ’s delivered by the wires in PR during Phase I are correct, except with error

probability 2−Ω(κ). So using these FR
i ’s, R will correctly recover mS, except

with error probability 2−Ω(κ). Moreover, in this case, R asks S to terminate the
protocol by authenticating ”terminate” signal and sending it through the bottom
band. Since the keys used for authenticating ”terminate” signal are selected from
K, they will be unknown to the adversary. So from the properties of URauth, the
adversary cannot generate authentication of any signal, other than ”terminate”
and put into the bottom band. So if at all S receives a valid authenticated signal
from at least u

2 + 1 wires in the bottom band, it has to be ”terminate” signal,

except with error probability 2−Ω(κ). On receiving the signal, S also comes to
know that YS 6= YR and terminates the protocol. On the other hand if S does
not receive a valid authenticated signal from at least u

2 + 1 wires in the bottom
band, then also S comes to know that YS 6= YR and terminates the protocol.
This proves the second part of the lemma.

The fact that S communicates O(n3) field elements during Phase III follows from
the proof of Lemma 15.65. During Phase IV, R authenticates either ”terminate”
and ”continue” signal and sends through the entire bottom band. This will require a
communication complexity of O(u) field elements. This proves the third part of the
lemma. 2

15.7.4 Remaining Phases of the Protocol

Finally, we move towards the discussion of protocol u-Optimal-SRMT-Static-Byzantine-
Directed when S receives YS over majority of the wires in the bottom band during
Phase II, such that the resultant LS

fault is of size more than tb −
u
2 + 1 and S has

received ”continue” signal from R through majority of the wires in the bottom band
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during Phase IV. If this is the case, then from the proof of Lemma 15.65, except with
error probability 2−Ω(κ), both S and R knows the identity of |LS

fault| ≥ tb −
u
2 + 1

corrupted wires in the top band and removes them from their consideration. This
implies that at most u

2 − 1 wires in the bottom band are corrupted and hence majority
wires in the bottom band are honest. This further implies that the information received
by R during Phase I is insufficient to reconstruct BS. This is because in this case more
than tb−

u
2 +1 wires have delivered incorrect FR

i ’s during Phase I. But to reconstruct
BS, R must have the knowledge of tb −

u
2 + 1 correct FR

i ’s.
So S again starts re-sending mS. Notice that both S and R knows that at most

u
2 − 1 wires in the top band are corrupted. Moreover, majority of the wires in the
bottom band are honest. To resend mS, S considers only the first u

2 wires in the top
band, which are still in the consideration of S and R. Without loss of generality, let
these be the first u

2 wires in the top band. Both S and R knows that at least one wire
among these u

2 wires are honest. Notice that in order to re-send mS, S should not
communicate more than O(|mS|) field elements. This is because the overall goal of
u-Optimal-SRMT-Static-Byzantine-Directed is to achieve reliability with constant factor
overhead. It seems that there is no way S can re-send mS by communicating O(|mS|)
field elements, as he does not know the identity of the u

2 − 1 corrupted wires in the top
band. However, the fact that at least one wire among the u

2 wires in the top band is
honest and majority wires in the bottom band are honest comes to our rescue !

S divides mS into u
2 blocks and tries to sequentially send each block, one by one.

Specifically, S considers the first block of mS and sends it only over wire f1 and waits
for the authenticated feedback from R. If f1 has correctly delivered the block then S
will come to know this and will continue with the second block. Otherwise with very
high probability, S will come to know that f1 has not delivered the first block correctly.
So S tells about this to R by sending an authenticated signal and then again send the
first block of mS through the second wire. This process will continue till either all the
blocks of mS have been delivered or S and R has tried the first u

2 − 1 wires. In the
later case, both S and R knows that wire fu

2
is honest and so S sends all the remaining

blocks of mS to R through wire fu
2
. It is easy to see that this entire process will take

O(u) phases and will require a communication complexity of O(|mS|) field elements.
The formal details of the protocol steps are given in Fig. 15.15.

We now prove the properties of protocol u-Optimal-SRMT-Static-Byzantine-Directed
if the protocol follows the steps given in Fig. 15.15.

Lemma 15.66 Suppose S receives the same conflict list YS during Phase II through
at least u

2 + 1 wires in the bottom band, such that the size of resultant LS
fault is more

than (tb −
u
2 + 1). Moreover let S receive ”continue” signal during Phase IV through

majority wires in the bottom band. Then except with error probability 2−Ω(κ), S will be
able to correctly re-send mS to R in O(u) phases by following the steps given in Fig.
15.15. Moreover, this requires a communication complexity of O(|mS|) = O(n3) field
elements.

Proof: Suppose S has received the same conflict list YS during Phase II through at
least u

2 +1 wires in the bottom band, such that the size of resultant LS
fault is more than

(tb −
u
2 + 1). Moreover let S has received ”continue” signal during Phase IV through

majority wires in the bottom band. Then from the proof of first part of Lemma 15.65,
except with error probability 2−Ω(κ), at most u

2 − 1 wires in the top band and at
most u

2 − 1 wires in the bottom band are corrupted. Moreover, S and R will know
this. Without loss of generality, let the first u

2 wires in the top band are still in the
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consideration of S and R, after neglecting |LS
fault| ≥ (tb −

u
2 + 1) corrupted wires from

the top band.
In Fig. 15.15, S resends mS by using only the first u

2 wires. At a time, S tries to
send only one block of mS. Suppose S sends the block BS

bcS
to R over the wire fwcS. If

wire fwcS is honest then the block will be delivered correctly and S will come to know
about this through the feedback paths. S then asks R to increment the block count by
authenticating a special signal, where the keys for authentication are selected from K
and hence will be unknown to the adversary. So except with error probability 2−Ω(κ),
R will correctly receive the signal and will increment the block count.

On the other hand, if fwcS is corrupted and delivers incorrect block, then except
with error probability 2−Ω(κ), S will come to know about this. This is because, R
sends the hash value of the received block where the hash key is selected from K and
hence will be unknown to the adversary (but will be known to S). In this case, S
asks R to increment the wire count by authenticating a special signal, where the keys
for authentication are selected from K and hence will be unknown to the adversary.
So except with error probability 2−Ω(κ), R will correctly receive the signal and will
increment the wire count.

It is now easy to see that it will take O(u) phases, at the end of which either all the
blocks of mS would have been delivered or both S and R will come to know that first
u
2−1 wires in the top band are corrupted. In the later case, S will re-send the remaining
blocks of mS in a single phase through wire fu

2
, which is bound to be honest. It is easy

to see that the overall communication complexity for resending mS is O(|mS|) = O(n3)
field elements. 2

15.7.5 Summary of the Steps of the Protocol

Since there are so many execution sequences possible in protocol u-Optimal-SRMT-
Static-Byzantine-Directed, we summarize the steps of protocol u-Optimal-SRMT-Static-
Byzantine-Directed in Fig. 15.16.

We now finally state the following theorem:

Theorem 15.67 Suppose there exists 0 ≤ u ≤ tb wires in the bottom band and
n = max (2tb − u + 1, tb + 1) wires in the top band. Then there exists an O(u) SRMT
protocol which reliably sends a message containing ℓ = (tb −

u
2 + 1)n2 = Θ(n3) field

elements by communicating O(ℓ) = O(n3) field elements, tolerating Astatic
tb

. In terms of
bits, the protocol sends Θ(n3κ) bits by communicating O(n3κ) bits. Thus the protocol
achieves reliability with constant factor overhead for sufficiently large message.

Proof: Follows from the protocol steps summarized in Fig. 15.16. 2

Once we have an SRMT protocol, which achieves reliability with constant factor over-
head, we can easily design a communication optimal SSMT protocol, which we do in
the next section.

15.8 Communication Optimal SSMT Protocol in Directed
Network

We now design an O(u) phase SSMT protocol called u-Optimal-SSMT-Static-Byzantine-
Directed, which sends a message mS containing ℓ field elements by communicating
O(n3) field elements. If the full bottom band is corrupted then ℓ = Θ(n2u), otherwise
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ℓ = Θ(n2). The protocol uses protocols 6-Pad and u-Optimal-SRMT-Static-Byzantine-
Directed as black box. The protocol is given in Fig. 15.17.

We now state the properties of protocol u-Optimal-SSMT-Static-Byzantine-Directed.

Theorem 15.68 Protocol u-Optimal-SSMT-Static-Byzantine-Directed is an O(u) phase
SSMT protocol with a communication complexity of O(n3) field elements, tolerating
Astatic

tb
. If the entire bottom band is corrupted then the protocol securely sends Θ(n2u)

field elements. Otherwise, the protocol securely sends Θ(n2) field elements. In terms of
bits, the protocol sends either Θ(n2uκ) or Θ(n3κ) bits by communicating O(n3κ) bits,
depending upon whether the entire bottom band is corrupted or not.

Proof: The proof is straightforward and follows from the protocol steps and the prop-
erties of protocol 6-Pad and u-Optimal-SRMT-Static-Byzantine-Directed. 2

We next show that the communication complexity of protocol u-Optimal-SRMT-Static-
Byzantine-Directed and u-Optimal-SSMT-Static-Byzantine-Directed is asymptotically op-
timal. For this, we derive the lower bound on the communication complexity of SRMT
and SSMT protocol in directed synchronous network, tolerating tolerating Astatic

tb
, in

the next section.

15.9 Lower Bound on Communication Complexity of SRMT

and SSMT

We now derive the lower bound on the communication complexity of SRMT and SSMT
protocols. We will then show that our protocols u-Optimal-SRMT-Static-Byzantine-
Directed and u-Optimal-SSMT-Static-Byzantine-Directed satisfy these bounds asymp-
totically. We first begin with the lower bound for SRMT protocols.

15.9.1 Lower Bound for SRMT Protocols

The lower bound on the communication complexity of SRMT protocols is given by the
following theorem:

Theorem 15.69 Any SRMT protocol in directed synchronous network, tolerating Astatic
tb

,
has to communicate Ω(ℓ) field elements to reliably send a message containing ℓ field
elements.

Proof: The proof simply follows from the fact that any SRMT protocol has to at least
communicate the message. 2

In the light of the above theorem, we state the following theorem:

Theorem 15.70 Protocol u-Optimal-SRMT-Static-Byzantine-Directed is a communica-
tion optimal SRMT protocol.

Proof: Follows from Theorem 15.69 and the fact that u-Optimal-SRMT-Static-Byzantine-
Directed reliably sends a message containing Θ(n3) field elements by communicating
O(n3) field elements. 2

In the next section, we derive the lower bound for SSMT protocols.
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15.9.2 Lower Bound for SSMT Protocols

The derivation of the lower bound on the communication complexity of SSMT protocol
is divided into two parts: (a) if the entire bottom band is corrupted and (b) if the entire
bottom band is not corrupted. We first consider the case when the entire bottom band
is corrupted.

Theorem 15.71 Suppose there exists u wires in the bottom band and n wires in the
top band, where u ≤ tb and n = 2tb − u + 1. Moreover, suppose that the entire bottom
band is corrupted. Then any multi phase 6 SSMT protocol to securely send a message
m containing ℓ field elements from F, needs to communicate Ω(nℓ

u ) field elements. In

terms of bits, the protocol needs to communicate Ω(nℓ
u κ) bits to securely send ℓκ bits.

Proof: Suppose both S and R in advance knows that the entire bottom band is
corrupted. Under this condition, any multiphase SSMT protocol Π to securely send
m, is virtually reduced to a single phase SSMT protocol, where S is connected to R by
n = 2tb − u + 1 wires, of which at most tb − u are corrupted. Since perfect secrecy is
required in SSMT, the data sent along the top band in Π must be such that data along
any set of (tb − u) wires has no information about the secret message m. Otherwise
the adversary will also know the secret message by passively listening the contents of
these wires. Similarly, the data sent over any set of (n − (tb − u)) wires over the top
band should have full information about the secret message m. The latter requirement
ensures that even if the adversary simply blocks all the data that he can, the secret
message is not lost and therefore the receiver’s ability to recover the message is not
completely ruled out. We now define the following notations:

1. M denotes the message space from where the message m is selected. In our
context, M = F

ℓ.

2. For i = 1, . . . , n, Xm
i denotes the set of all possible transmission in protocol Π,

that could occur over wire fi, corresponding to message m ∈M.

3. For j ≥ i, Mm
i,j ⊆ Xm

i ×Xm
i+1×. . .×Xm

j denotes the set of all possible transmission
that could occur over wire fi, fi+1, . . . , fj during protocol Π, corresponding to
message m ∈M.

4. Mi,j =
⋃

m∈M Mm
i,j and Xi =

⋃
m∈M Xm

i . We call Xi as the capacity of wire fi

and Mi,j as the capacity of the set of wires {fi, . . . , fj}.

Now in protocol Π, one element from the set Xi is transmitted over wire fi, for
i = 1, . . . , n. Moreover, each element of the set Xi can be represented by log |Xi|
bits. Thus, if we can find out each Xi, then the lower bound on the communication
complexity of Π will be Σn

i=1 log |Xi| bits. In the sequel, we try to estimate Xi.
From the properties of data sent over the top band in protocol Π, the data sent

over any set of tb − u wires is independent of the message. Thus, for any two messages
m1,m2 ∈M, it must hold that

Mm1

tb−u+1,2(tb−u) = Mm2

tb−u+1,2(tb−u).

Notice that the above relation must hold for any selection of tb − u wires in the top
band. We focussed on the set of wires {ftb−u+1, . . . , f2(tb−u)} just for simplicity.

6Any single phase SSMT protocol in a directed graph is no different from single phase SSMT protocol
in undirected graph. The lower bound on the communication complexity of single phase SSMT protocol
tolerating Astatic

tb
is given by Theorem 14.3, by substituting tf = tp = 0.
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Also, from the properties of data transmitted over the top band in Π, the data
transmitted over any set of n − (tb − u) wires should have full information about the
message m and hence uniquely determine m. Thus it must also hold that

Mm1
tb−u+1,n ∩Mm2

tb−u+1,n = ∅.

We again stress that the above relation must hold for any set of n − (tb − u) wires in
the top band. We focussed on the set of wires {ftb−u+1, . . . , fn} just for simplicity.

As mentioned earlier, Mm
tb−u+1,2(tb−u) will be same for all messages m. Thus, in

order that Mm1
tb−u+1,n ∩Mm2

tb−u+1,n = ∅ holds, it must be the case that Mm
2(tb−u)+1,n is

unique for every message m. This implies that

|M2(tb−u)+1,n| = |M|.

From the definition of Xi and Mi,j, we get

Πn
i=2(tb−u)+1|Xi| ≥ |M2(tb−u)+1,n| ≥ |M|.

Let g = n−2(tb−u). The above inequality holds for any set of g wires D in the top band,
where |D| = g; i.e., Πfi∈D|Xi| ≥ |M|. In particular, it holds for every selection Dk of
set of wires {f(kg+1) mod n, f(kg+2) mod n, . . . , f(kg+g) mod n}, with k ∈ {0, . . . , n− 1}.

If we consider all above Dk sets, then each wire in the top band is counted for
exactly g times. Thus, the product of the capacities of all Dk yields the capacity of the
full top band to the g-th power, and since each Dk has capacity at least |M|, we get

|M|n ≤ Πn−1
k=0Πfj∈Dk

|Xj | = (Πn
i=1|Xi|)

g ,

and therefore
n log(|M|) ≤ gΣn

i=1 log(|Xi|).

As log(|M|) = ℓ log(|F|), from the above inequality, we get

Σn
i=1 log(|Xi|) ≥

(
nℓ log(|F|)

g

)
≥

(
nℓ log(|F|)

n− 2(tb − u)

)
.

As mentioned earlier, Σn
i=1 log(|Xi|) denotes the lower bound on the communication

complexity of protocol Π. From the above inequality, we find that the lower bound on

the communication complexity of protocol Π is Ω
(

nℓ log(|F|)
n−2(tb−u)

)
= Ω

(
nℓ

n−2(tb−u)κ
)

bits.

Now each field element from F can be preprsented by κ bits. Thus the lower bound on

the communication complexity of protocol Π is Ω
(

nℓ
n−2(tb−u)

)
= Ω(nℓ

u ) field elements,

as n = 2tb − u + 1. 2

We now proceed to the second case when the entire bottom band is not corrupted. The
lower bound on the communication complexity of SSMT protocol for this case is given
by the following theorem:

Theorem 15.72 Suppose there exists u ≤ tb wires in the bottom band and n = 2tb−u+
1 wires in the top band. Moreover, suppose that the entire bottom band is not corrupted.
Then any multiphase SSMT protocol to securely send a message m containing ℓ field
elements from F, needs to communicate Ω(nℓ) field elements. In terms of bits, the
protocol needs to communicate Ω(nℓκ) bits to securely send ℓκ bits.
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Proof: Suppose there exists u ≤ tb wires in the bottom band and n = 2tb−u+1 wires
in the top band. Let N = (n + u) = 2tb + 1. Now n = Θ(tb), as there exists at least
tb + 1 wires in the top band. Also N = Θ(tb). Let Π be a multiphase SSMT protocol
over the N wires to securely transmit a message m containing ℓ field elements from F.
Then in any execution of Π, the data exchanged along any set of tb wires (including
top and bottom band) must be independent of m. Otherwise, adversary can passively
listen these wires and will know m, which violates perfect secrecy condition of Π. On
the other hand, data exchanged along any set of N−tb wires (including top and bottom
band) should have complete information about the message. The latter requirement
ensures that even if the adversary simply blocks all the data that he can, the secret
message is not lost and therefore the receiver’s ability to recover the message is not
completely ruled out. Let the N wires between S and R be denoted by w1, . . . , wN .
Out of these N wires, the first n wires are the wires from the top band, which are
directed from S to R. On the other hand, remaining N − n = u wires are from the
bottom band, which are directed from R to S.

We now define the following notations:

1. M denotes the message space from where the message m is selected. In our
context, M = F

ℓ.

2. For i = 1, . . . , N , Xm
i denotes the set of all possible transmission in protocol Π,

that could occur over wire wi, corresponding to message m ∈M.

3. For j ≥ i, Mm
i,j ⊆ Xm

i ×Xm
i+1×. . .×Xm

j denotes the set of all possible transmission
that could occur over wire wi, wi+1, . . . , wj during protocol Π, corresponding to
message m ∈M.

4. Mi,j =
⋃

m∈M Mm
i,j and Xi =

⋃
m∈M Xm

i . We call Xi as the capacity of wire wi

and Mi,j as the capacity of the set of wires {wi, . . . , wj}.

Now in protocol Π, one element from the set Xi is transmitted over wire wi, for
i = 1, . . . , N . Moreover, each element of the set Xi can be represented by log |Xi|
bits. Thus, if we can find out each Xi, then the lower bound on the communication
complexity of Π will be ΣN

i=1 log |Xi| bits. In the sequel, we try to estimate Xi.
From the properties of protocol Π, the data sent over any set of tb wires is in-

dependent of the message. Thus, for any two messages m1,m2 ∈ M, it must hold
that

Mm1
tb+1,2tb

= Mm2
tb+1,2tb

.

Notice that the relation above must hold for any selection of tb wires out of the N wires
between S and R. We focussed on the set of wires {wtb+1, . . . , w2tb} just for simplicity.

Also, from the properties of protocol Π, the data transmitted over any set of N − tb
wires should have full information about the message m and hence uniquely determine
m. Thus it must also hold that

Mm1
tb+1,N ∩Mm2

tb+1,N = ∅.

We again stress that the above relation must hold for any set of N − tb wires out of the
N wires between S and R. We focussed on the set of wires {wtb+1, . . . , wN} just for
simplicity.

As mentioned earlier, Mm
tb+1,2tb

will be same for all messages m. Thus, in order
that Mm1

tb+1,N ∩Mm2
tb+1,N = ∅ holds, it must be the case that Mm

2tb+1,N is unique for
every message m. This implies that

|M2tb+1,N | = |M|.
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From the definition of Xi and Mi,j, we get

ΠN
i=2tb+1|Xi| ≥ |M2tb+1,N | ≥ |M|.

Let g = N − 2tb. The above inequality holds for any set of g wires D, where |D| = g;
i.e., Πwi∈D|Xi| ≥ |M|. In particular, it holds for every selection Dk of set of wires
{w(kg+1) mod N , w(kg+2) mod N , . . . , w(kg+g) mod N}, with k ∈ {0, . . . , N − 1}.

If we consider all above Dk sets, then each wire is counted exactly g times. Thus,
the product of the capacities of all Dk yields the capacity of the full top band and
bottom band to the g-th power, and since each Dk has capacity at least |M|, we get

|M|N ≤ ΠN−1
k=0 Πwj∈Dk

|Xj| =
(
ΠN

i=1|Xi|
)g

,

and therefore
N log(|M|) ≤ gΣN

i=1 log(|Xi|).

As log(|M|) = ℓ log(|F|), from the above inequality, we get

ΣN
i=1 log(|Xi|) ≥

(
Nℓ log(|F|)

g

)
≥

(
Nℓ log(|F|)

N − 2tb

)
.

As mentioned earlier, ΣN
i=1 log(|Xi|) denotes the lower bound on the communication

complexity of protocol Π. From the above inequality, we find that the lower bound

on the communication complexity of protocol Π is Ω
(

Nℓ log(|F|)
N−2tb

)
= Ω (Nℓκ) bits, as

N = 2tb + 1. Now each field element from F can be preprsented by κ bits. Thus the
lower bound on the communication complexity of protocol Π is Ω(Nℓ) = Ω(nℓ) field
elements, as N = Θ(tb) = Θ(n). 2

Now in the light of previous two theorems, we can state the following theorem:

Theorem 15.73 Protocol u-Optimal-SSMT-Static-Byzantine-Directed is a communica-
tion optimal SSMT protocol.

Proof: From Theorem 15.68, if the entire bottom band is corrupted then protocol
u-Optimal-SSMT-Static-Byzantine-Directed securely sends ℓ = Θ(n2u) field elements by
communicating O(n3) field elements. From Theorem 15.71, if the entire bottom band
is corrupted, then any multiphase SSMT protocol has to communicate Ω(nℓ

u ) = Ω(n3)
field elements to securely send ℓ = Θ(n2u) field elements. So if the entire bottom band is
corrupted then protocol u-Optimal-SSMT-Static-Byzantine-Directed is a communication
optimal SSMT protocol.

If the entire bottom band is not corrupted then protocol u-Optimal-SSMT-Static-
Byzantine-Directed securely sends ℓ = Θ(n2) field elements by communicating O(n3)
field elements. From Theorem 15.72, if the entire bottom band is not corrupted, then
any multiphase SSMT protocol has to communicate Ω(nℓ) = Ω(n3) field elements to
securely send ℓ = Θ(n2) field elements. So if the entire bottom band is not corrupted
then also protocol u-Optimal-SSMT-Static-Byzantine-Directed is a communication opti-
mal SSMT protocol. 2

15.10 Concluding Remarks and Open Problems

In this chapter, we have shown that the existing SRMT and SSMT protocols of [24,
87, 54] in directed networks, tolerating Astatic

tb
are inefficient. We then proposed new
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SRMT and SSMT protocols in directed networks, tolerating Astatic
tb

, which are also
communication optimal. This completely resolves the issue of optimality of SRMT
and SSMT in directed synchronous network tolerating Astatic

tb
. This chapter leaves few

open problems, which are as follows:

Open Problem 17 Our communication optimal SRMT and SSMT protocol require
O(u) phases. It would be interesting to come up with communication optimal SRMT
and SSMT protocols with less phase complexity.

Open Problem 18 Our SRMT and SSMT protocol is communication optimal only for
messages of some specific length. It would be interesting to design SRMT and SSMT
protocols in directed networks tolerating Astatic

tb
, which are communication optimal for

messages of any length.

Till now, all our discussion in this thesis focussed on synchronous network. We now
proceed to the last part of our thesis, where we discuss about PSMT and SSMT in
asynchronous networks.
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Figure 15.13: Execution of u-Optimal-SRMT-Static-Byzantine-Directed If S Receives
u
2 + 1 Identical Conflict Lists and |LS

fault| ≤ (tb −
u
2 )

Phase III: S to R:

1. By selecting two keys from the global key set K, S authenticates special ”ter-
minate2” signal using URauth function and sends it to R through the top
band.

2. By selecting 2|LS
fault| keys and 10|YS| keys from global key set K, S authenti-

cates each element of LS
fault and YS respectively using URauth function. Let

LS
faultauth

and YS
auth denote the set of corresponding authenticated values.

3. S then sends (YS, LS
fault,Y

S
auth, LS

faultauth
) to R through the top band and

terminates protocol u-Optimal-SRMT-Static-Byzantine-Directed.

Computation by R at the End of Phase III:

1. With very high probability, R correctly receives ”terminate2” signal.

2. Let R receive (YR
i , LR

faulti
,YR

i,auth, LR
faulti,auth

) from S along wire fi, for i =
1, . . . , n. From these values, R now tries to find out whether S has correctly
received the original YR over more that u

2 +1 wires during Phase I, and if yes,
then the corresponding LS

fault. For this, R does the following computation:

(a) For each i = 1, . . . , n, R checks YR
i

?
= YR and |LR

faulti
| ≤ (tb −

u
2 ). If

any of these test fails, then R neglects all the values received along fi.
Otherwise, R applies the URauth function to each element of YR

i by
using the same keys from K, which were used by S to authenticate YS

and computes the set Y
′R
i,auth. Similarly, R applies URauth function to

each element of LR
faulti

by using the same keys from K, which were used

by S to authenticate LS
fault and computes the set L

′R
faulti,auth

. R then

checks Y
′R
i,auth

?
= YR

i,auth and L
′R
faulti,auth

?
= LR

faulti,auth
. If the test fails

then R discards the values received along fi.

(b) If all the wires in the top band are discarded by R during previous step,
then R concludes that S has not received original YR over more that
u
2 +1 wires during Phase II, which further implies that at most tb−

u
2−1

wires were corrupted in the top band during Phase I. So R recovers mR

by using the FR
i ’s received over the wires in PR during Phase I and

terminates u-Optimal-SRMT-Static-Byzantine-Directed.

(c) If there exists an i ∈ {1, 2, . . . , n} such that YR
i = YR, |LR

faulti
| ≤ (tb−

u
2 ),

Y
′R
i,auth = YR

i,auth and L
′R
faulti,auth

= LR
faulti,auth

, then R concludes that S

has correctly received original YR over more that u
2 + 1 wires during

Phase II and LR
faulti

is the corresponding Lfault sent by S. Now by

using the FR
i ’s received over the wires not in LR

faulti
, R recovers mR and

terminates u-Optimal-SRMT-Static-Byzantine-Directed.
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Figure 15.14: Execution of u-Optimal-SRMT-Static-Byzantine-Directed If S Receives
u
2 + 1 Identical Conflict Lists and |LS

fault| ≥ (tb −
u
2 ) + 1

Phase III: S to R: Same as in Fig. 15.13, except that S does not send ”termi-
nate2” signal. Moreover, here |LS

fault| ≥ (tb −
u
2 ) + 1.

Phase IV: R to S:

1. Let R receive (YR
i , LR

faulti
,YR

i,auth, LR
faulti,auth

) from S along wire fi, for i =
1, . . . , n. From these values, R tries to find out whether S has correctly re-
ceived the original YR over more than u

2 + 1 wires during Phase I, and if
yes, then the corresponding LS

fault. For this, R does the same computation as
done by R at the end of Phase III in Fig. 15.13. However, now instead of
checking |LR

faulti
| ≤ (tb −

u
2 ), R checks |LR

faulti
| ≥ (tb −

u
2 + 1).

2. If after the checking in the previous steps, all the wires in the top band are
discarded by R then R concludes that S has not received original YR over
more that u

2 + 1 wires during Phase II, which further implies that at most
tb −

u
2 − 1 wires were corrupted in the top band during Phase I. So R re-

covers mR by using the FR
i ’s received over the wires in PR during Phase

I. Moreover, R computes response1 = URauth(”terminate”; k1, k2), where
k1, k2 are selected from K. Finally R asks S to terminate u-Optimal-SRMT-
Static-Byzantine-Directed by sending (”terminate”, response1) over the bot-
tom band and terminates u-Optimal-SRMT-Static-Byzantine-Directed.

3. If R finds an i ∈ {1, 2, . . . , n} such that YR
i = YR, |LR

faulti
| ≥ (tb −

u
2 + 1),

Y
′R
i,auth = YR

i,auth and L
′R
faulti,auth

= LR
faulti,auth

, then R concludes that S has

correctly received original YR over more that u
2 + 1 wires during Phase II

and LR
faulti

is the corresponding Lfault sent by S. So R removes the wires

in LR
faulti

from his view for further computation and communication. Now
by selecting k1, k2 from K as authentication keys, R computes response2 =
URauth(”continue”; k1, k2) where ”continue” is a unique pre-defined special
signal. R then send the tuple (”continue”, response2) to S through the bottom
band.

Computation by S at the end of Phase IV:

1. S checks whether it is getting any 2-tuple identically over at least u
2 +1 wires.

If not, then S concludes that R has recovered mR at the end of Phase III
and terminates u-Optimal-SRMT-Static-Byzantine-Directed.

2. If S receives a 2-tuple say (xS
1 , yS

1 ) over u
2 + 1 wires, then S verifies yS

1
?
=

URauth(xS
1 ; k1, k2), where k1 and k2 are the keys from K. If the test fails,

then S again concludes that R has recovered mR at the end of Phase III and
terminates u-Optimal-SRMT-Static-Byzantine-Directed.

3. If the test in the previous step succeeds then S further checks xS
1

?
=

”terminate”. If yes, then S again concludes that R has recovered mR at the
end of Phase III and terminates u-Optimal-SRMT-Static-Byzantine-Directed.

On the other hand, if xS
1

?
= ”continue” then S concludes that YS was indeed

sent by R and hence the wires in LS
fault are indeed corrupted. So S removes

them from his view point for further computation and communication and
further continues the protocol.
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Figure 15.15: Execution of u-Optimal-SRMT-Static-Byzantine-Directed If S Receives
”continue” Signal Through the Majority Wires in the Bottom Band at the End of
Phase IV

Assumption: Without loss of generality, we assume that the first u
2 wires are still

in the consideration of S and R.

1. S divides mS into blocks BS
1 , . . . , BS

u
2
, each of size |mS|

u
2

field elements.

2. S and R initializes variables wcS = 1, bcS = 1 and wcR = 1, bcR = 1 respec-
tively. Here wc stands for wire count and bc stands for block count.

3. S and R now executes the following steps:

(a) While (wcS ≤ u
2 − 1) and (all the blocks of mS are not delivered to R)

do the following:

i. S sends the block BS
bcS

to R only over the wire fwcS in the top band.

ii. Let R receive BR
bcR

along wire fwcR. Now by selecting a hash key kbc

from the set K, R computes xR
bc = hash(kbc;B

R
bcR

) and sends xR
bc to

S through the entire bottom band.

iii. S correctly receives xR
bc through at least u

2 + 1 wires (recall that
in this case majority wires in bottom band are honest) and verifies

xR
bc

?
= hash(kbc;B

S
bcS

).

iv. If the test fails then S concludes that wire fwcS has delivered incorrect
BS

bcS
to R. So S does the following:

A. S increments wcS by one.

B. S authenticates a unique, special, pre-defined signal ”increment-
wire” by using two keys from the set K and sends the authenti-
cated signal to R through the top band.

C. R correctly receives the signal with very high probability and
accordingly increments wcR by one.

v. If the test succeeds then S concludes that wire fwcS has delivered
correct BS

bcS
to R. So S does the following:

A. S increments bcS by one.

B. S authenticates a unique, pre-defined, special ”increment-block”
signal by using keys from the set K and sends it to R through
the top band.

C. R correctly receives the signal with very high probability and
accordingly increments bcR by one.

(b) If all the blocks of mS are delivered then both S and R terminates.
Otherwise S concatenates all the remaining blocks of mS and sends it to
R through wire fu

2
and terminates. R correctly receives these blocks and

terminates.
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Figure 15.16: Summary of the Steps Executed in Protocol u-Optimal-SRMT-Static-
Byzantine-Directed

1. S and R executes first two phases as shown in Fig. 15.10. This requires a
communication complexity of O(n3) field elements (see Claim 15.58).

2. If a unique conflict list is not received by S at the end of Phase II through at
least u

2 + 1 wires in the bottom band then S and R executes the steps given
in Fig. 15.11. In this case, protocol terminates at the end of Phase III and
the overall communication complexity of the protocol is O(n3) field elements
(see Lemma 15.61).

3. If a unique conflict list YS is received by S at the end of Phase II through
at least u

2 + 1 wires in the bottom band then S computes LS
fault from YS by

following the steps given in Fig. 15.12.

4. If |LS
fault| ≤ (tb −

u
2 ) then S and R executes the steps given in Fig. 15.13.

In this case, protocol terminates at the end of Phase III and the overall
communication complexity of the protocol is O(n3) field elements (see Lemma
15.64).

5. If |LS
fault| ≥ (tb −

u
2 + 1) then S and R executes the steps given in Fig. 15.14.

Now there are two possible cases:

(a) If R terminates the protocol at the end of Phase III then S will also
terminate the protocol at the end of Phase IV. In this case, the com-
munication complexity of the protocol will be O(n3) field elements (see
Lemma 15.65).

(b) If R decides to continue the protocol then at the end of Phase IV, S will
also come to know this. In this case, S and R executes the steps given in
Fig. 15.15. The protocol will require O(u) phases and a communication
complexity of O(n3) field elements (see Lemma 15.66).
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Figure 15.17: An O(u) Phase Communication Optimal SSMT Protocol u-Optimal-
SSMT-Static-Byzantine-Directed

1. S and R securely establishes a random, non-zero one time pad Pad by exe-
cuting the six phase protocol 6-Pad. If the entire bottom band is corrupted
then the size of the pad is Θ(n2u) field elements, otherwise the size of the pad
is Θ(n2) field elements.

2. If Pad is of size Θ(n2u) field elements, then S selects a secret message mS

containing Θ(n2u) field elements. S then computes C = mS ⊕ Pad. S then
appends some extra field elements to C from F, such that C contains Θ(n3)
field elements. The appended elements are randomly selected from F. Fi-
nally, S reliably sends C to R by executing the protocol u-Optimal-SRMT-
Static-Byzantine-Directed (the random elements are appended to C so that
C contains Θ(n3) field elements. This is because protocol u-Optimal-SRMT-
Static-Byzantine-Directed requires the minimum message size to be Θ(n3) field
elements). R correctly receives C with very high probability. R then remove
the last elements from C, such that C contains Θ(n2u) field elements. Finally
R computes mS = C ⊕ Pad and terminates the protocol.

3. If Pad contains Θ(n2) field elements, then S and R does the same computation
as above, except that mS and original C will be of size Θ(n2) field elements.
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Part III

Results for PSMT and SSMT in
Asynchronous Network
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Chapter 16

PSMT and SSMT in
Asynchronous Network
Tolerating Static Byzantine
Adversary

The existing results for PSMT and SSMT and all the results that are discussed till now
in this thesis assume the underlying network to be synchronous. Thus, if S (R) sends
some information along a wire, then it is assumed that R (S) will get the information
(possibly corrupted) along the wire after a fixed interval of time. Though theoretically
impressive, this is a very strong assumption because the delay in the arrival of a single
message will affect the overall security of the protocol. A typical large network like the
Internet can be modelled more accurately by asynchronous networks than synchronous
networks. The inherent difficulty in designing a protocol in asynchronous network
comes from the fact that we cannot distinguish between a slow sender and a corrupted
sender. Thus a receiver cannot wait to receive message along all the wires, as waiting
for all of them may turn out to be endless. In the literature, very little attention has
been paid to the study of PSMT and SSMT protocols in asynchronous network due to
its complexity. This motivates us to study PSMT and SSMT protocols in asynchronous
networks.

In this chapter, we study PSMT in SSMT in asynchronous network tolerating
threshold static Byzantine adversary Astatic

tb
. To the best of our knowledge, the only

known PSMT protocol in asynchronous network tolerating Astatic
tb

is dues to [69]. How-
ever, in this chapter, we show that the PSMT protocol of [69] does not provide perfect
security. We then give the characterization for PSMT and SSMT in asynchronous net-
work tolerating Astatic

tb
, thus completely resolving the issue of possibility. The most

interesting fact brought forth by our characterization is the following: our characteriza-
tion shows that asynchrony of the network demands higher connectivity of the network
for the existence of PSMT protocols. On the other hand, asynchrony of the network
does not demand higher connectivity of the network for SSMT protocols.

We now define the asynchronous network model and adversary settings used in this
chapter.
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16.1 Asynchronous Network Model

We consider a completely asynchronous network N , where S, R are two special nodes
in N . All the nodes in N are modelled as probabilistic interactive Turing Machines,
where randomization is achieved through random coins. The corruption in the network
is modelled by a centralized adversary Astatic

tb
, who has unbounded computing power and

can actively control at most tb nodes in the network, excluding S and R in Byzantine
fashion.

Following the approach of Dolev et al. [28], we abstract the network and assume
that S and R are connected by n vertex disjoint paths, called wires, of which at most
tb could be actively controlled by Astatic

tb
in Byzantine fashion. Moreover, we consider

two extreme cases:

1. When all the n wires are directed from S to R, thus not allowing any interaction
between S and R;

2. When all the n wires are bi-directional, thus allowing interaction between S and
R.

To model the asynchrony in the network, we assume that the adversary can schedule
the message delivery along every wire; i.e., he can determine the time delay of all the
messages along all the n wires. However, adversary can only schedule the messages sent
along honest wires, without having any access to them. Moreover, the message sent over
an honest wire will be eventually delivered. If a wire is under the control of Astatic

tb
,

then Astatic
tb

may indefinitely block the communication along the wire. So the receiver
may have to wait indefinitely for the message(s) along that wire. Hence the receiver can
not distinguish between honest wires which are slow (due to the malicious scheduling of
messages by Astatic

tb
on these wires) and corrupted wires which withhold/does not send

information at all.
In our protocols, S and R does computation over a field F, where F is a finite field

of prime order. For PSMT protocols, the only restriction on F is that |F| > n. On the
other hand, for SSMT protocol, F = GF (2κ), where κ is the error parameter of the
protocol. If some x ∈ F is sent through all the wires, then it is said to be broadcasted. If
x is broadcasted over at least 2tb+1 wires, then receiver will always correctly recover it.
This is because out of the 2tb +1 wires, at least tb +1 will be honest and will eventually
deliver x. So the receiver can wait for a value which is received identically over at
least tb + 1 wires. We now define asynchronous perfectly secure message transmission
(APSMT) and asynchronous statistically secure message transmission (ASSMT).

Let the message to be transmitted securely be drawn from F and Γ denote the
underlying probability distribution on F. We define the view of a node Pj ∈ N , at
any point of the execution of a protocol Π for secure message transmission, to be
the information that Pj can get from its local input to the protocol (if any), all the
messages that Pj had earlier sent or received, the protocol code executed by Pj and
random coins of Pj . The view of Astatic

tb
at any point of the execution of Π is defined

as all the information that Astatic
tb

can get from the views of all the nodes corrupted
by Astatic

tb
(i.e. all the information that these nodes can commonly compute from their

views). For message m ∈ F, any adversary characterized by Astatic
tb

and any protocol Π

for secure message transmission, let Γ̂(Astatic
tb

,m,Π) denote the probability distribution
on the view of the adversary Astatic

tb
at the end of the execution of Π.

Definition 16.1 (APSMT) A protocol Π is said to facilitate asynchronous perfectly
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secure message transmission (APSMT) if for any message m drawn from F and for
every adversary Astatic

tb
, the following conditions are satisfied:

1. Perfect Secrecy: Γ̂(Astatic
tb

,m,Π) = Γ̂(Astatic
tb

,m′,Π), for all m′ 6= m. That is, the
two distributions are identical irrespective of the message transmitted.

2. Perfect Reliability: R should receive m correctly, without any error.

3. Termination: R should eventually terminate the protocol.

Definition 16.2 (ASSMT) A protocol Π is said to facilitate asynchronous statisti-
cally secure message transmission (ASSMT) if a negligible error probability of 2−Ω(κ)

can be tolerated with respect to the Perfect Reliability condition of APSMT, where κ
is the error parameter. That is, R should correctly receive m with probability at least
(1− 2−Ω(κ)). The probability is over the choice of m and the coin flips of all the nodes
in N and Astatic

tb
.

We now give an overview of our results which will be presented in this chapter.
Before that, we give the following remark.

Remark 16.3 (Concept of Phase in Asynchronous Network) In synchronous net-
works, we assume that the protocols operate as a sequence of phases, where a phase is
a send from S to R or vice-versa. This is a valid assumption, because there is an
upper bound on the time delay of every wire, as the network is synchronous. How-
ever, in asynchronous network, there is no upper bound on the time delay. Hence, in
asynchronous network, we cannot assume that the protocols operate in phases. Rather,
we consider whether interaction is allowed between S and R or not. Accordingly, we
consider two extreme settings, as discussed earlier in this section.

16.2 Overview of Our Results for PSMT and SSMT in
Asynchronous Network

Our contributions in this chapter are as follows:

1. In [69], Sayeed et al. have given a PSMT protocol in asynchronous network,
tolerating Astatic

tb
in the presence of n = 2tb + 1 unidirectional wires from S to R.

However, we show that their protocol does not provide perfect security.

2. We show that if there are n unidirectional wires from S to R in an asynchronous
network, then there exists a PSMT protocol tolerating Astatic

tb
, iff n > 3tb. Com-

paring this with Theorem 9.1, we find that synchrony of the network does not
effect the possibility of PSMT protocol, if all the n wires are unidirectional from
S to R.

3. We show that if there are n bi-directional wires between S and R in an asyn-
chronous network, then there exists a PSMT protocol tolerating Astatic

tb
, iff n >

3tb. This is surprising because from Theorem 9.3, n > 2tb bi-directional wires
are necessary and sufficient for the existence of PSMT protocol against Astatic

tb
in

synchronous network. This shows that if all the n wires are bi-directional, then
synchrony of the network significantly affects the possibility of PSMT protocols.
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4. We show that SSMT between S and R is possible in an asynchronous network,
tolerating Astatic

tb
iff n > 2tb. Moreover, this is true, irrespective of whether the

n wires are unidirectional or the n wires are bi-directional. Comparing this with
Theorem 14.1, we find that irrespective of whether the n wires are unidirectional
or bi-directional, synchrony of the network does not affect the possibility of SSMT.

In [76], the authors have given the necessary and sufficient condition for PSMT
and SSMT in asynchronous networks tolerating non-threshold adversary (see Section
1.4.3 for the meaning of non-threshold adversary). However, though not explicitly
stated in the paper, their characterization for PSMT is true under the assumption
that S is honest, while their characterization for SSMT is true under the assumption
that S may be corrupted, where if S is corrupted, then he may not send anything
to R along some path. Note that while in synchronous model, S being honest or
dishonest does not make any sense, in asynchronous model this makes lot of difference.
This is because we cannot distinguish between a slow sender and a corrupted sender.
However, in this chapter, we derive all the necessary and sufficient condition, assuming
S to be honest. The protocols given in [76] against non-threshold adversary are very
complex. Though we can derive protocols for tolerating Astatic

tb
from the protocols of [76]

tolerating non-threshold adversary, the resultant protocols will be very complex and
inefficient. Instead, since we work on threshold model (where the corruption capability
of the adversary is bounded by a threshold), our protocols are very elegant and efficient.

Asynchronous PSMT/SSMT is an important primitive for perfectly/statistically
secure multiparty computation over asynchronous incomplete networks. Thus, our
results can be used to transform the asynchronous secure computation protocols that
run over a complete network [14, 12, 83, 64, 10] into ones that can be executed over
incomplete networks.

In the next section, we discuss about APSMT, when all the wires are unidirectional
from S to R.

16.3 APSMT When All Wires are Unidirectional from S

to R

In this section, we recall the existing APSMT protocol tolerating Astatic
tb

, proposed by
Sayeed et al. [69] where all the n wires are directed from S to R. We show that their
protocol does not provide perfect secrecy. We then give the true characterization for
APSMT protocols tolerating Astatic

tb
, when all the n wires are unidirectional, directed

from S to R.

16.3.1 Existing APSMT Protocol of [69]

In [69], the authors have given an APSMT protocol tolerating Astatic
tb

, where S and R
are connected by wires wi, i = 1, . . . , n, directed from S to R, where n = 2tb + 1. We
briefly recall the protocol from [69] and show that the protocol does not achieve perfect
secrecy; i.e., Astatic

tb
can recover mS.

In the protocol, message mS belongs to the set Q = {1, 2, . . . ,mmax} of positive
integers, such that mmax > n. Let MAX = 2mmax + 1. S sends mS by doing the
following computation and communication:

1. S randomly selects n values K1,K2, . . . ,Kn from the set Q and associates Ki

with wire wi. For each Ki, S forms a key carrying polynomial pi(x) of degree tb,
where pi(0) = Ki and other coefficients of pi(x) are randomly chosen from Q. S
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also forms a secret carrying polynomial M(x) of degree n, where M(0) = mS and
the coefficient of xi is Ki.

2. Through wire wi, S sends to R the value pj(i), for j = 1, . . . , n. S also broadcasts
M(1) and M(MAX), where the values of M(x) are from N , the infinite set of
positive integers.

We now show how Astatic
tb

can recover mS from the values sent by S. In the protocol,
S broadcasts:

V1 = M(1) = mS + K1 + K2 + . . . + Kn and

V2 = M(MAX) = mS + (K1 ×MAX) + (K2 ×MAX2) + . . . + (Kn ×MAXn)

Note that V1 and V2 does not belong to Q. They belong to N , the infinite set
of positive integers; i.e., the protocol works with the exact values of V1, V2. However,
mS ∈ Q and is always less than MAX. Since V1 and V2 are broadcasted, Astatic

tb
will

also know V1 and V2. Also MAX is a publicly known parameter. If Astatic
tb

computes
(V2 mod MAX), then he obtains mS, because all other terms in V2 are multiple of
MAX, except mS, which is less than MAX. Thus, protocol of [69] does not provide
perfect secrecy. In fact, there does not exist any APSMT protocol tolerating Astatic

tb
with n = 2tb + 1 unidirectional wires from S to R. In the sequel, we present the
true characterization of APSMT protocol tolerating Astatic

tb
, when all the n wires are

unidirectional from S to R.

16.3.2 Characterization of APSMT in Presence of Unidirectional Wires

We now prove the necessary and sufficiency condition for the existence of any APSMT
protocol tolerating Astatic

tb
, when all the wires are directed from S to R.

Theorem 16.4 Suppose there exists n wires, directed from S to R, of which at most tb
could be under the control of Astatic

tb
. Then there exists an APSMT protocol tolerating

Astatic
tb

, only if n > 3tb.

Proof: From Theorem 9.1, we know that n > 3tb wires are necessary for the existence
of any synchronous PSMT protocol tolerating a tb-active static Byzantine adversary,
when all the wires are unidirectional from S to R. Hence it is obviously necessary for
the existence of APSMT protocol tolerating Astatic

tb
, if all the wires are unidirectional

from S to R. 2

We now show that n > 3tb unidirectional wires from S to R are also sufficient for de-
signing an APSMT protocol tolerating Astatic

tb
. For this, we design an APSMT protocol

in the next section, tolerating Astatic
tb

, provided there exists n = 3tb + 1 unidirectional
wires from S to R.

16.3.3 APSMT in Presence of n = 3tb + 1 Unidirectional Wires

Let S and R be connected by unidirectional wires wi, 1 ≤ i ≤ n, which are directed
from S to R, where n = 3tb + 1. We design an APSMT protocol called ΠUnidirectional

APSMT ,
tolerating Astatic

tb
. The protocol is given in Fig. 16.1.

We now prove the properties of protocol ΠUnidirectional
APSMT .

249



Figure 16.1: Protocol ΠUnidirectional
APSMT with n = 3tb + 1 unidirectional wires from S to R.

Computation and Communication by S:

1. S selects a random polynomial p(x) of degree tb over F, such that p(0) = mS,
where mS is the secret message, which S wants to send to R.

2. For i = 1, . . . , n, S sends p(i) to R over wire wi.

Message Recovery by R:

For r = 0, . . . , tb, R does the following in iteration r:

1. Let W denote the set of wires over which R has received the values and Ir

denote the values received over the wires in W, when W contains 2tb + 1 + r
wires.

2. Wait until |W| ≥ 2tb + 1 + r. R applies RS-DEC(2tb + 1 + r, Ir, r, 0, tb + 1) to
get the polynomial p′(.). If no polynomial is output, then R skips the next
step and proceeds to next iteration.

3. If at least 2tb + 1 values in Ir lie on p′(.), then R outputs p′(0) as the secret
message and terminates. Otherwise, R proceeds to the next iteration.

Theorem 16.5 In protocol ΠUnidirectional
APSMT , the adversary Astatic

tb
gets no information

about the secret message mS.

Proof: It is easy to see that Astatic
tb

gets at most tb distinct points on p(x). So
Astatic

tb
lacks by one point to uniquely interpolate p(x). This implies that p(0) = mS is

information theoretically secure. 2

Theorem 16.6 In protocol ΠUnidirectional
APSMT , R will eventually output mS.

Proof: Suppose Astatic
tb

corrupts r̂ ≤ tb wires during the transmission of values of

p(x). Now during r̂th iteration, R receives 2tb + 1 + r̂ points on p(x), of which r̂ are
corrupted. So from Theorem 2.19, RS-DEC will be able to correct the r̂ errors and
hence the polynomial p′(.) which is output by RS-DEC during r̂th iteration will pass
through at least 2tb +1 points in Ir. Since out of these 2tb +1 points, at least tb +1 are
honest and uniquely define the original polynomial p(.) (tb + 1 points uniquely define
a tb degree polynomial), the output polynomial p′(.) is same as p(.). Thus p(.) will be
output in r̂th iteration and all the iterations up to iteration r̂ will be unsuccessful, as
either they will not output any tb degree polynomial or the output polynomial will not
pass through 2tb + 1 points in Ir

1. 2

Theorem 16.7 Let there exists n unidirectional wires from S to R. Then APSMT
tolerating Astatic

tb
is possible iff n > 3tb.

Proof: The proof follows from Theorem 16.4 and protocol ΠUnidirectional
APSMT . 2

1The procedure used by R to recover the original polynomial is called Online Error Correction
(OEC) [15], which is a well known technique in asynchronous settings. Informally, OEC allows R to
find the original polynomial in an online fashion.
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16.4 APSMT When All Wires are Bidirectional Between
S and R

In this section, we characterize APSMT tolerating Astatic
tb

, when all the n wires between
S and R are bi-directional. In this setting, we show that APSMT tolerating Astatic

tb
is possible iff there exists n > 3tb bi-directional wires between S and R. This shows
that irrespective of whether the n wires between S and R are uni-directional or bi-
directional, n > 3tb wires are necessary for the existence of any APSMT protocol
tolerating Astatic

tb
.

Theorem 16.8 Let S and R be connected by n = 3tb +1 bi-directional wires, of which
at most tb are under the control of Astatic

tb
. Then there exists an APSMT protocol

tolerating Astatic
tb

.

Proof: Any bi-directional wire between S and R can be treated as an uni-directional
wire from S to R. Now we know that there exists an APSMT protocol ΠUnidirectional

APSMT

tolerating Astatic
tb

if there exists n = 3tb + 1 unidirectional wires from S to R. Hence
the same protocol can also be executed if there exists n = 3tb + 1 bi-directional wires
between S and R. 2

We now show that if all the n wires between S and R are bi-directional, then
APSMT tolerating Astatic

tb
is possible only if n > 3tb. The proof is by contradiction.

We first show that there does not exist any APSMT protocol, securely communicating
a message between a sender S′ and receiver R′, with three bi-directional wires between
S′ and R′, of which one can be corrupted by the adversary (Theorem 16.9). Then
by using a standard player partitioning argument [44], we show that if there exists an
APSMT protocol tolerating Astatic

tb
with n = 3tb bi-directional wires between S and

R, then there exists an APSMT protocol tolerating Astatic
1 , with 3 bi-directional wires

between S′ and R′, which is a contradiction (Theorem 16.10).

Theorem 16.9 Let there be three bi-directional wires between a sender S′ and a re-
ceiver R′, of which at most one wire could be under the control of the adversary. Then
there does not exist any APSMT protocol, securely transmitting a message from S′ to
R′.

Proof: The proof is by contradiction. Let S′ and R′ be connected by three bi-
directional wires w1, w2, w3, of which at most one wire can be under the control of
adversary Astatic

1 . Moreover, let Π be an APSMT protocol for securely transmitting a
message from S′ to R′, tolerating Astatic

1 . Let E be an execution of Π. Then we define
the following variables:

1. time(E,R′, wi): denotes the arrival time of the different messages (with respect
to local clock) received by R′ in E, along wire wi, i ∈ {1, 2, 3}.

2. time(E,S′, wi): denotes the arrival time of the different messages (with respect
to local clock) received by S′ in E, along wire wi, i ∈ {1, 2, 3}.

3. Etime: denotes the total time taken (with respect to R′) by execution E; i.e., the
time at which R′ terminates by outputting the message in E.

From the termination property of APSMT, each execution of Π will eventually
terminate. Moreover, in any execution of Π, the distribution of data sent along a single
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wire will be same, irrespective of the secret message, which is sent during protocol Π.
Otherwise, the adversary can passively listen the wire and will get information about
the secret message, thus violating the perfect secrecy property of Π. Now consider the
following execution sequences of protocol Π:

1. E1: Let the random coin tosses of S′ and R′ be r1 and r2 respectively and let S′

wants to send the secret message m. The adversary strategy is to control wire w3

and not allowing any data to pass over w3 throughout E1. Let α and β denote the
messages that are exchanged between S′ and R′, along w1 and w2 respectively.
The protocol terminates after working for Etime

1 and outputs m.

2. E2: Let the random coin tosses of S′ and R′ are r1 and r2 respectively and let
S′ wants to send the secret message m. The adversary strategy is to passively
control w2 and delay any information along w3 for time Etime

1 + Etime
3 + 1 (E3

is defined below). In addition, the adversary schedules the messages along w1

and w2 in such a way that time(E2,S
′, wi) = time(E1,S

′, wi), for i ∈ {1, 2} and
time(E2,R

′, wi) = time(E1,R
′, wi), for i ∈ {1, 2}. Thus the view of S′ and R′

in E1 and E2 are exactly same and hence the secret m is reconstructed. Also
Etime

1 = Etime
2 and α and β are exchanged between S′ and R′, along w1 and w2

respectively.

Let m∗(6= m) be another secret message. Then from the perfect secrecy property of
Π, there exists r3(6= r1) and r4(6= r2), such that the following holds: S′ wants to send
m∗, the random coin tosses of S′ and R′ are r3 and r4 respectively and the information
exchanged between S′ and R′ along wire w2 is β. Note that such an r3, r4 exists,
otherwise it implies that data sent along wire w2 is dependent on secret message, thus
violating perfect secrecy property of Π. Now consider the following executions of Π:

3. E3: Here, the random coin tosses of S′ and R′ are r3 and r4 respectively. S′ wants
to send the secret message m∗. The adversary strategy is to control wire w3

and not allowing any data to pass over w3 throughout E3. Let α∗ and β∗(= β)
denote the messages that are exchanged between S′ and R′, along w1 and w2

respectively. The protocol terminates after working for Etime
3 and outputsm∗.

4. E4: The random coin tosses of S′ and R′ are r3 and r4 respectively. S′ wants to send
the secret message m∗. The adversary strategy is to passively control w2 and delay
any information along w3 for time Etime

1 + Etime
3 + 1. In addition, the adversary

schedules the messages along w1 and w2 in such a way that time(E4,S
′, wi) =

time(E3,S
′, wi), for i ∈ {1, 2} and time(E4,R

′, wi) = time(E3,R
′, wi), for i ∈

{1, 2}. Thus the view of S′ and R′ in E3 and E4 are same and hence the secret
m∗ is reconstructed. Also Etime

3 = Etime
4 and α∗ and β∗(= β) are exchanged

between S′ and R′, along w1 and w2 respectively.

5. E5: The random coin tosses of S′ and R′ are r1 and r4 respectively. S′ wants to
send the secret message m. Let α′, β′(= β) denote the messages that should have
been exchanged between S′ and R′ along w1 and w2 in ideal situation, when w1

and w2 are honest (not under the control of adversary).

Now the adversary strategy in E5 is as follows: adversary delay any informa-
tion along w3 for time Etime

1 + Etime
3 + 1. In addition, the adversary controls

w1 in Byzantine fashion, such that instead of receiving messages from α′, R′

gets messages from α∗, while S′ receives messages from α. Moreover, adversary
schedules the messages along w1 and w2 in such a way that time(E5,S

′, wi) =
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time(E2,S
′, wi), for i ∈ {1, 2} and time(E5,R

′, wi) = time(E4,R
′, wi), for i ∈

{1, 2}. Thus the view of S′ is α β′ = α β, while view of R′ is α∗ β′ = α∗ β.

Thus the view of S′ in E2 and E5 are same, so S′ will assume that m has been communi-
cated securely. However, the view of R′ in E5 is same as in E4 and hence R′ will output
m∗. But this violates the perfect reliability property of Π, which is a contradiction.
Hence Π does not exist. 2

Theorem 16.10 Let S and R be connected by n bi-directional wires, of which at most
tb can be under the control of Astatic

tb
. Then there exists an APSMT protocol tolerating

Astatic
tb

only if n > 3tb.

Proof: The proof is by contradiction. Assume that there exist an APSMT protocol
ΠAPSMT tolerating Astatic

tb
, where S and R are connected by n = 3tb bi-directional

wires. Now by using standard player partitioning strategy, we show how to transform
protocol ΠAPSMT into another APSMT protocol Π, which securely transmits a message
from a sender S′ to a receiver R′, who are connected by three bi-directional wires, of
which at most one could be corrupted by the adversary. Let the wires between S and
R be numbered 1, 2, . . . , 3tb. Similarly, let the wires between S′ and R′ be numbered
as 1, 2, 3. Now we define a mapping M : {1 . . . n} −→ {1, 2, 3} as follows:

M(x) = 1 : ∀x ∈ {1 . . . tb}

= 2 : ∀x ∈ {tb + 1 . . . 2tb}

= 3 : ∀x ∈ {2tb + 1 . . . 3tb}

We denote M−1(1) = {1, 2, . . . , tb}, M−1(2) = {tb + 1, t + 2, . . . , 2tb} and M−1(3) =
{2tb + 1, 2t + 2, . . . , 3tb}. Now Π is obtained from ΠAPSMT in the following way: if
in protocol ΠAPSMT , k ∈ F is sent from S to R on wire w ∈ {1, 2, . . . , 3tb}, then in
protocol Π, k is sent from S′ to R′ on wire M(w). We define the transmission from
R′ to S′ in a similar fashion. Similarly, if the adversary controls wire w ∈ {1, 2, 3} in
protocol Π, then he controls the set M−1(w) in protocol ΠAPSMT . It can be easily
verified that the view of S′ and R′ in Π is same as the view of S and R respectively, in
protocol ΠAPSMT . So Π is an APSMT protocol, which securely transmits a message
from S′ to R′, who are connected by three bi-directional wires, of which at most one
can be corrupted. But from Theorem 16.9, Π does not exist. Hence ΠAPSMT also does
not exist. 2

16.5 ASSMT When All Wires are Unidirectional from S

to R

We now give the characterization for ASSMT protocols tolerating Astatic
tb

, when all the
wires are directed from S to R.

Theorem 16.11 Let there exists n wires directed from S to R, of which at most tb
could be under the control of Astatic

tb
. Then there exists an ASSMT protocol tolerating

Astatic
tb

, only if n > 2tb.

Proof: From Theorem 14.1, we know that n > 2tb wires are necessary for the ex-
istence of any synchronous SSMT protocol tolerating an all powerful tb-active static
Byzantine adversary, when all the wires are unidirectional from S to R. Hence it is
obviously necessary for the existence of ASSMT protocol tolerating Astatic

tb
, if all the

253



wires are unidirectional from S to R. 2

We now show that n = 2tb + 1 unidirectional wires from S to R are sufficient to design
an ASSMT protocol tolerating Astatic

tb
. Let S and R be connected by n = 2tb + 1

unidirectional wires, directed from S to R. Let the wires be denoted by w1, . . . , wn.
Moreover, let F = GF (2κ), where κ is the error parameter. Furthermore, without loss of
generality, let n = poly(κ). We now present an ASSMT protocol called ΠUnidirectional

ASSMT ,
which securely sends a message mS ∈ F. The protocol is formally given in Fig. 16.2.

We now prove the properties of protocol ΠUnidirectional
ASSMT .

Claim 16.12 In protocol ΠUnidirectional
ASSMT , if R concludes that pR(i) is a valid point,

then except with error probability 2−Ω(κ), pR(i) = pS(i).

Proof: The claim trivially holds without any error if wi is honest because an honest
wire will correctly deliver pR(i) = pS(i). So we consider the case when wi is corrupted.
So let wi be a corrupted wire, who delivers pR(i) 6= pS(i). In order that pR(i) is
considered as a valid point, it must hold that Supporti ≥ tb + 1. This further implies
that there exists at least one honest wire, say wj , such that wj ∈ Supporti because
there can be at most tb corrupted parties. Since wj ∈ Supporti, it implies that γR

ij =

Urauth(pR(i); aR
ij , b

R
ij ). Now notice that wj is an honest wire and so aR

ij = aS
ij and

bRij = bSij . However Astatic
tb

will have no information about aR
ij and bRij , as they are sent

over wj. So from the properties of URauth, except with probability 2−Ω(κ), γR
ij 6=

auth(pR(i); aR
ij , b

R
ij ), which is a contradiction. So except with error probability 2−Ω(κ),

pR(i) = pS(i). 2

Claim 16.13 In protocol ΠUnidirectional
ASSMT , R will eventually get tb + 1 valid points.

Proof: In ΠUnidirectional
ASSMT , the worst case occurs when at most tb corrupted wires do

not deliver any information at all. However, still there exists tb + 1 honest wires, who
will eventually deliver correct points to R. These correct points will eventually reach
R and hence will be considered as valid points by R. 2

Claim 16.14 In protocol ΠUnidirectional
ASSMT , if R outputs mR, then except with probability

2−Ω(κ), mR = mS.

Proof: If R outputs mR, then it implies that R must have received tb+1 valid points,
using which R has interpolated tb degree polynomial pR(x), such that pR(0) = mR.
In the worst case, out of these tb + 1 valid points, at most tb points could have been
received over the wires which are under the control of Astatic

tb
. However, from Claim

16.12, the probability that none of those tb points are the original points on pS(x) is at
most tb2

−Ω(κ) ≈ 2−Ω(k). So except with probability 2−Ω(k), all the tb + 1 valid points
are indeed the original points on pS(x). So mR = mS, except with probability 2−Ω(κ).
2

Claim 16.15 In protocol ΠUnidirectional
ASSMT , Astatic

tb
will get no information about mS.

Proof: Without loss of generality, let w1, . . . , wtb be under the control of Astatic
tb

.
So Astatic

tb
will know pS(1), . . . , pS(tb). A

static
tb

will also know the authentication keys
(aS

ji, b
S
ji), for j = 1, . . . , n and i = 1, . . . , tb. But since the authentication keys used

to authenticate each point on pS(x) are completely random and independent of each
other, they do not provide any extra information to Astatic

tb
about pS(tb +1), . . . , pS(n).

Thus adversary will lack by one point to uniquely interpolate pS(x) and so pS(0) = mS

will be information theoretically secure. 2
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Figure 16.2: Protocol ΠUnidirectional
ASSMT with n = 2tb + 1 unidirectional wires from S to R.

Computation and Communication by S:

1. S selects a random polynomial pS(x) of degree tb over F, such that pS(0) = mS,
where mS is the secret message, which S wants to send to R.

2. For i = 1, . . . , n, S computes pS(i).

3. For i = 1, . . . , n, corresponding to pS(i), S randomly selects n non-zero au-
thentication keys (aS

ij , b
S
ij) ∈ F

2, for j = 1, . . . , n.

4. For i = 1, . . . , n, S computes γS
ij = URauth(pS(i); aS

ij , b
S
ij), for j = 1, . . . , n.

5. For i = 1, . . . , n, S sends the following to R over wire wi:

(a) The value pS(i);

(b) γS
ij, for j = 1, . . . , n;

(c) The authentication keys (aS
ji, b

S
ji), for j = 1, . . . , n.

Message Recovery by R:

For r = 0, . . . , tb, R does the following in iteration r:

1. Let W denote the set of wires wi over which R has received a complete set of
values; i.e.,

(a) The value pR(i);

(b) γR
ij , for j = 1, . . . , n;

(c) The authentication keys (aR
ji , b

R
ji), for j = 1, . . . , n.

Let Wr denote the contents of W, when W contains exactly tb + 1 + r wires.

2. Wait until |W| ≥ tb+1+r. Now corresponding to every wi ∈Wr, R computes

Supporti = {wj ∈Wr : γR
ij = URauth(pR(i); aR

ij , b
R
ij )}

3. If Supporti ≥ tb + 1, then R concludes that pR(i) is a valid point.

4. If R finds tb+1 valid points, then using them R interpolates the tb degree poly-
nomial pR(x), outputs mR = pR(0) and terminates the protocol. Otherwise
R proceeds to the next iteration.

Theorem 16.16 If there are n = 2tb + 1 unidirectional wires from S to R, then there
exists an efficient ASSMT protocol tolerating Astatic

tb
.

Proof: Follows from protocol ΠUnidirectional
ASSMT and Claim 16.12, Claim 16.13, Claim

16.14 and Claim 16.15. 2
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Theorem 16.17 Let S and R be connected by n unidirectional wires, directed from S
to R. Then ASSMT tolerating Astatic

tb
is possible iff n > 2tb.

Proof: Follows from Theorem 16.11 and Theorem 16.16. 2

16.6 ASSMT When All Wires are Bidirectional Between
S to R

The characterization for ASSMT tolerating Astatic
tb

, when all the n wires between S and
R are bi-directional is given by following theorem:

Theorem 16.18 Let S and R be connected by n bi-directional wires, of which at most
tb could be under the control of Astatic

tb
. Then there exists an ASSMT protocol tolerating

Astatic
tb

iff n > 2tb.

Proof: Any bi-directional wire between S and R can be treated as an uni-directional
wire from S to R. Now we know that there exists an ASSMT protocol ΠUnidirectional

ASSMT

tolerating Astatic
tb

if there exists n = 2tb + 1 unidirectional wires from S to R. Hence
the same protocol can also be executed if there exists n = 2tb + 1 bi-directional wires
between S to R. This proves the sufficiency part.

From Theorem 14.1, we know that n > 2tb wires are necessary for the existence
of any synchronous SSMT protocol tolerating an all powerful tb-active Byzantine ad-
versary, when all the wires are bi-directional. Hence it is obviously necessary for the
existence of ASSMT protocol tolerating Astatic

tb
, if all the wires between S and R bi-

directional. 2

16.7 Concluding Remarks and Open Problems

In this chapter, we have studied PSMT and SSMT in asynchronous networks. We
showed that the existing PSMT protocol of [70] does not provide perfect secrecy. We
have then given the exact characterization of PSMT in asynchronous networks. We
have also given the necessary and sufficient condition for SSMT in asynchronous net-
works. Our characterization reveals that asynchrony of the network demands higher
connectivity requirement for PSMT. On the other hand, asynchrony of the network does
not demand higher connectivity requirement for SSMT. Our results are summarized in
Fig. 16.3.

Figure 16.3: Connectivity Requirement for PSMT and SSMT in Asynchronous Network
Tolerating Astatic

tb

Type of Wires PSMT SSMT

Unidirectional n ≥ 3tb + 1 n ≥ 2tb + 1

Bidirectional n ≥ 3tb + 1 n ≥ 2tb + 1

In this chapter, we have considered two extreme cases: when all the wires are uni-
directional and when all the wires are bidirectional. Moreover, we have only considered
only Byzantine corruption. This brings forth the following open problems:
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Open Problem 19 What is the necessary and sufficient condition for PSMT and
SSMT in asynchronous network tolerating Astatic

tb
, when certain wires are directed from

S to R and certain wires are directed from R to S?

Open Problem 20 What is the necessary and sufficient condition for PSMT and
SSMT in asynchronous network tolerating mixed adversary.
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Chapter 17

Conclusion and Directions for
Further Research

In this chapter, we summarize our contribution in this thesis. We also mention several
problems for future directions.

17.1 Summary of Our Contributions

In this dissertation, we looked into the issues of possibility, feasibility and op-
timality of RMT/SMT and its variants in several network models and adversarial
settings. This thesis reports several new improved/efficient/optimal solutions, gives
affirmative/negative answers to several significant open problems and last but not the
least, provides first solutions to several newly formulated problems. We now briefly
summarize our main achievements of this thesis:

• We designed a three phase communication optimal PRMT protocol in undirected
synchronous network, tolerating Astatic

tb
. This significantly improves the previous

best known communication optimal PRMT protocol in undirected synchronous
network, tolerating Astatic

tb
, which takes O(log tb) phases.

• We designed a three phase communication optimal PRMT protocol tolerating
Amobile

tb
, which sends a sufficiently large message containing ℓ field elements by

communicating O(ℓ) field elements. This is the first protocol of its type in the lit-
erature. We also derived a tight bound on the number of communication rounds
required to achieve reliable communication from S to R tolerating a mobile ad-
versary with arbitrary roaming speed.

• We studied the inherent tradeoff among the three important parameters of PRMT,
namely the connectivity requirement n, phase complexity r and communication
complexity b, in the presence of a static mixed adversary Astatic

(tb,tf ). Specifically, we

resolved the Holy Grail problem of PRMT. Our lower bound is first of its kind
and captures the inherent tradeoff among n, b, ℓ and r simultaneously.

• We resolved the issue of possibility, feasibility and optimality of PRMT
in undirected synchronous network, tolerating mobile mixed adversary Amobile

(tb,tf ) ,

which is done for the first time in the literature. Our results show the following
interesting fact: irrespective of whether the adversary is static or mobile, the
necessary and sufficient condition for PRMT is same. However, if the adversary
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is mixed, then any PRMT protocol against mobile adversary requires more com-
munication, as compared to its static counter part. Thus if the adversary can do
mixed type of corruption, then mobility of the adversary affects optimality of
the protocols.

• We resolved the issue of optimality of PRMT in directed synchronous network
tolerating Astatic

tb
, which is done for the first time in the literature.

• We presented an efficient, three phase, communication optimal PSMT protocol
in undirected synchronous network, tolerating Astatic

tb
.

• We designed a three phase communication optimal PSMT protocol tolerating
Amobile

tb
. Our communication optimal PSMT protocol against Amobile

tb
gives the

following conclusion: if the adversary does only Byzantine corruption, then mo-
bility of the adversary does not hinder to design a three phase PSMT with a
communication complexity of O(nℓ).

• We completely resolved the issue of optimality of multi phase PSMT tolerating
Astatic

(tb,tf ,tp). Specifically, we presented a four phase communication optimal PSMT

protocol tolerating Astatic
(tb,tf ,tp), which securely sends a message containing ℓ field

elements, by communicating O(nℓ) field elements over n = 2tb + tf + tp +1 wires.

• We completely resolved the issue of possibility and optimality of PSMT in
undirected synchronous network, tolerating mobile mixed adversary Amobile

(tb,tf ,tp).

• We provided communication optimal PSMT protocols in directed synchronous
network tolerating Astatic

tb
, which are first of their own kind.

• We completely resolved the issue of optimality of multi phase SSMT tolerating
Astatic

(tb,tf ,tp).

• We showed that the existing SSMT protocols of [24, 87, 54] in directed syn-
chronous network, tolerating Astatic

tb
are inefficient. We then presented new and

efficient, communication optimal SSMT protocol in directed synchronous net-
work, tolerating Astatic

tb
.

• We showed that the existing PSMT protocol of [69] in asynchronous network
does not provide perfect security. We then give the characterization for PSMT
and SSMT in asynchronous network tolerating Astatic

tb
, thus completely resolving

the issue of possibility. The most interesting fact brought forth by our char-
acterization is the following: our characterization shows that asynchrony of the
network demands higher connectivity of the network for the existence of PSMT
protocols. On the other hand, asynchrony of the network does not demand higher
connectivity of the network for SSMT protocols.

17.2 Major Inferences Drawn From Our Results

Some of the major conclusions that we can draw from our studies on RMT/SMT are
as follows:

1. In a minimally connected network tolerating Astatic
tf

, any PRMT protocol requires
Ω(log(tf )) phases to achieve reliability with constant factor overhead. This is
quiet interesting because against Astatic

tb
, reliability with constant factor overhead

can be achieved in three phases.
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2. Intuitively, one may feel that the connectivity requirement and communication
complexity of PRMT/PSMT protocols should be more for tolerating Amobile

tb
, in

comparison to Astatic
tb

. However surprisingly, we have shown that in an undirected
synchronous network, the network connectivity and communication complexity
of PRMT/PSMT protocol is same, irrespective of whether the adversary is Astatic

tb

or Amobile
tb

.

However, if the adversary can do mixed corruption, then any PRMT protocol
against mobile adversary requires more communication, as compared to its static
counter part. Thus if the adversary can do mixed type of corruption, then mobility
of the adversary affects optimality of RMT protocols.

3. In undirected synchronous network, the network connectivity and communication
complexity of all multi-phase PSMT protocols is same against Astatic

tb
. However,

this is not the case in directed synchronous network. That is, the network connec-
tivity and communication complexity of two phase PSMT in directed synchronous
network is different from the one required for three or more phase PSMT in di-
rected network tolerating Astatic

tb
.

4. Our studies show that asynchrony of the network demands higher network con-
nectivity for the existence of PSMT protocols. On the other hand, asynchrony
of the network does not affect the network connectivity requirement for SSMT
protocols.

17.3 Directions for Future Research

Throughout the thesis, several open problems have been mentioned in each chapter.
These problems are open in the context of this thesis. We now provide some future
directions that are beyond the scope of this thesis.

1. Arbitrary Directed Networks: In this thesis, while considering the directed
network model, we have abstracted the network as directed wires, which are di-
rected either from S to R or vice-versa. However, as mentioned in Section 15.1.1,
such an abstraction is valid if it is assumed that the intermediate nodes are only
message forwarding nodes and do no other computation. However, in an arbitrary
directed network, if the intermediate nodes (other than S and R) are allowed to
carry out computation and communication (beyond just acting as a message for-
warding node), as in the case of a virtual private network (VPN), then the wired
abstraction results in loss of generality. The insufficiency of wired abstraction in
such a network model is pointed out in [84, 72, 80] where characterizations for
SRMT and SSMT over the arbitrary network, treating entire graph in its full
form are also reported. However, it is likely to take exponential time to verify
whether a given arbitrary directed network satisfies the characterization given in
[84, 72, 80] for the possibility of SRMT and SSMT. Moreover, the protocols given
in [84, 72, 80] require exponential computational and communication complexity
and are highly non-intuitive. Hence, it is an interesting open question to come
up with efficient RMT/SMT protocols in arbitrary directed network, considering
the network in its full form.

2. Hypergraph Network Model: In this thesis, we have only considered undi-
rected and directed network model, which models point to point communication.
However, in many scenarios, private one-to-one channels may not exist. Typical
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examples include Radio transmission and LAN network. Also in many practical
scenarios, a base station can broadcast to a set of receivers, but the other way
around communication might not be possible. In these cases, directed hypergraph
is the only way to model the network. Directed hypergraph is the most generic
network model with the facility of multicasting. Unfortunately, not too much is
known regarding the possibility, feasibility and optimality of RMT/SMT
and its variants in hypergraph network model (see [34, 79, 87] for partial results).
So it is important to pursue research in this direction.

3. Non-Threshold Adversary Settings: In this thesis, we have considered thresh-
old adversary settings, where the corruption capacity of the adversary is bounded
by a threshold. Modelling the adversary by a threshold helps in easy characteriza-
tion of RMT/SMT. It also helps in analyzing protocols and proving lower bound
on the communication complexity. However, as mentioned in [41], modelling the
(dis)trust in the network as a threshold adversary is not always appropriate. This
is due to the following reasons:

(a) In the case of secure communication, not all scenarios of mutual (dis)trust
can be captured by a threshold adversary.

(b) The threshold model may lead to a gross overestimation of the connectivity
requirement of the underlying network.

Motivated by this, the authors in [41] have studied PRMT and PSMT in non-
threshold adversary settings. Specifically, the authors have resolved the issue of
possibility of PRMT and PSMT in undirected synchronous network, tolerating
non-threshold static Byzantine adversary. The work of Kumar et al. was fol-
lowed by [25, 84, 62, 79, 80], who gave the characterization of different variants
of RMT/SMT in different network models, tolerating non-threshold adversary.
However, to the best of our knowledge, nothing is known in the literature regard-
ing optimality of RMT/SMT and its variants in non-threshold model. Hence, it
is an interesting open problem to look into the issue of optimality of RMT/SMT
and its variants in various network models in non-threshold settings.

4. Incomplete Information About Network Topology: All the existing results
for RMT/SMT and all the results that are discussed in this thesis are derived
under the assumption that the entire network topology is known to all the nodes
in the network. A more realistic model is the one where each node may know only
about his neighbors in the network up to some constant number of levels. Note
that none of the protocols described in this thesis works correctly (in the worst
case) in the absence of the full topological information. We remark that the design
of RMT/SMT protocols with incomplete topological information (like each node
knowing the identity of his neighbors alone) is several times more challenging and
complex as compared to the case, when each node has full information about the
topology of the network.
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