
A Two-Party Protocol with Trusted Initializer
for Computing the Inner Product

June 20, 2010

Abstract

We propose the first protocol for securely computing the inner product modulo an integer
m between two distrustful parties based on a trusted initializer, i.e. a trusted party that interacts
with the players solely during a setup phase. We obtain a very simple protocol with universally
composable security. As an application of our protocol, we obtain a solution for securely
computing linear equations.

1 Introduction

Situations in which two parties wish to perform some joint computation arise naturally. Internet
auctions are a well-known example. There are also many situations in which two organizations
would like to compare their data bases, but privacy regulation, or the fact them being competitors,
does not allow the simple solution: just sharing the data and do the computation.

There are many results showing that any function can be computed between two parties, by
transforming the algorithm to a Boolean circuit and then emulating this circuit cryptographically
[13]. Unfortunately, the cost of this emulation is prohibitively high, and the evaluation of even
modest functions is often impractical. For this reason it is interesting to search for cryptographic
primitives that efficiently implement the evaluation of some function f , in which f is not merely
a Boolean, but some higher level primitive.

In this paper the primitive we study is computing the inner product modulo an arbitrary integer
m. In other words, Alice provides an input vector −→x , Bob provides an input vector −→y , and they
want to compute the inner product 〈−→x · −→y 〉 mod m =

∑n
i=1 xiyi mod m. This is an interesting

primitive since it is sufficiently high-level to have some immediate applications. It pops up in two-
party protocols for linear algebra, statistical analysis, computational geometry and data mining.
Additionally, we also propose a protocol for securely solving linear systems based on our secure
solution for computing the inner product.

It is well-known that two-party computation is only possible with some additional assumption,
either about the computational resources available to the parties (e.g. polynomial time, bounded
memory), either about the channel available between them (e.g. a noisy channel, oblivious trans-
fer), or some trust assumption (e.g. the help of some trusted party or honest majority in a multiparty
scenario). Here we study the inner product protocol under the assumption that a trusted initializer
is available. This is a party who sends two different, but correlated, messages to the parties before
the protocol starts, then he leaves. This model has appeared in many places in the literature, but
was first formalized by Beaver in [1]

There are situations in which this model, with a trusted initializer, is realistic. For instance,
suppose two hospitals want to do some combined statistical analysis on their data, but privacy
legislation prohibits them to compare patient records directly. Conceivably, some third, neutral
entity (say, the Association of All Hospitals) could help them to bootstrap the protocol in some
session with all the three parties present. The third entity creates two DVDs with the correlated

1

data, then, witnessed by the two others, wipes (or destroys) the platform that was used to create
these DVDs, erasing all data.

In a somewhat looser trust model, we can suppose that the parties do not meet, but that parties
buy their correlated data on the internet as originally proposed by Beaver in [1].

Observe that in the context of digital certificates such providers exist already. There they are
called certification authorities.

Comparison with Other Work

We briefly relate our work to previous results stated in the literature.
Even tough the commodity based model (where parties receive cryptographic commodities/data

from off-line servers before the protocol starts) was formalized just in [1], it has appeared in dif-
ferent flavors throughout the literature. For instance, in some sense, a Key Distribution Center can
be interpreted as a trusted initializer for the task of private communication between two parties [7].
In [11], Rivest shows how to do Bit Commitment and Oblivious Transfer with a trusted initializer.

These protocols were generalized to oblivious polynomial evaluation and linear functional
evaluation [9], verifiable secret sharing and two party computation of a multiplication in a field of
characteristic p [10]. Another interesting primitive is oblivious linear function evaluation [8]. As
far as we know, no work has been published on the inner product with a trusted initializer.

However, the inner product has been studied in other models. In fact, it attracted a lot of
attention from the data mining community. See for instance the work of [12, 3] and of [5].
Unfortunately, many of the protocols proposed (including for other functions, not just for inner
product) are seriously flawed, as already has been noted by others, see [5, 6]. To repair the situa-
tion, Goethals et al. propose a protocol using homomomorphic encryption and provide a security
proof [5]. We show that the commodity based framework provides a way to obtain an efficient,
simple and elegant solution for the secure two-party inner product problem and for solving linear
equations. Moreover, we also show that it is possible to obtain this result in the strictest model of
security available nowadays, that presented by the universal composability model [2].

Our Contributions

In this paper, we present a protocol for computing the inner product modulo any integer m with
a trusted initializer, and prove it secure in the universal composability framework [2]. We restrict
our analysis to the case of static adversaries.

We also show that the problems of solving linear equations securely can use the inner product
protocol as a subprotocol:

Solving linear equation Alice input a matrix X and a vector −→x , Bob inputs a matrix Y and a
vector −→y . They want the vector −→z that solves the equation (X + Y) · −→z = −→x +−→y

It should be emphasized that this last protocols can only be proven secure assuming that we use
some finite field F of cardinality m = pk. The reason is that solving linear equations requires
the ability to compute inverse elements, which are only well-defined over fields. In addition, our
techniques are only able to suitable for finite fields.

The Thesis of Du

An important starting point for this research was the Ph.D. thesis of Du. Here, a strong point
is made for the need of practical two-party computations, with several interesting applications to
privacy-preserving data mining and statistical computing.

It quickly became obvious that the thesis leaves much to be desired from a theoretical point
of view: no formal model is presented, and no formal security proofs are given. However, it took
several months to realize that the situation was much more serious.

2

In the first place, often it is not defined to which set the values used in the protocols belong.
Almost always there are several auxiliary variables that take on a random value, i.e. that are ran-
domly chosen. However, in most cases the underlying set is assumed to be Z, which does not
allow a uniform distribution. For this reason, any attempt to prove security fails and the protocols
are insecure. In some situations this can be remedied choosing a large modulusM and performing
the computations mod M . For instance, the inner product protocol can be modified in this way,
and the result is secure.

In the second place, Du proposes a division protocol in Z that is not secure. This was shown
in [6], which presents another, much more elaborate, division protocol. One can think: no problem,
we will do our computations in a finite field. But that almost never resolve the problem. Z and Q
are well-ordered sets, but finite fields are not. For instance, in Q one knows that x < y implies
1/x > 1/y, but in a finite field this does not make sense, they have no notion of small and large.

In the case of the protocol for solving a linear equation over a finite field, it does make sense
to consider this question over Fq. But it is not clear how to extend this protocol to Z or Q. Here,
choosing a large (prime) modulus does not work. This reduces severely the applicability of this
protocol. The situation for several other protocols is worse. For instance, restricting the protocol
for linear programming to Fq does not make sense, and in Z the protocol proposed is hopelessly
insecure.

2 The Universal Composability Framework

The objective of the UC framework is to allow the truly modular design of cryptographic protocols.
The crux of the UC framework is the introduction of an environment, Z , who supplies input to the
parties, Alice, Bob and the Adversary, A, and receives there outputs.

In order to prove security of a specific protocol implementation, we will compare it with
some idealized version of the protocol and show that Z cannot tell the difference. This idealized
version is called the (ideal) functionality, and can be seen as some black box that does exactly
what the protocol is supposed to do, i.e. follow the protocol specification faithfully. Observe that
the functionality must also deal with invalid inputs or other unexpected behavior from the parties,
because even in the idealized model we have to assume that parties can be corrupted and behave
dishonestly, by changing their inputs, for instance.

The whole purpose of the UC security definition is to avoid the existence of attacks possible
in the real protocol implementation that do not exist in the ideal model. In other words, we want
that each attack against the real protocol corresponds to an attack against the ideal protocol. This
proves that the real protocol is at least as secure as the ideal functionality, so, assuming the latter
is well-defined, we obtain a secure protocol implementation.

More precisely, we want to show that for every adversary in the real protocol, denotedA, there
exists an ideal adversary in the ideal protocol, denotes S , such that no environment exists that can
tell the difference:

∀A ∃S ∀Z : REALπ,A,Z ≡ IDEALF
〈−→x ·−→y 〉,S,Z

In this expression REAL stands for Z’s output, defined as a single bit, after observing the
real Alice and Bob running the protocol imlementation with real adversary A, whereas IDEAL

stands for Z’s single bit output, after observing the ideal Alice and Bob running the functionality
with ideal adversary S. The probability distribution is taken over all the parties’ random tapes.
Observe that Z acts as a distinguisher, trying to tell the real and ideal model apart. The universal
quantifier guarantees that this is impossible. Indistinguishability between families of probability
distributions comes in various flavors: perfect, statistical and computational indistinguisability.
In this paper we will only use perfect indistinguisability, meaning that the two distributions are
identical.

3

3 The Inner Product Protocol

3.1 Protocol Specification and Notation

We briefly describe the players inputs and outputs specified by the protocol. In the following, we
denote by Zm the set {1, · · · ,m − 1}, by Znm the space of all n-tuples of elements of Zm. The
act of randomly choosing an element −→x from Znm is represented by −→x ∈R Znm. The players are
conveniently named Alice and Bob, while the trusted initializer is salled TI.

Alice Bob
input −→x ∈ Znm −→y ∈ Znm
output r ∈ Zm 〈−→x · −→y 〉 − r ∈ Zm

3.2 Ideal Functionality for the Inner Product

We describe the ideal functionality for securely computing the inner product.
• Upon receiving an (ASENDSINPUT, −→x , sid) message from A:
Ignore any subsequent ASENDSINPUT messages. If −→x /∈ Znm, then send an INVALIDINPUT

message to A and B and stop. If no BSENDSINPUT message has been received from B, then
store −→x and sid, and send the public delayed output (AINPUTRECEIVED, sid) to B; else choose
r ∈R Zm, set u := r and v := 〈−→x · −→y 〉 − r, send the public delayed outputs (AGETSOUTPUT, u,
sid) to A and (BGETSOUTPUT, v, sid) to B.

• Upon receiving a (BSENDSINPUT, −→y , sid) message from B:
Ignore any subsequent BSENDSINPUT messages. If −→y /∈ Znm, then send an INVALIDINPUT

message to A and B and stop. If no ASENDSINPUT message has been received from A, then
store −→y and sid, and send the public delayed output (BINPUTRECEIVED, sid) to A; else choose
r ∈R Zm, set u := r and v := 〈−→x · −→y 〉 − r, send the public delayed outputs (AGETSOUTPUT, u,
sid) to A and (BGETSOUTPUT, v, sid) to B.

It is interesting to observe that, depending on the security parameters, the ideal functionality
might leak a lot of information on the players inputs. For instance, if n, the size of the vectors)
is very low, and m, the modulus is very high, both parties can deduce the other’s input. On the
other hand, for m = 2 the protocol only gives the parity of the inner product, which is already
meaningful for n = 1 in which case it reduces to the matchmaking problem.

3.3 Trusted Initializer Functionality

We also define an ideal functionality modeling the behavior of the trusted initializer.
•When first activated, choose −→x0 ∈R Znm, −→y0 ∈R Znm, compute s0 := 〈−→x0 · −→y0〉 and distribute −→x0

to Alice and (−→y0 , s0) to Bob.

4

3.4 Protocol implementation

Alice Bob
TI −→x0 ∈R Znm −→y0 ∈R Znm;

r ∈R Zm s0 := 〈−→x0 · −→y0〉+ r

data sent by TI µA := −→x0 µB := (−→y0 , s0)
input −→x ∈ Znm −→y ∈ Znm
protocol (1)

−→y1 := −→y −−→y0 ∈ Znm
Send µ1 := (−→y1) to Alice

(2)
If µ1 is invalid then abort
−→x1 := −→x +−→x0 ∈ Znm
t ∈R Zm
t1 := 〈−→x · −→y1〉 − t
Send µ2 := (−→x1, t1) to Bob

If µ2 is invalid then abort
output u := r + t v := 〈−→x1 · −→y0〉+ t1 − s0

It is straightforward to check the correctness of the protocol:

v = 〈−→x1 · −→y0〉+ t1 − s0
= 〈(−→x +−→x0) · −→y0〉+ (〈−→x · (−→y −−→y0)〉 − t)− (〈−→x0 · −→y0〉 − r)
= 〈−→x · −→y0〉+ 〈−→x0 · −→y0〉+ 〈−→x · −→y 〉 − 〈−→x · −→y0〉 − t− 〈−→x0 · −→y0〉 − r
= 〈−→x · −→y 〉 − t− r

4 Security Proof

For clarity we write Alice and Bob in the proofs, to avoid confusion with the adversary A. S runs
A′ internally. We will also denote all variables in the simulated environment with a prime ′.

4.1 Alice Corrupted, Bob Honest

Simulation

S runs an internal (embedded) copy of A called A′. Observe that Alice is corrupted, so S has
access to Alice’s input −→x . The interactions of A′ with S are those of Alice in the real protocol
with the other parties, Z , the TI, and Bob. We now show how S acts when such interactions take
place:

5

Events S’s actions
1 Onset of the Simulation Choose −→x0

′ ∈R Zn
m and send µ′A := −→x0

′ to A′

2 Get input −→x S forwards −→x from Z , i.e. −→x ′ := −→x
3 Message (BINPUTRECEIVED, sid) S feeds µ′1 := −→y1 ′ ∈R Zn

m to A′

4 Message µ′2 If A′ sends (−→x1
′, r′1) as message µ′2, then S sends a message

(ASENDSINPUT, −→x , sid) to F〈−→x ·−→y 〉. If A′ sends something invalid
in µ′2, then S sends something invalid to F〈−→x ·−→y 〉.

5 Output u′; As long as no reponse from F〈−→x ·−→y 〉is received, S does nothing, even
if this means waiting forever.
When an INVALIDINPUT message is received, S forwards it to Z .
When an AGETSOUTPUT message is received, S does the following: It
lets the functionality deliver the message (BGETSOUTPUT, v, sid). S
also intercepts the simulated output u′ = r′ and verifies if this value is
consistent with the input−→x , and the simulated messages µ′A, µ′1 and µ′2.
If consistent, S substitutes the simulated output u′ for the real output u
obtained from F〈−→x ·−→y 〉by setting uS = u; else it sets uS = u′. Then
uS is sent to Z through Alice’s interface.

Indistinguishability

We make the following observations:

1. Independent of A, Z can make Bob send no input or an invalid input. In the simulation, S
behavior after sending the message copies this perfectly.

2. Whatever A′’s strategy is, it either sends a valid or an invalid message µ′2. If the message
is invalid, both the simulated and the ideal protocol will send INVALIDINPUT to the two
parties, which will be forwarded to Z .

3. Even if A′ sent a valid message µ′2, it can still deviate from the protocol by sending a com-
pletely different output. Here, deviate means to send an output u′ that is not consistent with
the input −→x ′ = −→x and the messages µ′A, µ′1 and µ′2. In the case A′ did deviate, S detects
this and does nothing, i.e. it forwards the output produced by A′ directly to Z .

4. In the case A′ did follow the protocol, S substitutes A′’s output us for the output uF obtained
from F〈−→x ·−→y 〉.

If we consider A′ (andA) as deterministic algorithms whose probabilism comes from a random
tape, it follows that A′ behavior is completely determined by these random bits, called sA, the
incoming message µ′A, the input −→x and the incoming message µ′1. We already know that the
random bits sA and the input −→x have the same distribution in the real and ideal protocol, because
of the way the model is defined.

So in order to show that ∀A ∃S ∀Z : REALπ,A,Z ≡ IDEALF
〈−→x ·−→y 〉,S,Z , it suffices to show

that the incoming message µ′A produced by S has the same distribution as the incoming message
µA produced by the TI in the real protocol. But this is trivial, since both are generated from the
same distribution, the uniform distribution on Znm.

In addition, we must show that µ′1 produced by S and µ1 sent by Bob have the same distribu-
tion. Observe that µ1 := −→y1 := −→y −−→y0 , with −→y0 ∈R Znm. Since both TI and Bob are honest in the
real protocol, it follows that both µ′1 and µ1 are generated according to the uniform distribution on
Znm.

So we conclude that A′’s incoming messages in the simulated protocol have a distribution
identical to A’s incoming message in the real protocol. It follows therefore that the ideal and real
protocol distributions are perfectly indistinguishable from Z point of view, which completes the
proof.

6

4.2 Alice Honest, Bob Corrupted

The proof of this case is very much along the same lines as the previous case: S runs an internal
(embedded) copy of A called B′. Observe that Bob is corrupted, so S has access to Bob’s input
−→y . The interactions of B′ with S are those of Bob in the real protocol with the other parties, Z ,
the TI, and Alice. We give an overview how S acts

Events S’s actions
1 Onset of the Simulation S sets −→y0 ′ ∈R Zn

m, s′0 ∈R Zm and feeds µ′B := (−→y0 ′, s′0) to B′

2 Get input −→y ; S forwards −→y from Z , i.e. −→y ′ := −→y
3 Message µ′1 If B′ sends−→y1 ′ as message µ′1, then S sends a message (BSENDSINPUT,

−→y , bsid) to F〈−→x ·−→y 〉. If B′ sends something invalid in µ′1, then S sends
something invalid to F〈−→x ·−→y 〉. S lets the functionality deliver the mes-
sage (BINPUTRECEIVED, sid)

4 Message (BGETSOUTPUT, v, sid) S sets (−→x1
′ ∈R Zn

m, r
′
1 ∈R Zn

m and feeds µ′2 := (−→x1
′, r′1) to B′; S lets

the functionality deliver the message (AGETSOUTPUT, u, sid) to A. S
intercepts the simulated output v′ = 〈−→x1

′ · −→y0 ′〉 + r′1 − s′0 and verifies
if this value is consistent with the input −→y , and the simulated messages
µ′B , µ′1 and µ′2. If consistent, S substitutes the simulated output v′ with
the real output v obtained from F〈−→x ·−→y 〉by setting vS = v; else it sets
vS = v′. As long as no v′ from B′ is received, S does not forward the
message BGETSOUTPUT, even if this means waiting forever. Then vS
is sent to Z through Bob’s interface.

The proof of indistinguishability is almost identical to the previous case and is omitted.

4.3 Alice and Bob Honest

If neither party is corrupted, A simulates the Trusted Initializer Functionality, sees a transcript of
the message sent between Alice and Bob and let the functionality send the public delayed outputs
in the ideal protocol when A deliver the respective messages in the simulated execution.

4.4 Alice and Bob Corrupted

The protocol is a deterministic function of the parties’ inputs and random tapes. When both Alice
and Bob are corrupted, S has full access to this information and can simulate perfectly.

5 Solving Linear Equations

We now show how to use the previously proposed protocol for computing the inner product in
order to obtain a new protocol for securely solving linear equations. Before we introduce the
ideal functionalities related to this task, we briefly introduce the notation used in the protocol
description.

In the following, we denote by Fq the finite field of order q, by Fnq the space of all n-tuples of
elements of Fq. The act of randomly choosing an element−→x from Fnq is represented by−→x ∈R Fnq .
Fn×nq represents the space of all n × n matrices with elements belonging to Fq, while SL(Fq)
represents the set of all non-singular n × n matrices with elements belonging to Fq. Sum, multi-
plication and multiplication by scalar for vectors and matrices are defined as usual.

7

5.1 Ideal Functionality

• Upon receiving an (ASENDSINPUT, −→x , X , sid) message from A:
Ignore any subsequent ASENDSINPUT messages. If −→x /∈ Znm or X /∈ SL(Fq), then send an
INVALIDINPUT message to A and B and stop. If no BSENDSINPUT message has been received
from B, then store −→x , X and sid, and send the public delayed output (AINPUTRECEIVED,
sid) to B; else find −→z such that (X + Y)−→z = −→x + −→y and send the public delayed output
(BGETSOUTPUT, −→z , sid) to B.

• Upon receiving a (BSENDSINPUT, −→y , Y , sid) message from B:
Ignore any subsequent BSENDSINPUT messages. If −→y /∈ Znm or Y /∈ SL(Fq), then send an IN-
VALIDINPUT message to A and B and stop. If no ASENDSINPUT message has been received from
A, then store −→y , Y and sid, and send the public delayed output (BINPUTRECEIVED, sid) to A;
else find−→z such that (X+Y)−→z = −→x +−→y and send the public delayed output (BGETSOUTPUT,
−→z , sid) to B.

5.2 Protocol implementation

Our approach is based on Du’s approach [3]. The solution −→z to the linear equation (X + Y)−→z =
−→x + −→y is equal to the solution −→z in P (X + Y)QQ−1−→z = P (−→x + −→y), in which P and Q are
random, invertible matrices over Fq only known by Bob. In the protocol, we let Alice solve the
blinded equation P (X + Y)Q−→t = P (−→x +−→y), so t = Q−1−→z . In other words, the solution that
Alice gets to see is the final solution −→z , blinded with a random invertible matrix Q−1.

To allow Alice to compute P (X + Y)Q and P (−→x +−→y) without her learning Y or y, we use
the inner product as a subprotocol, since matrix multiplication is nothing but the inner products of
the right rows and columns.

Note that we can do all subprotocols in parallel since we have proven it UC. Note also that
we can modify the previous protocol (without affecting its security) so that the value r can be is
chosen randomly by TI and pre-distributed. Though the protocol notation below seems to suggest
otherwise, it should be pointed out that the initialization phase for the main protocol and the
subprotocols takes place at the same time. The Trusted Initializer Functionality is similar to the
previous one, but in addition to the data used by the inner product protocols, it also pre-distributes
the other data needed by the protocol below.

In the following, (R; [PX − R]) := Π〈−→x ·−→y 〉(X;P) denotes a protocol where Alice inputs
the matrix X , Bob inputs the matrix P , Alice receives a random R as output while Bob receives
PX − R. As stated previously, such a protocol for secure multiplication of matrices is clealry
implementable given our protocol for computing the inner product.

8

Trusted Initializer Q,R ∈R SL(Fq)
U ∈R Fn×nq
−→s ∈R Fnq

Data sent by TI µA := (R, V = RQ+ U,−→s) µB := (Q,U)
Alice Bob

Input X ∈ SL(Fq),−→x ∈ Fnq Y ∈ SL(Fq),−→y ∈ Fnq
Step 1: P ∈R SL(Fq)
Call subprotocol Π〈−→x ·−→y 〉 (R; [PX −R]) := Π〈−→x ·−→y 〉(X;P)

Call subprotocol Π〈−→x ·−→y 〉 (−→s ; [P−→x −−→s]) := Π〈−→x ·−→y 〉(
−→x ;P)

M := [PX −R]Q+ PY Q− U
−→c := [P−→x −−→s] + P−→y
Send µ1 := (M,−→c) to Alice

Step 2: If µ1 is invalid then abort
N := M + V
−→
d := −→c +−→s
Find −→t such that N−→t = −→d
Send µ2 := (−→t) to Bob

Step 3: Compute −→z = Q−1−→t
Output u := ε v := −→z

The correctness of the protocol is trivially verified:
N := M + V = [PX −R]Q+ PY Q− U +RQ+ U = P (X + Y)Q−→
d := −→c +−→s = [P−→x −−→s] + P−→y +−→s = P (−→x +−→y)
so Alice solves the equaltion P (X + Y)Q−→t = P (−→x +−→y).
In order to find the solution to (X + Y)−→z = −→x +−→y , Bob must compute −→z = Q−1−→t .

6 Security Proof

6.1 Alice Corrupted, Bob Honest

Simulation

S runs an internal (embedded) copy of A called A′. Observe that Alice is corrupted, so S has
access to Alice’s inputs −→x and X . The interactions of A′ with S are those of Alice in the real pro-
tocol with the other parties, Z , the TI, and Bob. We now show how S acts when such interactions
take place (the simulation deals with the inner products in the same way as explained previously,
and so these steps will be omitted):

9

Events S’s actions
1 Onset of the Simulation Choose the pre-distributed data following the correct procedures of the

Trusted Initializer Functionality and sends Alice’s pre-distributed data
to A′.

2 Get input −→x and X S forwards −→x and X from Z , i.e. −→x ′ := −→x and X ′ = X . S also
chooses −→y ′ ∈R Fn

q , Y ′ ∈R SL(Fq) and P ′ ∈R SL(Fq).
3 Message (BINPUTRECEIVED, sid) S computes M ′ and −→c ′, and sends µ′1 := (M ′,−→c ′) to A′

4 Message µ′2 If A′ sends−→t ′ as message µ′2, then S sends a message (ASENDSINPUT,
−→x , X , sid) to F〈−→x ·−→y 〉. If A′ sends something invalid in µ′2, then S
sends something invalid to F〈−→x ·−→y 〉.

5 Message (BGETSOUTPUT, −→z , sid) S lets the functionality deliver the message (BGETSOUTPUT, v sid).

Indistinguishability

We make the following observations:

1. Independent of A, Z can make Bob send no input or an invalid input. In the simulation, S
behavior after sending the message copies this perfectly.

2. Whatever A′’s strategy is, it either sends a valid or an invalid message µ′2. If the message
is invalid, both the simulated and the ideal protocol will send INVALIDINPUT to the two
parties, which will be forwarded to Z .

If we consider A′ (andA) as deterministic algorithms whose probabilism comes from a random
tape, it follows that A′ behavior is completely determined by these random bits, called sA, the pre-
distributed data, the inputs −→x and X , and the incoming message µ′1. We already know that the
random bits sA and the inputs −→x and X have the same distribution in the real and ideal protocol,
because of the way the model is defined.

So in order to show that ∀A ∃S ∀Z : REALπ,A,Z ≡ IDEALF
〈−→x ·−→y 〉,S,Z , it suffices to show

that the pre-distributed data produced by S has the same distribution as the pre-distributed data
produced by the TI in the real protocol. But this is trivial, since S generate these data using the
same distribution that the TI uses in the real protocol.

In addition, we must show that µ′1 produced by S and µ1 sent by Bob have the same distribu-
tion. Observe that M := [PX−R]Q+PY Q−U with U ∈R Fn×nq and−→c := [P−→x −−→s]+P−→y
with P ∈R SL(Fq). Since both TI and Bob are honest in the real protocol, it follows that both µ′1
and µ1 are generated according to the uniform distribution.

So we conclude that A′’s incoming messages in the simulated protocol have a distribution
identical to A’s incoming message in the real protocol. It follows therefore that the ideal and real
protocol distributions are perfectly indistinguishable from Z point of view, which completes the
proof.

6.2 Alice Honest, Bob Corrupted

The proof of this case is very much along the same lines as the previous case: S runs an internal
(embedded) copy of A called B′. Observe that Bob is corrupted, so S has access to Bob’s input
−→y . The interactions of B′ with S are those of Bob in the real protocol with the other parties, Z ,
the TI, and Alice. We give an overview how S acts

10

Events S’s actions
1 Onset of the Simulation Choose the pre-distributed data following the correct procedures of the

Trusted Initializer Functionality and sends Bob’s pre-distributed data to
B′.

2 Get input −→y and Y S forwards −→y and Y from Z , i.e. −→y ′ := −→y and Y ′ = Y . S also
chooses −→x ′ ∈R Fn

q and X ′ ∈R SL(Fq).
3 Message µ′1 If B′ sends (M ′,−→c ′) as message µ′1, then S sends a message

(BSENDSINPUT, −→y , Y, bsid) to F〈−→x ·−→y 〉. If B′ sends something in-
valid in µ′1, then S sends something invalid to F〈−→x ·−→y 〉. S lets the
functionality deliver the message (BINPUTRECEIVED, sid)

4 Message (BGETSOUTPUT, v, sid) S computes N ′, −→y ′, finds −→t ′ and sends µ′2 := (−→t ′) to B′; S intercepts
the simulated output v′ and verifies if this value is consistent with the
values used in this simulated execution (note that S knows all these
values as it plays the role of the Trusted Initializer). If consistent, S
substitutes the simulated output v′ with the real output v obtained from
F〈−→x ·−→y 〉by setting vS = v; else it sets vS = v′. As long as no v′

from B′ is received, S does not forward the message BGETSOUTPUT,
even if this means waiting forever. Then vS is sent to Z through Bob’s
interface.

The proof of indistinguishability is almost identical to the previous case and is omitted.

6.3 Alice and Bob Honest

If neither party is corrupted, A simulates the Trusted Initializer Functionality, sees a transcript of
the message sent between Alice and Bob and let the functionality send the public delayed outputs
in the ideal protocol when A deliver the respective messages in the simulated execution.

6.4 Alice and Bob Corrupted

The protocol is a deterministic function of the parties’ inputs and random tapes. When both Alice
and Bob are corrupted, S has full access to this information and can simulate perfectly.

7 Conclusions

We have presented a protocol for computing the inner product between two vectors defined over
Zm. We proved our solution secure in the UC framework. As an application of our protocol, we
built on top of it another protocol that securely solves linear equations over finite fields.

We believe that the commodity/ trusted initializer model, where parties receive pre-distributed
data during a setup phase from a trusted source and then go on and proceed with their secure com-
putations without further interaction with this trusted source, provides a practical and interesting
framework for secure two-party computations. The solutions obtained usually demand a large (but
not prohibitively with today’s technology) storage capability, but are otherwise very efficient from
a computational point of view.

We hope our protocols presented here are used to provide more complex tasks, such as secure
data mining and so on. Generalizations for approximately solving linear equations over the reals
are also an interesting sequel to this work [4].

11

References

[1] Donald Beaver. Commodity-based cryptography (extended abstract). In STOC ’97: Proceed-
ings of the twenty-ninth annual ACM symposium on Theory of computing, pages 446–455,
New York, NY, EUA, 1997. ACM.

[2] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In focs, page 136. Published by the IEEE Computer Society, 2001.

[3] Wenliang Du. A study of several specific secure two-party computation problems. PhD thesis,
Purdue University, West-Lafayette, Indiana, 2001.

[4] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright. Secure multiparty
computation of approximations. Automata, Languages and Programming, pages 927–938.

[5] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On private scalar product
computation for privacy-preserving data mining. In Information Security and Cryptology -
ICISC 2004, 7th International Conference, Seoul, Korea, December 2-3, 2004, Revised Se-
lected Papers, volume 3506 of Lecture Notes in Computer Science, pages 104–120. Springer,
2004.

[6] Eike Kiltz, Gregor Leander, and John Malone-Lee. Secure computation of the mean and
related statistics. In Theory of Cryptography, Second Theory of Cryptography Conference,
TCC 2005, Cambridge, MA, EUA, February 10-12, 2005, Proceedings, volume 3378 of
Lecture Notes in Computer Science, pages 283–302. Springer, 2005.

[7] Tsutomu Matsumoto and Hideki Imai. On the key predistribution system: A practical solu-
tion to the key distribution problem. In Advances in Cryptology - CRYPTO ’87, A Conference
on the Theory and Applications of Cryptographic Techniques, Santa Barbara, California,
EUA, August 16-20, 1987, Proceedings, volume 293 of Lecture Notes in Computer Science,
pages 185–193. Springer, 1987.

[8] R. Meier, B. Przydatek, and J. Wullschleger. Robuster combiners for oblivious transfer.
Theory of Cryptography, pages 404–418.

[9] A. Nascimento, R. Tonicelli, A. Otsuka, G. Hanaoka, H. Imai, and A Winter. Information
Theoretically Secure Oblivious Polynomial Evaluation: Model, Bounds and Constructions.,
2008. Manuscript.

[10] Anderson C. A. Nascimento, Jörn Müller-Quade, Akira Otsuka, Goichiro Hanaoka, and
Hideki Imai. Unconditionally non-interactive verifiable secret sharing secure against faulty
majorities in the commodity based model. In Applied Cryptography and Network Security,
Second International Conference, ACNS 2004, Yellow Mountain, China, June 8-11, 2004,
Proceedings, volume 3089 of Lecture Notes in Computer Science, pages 355–368. Springer,
2004.

[11] Ron Rivest. Unconditionally Secure Commitment and Oblivious Transfer Schemes Us-
ing Private Channels and a Trusted Initializer. http://people.csail.mit.edu/rivest/Rivest-
commitment.pdf, 1999.

[12] Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in vertically
partitioned data. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada,
pages 639–644. ACM, 2002.

12

[13] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, 3-5 November 1982, Chicago,
Illinois, EUA, pages 160–164. IEEE, 1982.

13

	Introduction
	The Universal Composability Framework
	The Inner Product Protocol
	Protocol Specification and Notation
	Ideal Functionality for the Inner Product
	Trusted Initializer Functionality
	Protocol implementation

	Security Proof
	Alice Corrupted, Bob Honest
	Alice Honest, Bob Corrupted
	Alice and Bob Honest
	Alice and Bob Corrupted

	Solving Linear Equations
	Ideal Functionality
	Protocol implementation

	Security Proof
	Alice Corrupted, Bob Honest
	Alice Honest, Bob Corrupted
	Alice and Bob Honest
	Alice and Bob Corrupted

	Conclusions

