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Abstract. We examine several variants of the Diffie-Hellman and Discrete Log
problems that are connected to the security of cryptographic protocols. We dis-
cuss the reductions that are known between them and the challenges in trying
to assess the true level of difficulty of these problems, particularly if they are
interactive or have complicated input.

1. Introduction

No one can give an unconditional proof of the security of a public-key crypto-
graphic protocol. Indeed, anyone who succeeded in giving such a proof would have
proved the P6=NP conjecture as a corollary.

Rather, the “provable security” of a protocol is always conditional upon some
intractability assumption. The “proof” is then a reduction from the problem P
whose intractability is being assumed to the problem Q of mounting a successful
attack of a specified type on the protocol. The reduction shows that breaking the
protocol in the specified sense must be at least as hard as solving P.

In this paper we shall focus on problems P that arise in connection with discrete-
log-based protocols. Let G be a group of prime order p with generator P . We shall
use additive notation for the group operation; in many practical protocols G would
be the group of multiples of a point P on an elliptic curve defined over a finite field.
In this setting the two classical problems are:

• The Discrete Log (DL) problem for a group G of order p and generator P has
as input a second point Q ∈ G and asks for the integer x modulo p such that
Q = xP .

• The Diffie-Hellman (DH) problem for a group G of order p and generator P has
as input two other points Q,R ∈ G and asks for the point S ∈ G such that z ≡ xy
(mod p), where x, y, z are the integers mod p such that Q = xP , R = yP , S = zP .

The DH problem is sometimes called the Computational Diffie-Hellman problem
to distinguish it from the Decision Diffie-Hellman (DDH) problem, discussed in §3.
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It is the DL problem that has been most extensively studied and for which many
algorithms have been developed. Subexponential-time algorithms have been found
for important classes of groups, such as the multiplicative group of a finite field
and the jacobian group of a high-genus curve. In other groups, such as the group of
points of a suitably chosen elliptic curve, the best algorithms are variants of Pollard-
rho, which have running time of order

√
p. Indeed, a result of Shoup [36] shows that

in a generic group (see §11) there can be no faster-than-squareroot algorithm for
either the DL or DH problem.

Obviously the ability to solve DL implies the ability to solve DH. But it is much
more difficult to determine whether the converse implication holds. There is con-
siderable evidence that it does; for a survey of related results see [31]. Thus, the
DH as well as DL problems on a suitable group are generally regarded as classical
intractable problems.

In §§2–5 we look at different versions of ElGamal encryption in order to highlight
some features of security reductions and the mathematical problems that they use.

2. The Naive ElGamal Protocol

We first illustrate the idea of a security “proof” (that is, a reductionist argument)
in a very simple setting. Consider the naive ElGamal encryption protocol, in which
the message is a point M ∈ G, Alice’s private key is an integer x mod p, and her
public key is Q = xP . To send her the message M , Bob randomly chooses an integer
y mod p, computes R = yP and C = M + yQ, and sends the ciphertext (R,C).
Alice decrypts by computing C − xR = M .

It is clear that an adversary who knows how to solve either the DL or DH problem
in the group G can break the protocol. Conversely, we have a security theorem that
says that the ability to decrypt messages implies the ability to solve DH.

Proposition 1. The DH problem reduces to the problem of decryption of naive
ElGamal ciphertexts.

Sketch of proof. The idea is that if, given any Q and ciphertext (R,C), you can
compute M , that means that you can find the solution S to the DH problem by
simply subtracting S = C − M = xyP .

More formally, we can construct a reduction as follows. Suppose that we have
a decryption “oracle” for naive ElGamal. This means a black box that, given the
public key and a ciphertext, will return the corresponding plaintext. We must show
how, given an instance of DH, we can use the oracle to solve it. So suppose that
we are given the points Q,R ∈ G and want to find the point S that solves the DH
problem. We choose a random point T ∈ G and give the decryption oracle the
public key Q and ciphertext (R,T ). The oracle gives us the decryption M , and we
merely have to set S = T − M . �

3. The Decision Diffie-Hellman Problem

A somewhat more demanding definition of security of an encryption scheme is to
ask that, if m1 and m2 are plaintexts and c is the ciphertext coming from one of
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them, the adversary not be able to determine which of the two has c as ciphertext.
A simple argument similar to the proof of Proposition 1 above shows that naive
ElGamal encryption is secure in this sense provided that the following Decision
Diffie-Hellman (DDH) problem is hard.

• The DDH problem for a group G of order p and generator P has as input three
points Q,R, S ∈ G and asks whether or not z ≡ xy (mod p), where x, y, z are the
integers mod p such that Q = xP , R = yP , S = zP .

The DDH problem obviously reduces to both the DL and DH problems, but it
is unlikely that there is a reduction in the other direction. Indeed, there is an
important class of groups in which the DDH is easy and the DH and DL problems
are believed to be hard. These are the “Diffie-Hellman gap groups” (first described
in [23, 10]) that are used in pairing-based cryptography (see §10).
Remark 1. For a fixed group G let DL(P ), DH(P ), DDH(P ) denote the Discrete
Log, Diffie-Hellman, and the Decision Diffie-Hellman problems for a given generator
P . In order to be sure that the choice of P doesn’t matter, for a different generator
Q we’d like to have reductions between DL(P ) and DL(Q), DH(P ) and DH(Q), and
DDH(P ) and DDH(Q). The first two are easy to construct, but finding a reduction
from DDH(P ) to DDH(Q) is an open problem. Nevertheless, it is hard to believe
that there could be a prime-order group in which the difficulty of DDH depends on
the choice of generator. Thus, the absence of any known reduction from DDH(P )
to DDH(Q) should probably be interpreted as an example of the limitations of
reductions rather than as evidence that the two problems DDH(P ) and DDH(Q)
might actually differ in difficulty.

Even if we use a group in which DDH is intractable — that is, cannot feasibly be
solved using current technology — naive ElGamal is not a good encryption protocol,
because it fails to pass a more stringent test of security, namely, resistance to chosen-
ciphertext attacks. We illustrate by describing a hypothetical scenario.

Suppose that Alice is receiving messages that have been encrypted using naive
ElGamal; her private key is x and her public key is Q = xP ∈ G. Cynthia, after
intercepting the ciphertext (R,C) that her competitor Bob sent to Alice, wants to
know the plaintext M (let’s say it was his bid on a job). If Cynthia asks Alice for
M directly, Alice won’t tell her Bob’s bid, because it’s against Alice’s interests for
Cynthia to know that. But suppose that a while back, before Bob muscled in on
her territory, Cynthia had extensive correspondence with Alice, and she now sends
a message to Alice saying (falsely) that she lost one of her messages to Alice, she
needs it for her records, and all she has is the ciphertext (R,C ′). Since C ′ 6= C,
Alice’s computer willingly decrypts this for Cynthia and sends her M ′ = C ′ − xR.
But in reality Cynthia formed C ′ by choosing a random T and setting C ′ = C + T .
After Alice is tricked into sending her M ′, all Cynthia has to do is to subtract T to
get M = M ′ − T .

More generally, in a chosen-ciphertext attack the adversary is assumed to be able
to get Alice to decipher any ciphertexts she wants other than the target ciphertext.
The system is said to have chosen-ciphertext security if knowledge of all those other
plaintexts will not enable Cynthia to find the one she wants.
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Under certain conditions a chosen-ciphertext attack on naive ElGamal could have
much more damaging consequences than simply revealing a plaintext. Namely,
suppose that the only direct attacks known on the DL and DH problems on the
group are the squareroot attacks and that the group order p was chosen large enough
so that p1/2-attacks are not feasible but p1/3-attacks would be feasible. According
to a striking result of Brown and Gallant [14], if p− 1 has a factor of order p1/3 and

if roughly p1/3 chosen-ciphertext queries are allowed, then Cynthia can learn Alice’s
private key x in time of order p1/3 — after which Cynthia can, of course, decrypt
all previous and future ciphertexts sent to Alice.

Brown and Gallant considered the following One-sided Diffie-Hellman problem.

• The One-sided Diffie-Hellman problem for a group G of order p with generator P
and fixed second point Q has as input R ∈ G and asks for the point S ∈ G such
that z ≡ xy (mod p), where x, y, z are the integers mod p such that Q = xP ,
R = yP , S = zP .

This problem differs from the DH problem only because Q is fixed. It is easy
to see that in a chosen-ciphertext attack on naive ElGamal a decryption query is
equivalent to a call to a One-sided Diffie-Hellman oracle, that is, a black box that
for fixed (G, p, P,Q) takes input R ∈ G and returns the solution S to One-sided
Diffie-Hellman. The algorithm in [14] shows how to find the discrete log of Q in

time roughly p1/3 using p1/3 calls to a One-sided Diffie-Hellman oracle (provided

that p − 1 has a factor of order p1/3). We shall return to this result again in a
different context in §11.

4. Chosen-Ciphertext Secure ElGamal

In this version of ElGamal one uses the technique of naive ElGamal to establish
a key for use with a symmetric-key encryption scheme, which is then used for the
actual encryption. Let Ek be such an encryption function — that is, each key k for
each t determines a permutation of the set of strings of t bits. We assume that Ek

and its inverse are easy to compute once k is known, but that it is impossible to
encrypt a plaintext or decrypt a ciphertext without knowing k.1 We also suppose
that we have a hash function H that takes input of arbitrary length and produces
a value k that will serve as the key for the encryption.

As in naive ElGamal, Alice’s private key is x mod p, and her public key is Q =
xP ∈ G. When Bob wants to send her a t-bit message m, he first chooses a random
y mod p and computes R = yP , S = yQ, and then k = H(R,S). The ciphertext
is the pair (R,Ek(m)). Alice decrypts by setting S = xR and then finding the key
k = H(R,S).

In order to get a chosen-ciphertext security theorem for this version of ElGamal,
one needs to introduce the following variant of the Computational Diffie-Hellman
problem:

1In addition, the symmetric-key encryption scheme Ek should also be resistant to chosen-
ciphertext attacks. Our outline of a proof of Proposition 2 will omit some technical details related
to Ek.
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• The One-sided Gap-DH problem2 has the same input and the same desired output
as the DH problem, but the solver is also allowed to use a One-sided Decision
Diffie-Hellman Oracle. In other words, in a group G of order p with generator
P , given DH input (Q,R), the solver is supplied with an oracle that for any
R′, S′ ∈ G correctly answers the question: Is z′ ≡ xy′ (mod p), where x, y′, z′ are
the integers mod p such that Q = xP , R′ = y′P , S′ = z′P?

It is easy to see that an adversary who knows how to solve the One-sided Gap-DH
problem can defeat the chosen-ciphertext security of this version of ElGamal. The
next proposition establishes that the converse holds in the random oracle model,
that is, the hash function H is assumed to be modeled by an oracle that when asked
for H(R,S) gives a random value (with the only condition being that if the same
query is made a second time, the same random value must be returned).

Proposition 2. If One-sided Gap-DH is intractable, then the above version of El-
Gamal is chosen-ciphertext secure under the random oracle assumption for the hash
function H.

Sketch of proof. In a fixed group G with generator P we are given a DH input (Q,R),
where Q = xP and R = yP for unknown x and y. We have a One-sided DDH oracle
and a second oracle A (the adversary) with which we interact. We present the oracle
A with the public key Q and a target ciphertext (R, c) to decipher. In the interaction
we must simulate two oracles for A — a hash function oracle that returns a random
value in response to a hash query and a decryption oracle that answers queries for
any chosen-ciphertext (R′, c′) 6= (R, c). The proof must show that we can interact
with A in such a way as to obtain the solution S = xyP of the DH problem.

We give the adversary A the public key Q, and we choose (R, c), where we pick c
at random, as the target ciphertext. In response to any hash query from A we give
a random value, keeping a record of the queries and our responses. Of course, if the
same query is made twice, we give the same value in response. Whenever a query
for H(R′, S′) is made, we use our One-sided DDH oracle to determine whether or
not (Q,R′, S′) is a Diffie-Hellman triple (that is, whether or not S′ = xR′). If it is,
then we note the value k′ we give for H(R′, S′), since it must be used to decrypt
any queried ciphertext of the form (R′, c′).

Whenever A makes a ciphertext query for (R′, c′) we first check whether we have
already given a value k′ = H(R′, S′) where (Q,R′, S′) is a Diffie-Hellman triple; if
not, we choose an arbitrary random value for k′ (but keep a record of it, because
the same k′ must be returned in the event of a later query for H(R′, S′)). We then
compute the decryption m′ = E−1

k′ (c′).
Eventually A gives the decryption of (R, c). By assumption in order to do that

A must know the key k, and this means that A at some point must have queried
the hash value H(R,S). As soon as we receive that query, we determine through

2This problem was first defined by Abdalla, Bellare and Rogaway [1], who called it the “Strong
DH” problem. We have chosen a different name for the problem in order to avoid confusion with
the “Strong DH” problem considered in §11. The problem should also not be confused with the
Gap-DH problem introduced in [33] where the solver is given access to an oracle for the full Decision
Diffie-Hellman problem.
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our One-sided DDH oracle that (Q,R, S) is a Diffie-Hellman triple, at which point
we have the solution of the DH problem, as desired. �

5. The Twin Diffie-Hellman Problem

In [15] Cash, Kiltz, and Shoup constructed an ElGamal type encryption scheme
that is slightly more complicated than the one in §4. Its advantage is that their proof
of chosen-ciphertext security assumes intractability of a problem that — although at
first appearing to be just a contrived and complicated variant of DH — in fact turns
out to be equivalent to it. Thus, the same intractability assumption that’s used to
prove security of naive ElGamal in a very weak sense can be used to prove security
of the scheme in [15] in a much stronger sense. Note that the somewhat unnatural
One-sided Gap-DH assumption needed to establish chosen-ciphertext security of the
protocol in §4 is not required for the version in [15].

We first describe the “twin” version of ElGamal encryption in [15]; after that
we define the Twin Diffie-Hellman (TDH) problem upon which its security proof is
based. We shall omit the proof, which is very similar to that of Proposition 2 in the
previous section. Then we give the reductions that show the equivalence of TDH
with DH.

Twin ElGamal encryption. As before, G is a group of order p with generator
P . Alice’s private key is a pair (x1, x2) of integers mod p, and her public key is the
pair Q1 = x1P , Q2 = x2P ∈ G. When Bob wants to send her a message m, he first
chooses a random y mod p and sets R = yP , S1 = yQ1, S2 = yQ2. The hash-value
k = H(R,S1, S2) is the symmetric key, and the ciphertext is the pair (R,Ek(m)).
Alice decrypts by setting S1 = x1R and S2 = x2R, from which she can find the key
k.

In [15] this scheme is shown to have chosen-ciphertext security under the random
oracle asumption if the following problem is hard.

• The Twin Diffie-Hellman (TDH) problem for a group G of prime order p with
generator P has as input three points Q1, Q2, R ∈ G. You are given a Decision
Twin Diffie-Hellman oracle (for fixed Q1, Q2), that is, an oracle that for any
R∗, S1, S2 ∈ G correctly answers the question: Is it the case that both S1 = y∗Q1

and S2 = y∗Q2, where y∗ is the integer mod p for which R∗ = y∗P? You must
find x1R, where x1 is the integer mod p such that Q1 = x1P .

Remark 2. The definition of TDH in [15] also requires that the solver find x2R,
where x2 is the integer mod p such that Q2 = x2P . However, in the application to
the twin version of ElGamal encryption the second output can be omitted from the
definition.

Proposition 3 ([15]). The Twin Diffie-Hellman (TDH) problem is equivalent to
the Computational Diffie-Hellman (DH) problem.

Sketch of proof. The implication is trivial in one direction: someone who can solve
DH can obviously solve TDH (without even needing the oracle). We outline the
proof of the reverse implication.
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To do this we suppose that we have a TDH oracle and show how we can use it to
solve an instance of DH. So suppose we are given (G, p, P ) and two points Q,R ∈ G.
We must find the point S ∈ G such that S = xR, where x is the (unknown to us)
discrete log of Q to the base P .

We give the TDH oracle the input (G, p, P ) and three points Q1, Q2, R ∈ G, where
we set Q1 = Q, take R to be the same R as in our instance of DH, and then choose
two random integers r and s mod p and set Q2 = sP − rQ. That is, x2 = s − rx1

mod p, where xi is the discrete log of Qi to the base P . Note that the output of the
TDH oracle will be the solution of our instance of DH. However, in order to use the
TDH oracle we have to be able to supply it with accurate answers to its Decision
Twin Diffie-Hellman queries.

So suppose that the TDH oracle asks us to answer such a query with input
R∗, S1, S2 ∈ G. We compute rS1 + S2 and sR∗. We answer “yes” if these are equal
and “no” otherwise. We show that the probability that this answer is incorrect is
only of order p−1 (where the probability is taken over the set of all query inputs
R∗, S1, S2). This means that the probability that the oracle will fail to give us
the desired answer is small (and if that happens, we can repeat the process with a
different r and s).

If “yes” is the correct answer to the query, then it is easy to see that we will
always answer correctly, since in that case S1 = x1R

∗, S2 = x2R
∗, and rS1 + S2 =

(rx1 + x2)R
∗ = sR∗.

If “no” is the correct answer to the query, then S1 = x′

1R
∗, S2 = x′

2R
∗, where at

least one of the two x′

i is not equal to the corresponding xi. If only one of the two
x′

i is not equal to xi, then we check that always rS1 + S2 6= sR∗, so in that case our
answer to the query is correct. That leaves the case when x′

1 6= x1 and x′

2 6= x2.
Our answer will be incorrect if rS1 + S2 = sR∗, that is, if rx′

1 + x′

2 ≡ s ≡ rx1 + x2

(mod p). For fixed x1, x2, r, this happens if and only if x′

2 = x2 − r(x′

1 − x1) mod p.
For variable S1, S2, R

∗ the chance of this equation holding mod p is of order p−1, as
claimed. This completes the outline of the proof. �

Remark 3. This proposition from [15] is a nice result. The authors designed a mod-
ified ElGamal encryption protocol in such a way that its chosen-ciphertext security
could be proved using a rather unnatural-looking interactive problem, namely, Twin
Diffie-Hellman. This by itself is not particularly impressive, since, as we shall see,
the invention of contrived, exotic problems and protocols whose security is related
to them has become a cottage industry. What is unusual is that in this case the
authors were able to choose a problem — TDH — that they could prove to be
equivalent to the classical, much-studied DH problem. It is their proof of the above
proposition that makes their version of ElGamal worthwhile.

Remark 4. Speaking very informally, what makes their proof work — that is,
what makes it possible to dispense with the Decision Diffie-Hellman oracle that’s
needed in the previously discussed version of ElGamal — is the addition of a second
dimension (corresponding to the second fixed input Q2 in the twin version of DDH).
This gives the DH solver enough flexibility so that she can successfully simulate
the oracle. This technique is reminiscent of the method used in [17] (see also the
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discussion in §2 of [25]) to develop a discrete-log based encryption scheme that has
a reductionist security proof using only a “standard” assumption (rather than the
random oracle assumption) for the hash function.

Remark 5. The One-sided Gap-DH problem and the version of ElGamal encryption
discussed in §4 can also be considered in a group G of composite order. Hofheinz and
Kiltz [19] studied the One-sided Gap-DH problem in the group of so-called signed
quadratic residues modulo a composite integer N that is the product of two distinct
primes (satisfying some additional constraints). They proved that the problem is at
least as hard as that of factoring N , thereby obtaining a reductionist argument for
the security of the version of ElGamal encryption in §4 under the assumption that
factoring is intractable and the random oracle assumption for the hash function.

6. A Strange Relationship Between Two Variants of the

Diffie-Hellman Problem

In this section we examine two problems that have a curious relation to one
another. Reductions are known in one direction for the search versions and in the
opposite direction for the decision versions of the problems.

6.1. The Square Diffie-Hellman problem. The following variant of the Diffie-
Hellman problem was first presented in [30].

• The Square Diffie-Hellman (SqDH) problem for a group G of prime order p with
generator P has as input another point Q = xP ∈ G (with unknown x mod p)
and asks for the point R ∈ G for which R = x2P .

The decision version of this problem is also of interest:

• The Decision Square Diffie-Hellman (DSqDH) problem for a group G of prime
order p with generator P has as input Q,R ∈ G and asks whether or not R = x2P ,
where x mod p is such that Q = xP .

Proposition 4 ([30]). SqDH is equivalent to DH and DSqDH reduces to DDH.

Proof. The reductions of SqDH to DH and of DSqDH to DDH are obvious, since
the square-version of Diffie-Hellman is just a special case of the general version. The
only nontrivial claim in the proposition is that DH reduces to SqDH. So suppose
that we have an oracle for SqDH, and we are given DH input (G, p, P,Q,R), where
Q = xP and R = yP for unknown x and y. For fixed G, p, P we apply the SqDH
oracle three times to the points (i) Q, (ii) R, and (iii) Q + R. Let S1, S2, S3 be the
answers the oracle gives. We then compute

p + 1

2
(S3 − S1 − S2) =

p + 1

2

(

(x + y)2 − x2 − y2
)

P = xyP,

as desired. �

Remark 6. No reduction from DDH to DSqDH is known. Thus, we write

SqDH ≈ DH but DSqDH ≤ DDH.
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6.2. The Tripartite Diffie-Hellman problem.

• The Tripartite Diffie-Hellman (TriDH) problem for a group G of prime order p
with generator P has as input a sextuple of points (xP, yP, zP, xyP, xzP, yzP )
(with unknown x, y, z) and asks for the point xyzP ∈ G.

• The Decision Tripartite Diffie-Hellman (DTriDH) problem has the same input as
the TriDH along with another point S ∈ G and asks whether or not S = xyzP .

These problems originated in the tripartite Diffie-Hellman key exchange, which
works as follows. The three parties Alice (with private/public key pair (x, xP )), Bob
(with key pair (y, yP )) and Cathy (with key pair (z, zP )) exchange the following
information: Alice sends Bob x(zP ), Bob sends Cathy y(xP ), and Cathy sends Alice
z(yP ), after which all three of them can compute the shared key xyzP .

6.3. Mongrel dogs and transitivity of decision problem reductions. Until
now we have used a naive definition of a decision problem oracle, namely, a black box
that always gives us the correct yes-or-no answer. When giving informal proofs and
high-level overviews of arguments, usually nothing is lost by using this definition.
However, the result we describe next — the reduction from DDH to DTriDH —
simply cannot be accomplished (so far as we know) using the naive definition. Thus,
regrettably we have to give a more technical definition of the task of a decision
problem oracle. Readers who find the notation in this section burdensome should
feel no guilt at all about simply skipping it — none of the sequel depends upon this
section — and just taking our word for it that DDH ≈ DTriDH.

On the other hand, the reader who is willing to tolerate a reduction argument
that occupies two pages will get to see a nice example of a type of proof called a
hybrid argument. The basic idea is quite simple. The word “hybrid” should bring
to mind the following situation. Suppose that a dog’s parents are of two different
breeds and differ from one another by > ǫ. Then the dog must differ from at least
one of its parents by > ǫ/2. That is the hybrid argument.

Definition 1. If X1 and X2 are two distributions on the same space, we say that
X1 and X2 are (t, ǫ)-indistinguishable if for all algorithms A that upon input from
the space return either 0 or 1 in time ≤ t one has |p1 − p2| < ǫ, where pi denotes
the probability that A returns 1 when it is given input from Xi.

Definition 2. Let DP and DP′ be two decision problems; let X1 (resp. X2) denote
the distribution that is uniform on the set of inputs for which the answer to DP is
“yes” (resp. “no”) and zero elsewhere, and let X ′

1 and X ′

2 be the analogous distri-
butions for DP′. We say that DP reduces to DP′ if, given an oracle A′ that (t′, ǫ′)-
distinguishes X ′

1 from X ′

2, one can construct an algorithm A that (t, ǫ)-distinguishes
X1 from X2, where t ≤ ct′ and ǫ ≥ ǫ′/c for some constant c.

Thus, to prove that DP reduces to DP′ one shows that (t, ǫ)-indistinguishability
of X1 and X2 implies (t′, ǫ′)-indistinguishability of X ′

1 and X ′

2 for some t′ ≥ t/c,
ǫ′ ≤ cǫ.

Proposition 5 ([38]). DDH ≈ DTriDH.
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Sketch of proof. First we define six distributions that will be used in the next two
lemmas.

(1) X1 is the uniform distribution on all of G × G × G (which we denote G
3);

(2) X2 is the distribution that is uniform on the subset
{

(xP, yP, xyP )
∣

∣

∣
x, y mod p

}

⊂ G
3

and zero elsewhere;
(3) X3 is the distribution that is uniform on the subset

{

(xP, zP, xzP ), (yP, zP, yzP ), (zP, xyP, rP )
∣

∣

∣
x, y, z, r mod p

}

⊂ G
9

and zero elsewhere;
(4) X4 is the distribution that is uniform on the subset

{

(xP, zP, xzP ), (yP, zP, yzP ), (zP, dP, rP )
∣

∣

∣
x, y, z, d, r mod p

}

⊂ G
9

and zero elsewhere;
(5) X5 is the distribution that is uniform on the subset

{

(xP, zP, xzP ), (yP, zP, yzP ), (zP, dP, dzP )
∣

∣

∣
x, y, z, d mod p

}

⊂ G
9

and zero elsewhere;
(6) X6 is the distribution that is uniform on the subset

{

(xP, zP, xzP ), (yP, zP, yzP ), (zP, xyP, xyzP )
∣

∣

∣
x, y, z mod p

}

⊂ G
9

and zero elsewhere.

(Note that the successive Xi, 3 ≤ i ≤ 6, differ only in one or two of the last three
components.) Then DDH is the problem of distinguishing X1 from X2, and DTriDH
is the problem of distinguishing X3 from X6. The intermediate problems X4 and
X5 are needed for the hybrid argument; they should be regarded as two mongrels
with parents X3 and X6 of different breeds. We warm up by proving a lemma that
gives the reduction in the easy direction.

Lemma 1. If X3 and X6 are (t, ǫ)-indistinguishable, then so are X1 and X2.

Proof. Suppose that there were an algorithm A′ with running time ≤ t for which
|p′1 − p′2| ≥ ǫ, where p′i denotes the probability that A′ returns 1 when the input is
taken from Xi. We then construct an algorithm A with running time ≤ t for which
|p3 − p6| ≥ ǫ, where pi denotes the probability that A returns 1 when given input
from Xi. This will prove the lemma.

Given an element (Q1, . . . , Q9) ∈ G
9, A simply applies A′ to the triple (Q1, Q6, Q9).

One checks that p3 = p′1 and p6 = p′2, in other words, A′ has the same effect in its
efforts to distinguish X3 from X6 as A does in trying to distinguish X1 from X2. �

Now we give the reduction in the hard direction, where a hybrid argument is
needed.

Lemma 2. If X1 and X2 are (t, ǫ/3)-indistinguishable, then X3 and X6 are (t, ǫ)-
indistinguishable.
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Proof. The hybrid argument uses the following transitivity property: Suppose X,
X ′, X ′′ are distributions on the same space. If X and X ′ are (t, ǫ1)-indistinguishable
and X ′ and X ′′ are (t, ǫ2)-indistinguishable, then X and X ′′ are (t, ǫ1+ǫ2)-indisting-
uishable. We prove this claim by contradiction. Suppose that there were an algo-
rithm A that (t, ǫ1 + ǫ2)-distinguishes between X and X ′′; that is, given any input
from the space, A returns 0 or 1 in time ≤ t, and |p − p′′| ≥ ǫ1 + ǫ2, where we
let p (resp. p′, p′′) denote the probability that A returns 1 when the input is from
X (resp. X ′, X ′′). It follows that either |p − p′| ≥ ǫ1 or |p′ − p′′| ≥ ǫ2, and this
contradicts the assumed indistinguishability of X and X ′ and of X ′ and X ′′.

Hence, to prove the lemma it suffices to show that if X1 and X2 are (t, ǫ/3)-
indistinguishable, then so are (a) X3 and X4; (b) X4 and X5; and (c) X5 and X6.
We prove (a); the other two parts are similar.

Suppose that there were an algorithm A′ with running time ≤ t for which |p′3 −
p′4| ≥ ǫ/3. Given an element (Q1, Q2, Q3) ∈ G

3, we construct an algorithm A by
choosing random z and r and running A′ on input

(Q1, zP, zQ1), (Q2, zP, zQ2), (zP,Q3, rP ) ∈ G
9.

Clearly p1 = p′3 and p2 = p′4, so this shows that if X3 could be (t, ǫ/3)-distinguished
from X4, then X1 could be (t, ǫ/3)-distinguished from X2. (Note: In reality the
running time of A is slightly more than that of A′ because of the need to generate
random z and r and compute rP, zP, zQ1, zQ2. However, for simplicity we have
ignored this minor detail in the statement and proof of the lemma.) �

The two lemmas together imply equivalence of DDH and DTriDH. �

6.4. The relation between Square and Tripartite Diffie-Hellman. We now
summarize what is known about reductions between the Diffie-Hellman, Square
Diffie-Hellman, and Tripartite Diffie-Hellman problems and between the correspond-
ing decision problems. As before, the notation P ≈ Q means that there are efficient
reductions both from P to Q and from Q to P, and we write P ≤ Q to mean that
there is an efficient reduction from P to Q but none is known from Q to P.

We note that reductions are not known from DH to TriDH or from DDH to
DSqDH. Thus, we have

TriDH ≤ DH ≈ SqDH,

while for the corresponding decision problems

DTriDH ≈ DDH ≥ DSqDH.

Thus,

TriDH ≤ SqDH but DTriDH ≥ DSqDH.

If we interpret the absence of known reductions to mean that one problem might
be strictly harder than the other, then our conclusion would be that perhaps the
search problem TriDH is strictly easier than SqDH, whereas the decision problem
DTriDH is strictly harder than DSqDH. In other words, it would be easier to find a
solution to TriDH than to SqDH, but it would be harder to say whether a candidate
solution to TriDH is correct than to say whether a candidate solution to DSqDH is
correct. Such a discrepancy between search and decision problems would certainly
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defy intuition! Thus, a more reasonable interpretation of the above two inequalities
is that they once again show the limitations of reductions as a way of gauging the
true relative difficulty of two problems.

7. The One-More-Discrete-Log and One-More-Diffie-Hellman

Problems

Because of the nature of chosen-ciphertext security for encryption (or chosen-
message security for signatures) and because many cryptographers want to have
formal reduction arguments, they have had to greatly enlarge the types of mathe-
matical problems that are used in their security analyses. Often the problems whose
intractability is linked to the security of the protocols have lengthy, elaborate input
or are interactive. On occasion such a problem, despite its unnatural appearance,
might be used carefully and to good effect (as we discussed in §3). But in other
cases the use of this type of problem raises more questions than it answers about
the true security of the protocol.

Here are some examples of such problems that arose in connection with protocols
that use elliptic curves or other algebraic groups:

• The One-More-Discrete-Log (1MDL) problem as first formulated in [2] and [3].
The solver is supplied with a challenge oracle that produces a random group
element Yi ∈ G when queried and a discrete log oracle. After ℓ queries to the
challenge oracle (where ℓ is chosen by the solver) and at most ℓ− 1 queries to the
discrete log oracle, the solver must find the discrete logs of all ℓ elements Yi.

• The One-More-Diffie-Hellman (1MDH) problem as first formulated (in a slightly
different version) in [4]. The solver is given an element X ∈ G, an oracle that
can solve the Diffie-Hellman problem for the given X and arbitrary Y ∈ G, and a
challenge oracle that produces random group elements Yi. After ℓ queries to the
challenge oracle (where ℓ is chosen by the solver) and at most ℓ − 1 queries to
the Diffie-Hellman oracle, the solver must find all ℓ solutions Zi = xyiP (where
X = xP and Yi = yiP ).

At first it might seem that these problems should be equivalent in difficulty to
the problem of finding the discrete log of a single random element or finding the
Diffie-Hellman element Z for fixed X and a single random Y . However, it turns
out that this depends very much on what groups are used. In [27] we studied these
problems and several others in the setting of the jacobian group of a genus-g curve.
Assuming that one uses current state-of-the-art algorithms, we found that 1MDL
is harder than 1MDH for g = 1, 2, whereas Granger [18] recently observed that
the two problems are of roughly equal difficulty for g ≥ 3; and it is only for non-
hyperelliptic curves of genus 3 that the two problems are no easier than the DL
and DH problems. Note that reductions are not known from 1MDH to 1MDL or
from 1MDL to 1MDH. Our conclusion was that it is often unclear how to gauge
the true level of difficulty of an interactive problem or one with complicated input.
Even though attacks on these problems do not necessarily lead to attacks on the
corresponding encryption and signature schemes, it nevertheless seems a little risky
to rely upon such problems for assurances about the security of protocols.
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Remark 7. It follows from a general result of Bresson, Monnerat and Vergnaud
[12] and Brown [13] that no subexponential time reduction (for arbitrary G) can
exist either from DL to 1MDL or from DH to 1MDH. (See §8, where we discuss a
similar nonexistence result in the case of the One-Prime-Not-p DL problem.) This
theoretical result complements our empirical analysis and adds to the evidence that
1MDL and 1MDH are strictly easier than DL and DH.

8. The All-Primes-But-p Discrete Log Problem

In [28] the authors introduce a certain type of number-theoretic assumption to
achieve a goal related to composition of secure computations. They summarize their
assumption intuitively as follows: “it says that the [intractability of the DL problem]
holds even in the presence of oracles breaking the [DL problem] for other groups.”

In [28] the intractability assumption is given in the setting of the subgroup of
order p of the multiplicative group of a prime field of 2p + 1 elements (2p + 1 is
called a “safe” prime). They point out that “our assumptions and protocols could
be considered over other groups,” and they invite further work:

...we believe [that] our new assumption is worth studying indepen-
dently of the current context, and is likely to find other cryptographic
applications.

We shall restate (and rename) the problem whose intractability they assume,
along with a closely related one, in the context of general groups G of order p.
We then give evidence that in this setting their problem is strictly easier than
the DL problem. Thus, assumptions that the DL problems in different groups are
independent of one another should be used with caution.

• The All-Primes-But-p Discrete Log Problem. You are given a t-bit prime p, a
group G of order p, and two elements P,Q ∈ G. You are also given an oracle
that, acting as a black box, returns the solution to any discrete log problem in
any group of order q, where q is any prime of at most t bits other than p. You
must find the discrete log of Q to the base P .

• The One-Prime-Not-p Discrete Log Problem. You are given a t-bit prime p, a
group G of order p, and two elements P,Q ∈ G. For a single prime q of your
choice that has at most t bits and is not equal to p you are given an oracle that
returns the solution to any discrete log problem in any group of order q. You
must find the discrete log of Q to the base P .

Remark 8. If one thinks of an oracle as an algorithm, then the notion that these
problems (or the ones defined in [28]) might be hard seems implausible, because it
is inconceivable that an algorithm would work for groups of all prime orders except
one. However, the assumption makes perfect sense if one thinks of an oracle in the
correct sense, which is as nothing but a black box that gives correct answers.

Remark 9. In a similar way at first glance it might seem to make no sense to ask
about the hardness of the DL problem if one has an oracle that gives DL solutions
in any group of order p′. Namely, Shoup [36] proved that any algorithm that finds
discrete logs in a generic group of order p′ must take time at least

√
p′. In roughly the



14 NEAL KOBLITZ AND ALFRED MENEZES

same length of time a generic algorithm could also find discrete logs in the original
group G of order p ≈ p′. However, once again the assumption makes sense because
an oracle is not an algorithm, but rather just a black box that gives answers. A
reader who is bothered by this on philosophical grounds and thinks that it sounds
too much like making a provably false assumption should feel free to replace the
words “any group” by “any algebraic group” in the two problems above — then the
lower bound in [36] will not apply.

The result we prove below depends upon a conjecture about the distribution of
numbers that are “almost smooth” in the sense of having at most one large prime
factor.

Conjecture 1. There exist non-negative constants k and ℓ such that, if N(x, ℓ)
denotes the number of integers in the interval [x, x + 4

√
x] that either are a prime

or prime power or else have the property that their second largest prime factor is at
most logℓ(x), then we have

N(x, ℓ) >
√

x/ logk(x)

for x sufficiently large.

It seems that a proof of Conjecture 1 is beyond the reach of current techniques
of analytic number theory. However, from a heuristic standpoint it is extremely
plausible; indeed, the Prime Number Theorem suggests that Conjecture 1 is true
with k = 1 and ℓ = 0.

Proposition 6. Under Conjecture 1, for a group G of prime order p the One-
Prime-Not-p Discrete Log Problem is polytime reducible to Diffie-Hellman (DH).

Proof. Given an instance of the DL problem in G, we first randomly select elliptic
curves E over the field of p elements until we find a curve E whose group order has at
most one prime divisor greater than logℓ(x) (where x = p+1−2

√
p is the beginning

of the Hasse interval and ℓ is the constant in Conjecture 1). By Conjecture 1, this
can be done in polynomial time. (Note that the order of E can also be factored in
polynomial time.) We let p′ denote the largest prime divisor of the order of E.

We suppose that we have a DH oracle for the group G and a DL oracle for any
group of order p′. We must show that the DL problem on G can be solved in
polynomial time. Now the DL problem on E can be solved in polynomial time
using the One-Prime-Not-p DL oracle along with Pohlig-Hellman. We can now use
the technique of Maurer (see [29, 31]) to see that DL on G does in fact reduce in
polynomial time to DL on E.

We recall the main part of Maurer’s argument. Suppose that x is the unknown
discrete log of Q to the base P in our DL instance on G. After finding a curve
E over Fp on which the DL problem is easy, he constructs a point A ∈ E whose
coordinates are given explicitly and a point B whose x-coordinate is the unknown x
and whose y-coordinate is found implicitly — that is, the element yP ∈ G is found
— using the DH oracle in G. Such a point is represented not as (x, y) but rather as
(Q,R), where Q = xP , R = yP . After solving DL on E to get the discrete log of



INTRACTABLE PROBLEMS IN CRYPTOGRAPHY 15

B to the base A, he finds the point (x, y) explicitly and in that way determines x.
This concludes the proof. �

Remark 10. As mentioned above, the notion that the One-Prime-Not-p and even
the All-Primes-But-p versions of the DL problem should be as hard as DL is es-
sentially a way of saying that groups of different prime orders have completely
independent Discrete Log Problems. Proposition 6 can be viewed as a relativized
result (in the sense that Shoup uses the term in [37]). Namely, it says that, relative
to a Diffie-Hellman oracle, this conjectured independence seems to fail. In the pres-
ence of a DH oracle One-Prime-Not-p DL seems easier than DL. The former can be
solved in polynomial time by Proposition 6, whereas the best results for the latter
(see [9]) are subexponential but very far from polytime.

The following corollary follows immediately from Proposition 6 by the transitivity
of reductions.

Corollary 1. Under Conjecture 1, the Discrete Log problem is not polytime reducible
to the One-Prime-Not-p Discrete Log Problem unless DL is polytime reducible to DH.

In [12] and [13] it is shown that for any problem P with the random self-reducibility
property, if there were a reduction from the basic problem P to a version of P that
gives the solver an oracle for other instances of P, then P itself is easy. Using the
ideas from [12] and [13] we have the following result which shows that Corollary 1
is moot:

Proposition 7. If there is a subexponential time reduction R from the Discrete Log
problem in groups G of prime order p to the One-Prime-Not-p Discrete Log problem
in G, then DL can be solved in subexponential time.3

Sketch of proof. Suppose we are given an instance of DL in a group G
′′ of order p′′,

where p′′ is a t-bit prime. We choose an arbitrary t-bit prime p 6= p′′ and let G be
a generic group of order p. This means that when R works with G we simulate an
oracle that gives R the (random) labels of elements and the results of the group
operation.

Because of Shoup’s lower bound [36], it follows that R cannot solve the DL
instance in subexponential time without the use of the One-Prime-Not-p oracle.
When it calls upon that oracle, we simulate a One-Prime-Not-p solver, and R must
give correct answers to the queries that the solver is allowed to make. We choose
p′ = p′′, and simply demand that R give us the answer to our original instance of
DL. It happily does so, and we’re done. �

Corollary 2. No subexponential time reduction (for arbitrary groups of prime order)
exists from DL to One-Prime-Not-p DL.

Namely, such a reduction would lead to a subexponential time algorithm for the
DL on generic groups, and this is impossible by [36].

3In essentially the same time as required by R.
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9. Reduction Theorems That Do Not Say Much

Suppose that the designers of a cryptographic protocol claim to have proved
its security by constructing a reduction from P to Q, where Q is the problem
of mounting a successful attack of a prescribed type on the protocol and P is a
mathematical problem that they believe to be intractable. Often a close examination
of the two problems P and Q will show that they are trivially equivalent, in which
case the theorem that supposedly establishes security is really assuming what one
wants to prove. In that case the problem P has been tailored to make the proof
work, and, in fact, the main difference between P and Q is simply that in the former
the extraneous elements and cryptographic terminology have been removed.

For example, in most signature schemes the actual messages being signed are
extraneous to an analysis of the scheme, because the first thing one does to a mes-
sage is to compute its hash-value, which is used instead of the message itself in all
subsequent steps. If the security theorem is assuming that the hash-values are in-
distinguishable from random numbers — that is, if the proof is in the random oracle
model — then the set of messages can be replaced by a set of random numbers. If
P has been constructed by removing this sort of irrelevant feature from Q, then the
equivalence of the two problems will be a tautology, and the reduction theorem does
not provide any meaningful assurance that the protocol is secure.

Even if the reduction from P to Q is not trivial, one has to wonder about the value
of the theorem whenever P is complicated and contrived. One should be especially
skeptical if the protocol designers refer to P as a “standard” problem, because there
is a long history of misleading uses of this word in cryptography. For example, a proof
of security that uses weaker assumptions about the hash function than the random
oracle assumption is commonly said to be a proof under a standard assumption.
The reader might not notice that in order to work in the standard rather than the
random oracle model, the authors had to invent a new non-standard problem. To
avoid this misunderstanding, we would much prefer that researchers use the term
“concrete” rather than “standard” when they want to emphasize that they are not
using the random oracle assumption.

There is another questionable use of the word “standard” that is frequently en-
countered in the literature. After a complicated interactive problem P has been
used in a couple of papers, subsequent papers refer to it as a standard problem.
The casual reader is likely to think that something that is standard has withstood
the test of time and that there’s a consensus among researchers that the assump-
tion or problem is a reasonable one to rely upon — although neither conclusion is
warranted in such cases. The terminology obfuscates the fact that the new problem
is highly non-standard. The over-use of the word “standard” in connection with
assumptions that are anything but standard provides another instance of narrative
inversion in cryptography (see §12 of [24]).

10. Pairing-Based Cryptography

Starting in 2001, pairing-based cryptosystems were proposed by Dan Boneh, Matt
Franklin, and others. Although some of the ideas had been around for a couple of
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years (see, for example, [22, 34]), their tremendous potential had not been realized
before.

The basic idea is that the Weil or Tate pairing on elliptic curves allows certain
cryptographic goals to be achieved that no one knows how to achieve with conven-
tional techniques. In some other cases, pairings give more efficient or conceptually
simpler solutions.

Let

e : G × G −→ µp ⊂ F
∗

qk

be a non-degenerate bilinear pairing on the group G ⊂ E(Fq) generated by a point
P of prime order p with values in the p-th roots of unity of the degree-k extension
of Fq, where k (called the embedding degree) is the smallest positive integer such

that p | qk − 1. The feasibility of computing pairings depends on how big k is.
For example, if Fq is a prime field and E has q + 1 points (such a curve is called
supersingular), then since p | q + 1 and q + 1 | q2 − 1, the embedding degree is k = 2
and pairings can be computed quickly.

If G has a readily computable pairing, then the DDH on G is easy. Namely, given
P,Q,R, S ∈ G with Q = xP , R = yP , and S = zP for unknown integers x, y, z mod
p, by the bilinear property of pairings we have

e(Q,R) = e(P,P )xy , e(P, S) = e(P,P )z .

Hence, the DDH has a “yes” answer if and only if e(Q,R) = e(P, S).

Remark 11. If the Diffie-Hellman problem is hard on a group G with an easily
computable pairing, then G is a DH gap group (see §3). In fact, groups with
pairings are the only known examples of gap groups. For all other groups we solve
DDH simply by finding discrete logs; there is no known way to solve DDH that is
faster than that.

One of the first uses of pairing-based cryptography was the elegant solution by
Boneh and Franklin [8] to an old question of Shamir [35], who had asked whether
an efficient encryption scheme could be devised in which a user’s public key would
be just her identity (e.g., her e-mail address). Such a system is called identity-
based encryption. Another early application was the Boneh-Lynn-Shacham signature
scheme (see [10]), where the signatures had the advantage of being more compact
than in most other protocols.

By the time pairing-based cryptography arose, it had become de rigeur when
proposing a cryptographic protocol always to give a “proof of security,” that is, a
reduction from a supposedly intractable mathematical problem P to a successful
attack of a specified type on the protocol. A peculiar feature of many pairing-
based cryptosystems is that P has often been very contrived — the sort of problem
that hardly any mathematician would recognize as natural, let alone want to study.
Nevertheless, it has become customary to regard a conditional result of the form
“if P is hard, then my protocol is safe from chosen-ciphertext attacks” as a type of
guarantee of security.
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11. The Strong Diffie-Hellman Problem

In [6, 7], Boneh and Boyen proposed a new digital signature that works as follows.
As before, let G be the group generated by a point P ∈ E(Fq) of prime order p, and
let e : G × G −→ µp be a non-degenerate bilinear pairing with values in the p-th
roots of unity in a (not too big) field extension of Fq.

In the Boneh-Boyen protocol, to sign a message m, which is regarded as an
integer mod p, Alice uses her secret key (x, y), which is a pair of integers mod p.
Her public key, which the recipient (Bob) will use to verify her signature, consists
of the two points X = xP and Y = yP . Alice picks a random r mod p and sets
Q = (x + yr + m)−1P (where the reciprocal of x + yr + m is computed mod p). Her
signature consists of the pair (Q, r).

After receiving m and (Q, r), Bob verifies her signature by checking that

e(Q,X + rY + mP ) = e(P,P );

if equality holds, as it should because of the bilinearity of e, he is confident that
Alice was truly the signer — that is, only someone who knows the discrete logs of
X and Y could have computed the point Q that makes the above equality hold.

Boneh and Boyen give a reductionist security argument that basically shows that a
chosen-message attacker cannot forge a signature provided that the following Strong
Diffie-Hellman problem is hard. This problem is parameterized by an integer ℓ
(which is a bound on the number of signature queries the attacker is allowed to
make) and is denoted ℓ-SDH:

• The ℓ-SDH problem in the group G ⊂ E(Fq) generated by a point P of prime

order p is the problem, given points P, xP, x2P, . . . , xℓP (where x is an unknown
integer mod p), of constructing a pair (c,H) such that (x + c)H = P (where c is
an integer mod p and H ∈ G).

The difficulty of this problem can be shown to be less than or equal to that of the
classical Diffie-Hellman problem (which requires the construction of xyP given P ,
xP , and yP ). But the problem is an odd one that had never been studied before.
It was because of nervousness about the ℓ-SDH assumption that the authors of [6]
felt the need to give evidence that it really is hard. What they did was derive an
exponential-time lower bound for the amount of time it takes to solve ℓ-SDH in the
generic group model.

The notion of a “generic group” in cryptography was first formalized by Nechaev
[32] and Shoup [36]. The generic group assumption essentially means that the group
has no special properties that could be exploited to help solve the problem. Rather,
the only things that a solver can do with group elements are performing the group
operation, checking whether two elements are equal, and (in the case of pairing-
based cryptography) computing the pairing value for two elements. A lower bound
on solving P in the generic group model means that in order to solve P in a specific
group such as E(Fq) in time less than that bound one would have to somehow exploit
special features of the elliptic curve. In [36] Shoup proved that neither the Discrete
Log problem nor the Diffie-Hellman problem can be solved in fewer than

√
p steps

in a generic group of prime order p.
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In §5 of [6] Boneh and Boyen proved that ℓ-SDH in a generic group with a pairing

cannot be solved in fewer than (roughly)
√

p/ℓ operations.

Note that this lower bound
√

p/ℓ for the difficulty of ℓ-SDH is weaker by a factor

of
√

ℓ than the lower bound
√

p for the difficulty of DL or DH in the generic group

model. At first it seemed that the factor
√

ℓ was an artifact of the proof and not a
cause for concern, and that the true difficulty of the ℓ-SDH problem was probably√

p as in the case of DL and DH. However, at Eurocrypt 2006 Cheon [16], using
the same attack that had been described earlier in a different setting by Brown
and Gallant [14] (see §3), showed that ℓ-SDH can be solved — and in fact the

discrete logarithm x can be found — in
√

p/ℓ0 operations if ℓ0 ≤ ℓ divides p − 1

and ℓ0 < p1/3. Thus, in some cases ℓ-SDH can be solved in p1/3 operations. This
means that to get the same security guarantee (if one can call it that) that signatures
based on the DH problem have with group order of a certain bitlength, Boneh-Boyen
signatures should use a group whose order has 50% greater bitlength. It should also
be noted that, even though solving ℓ-SDH does not immediately imply the ability
to forge Boneh-Boyen signatures, recently Jao and Yoshida [21] showed how, using

the solution to ℓ-SDH in [16], one can forge signatures in roughly p2/5 operations

(with roughly p1/5 signature queries) under certain conditions.
On the one hand, the attack on the Boneh-Boyen scheme in [21] is not practical,

because it takes time p2/5 and because it can be avoided simply by a condition on
the divisors of p − 1 (and in view of a closely related attack in [16] one also needs
a condition on the divisors of p + 1). On the other hand, no such restriction on p
was thought to be necessary when the protocol was proposed, and the attack arising
from [14, 16, 21] came as a surprise. Thus, it is reasonable to have doubts about
the true security of Boneh-Boyen signatures.

For short signatures using pairings, probably the best advice is to stick with the
Boneh-Lynn-Shacham scheme [10]. As we remarked in [26], in our opinion it is not
a good idea to switch away from BLS signatures simply because its reductionist
security argument uses the random oracle assumption. In this case the devil we
know (the random oracle model) seems to be more benign than the devil we don’t
know (vulnerability of ℓ-SDH).

Some of the other supposedly intractable problems that arise in security reduc-
tions for pairing-based protocols are even more ornate and contrived than the ℓ-SDH.
Several such problems, such as the following Hidden Strong Diffie-Hellman (HSDH),
are listed in [11]:

• In ℓ-HSDH one is given P, xP, yP ∈ G and ℓ − 1 triples

(wjP, (x + wj)
−1P, ywjP ), j = 1, . . . , ℓ − 1,

and is required to find one more triple of the form (wP, (x + w)−1P, ywP ) that is
distinct from any of the ℓ − 1 triples in the problem’s input.

When readers encounter the bewildering array of problems whose presumed dif-
ficulty is linked to the security of important cryptographic protocols, a common
reaction is dismay. However, some people who work in pairing-based cryptography



20 NEAL KOBLITZ AND ALFRED MENEZES

prefer to see something very positive in the unusual assortment of intractability
assumptions. In a paper presented at the Pairing 2008 conference [11], Boyen said:

The newcomer to this particular branch of cryptography will there-
fore most likely be astonished by the sheer number, and sometimes
creativity, of those assumptions. The contrast with the more tradi-
tional branches of algebraic cryptography is quite stark indeed.... the
much younger “Pairing” branch...is already teeming with dozens of
plausible assumptions, whose distinctive features make them uniquely
and narrowly suited to specific types of constructions and security
reductions.

Far from being a collective whim, this haphazard state of affair
[sic] stems from the very power of the bilinear pairing...in comparison
to the admittedly quite simpler algebraic structures of twentieth-
century public-key cryptography... [T]he new “bilinear” groups offer
a much richer palette of cryptographically useful trapdoors than their
“unidimensional” counterparts...

Boyen touts the advantages of 21-st century cryptography — with its “rich
palette” of exotic intractability assumptions — over the “unidimensional” RSA and
ECC that were invented in the 1970s and 1980s. However, some recent experiences
with these “plausible assumptions” suggest a need to temper this exuberance.

In the next section we describe a particularly dramatic example of how things
can go wrong.

12. Sequential Aggregate Signatures

In 2007 Boldyreva, Gentry, O’Neill, and Yum [5] constructed a new sequential
aggregate signature scheme. This means a single compact signature produced by
several people acting in sequence. It has fixed length independent of the number of
signers — even though the different signers may be attesting to different messages.
The main application discussed in [5] is to secure routing of messages through a
network.

The authors of [5] describe the advantages of their signature scheme. In the
first place, it is identity-based; in other words, there are no public keys other than
the signers’ email addresses; this “permits savings on bandwidth and storage...”
Moreover, the authors write,

In contrast to the only prior scheme to provide this functionality, ours
offers improved security that does not rely on synchronized clocks or
a trusted first signer. We provide formal security definitions and
support the proposed scheme with security proofs under appropriate
computational assumptions.

That is, the identity-based sequential aggregate signature scheme (IBSAS) in [5] has
“improved security.”

The construction in [5] used groups G with bilinear pairings, and their proof of
security assumed that the following Modified Lysyanskaya-Rivest-Sahai-Wolf (M-
LRSW) problem is intractable:
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• Given a group G of prime order p, a non-degenerate bilinear pairing e : G×G −→
µp, fixed non-identity elements P,U, V ∈ G that are known to the solver, and fixed
exponents a, b mod p with aP and bP but not a or b known to the solver, the
M-LRSW problem assumes that the solver is given an oracle that, when queried
with an integer m mod p, chooses a random r mod p and gives the solver the
triple (X,Y,Z) of elements of G such that

X = mrU + abP, Y = rV + abP, Z = rP.

The solver must then produce some m′ not equal to any of the m that were queried
and one more triple (X ′, Y ′, Z ′) such that for some integer x

X ′ = m′xU + abP, Y ′ = xV + abP, Z ′ = xP.

Just as Boneh and Boyen did in [6], the authors of [5] argue that this problem
is truly hard by giving an exponential lower bound for the time needed to solve
M-LRSW in a generic group. They emphasize that

This has become a standard way of building confidence in the hard-
ness of computational problems in groups equipped with bilinear
maps.

Just about a year after [5] appeared, Hwang, Lee, and Yung [20] made a startling
discovery: the “provably secure” IBSAS scheme in [5] can very easily be broken,
and the supposedly intractable M-LRSW problem can very easily be solved! Here
is the fast and simple solution to M-LRSW that they found. Choose any m1, m2,
and m′ that are distinct and nonzero modulo p. Choose β1, β2 to be solutions in Fp

to the two relations β2 = 1 − β1 and

β1

m1
+

β2

m2
=

1

m′
.

(The solutions are βi = mi(m3−i−m′)
m′(m3−i−mi)

, i = 1, 2.) Then make two queries to the oracle

with inputs m1 and m2; let (Xi, Yi, Zi), i = 1, 2, denote the oracle’s responses, and
let ri, i = 1, 2, denote the random r used by the oracle to produce (Xi, Yi, Zi). One
then easily checks that for m′ the triple

X ′ = m′
(

(β1/m1)X1 + (β2/m2)X2

)

, Y ′ = β1Y1 + β2Y2, Z ′ = β1Z1 + β2Z2

(where the coefficients of the Xi are computed in Fp) is a solution of M-LRSW (with
x = β1r1+β2r2). Notice that this algorithm is generic, that is, it works in any group
of order p.

But Theorem 5.1 of [5], which is proved in Appendix D of the full version of the
paper, gives an exponential lower bound (essentially of order

√
p) for the time needed

to solve M-LRSW. The above Huang-Lee-Yung algorithm shows that Theorem 5.1
is dramatically false.

What went wrong? The 4-page single-spaced argument purporting to prove The-
orem 5.1 is hard to read because of its cumbersome notation and turgid formalism.
If one tries to wade through it, one sees that the authors are essentially assuming
that all an attacker can do is make queries of the oracle and some rudimentary
hit-or-miss computations and wait for two group elements to coincide. They are
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forgetting that the exponent space is a publicly known prime field, and the attacker
is free to do arithmetic in that field and even solve an equation or two.

13. Conclusions

(1) If proponents of a protocol prove a tight reduction linking security to a
certain mathematical problem and also prove that this problem is equivalent
to a classical, much-studied problem — as was done in [15] — then the
reductionist argument is a useful contribution to the analysis of the security
of the protocol.

(2) If, on the other hand, a provable security theorem assumes intractability
of a contrived, ornate, and poorly understood mathematical problem, then
the “proof” is of little value in assessing the actual security of the protocol.
Readers should be wary of protocol designers who try to put a positive spin
on the “rich palette” of such problems (as in [11]) or who over-use the word
“standard” (as in [5]), since the reality is often the direct opposite of what
such language suggests. This is an example of narrative inversion (see [24]).

(3) There are many problems that empirically seem to be equivalent to one an-
other but for which this equivalence is unlikely to be provable by reductions
in both directions. In such cases the relation P ≤ Q may be interpreted
either as a warning that P might turn out to be strictly easier than Q or
else as an indication of the limitations of reductions. It is possible that for
certain problems Q such as the DL problem there are a vast number of prob-
lems P that reduce to Q and cannot be solved more efficiently than by first
solving Q but for which there is no reduction from Q to P. In other words,
the reduction approach does not necessarily provide a reliable guide to the
actual relative difficulty of two problems.
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