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Abstract. We give a new method for generating genus 2 curves over a finite field with
a given number of points on the Jacobian of the curve. We define two new invariants for
genus 2 curves as values of modular functions on the Hilbert moduli space and show how
to compute them. We relate them to the usual three Igusa invariants on the Siegel moduli
space and give an algorithm to construct curves using these new invariants. Our approach
simplifies the complex analytic method for computing genus 2 curves for cryptography
and reduces the amount of computation required.

1. Introduction

Genus 2 curves over finite fields are an important source of groups for use in cryptography,
since there are no known subexponential algorithms for the discrete logarithm problem on
the Jacobian of a general genus 2 curve over a finite field. Compared to elliptic curves,
Jacobians of genus 2 curves offer comparable security levels over a field of half the bit size,
since the group size of the Jacobian of a genus 2 curve over a finite field Fp is roughly p2, as
opposed to size p for elliptic curves. The recent advent and prevalence of 64-bit machines
has made higher genus curves seem more attractive, as the possibility of field elements
which fit into a single word nears, thereby improving the efficiency of field operations.

However, to avoid Pohlig-Hellman attacks and to obtain optimal security over a field of
a given bit-size, it is necessary to construct Jacobians whose order is prime, or at worst
has a very small cofactor. Since point-counting methods for determining the order of
the Jacobian of a random genus 2 curve over a finite field are not practical when the
characteristic is large, the only practical solution is to construct curves which have a
Jacobian with a given group size. Also, pairings on Jacobians of genus 2 curves provide
an alternative for implementing pairing-based cryptosystems. When generating pairing-
friendly curves, there are additional divisibility constraints to be satisfied and selecting
curves via construction is the only practical option. Constructing genus 2 curves over
prime fields of cryptographic size so that the group size is a given prime order is a great
challenge, and the only currently known solution is to use deep mathematical methods
based on the theory of Complex Multiplication (CM).

For the last 15 years, genus 2 curves with CM have been constructed by determining
the Bolza-Clebsch-Igusa invariants of the curve. Clebsch defined the invariants of binary
sextics in the 1880’s and Bolza showed that they were related to modular invariants of
the Jacobian of the curve viewed as a complex torus; much later Igusa [Ig1] defined a
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complete set of invariants which works in all characteristics and which can be computed as
values of certain Siegel modular functions on the Siegel upper half plane. The moduli space
of genus 2 curves is 3-dimensional and so three invariants are needed to specify a curve
up to isomorphism over an algebraically closed field. To compute these Igusa invariants,
Spallek [Sp] determined a collection of representatives for isomorphism classes of polarized
abelian surfaces with CM by a given field. Determining this set was complicated, and
a complete set of representatives in general was not determined until the recent work of
Streng [St]. In [We], Weng gave an algorithm for computing the minimal polynomials
of Igusa invariants by evaluating Siegel modular forms to very high precision in order to
recognize the coefficients of the minimal polynomials as rational numbers. Unfortunately,
the large number of floating point multiplications performed in the computation causes
loss of precision and makes the algorithm hard to analyze [St].

In this paper we present a new approach to computing genus 2 curves by defining a
different set of invariants which are simpler than Igusa invariants. We fix a real quadratic
field F and consider the Hilbert moduli space of principally polarized abelian surfaces with
real multiplication by OF . The forgetful functor gives a map to the Siegel moduli space
of principally polarized abelian surfaces. We study the two generators of the function field
of the Hilbert moduli space as given by Gundlach [Gu], and show how they can be used
to generate genus 2 curves with a Jacobian of given order. We compute the pullback of
the Igusa functions to the Hilbert moduli space and express them in terms of our new
invariants.

The algorithm we present has at least three advantages over the complex analytic method
which generates genus 2 curves from Igusa invariants. First, there are only two invariants
to be computed as values of modular forms, not three. Second, the description of CM
points on the Hilbert moduli space is simpler than the description of CM points in terms
of period matrices on the Siegel moduli space. Finally, the modular forms we evaluate in
order to compute invariants on the Hilbert moduli space are exponential functions in two
variables, instead of three. This leads to fewer evaluations of exponential functions and
fewer high-precision floating point multiplications. In essence, our method takes advantage
of the beautiful relationship between invariants on the Hilbert and Siegel moduli spaces.
It relies on the explicit description of the pullback map which can be used to express the
more complicated modular functions on the Siegel moduli space in terms of simpler modular
functions on the Hilbert moduli space. Throughout this paper we will assume F = Q(

√
5),

but the method will also work for some other real quadratic fields F = Q(
√
D), whose

associated Hilbert modular surface are rational surfaces.
In Section 2, we give background on Igusa invariants and the CM method for generating

genus 2 curves. In Section 3, we describe the map between the Hilbert and Siegel spaces.
In Section 4, we compute the Hilbert Eisenstein series, define the new invariants, and
compute the pullback of the Igusa functions in terms of the new invariants. In Section 5,
we show how to compute CM points on the Hilbert moduli space and give our algorithm
for computing genus 2 curves. In Section 6, we give two concrete examples of how the
algorithm works. The appendix gives unoptimized code for computing the new invariants
and explains Mestre’s algorithm for generating genus 2 curves from their invariants.
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2. Generating genus 2 curves with CM

2.1. Number of points on the Jacobian. For an ordinary genus 2 curve C over a finite
prime field Fp, let N1 = #C(Fp) and N2 = #C(Fp2). Then

(2.1) #J(C)(Fp) = N = (N2
1 +N2)/2− p.

To find a curve C over Fp such that #J(C) = N , first find N1 and N2 in the Hasse-Weil
intervals for Fp and Fp2 satisfying relation 2.1, if they exist. Next, set N1 = p+ 1− s1 and
N2 = p2 +1+2s2−s2

1. Then the quartic polynomial h(t) = t4−s1t
3 +s2t

2−ps1t+p2 is the
Weil polynomial of a genus 2 curve as long as the exceptional cases listed in [HNR, Theorem
1.2] are avoided. Under those conditions, the Jacobian of the curve has endomorphism ring
equal to an order in the quartic CM field K = Q[t]/(h(t)).

Note that if s2 is prime to p then the Jacobian is ordinary [Ho, p.2366]. Also, if K can be

written in the form K = Q(i
√
a+ b

√
d), with a, b, d ∈ Z and d and (a, b) square-free, then

K is a primitive CM field (i.e. it contains no proper CM subfield) if and only if a2 − b2d
is not a square. We will assume K is a primitive quartic CM field throughout this paper.

2.2. Genus 2 curves and Igusa’s j-invariants. In this section, we review Igusa’s fun-
damental work on genus 2 curves and Siegel modular forms of genus 2. In his seminal work
[Ig1], Igusa characterizes completely genus 2 curves over Z via 10 projective invariants,
three quotients of which are the so-called (absolute) Igusa invariants j1, j2, j3. They are
enough to determine the curve over any field k of characteristic not equal to 2 if j1 6= 0.
Assume that

X : y2 = f(x)

is a (projective) genus 2 curve given by the above affine equation of degree 6. Let αi be six
roots of f(x) = 0, and write (ij) for αi − αj. Let u0 be the leading coefficient of f . Then
the three (absolute) Igusa invariants are defined as

(2.2) j1(X) =
A5

D
, j2(X) =

A3B

D
, j3(X) =

A2C

D
,

where A, B, C, and D are integral Igusa invariants defined as (van Wamelen denoted them
by I2, I4, I6, and I10 respectively in [vW, Page 313])

A = u2
0

∑
15

(12)2(34)2(56)2,

B = u4
0

∑
10

(12)2(23)2(31)2(45)2(56)2(64)2,

C = u6
0

∑
60

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,

D = u10
0

∏
i<j

(ij)2.

Here the subscript on the sums gives the number of possible combinations (of the same
type) to sum over. In particular, when k is an algebraically closed field of characteristic not
equal to 2, the function field of C2 over k is the rational function field k(j1, j2, j3) of three
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free variables. Here C2 is the moduli space of genus 2 curves, which is coarsely represented
by an (open) quasi-projective subvariety of Proj(k[A,B,C,D]) given by D 6= 0. Let A2 be
the moduli space of principally polarized abelian surfaces. Then it is coarsely represented
by the Siegel modular 3-fold X2 = Sp2(Z)\H2. Igusa proved in [Ig2, Theorems 1 and 2]
that the graded ring of holomorphic Siegel modular forms for Sp2(Z) is the polynomial
ring of ψ4, ψ6, χ10 and χ12. Here

(2.3) ψk(τ) =
∑

γ=(A B
C D )∈P\Sp2(Z)

det(Cτ +D)−k

is the normalized Eisenstein series of weight k for an even integer k ≥ 4, where P is the
standard Siegel parabolic subgroup of Sp2(Z), and

χ10 = −2−123−55−27−153−1 · 43867(ψ4ψ6 − ψ10),(2.4)

χ12 = 2−133−75−37−2337−1 · 131 · 593(3272ψ3
4 + 2 · 53ψ2

6 − 691ψ12)(2.5)

are Siegel modular cusp forms of weight 10 and 12 respectively. So every rational function
on X2, i.e., a meromorphic Siegel modular form of weight 0, is a rational function of these
functions.

Since X 7→ J(X) (the Jacobian of X) is an open immersion from C2 to A2, the rational
functions on C2(C) are the same as rational functions on X2. So we can write the Igusa
invariants ji as rational functions of ψ4, ψ6, χ10, and χ12 [Ig3, page 848].

j1(τ) = 2 · 35χ
5
12

χ5
10

,

j2(τ) = 2−3 · 33ψ4χ
3
12

χ4
10

,(2.6)

j3(τ) = 2−5 · 3
(
ψ6χ

2
12

χ3
10

+ 22 · 3ψ4χ
3
12

χ4
10

)
.

Here ji(τ) = ji(X) if there is genus 2 curve X over C such that its Jacobian J(X) is
isomorphic to the abelian surface A(τ) = C2/(Z2τ +Z2) associated to τ . When there is no
such genus 2 curve X, which happens exactly when χ10(τ) = 0, ji(τ) is not well-defined.

2.3. Relation with theta constants and integral modular forms. We also give an
expression for the invariants in terms of theta constants. For m = (m1,m2) ∈ (Z/2)4,
the theta constant θm(τ) is a holomorphic modular form of weight 1/2 (for the principal
congruence subgroup of Sp2(Z) of level 2):

(2.7) θm(τ) =
∑
n∈Z2

e(
1

2
(n+m1/2)τ(n+m1/2)t + (n+m1/2)mt

2).
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θm is not identically zero if and only if m is even, i.e., m1m
t
2 6= 0 in Z/2. There are 10

even theta constants. Then we have by [Ig3, Page 848]

ψ4 = 2−2
∑

(θm)8,

ψ6 =
∑
±(θm1θm2θm3)

4,

−4χ10 = 2−12
∏

(θm)2,(2.8)

12χ12 = 2−15
∑

(θm1θm2θm3θm4θm5θm6)
4.

We refer to [Ig3, Page 848] for the determination of the sign in the second summation. In
[Ig4], Igusa further proved the following fact, which is important arithmetically: ψ4, ψ6,
−4χ10, 12χ12 have integral Fourier coefficients which are relatively prime.

3. The map from a Hilbert modular surface to the Siegel modular 3-fold.

In this section, we review a well-known symmetric map from a Hilbert modular surface
to the Siegel modular 3-fold, make it explicit, and work out the Fourier expansion of the
pullback of a holomorphic Siegel modular form under this map.

Let F = Q(
√
D) be a real quadratic field with prime discriminant D ≡ 1 mod 4, and

let σ(a+ b
√
D) = a− b

√
D be the non-trivial Galois conjugate of F over Q. Let ε > 0 be

a unit such that σ(ε)ε = −1. Let X = SL2(OF )\H2 be the open Hilbert modular surface.
Let Sp2(Z) be the symplectic group over Z of genus two, consisting of 4 × 4-integral

matrices g satisfying
gJgt = J, J =

(
0 I2
−I2 0

)
where I2 is the identity matrix of order 2. Let

H2 = {τ = ( τ1 τ2τ2 τ3 ) ∈M2(C) : Im τ > 0}
be the Siegel upper half-plane of genus two, and let

X2 = Sp2(Z)\H2

be the open Siegel modular 3-fold. Here Sp2(R) acts on H2 via

( A B
C D ) τ = (Aτ +B)(Cτ +D)−1.

For z = (z1, z2) and a ∈ F , we denote z∗ = diag(z1, z2), and a∗ = diag(a, σ(a)). We also
denote

γ∗ = ( a
∗ b∗
c∗ d∗ ) , for γ = ( a bc d ) ∈ SL2(F ).

Choose a Z-basis {e1, e2} for OF :

(3.1) OF = Ze1 + Ze2,

and define

(3.2) R =
( e1 e2
σ(e1) σ(e2)

)
.

We define the maps

(3.3) φ : H2 → H2, φ(z) = Rtdiag(
ε√
D
z1, σ(

ε√
D

)z2)R,
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and

(3.4) φ : SL2(F )→ Sp2(Q), φ(γ) = Sγ∗S−1, S = diag(Rt, R−1)diag(I2, (

√
D

ε
)∗).

It is easy to check that φ(SL2(OF )) ⊂ Sp2(Z). The next proposition asserts that the maps
φ are compatible with the group actions.

Proposition 3.1. The map φ defined above gives a holomorphic map from X into X2.
Moreover, it is independent of the choice of the Z-basis {e1, e2}, and is symmetric in the
sense that φ(z1, z2) = φ(z2, z1) (as a map from X into X2).

Proof. This is a well-known result. We give a direct proof here for the convenience of the
reader. Let

SL2(OF + ∂F ) = {γ =

(
a b
c d

)
∈ SL2(F ) : a, d ∈ OF , b ∈ ∂−1

F , c ∈ ∂F},

where ∂F =
√
DOF is the different of F . Then it is easy to see that

φ0(z1, z2) = (
ε√
D
z1,−

σ(ε)√
D
z2),

φ0(γ) = diag(1,

√
D

ε
)γdiag(1,

√
D

ε
)−1

gives an isomorphism between X and X ′ = SL2(OF + ∂F )\H2. So it suffices to verify that

φ1(z) = Rtz∗R, φ1(γ) = diag(Rt, R−1)γ∗diag(Rt, R−1)−1

gives a holomorphic symmetric map from X ′ into X2, which is independent of the choice
of {e1, e2}. It is clearly holomorphic if well-defined. We first check

φ1(γz) = φ1(γ)φ1(z).

Indeed, for γ =

(
a b
c d

)
,

φ1(γ) =
(
Rta∗Rt,−1 Rtb∗R
R−1c∗Rt,−1 R−1d∗R

)
,

and so

φ1(γ)φ1(z) = (Rta∗z∗R +Rtb∗R)(R−1c∗z∗R +R−1d∗R)−1

= Rt(a∗z∗ + b∗)(c∗z∗ + d∗)−1R

= Rt(γz)∗R

= φ1(γz),

as claimed. So φ1 is a well-defined map from X ′ to X2. Next if {f1, f2} is another Z-basis
of OF , write

(e1, e2) = (f1, f2)g, g ∈ GL2(Z),

Then

R(e1, e2) = R(f1, f2)g.
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Here we use R(e1, e2) for R to indicate its dependence on the basis. Similarly, one has

φ1,e1,e2(z) = gtφ1,f1,f2(z)g = A(φ1,f1,f2) = φ1,e1,e2(z) ∈ X2,

since A = diag(gt, g−1) ∈ Sp2(Z). Finally, to check that φ1 is symmetric, notice that

φ1((z2, z1) = (wR)t(z1, z2)∗(wR),

where w = ( 0 1
1 0 ), and wR is the matrix associated to the Z-basis {σ(e1), σ(e2)} of OF . �

Proposition 3.2. (1) Let g be a holomorphic Hilbert modular form of SL2(OF ) of weight
k. Then it has Fourier expansion

g(z) = ag(0) +
∑

t=ae1+be2∈O+
F

ag(t)q
a
1q
b
2.

Here the superscript + stands for totally positive in this paper, and qj = e
2πi(

εej√
D
z1+σ(

εej√
D

)z2)
.

(2) Let

f(τ) = af (0) +
∑

T∈Sym2(Z)∨,+

af (T )qT

be a holomorphic Siegel modular form for Sp2(Z) of weight k. Then its pullback g = φ∗f
is a symmetric Hilbert modular form with the following Fourier expansion.

g(z) = f(φ(z)) = ag(0) +
∑

t=ae1+be2∈O+
F

ag(t)q
a
1q
b
2

with ag(0) = af (0) and

ag(t) =
∑

T∈Sym2(Z)∨,+

QT (e1,e2)=t

af (T ).

Here

QT (x1, x2) = (x1, x2)T (x1x2)

is the (positive definite) quadratic form associated to T , and

Sym2(Z)∨ = {T =
(
m1

1
2
m

1
2
m m2

)
: mi,m ∈ Z}

is the dual of Sym2(Z). Finally qT = e2πi trTτ .

Proof. (1) is the standard Fourier expansion with slight renormalization, writing ν ∈ ∂−1,+
F

as ν = ε√
D
t with t = ae1 + be2 ∈ O+

F .

(2) follows from the definition of φ and the simple fact

trTφ(z) = trTRtz∗R = QT (e1, e2)z1 + σ(QT (e1, e2))z2.

�
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Now we restrict ourselves to the example F = Q(
√

5). Take

ε =
1 +
√

5

2
, σ(ε) =

1−
√

5

2
,

and e1 = 1, e2 = σ(ε). Then the equation QT (e1, e2) = t = a + bσ(ε) = a + b1−
√

5
2

is
equivalent to the following conditions

(3.5)


m1,m2 ∈ Z+, m ∈ Z,
m2 < 4m1m2,

m1 +m2 = a,

m+m2 = b

We restate Proposition 3.2 as a corollary in this special case for use in the rest of the
paper.

Corollary 3.3. Assume F = Q(
√

5), and let ε = 1+
√

5
2

. Let

φ : SL2(OF )\H2 → Sp2(Z)\H2,

φ(z) =
(

1 1
σ(ε) ε

)( ε√
5
z1 0

0 −σ(ε)√
5
z2

)(
1 σ(ε)
1 ε

)
=

(
ε√
5
z1−σ(ε)√

5
z2

z2−z1√
5

z2−z1√
5

−σ(ε)√
5
z1+ ε√

5
z2

)
be the map defined above, and let e(z) := e2πiz and

q1 = e(
ε√
5
z1 −

σ(ε)√
5
z2) = e(

1 +
√

5

2
√

5
z1 −

1−
√

5

2
√

5
z2), q2 = e(

z2 − z1√
5

).

Then for a holomorphic Siegel modular form f of weight k for Sp2(Z), g = φ∗f is a
symmetric holomorphic Hilbert modular form for SL2(OF ) with the Fourier expansion:

g(z) = af (0) +
∑

t=a+b 1−
√
5

2
∈O+

F

ag(t)q
a
1q
b
2,

with

ag(t) =
∑

condition(3.5)

af

((
m1

1
2
m

1
2
m m2

))
.

4. Hilbert Modular forms and Pullback of Igusa invariants

Let the notation be as in the end of Section 3. In particular F = Q(
√

5) and ε = 1+
√

5
2

.
We first recall some basic facts on symmetric Hilbert modular forms for SL2(OF ), and refer
to [Gu] and [Nag] for details. First recall the Eisenstein series of even weight k ≥ 2:

(4.1) Gk(z) = 1 +
∑

t=a+b 1−
√
5

2
∈O+

F

bk(t)q
a
1q
b
2,

where

(4.2) bk(t) = κk
∑

(µ)⊃(t)

N(µ)k−1.
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Here

κk =
(2π)2k

√
5

(k − 1)!25kζF (k)

is a rational number, (µ) denotes the principal ideal µOF , and N(µ) = #OF/(µ). Here are
some values of κk:

κk =


23 · 3 · 5 if k = 2,

24 · 3 · 5 if k = 4,
1
67
· 23 · 32 · 5 · 7 if k = 6,
1

412751
· 23 · 3 · 52 · 11 if k = 10.

A simple calculation gives the first few coefficients for

0 < a ≤ 3,
1−
√

5

2
a < b <

1 +
√

5

2
a

as follows:

Gk(z) = 1 + κk(1 + q2)q1 + κk
[
q−1

2 + (1 + 4k−1) + (1 + 5k−1)q2 + (1 + 4k−1)q2
2 + q3

2

]
q2

1

+ κk
[
(1 + 5k−1)q−1

2 + (1 + 9k−1) + (1 + 11k−1)q2 + (1 + 11k−1)q2
2(4.3)

+(1 + 9k−1)q3
2 + (1 + 5k−1)q4

2

]
q3

1.

A Hilbert modular form f is called symmetric if f(z, z′) = f(z′, z) for (z, z′) ∈ H2.
Notice that the Eisenstein series Gk are all symmetric. We call it integral if all its Fourier
coefficients are integral, and call it primitively integral if furthermore its Fourier coefficients
have greatest common divisor 1. For a ring R, we denote

MSym(SL2(OF ), R) =
∑
k≥0

M
Sym
k (SL2(OF ), R)

for the graded ring of holomorphic symmetric Hilbert modular forms of SL2(OF ) with
Fourier coefficients in R. When R = Z, we drop R in the notation. We will need the
following theorems in this paper.

Theorem 4.1. ([Nag, Theorem 2]) Let

θ6 = − 67

253352
(G6 −G3

2),

θ10 = 2−103−55−57−1
(
412751G10 − 5 · 67 · 2293G2

2G6 + 22 · 3 · 7 · 4231G5
2

)
,(4.4)

θ12 = 2−2(θ2
6 −G2θ10).

Then the functions G2, θ6, θ10, and θ12 are primitively integral symmetric Hilbert modular

forms, and are a minimal set of generators for MSym(SL2(OF ),Z).

In [Nag], θi are denoted by Ji.

Theorem 4.2. (Gundlach) (1) The ring of symmetric holomorphic Hilbert modular
forms for SL2(OF ) is a polynomial ring of G2, G6, and θ10. In particular,

dimM
Sym
k (SL2(OF )) = #{(x, y, z) ∈ Z3

≥0 : x+ 3y + 5z = k/2}.
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(2) The field of symmetric meromorphic Hilbert modular functions for SL2(OF ) are
rational functions of

J1 =
θ6

G3
2

and J2 =
G5

2

θ10

.

Proof. Claim (1) is exactly [Gu, Satz 5]. Claim (2) clearly follows from [Gu, Satz 6] since

θ6 = − 67

253352
(G6 −G3

2).

�

We call J1 and J2 the Gundlach invariants in this paper.

Remark 4.3. Alternative choices for the two invariants present different trade-offs for effi-
cient computation. For example, one could use the invariants J1 and J3, where

J3 = J1 + J−1
2 =

θ6G
2
2 + θ10

G5
2

.

This choice has the advantage that both invariants are rather small. Another possible
choice would be to use invariants J2 and J4 where

J4 = J1J2 =
θ6G

2
2

θ10

.

This choice has the advantage that both invariants have denominator θ10.

4.1. Pullback of Igusa Invariants. It turns out that θi are pullbacks of Siegel modular
forms. Indeed, Resnikoff proved in [Re, Theorem 1] the following theorem.

Theorem 4.4.

φ∗ψ4 = G2
2,

φ∗ψ6 = −42

25
G3

2 +
67

25
G6 = G3

2 − 2533θ6,(4.5)

−4φ∗χ10 = θ10,

12φ∗χ12 = 3θ2
6 − 2G2θ10.

In particular, θ10 is 2−12 times the square of the product of the ten Hilbert theta constants
defined in [Gu, Section 2], i.e.,

(4.6) θ10 = 2−12Θ2

where Θ is the weight 5 modular form defined by Gundlach. This identity (or more
precisely the identity in Theorem 4.1 describing Θ2) is given [Nag, Lemma 5.1] and is
implicitly proved in [Gu]. We will use this fact in Section 5. A short calculation leads
to the following proposition expressing the pullback of Igusa’s functions in terms of the
Gundlach invariants.
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Proposition 4.5. One has

φ∗j1 = 8J2(3J2
1J2 − 2)5,

φ∗j2 =
1

2
J2(3J2

1J2 − 2)3,

φ∗j3 = 2−3J2(3J2
1J2 − 2)2(4J2

1J2 + 25 · 32J1 − 3).

5. CM points and CM values of J1 and J2

In this section we explain how to generate CM points on the Hilbert moduli space and
give an algorithm for computing genus 2 curves from Gundlach invariants.

Let K = F (
√

∆) be a non-biquadratic quartic CM extension of F = Q(
√

5). We briefly
review the construction of CM points and refer to [BY, Section 3] and references there for
details. Let Φ = {σ1, σ2} be a CM type of K. A CM point in X = SL2(OF )\H2 of CM
type (OK ,Φ) is the image of a point Φ(z) = (σ1(z), σ2(z)) ∈ H2, where z ∈ K satisfies the
condition that Λz = OF +OF z is a fractional ideal. Conversely, if a is a fractional ideal of
K, one can write

a = OFα +OFβ, α, β ∈ a

since F has class number one. Furthermore since F has a unit of norm −1, one can find
generators α and β (multiplying by such a unit if necessary) such that Φ(β

α
) ∈ H2. So

z = β
α

gives a CM point Φ(z) of CM type (OK ,Φ), and its associated lattice is Λz = α−1a.
Moreover, this CM point z ∈ X depends only on the ideal class [a] of a, and we denote
it by z(a,Φ) or z([a],Φ). One can prove that the correspondence [a] 7→ z([a],Φ) gives rise
to a bijection between the ideal class group CL(K) and the set of CM points of CM type
(OK ,Φ). The inverse is z 7→ [Λz].

Write CM(K,Φ) as the formal sum of the CM points of CM type (OK ,Φ), and view
it as a 0-cycle in X. Recall that X has a canonical model over Q (as the coarse moduli
space of ∂−1

F -polarized abelian surfaces with real multipication by OF ) (see for example

[Ge]). Then CM(K,Φ) is actually defined over the reflex field K̃ of (K,Φ) (as moduli
space of ∂−1

F -polarized abelian surfaces with complex multiplication by OK with an extra
condition on differentials related to Φ). Moreover, let Φ′ = {σ1, σ̄2} be another CM type,
then CM(K) = CM(K,Φ) + CM(K,Φ′) is defined over Q [BY, Lemma 3.4]. Furthermore,
the same lemma asserts that CM(K,Φ) is defined over Q itself when K is cyclic. Notice
also that if Φ(z) is a CM point of CM type (OK ,Φ) associated to the ideal a, then Φ′(εz) =

(σ1(εz), σ2(εz)) is a CM point of CM type (OK ,Φ′) associated to the same ideal a, where
ε is a unit of F such that σ1(ε) > 0 and σ2(ε) < 0.

Now let J = J1 or J2. Then J is a rational function on X, J(z) is algebraic over Q, and

J(CM(K)) =
∏

z∈CM(K)

J(z) ∈ Q.

However, J(z) is not an algebraic integer and J(CM(K)) is not an integer. To compute
J(z) practically (which is the purpose of this paper), we need an upper bound for the
denominators of the coefficients of the minimal polynomial. This can be done by the main
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results in [BY] and [Ya2]. We first need some notation. Let K̃ be the reflex field of (K,Φ).
It is also a quartic CM number field with real quadratic subfield F̃ . Let dK/F be the relative
discriminant of K/F and dK be the absolute discriminant of K. For a nonzero element
t ∈ d−1

K̃/F̃
and a prime ideal l of F̃ , we define

(5.1) Bt(l) =

{
0 if l is split in K̃,

(ordl t+ 1)ρ(tdK̃/F̃ l
−1) log |l| if l is non-split in K̃,

and

(5.2) Bt =
∑
l

Bt(l).

Here |l| is the norm of l, and ρ(a) = ρK̃/F̃ (a) is defined as

(5.3) ρ(a) = #{A ⊂ OK̃ : NK̃/F̃A = a}.
For a positive integer m > 0, set

(5.4) bm =
∑

t=
n+m

√
q

2p
∈d−1

K̃/F̃

|n|<m√q

Bt.

Notice that ebm are positive integers. Finally, let WK be the number of roots of unity in
K, one has

WK =

{
10 if K = Q(e(1/5)),

2 otherwise.

Proposition 5.1. Let the notation be as above, and let h = hK be the ideal class number
of K. Assume that G2(z) 6= 0, and dK = 52q for a prime q ≡ 1 mod 4.

(1) Let

P2(x) =
∏

z∈CM(K)

(x− J2(z)) =
2h∑
i=0

ai(J2)xi ∈ Q[x].

Then ai(J2) ∈ Q with denominator being a factor of e
WK
2
b1. Moreover, a0(J2) = ( n

5

eb1
)
WK
2

for some integer n.
(2) Let

P1(x) =
∏

z∈CM(K)

(x− J1(z)) =
2h∑
i=0

ai(J1)xi ∈ Q[x].

Then ai(J1) ∈ Q with denominator being a factor of n
3WK

2 .

Proof. The proof is very similar to that of [Ya2, Theorem 1.7]. We sketch it here for the
convenience of the reader. We use the notation in [Ya2], and refer to [Ya2] for explana-
tion of the Arakelov intersection theory used here. Let X be the moduli stack over Z of
∂−1
F -polarized abelian surfaces with real multiplication by OF , and let CM(K) be the mod-

uli stack over Z of ∂−1
F -polarized abelian surfaces with real multiplication by OK . Then
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CM(K)(C) = 2CM(K) by Lemma [Ya2, Lemma 3.2]. By [BY, Section 10], div θ10 = T1,
where T1 is the first arithmetic Hirzebruch-Zagier divisor in X (moduli space of E ⊗OF ,
where E are elliptic curves). The modular form θ10 is denoted by Ψ2

5 in [BY]. So the
Arakelov intersection theory gives

0 = hd̂iv(J2)(CM(K))

= 5CM(K). divG2 − 2CM(K).T1 −
1

WK

log |CM(K)(C)|

= 5CM(K). divG2 − 2CM(K).T1 −
2

WK

log |J2(CM(K))|.

So
2

WK

log |J2(CM(K))| = 5CM(K). divG2 − 2CM(K).T1.

By [Ya1, Theorem 1.2] or [Ya2, Theorem 1.2], one has

CM(K).T1 =
1

2
b1.

So

|a0(J2)| = |J2(CM(K))| =
(
|n|5

eb1

)WK
2

as claimed, where n ∈ Z with

log |n| = CM(K). divG2.

For a general i, Let L be the field generated by all J2(z), z ∈ CM(K). One can then write
by unique factorization of ideals of OL,

J2(zi) = aib
−1
i ∈ b−1

i

for z1, · · · , z2h ∈ CM(K), where ai and bi are relatively prime integral ideals of L. Then

a0OL =
∏

J2(zi)OL = (
∏

ai)(
∏

bi)
−1 =

n
5WK

2

e
WK
2
b1
.

If we write a0 = A
B

with A,B ∈ Z relatively prime, then∏
ai = AOL,

∏
bi = B

and B|e
WK
2
b1 (n and eb1 might not be relatively prime). Now

ai = (−1)i
∑
j1,···ji

i∏
k=1

J2(zjk) ∈ (
∏

bi)
−1 = B−1OL,

and so ai has denominator dividing B, and thus dividing e
WK
2
b1 . This proves (1). One can

prove (2) the same way using the the just proved fact:

CM(K). divG2 = log |n|
(replacing CM(K). div θ10 = 2CM(K).T1 = b1). �
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5.1. Algorithm for computing Gundlach invariants and CM curves. To actually
compute Ji(z) for a CM point, we give the following explicit algorithm.
Algorithm 5.1.
Input: K a primitive quartic CM field, p a prime which splits completely into principal
ideals in K∗, the reflex of K, and S a collection of 2 or 4 possible group orders for Jacobians
of genus 2 curves over Fp with CM by K.
Output: Gundlach invariants modulo p for genus 2 curves with CM by K and equations
for curves C over Fp with #J(C) ∈ S.

1. Find ∆ ∈ OF such that ∆ is totally negative and ∆σ(∆) = q ≡ 1 (mod 4) is a prime

(not essential). In such a case, K = F (
√

∆) is a non-Galois quartic CM field if q 6= 5.
Moreover, one can find

OK = OF +OF
b0 +

√
∆

2
.

2. Let M = Q(
√

∆,
√
σ(∆)) be the Galois closure of K over Q. We fix one embedding

of M into C and view then M as a subfield of C so that

Im(
√

∆) > 0, Im(
√
σ(∆)) > 0.

Let

σ(
√

∆) =
√
σ(∆), σ(

√
σ(∆)) = −

√
∆,

and

τ(
√

∆) =
√
σ(∆), τ(

√
σ(∆)) =

√
∆.

Notice that σ2 =¯ is complex conjugation on M , and σ|F is the non-trivial Galois element
σ of F/Q. Then Gal(M/Q) ∼= D8 is generated by σ and τ . K has four CM types

Φ = {1, σ}, Φ′ = {1, σ′ = σ3}, Φ̄ = {̄, σ̄ = σ′}, and Φ̄′.

One has

CM(K) = CM(K,Φ) + CM(K,Φ′) = CM(K, Φ̄) + CM(K, Φ̄′).

3. Find the class number hK and the ideals generating the class group of K.
4. Given an ideal a of K, write

a = [a,
b+
√

∆

2
] = OFa+OF

b+
√

∆

2

such that a is totally positive with aOF = NK/F a, and that z = b+
√

∆
2a

.

z([a],Φ) = Φ(z) = (z, σz) ∈ H2

is the CM point in X = SL2(OF )\H2 associated to the ideal class [a] and Φ. Moreover,
one has in this case

z([a],Φ′) = Φ′(εz, σ′(εz)) ∈ H2

is the CM point of CM type Φ′ associated to a.
5. Compute Ji(z([a],Φ)) and Ji(z([a],Φ′)), using the precision requirements from Prop. 5.1.

Form the minimal polynomials P1(X) and P2(X). Reduce modulo a prime p not dividing
the denominators and find roots (mod p).
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6. Compute φ∗ji (mod p) using the formulas in Proposition 4.5. Apply Mestre’s algo-
rithm (see Appendix 8.2) to pairs of roots from step 5 to construct a genus 2 curve over
the finite field Fp.

6. Examples

We give two examples here to demonstrate Algorithm 5.1.

6.1. Example 1. Let F = Q(
√

5) and K be the Galois cyclic CM field Q(
√
−5 +

√
5) of

class number 2 defined by the polynomial f(t) = t4 + 10t2 + 20. Let x be a root of f . Then
the ring of integers of K can be written as OF + xOF , representing the trivial ideal class.
The other ideal class in OK is represented by the ideal 2OF + xOF . Since K is Galois
cyclic, there is only one CM type up to isomorphism, and so we get only one polarized
abelian surface for each ideal class.

Next we convert each ideal class into the corresponding CM point on the Hilbert moduli
space, by letting z = x and z′ = x/2 and mapping z 7→ (σ1(z), σ2(z)), such that Im(σi(z)) >
0, for i = 1, 2. We evaluate G(k) at (σ1(z), σ2(z)) for k = 2, 4, 6, 10 and compute θ6 and
θ10. In this example the class equation fails to be irreducible, and both invariants of both
ideal classes are rational (as opposed to satisfying a polynomial with rational coefficients).

Then the computed invariants are J1(z) = 1/194400 = 2−53−55−2 and J2(z) = 2831055

and J1(z′) = 1/864 = 2−53−3 and J2(z′) = 194400000/121 = 28355511−2.
Using the formulas we found in Proposition 4.5, we compute the 3 Igusa invariants in

terms of J1 and J2, and we find that they indeed match the Igusa invariants as calculated
by van Wamelen in [vW]. For example, φ∗j1(z) = 2 · 310557195/1112.

Mestre’s algorithm to generate a curve from its invariants is explained in the Appen-
dix below, and has been implemented in Magma for example, and we use the Magma
command HyperellipticCurveFromIgusaClebsch to generate the curve from the 4 Igusa
Clebsch invariants: I2 = 1, I10 = I5

2/j1, I4 = j2 · I10/I
3
2 , and I6 = j3 · I10/I

2
2 .

Current minimum security levels for genus 2 hyperelliptic curve cryptography require
working over a field which is at least 128 bits, so that the group order is at least 256 bits.
We find a prime of cryptographic size which splits completely into principal ideals in K,
p = 340282366920938463463374607431768213431. One of the possible group orders for the
Jacobian of a genus 2 curve over Fp with CM by K is

N = 115792089237316195439222313149717904948817631071168155151994257158091641307220.

We find a curve C whose Jacobian has order N with Gundlach invariants J1 = 1/194400
and J2 = 47239200000 defined over Fp by the equation:

C : y2 = 338931466186923884354352055023395682589x6+

147253980567190107524376275221857804426x5+269300356029475808457260262457030252867x4+

138384226796715975861495440871003340679x3+49380499612684083483659413593343091406x2+

49858147947087501179789824403795308130x + 228614259049869931400731578430276414286.
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6.2. Example 2. Let K = Q[x]/(x4 +30x2 +180) be a Galois cyclic quartic CM field with
class number 4.

A list of relative generators for the four ideal classes is [z1, z2, z3, z4] = [1/x, 3/x, 2/x, 6/x].
We will compute the minimal polynomials of the Gundlach invariants of the CM genus 2
curves, P1 =

∏
i=1,h(X − J1(zi)) and P2 =

∏
i=1,h(X − J2(zi)).

Calculating with 100 digits of precision, and computing the Hilbert Eisenstein series up
to a bound of 60, we recognize the minimal polynomial of J1 as

(denominator) · P1(X) = 807620490521688228341760000000000X4−
673073974659036488878080000000X3 + 65851509360835482658560000X2−

1301278988080300060800X + 826918614601,

where the denominator is written as the coefficient of the degree 4 term. This was possible
to recognize because the trace term (coefficient of X3) was accurate enough to recognize
as a rational number, and then multiplying through by this denominator was enough to
make all the other coefficients recognizable as integers. The larger the imaginary part of a
CM point, the faster the Hilbert Eisenstein series converge. In this case it was enough to
compute two of the invariants up to a bound of 20.

Unfortunately, the same amount of accuracy does not suffice to recognize the minimal
polynomial for J2 because the size of J2(zi) is much larger than J1(zi), and the precision loss
in multiplication is proportional to the size. This observation begs the interesting question
of whether the invariants J1, J2 are the best choice for computation, and whether one of the
alternatives given in Remark 4.3 might be better. Indeed θ10 is very small at CM points,
which makes J2 very large. However there is an advantage to working with an invariant
which has θ10 as the denominator, since the geometric interpretation of the divisor of θ10 on
the arithmetic moduli space leads to a formula for the factorization of the denominator. For
example, with 100 digits of precision and a bound of 80 for the Hilbert Eisenstein series, the
trace term can be recognized as −(28 ·34 ·55 ·43·3943·187784496127072321)/(112 ·192 ·312 ·1392)

because the Bruinier-Yang formula explained in Proposition 5.1 predicts a multiple of the
denominator, and multiplying through makes the coefficients into integers if they have
been computed to sufficient accuracy.

However in this case, multiplying through by this denominator does not suffice to recog-
nize the entire polynomial because the other coefficients were not computed with sufficient
accuracy (roughly 54 digits of accuracy are missing). Recomputing one of the invariants
with 200 digits of accuracy and a bound of 100 for the Hilbert Eisenstein series, and using
some tricks to bootstrap from the coefficients which were already recognized exactly, we
find the minimal polynomial:

(denominator)·P2(X) = 94309255921730641X4−239904685257879199493648103415200000X3+

513653659271447214497005427725467360000000000X2−
104766327156563190587332424648038320000000000000000000X+

392145514761205878288552914309761680000000000000000000000000.

Taking a rational 128-bit prime which splits completely into principal ideals in K∗,
p = 340282366920938463463374607431768219931, we find a possible 256-bit group order which
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is almost prime:

N = 115792089237316195404406655439534933218761722676637023113527648931946009038580

= 22·5·5789604461865809770220332771976746660938086133831851155676382446597300451929.

Applying Mestre’s algorithm to the Gundlach invariants modulo p:

J1 = 279214503502700065510996498564179588291

and

J2 = 288623429461296121011774846415179312191,

we obtain the hyperelliptic curve defined over Fp by

y2 = 290539680218172865744314331157056329993x6+

17725362475694001839684832044029281717x5 + 309288833050300807168917976953010217423x4

+228634886915584929858087477302355957630x3+133246848479040973236010420879045116884x2

+226238451489753874682526142621565485775x+51254902283888571906628040318549913376.

7. Conclusion

It can already be seen in the examples given in Section 6 that the real difficulty in
computing CM curves lies in the vast amount of high-precision computation which is done
to evaluate these modular forms to high accuracy. By using Hilbert invariants we only have
to compute two such values for each CM point, instead of three. While terms in the Fourier
expansion for the Igusa functions are products of three exponential functions (of three
variables), terms in the Fourier expansions for the Hilbert modular functions we define
are products of two exponential functions (of two variables). This simplification results
in fewer evaluations of exponential functions and fewer high-precision multiplications of
values of exponential functions. Furthermore, the expression for and the calculation of the
CM points on the Hilbert moduli space is significantly simpler than the calculation of the
period matrices on the Siegel moduli space.

Once the rational coefficients of the class polynomials for K have been computed and
recognized, finding the roots modulo p and using the formulas in Proposition 4.5 modulo
p to recover the Igusa invariants modulo p is negligible from a computational perspective.
A curve over the finite field with CM by K can then be generated by applying Mestre’s
algorithm to the Igusa invariants. Still it would be interesting to find an algorithm like
Mestre’s algorithm which reconstructs the curve directly from the invariants on the Hilbert
moduli space without passing through the Igusa invariants.

Future work includes computing larger examples with the goal of adding more examples
of class polynomials to Kohel’s database [Ko]. The other algorithms for computing Igusa
class polynomials via the Chinese Remainder Theorem [EL] and via p-adic arithmetic [GH]
may also benefit from combining ideas with this paper. Each method works well for a
certain class of fields K, and our method works for K such that the real quadratic subfield
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is of a restricted form. We are also in the process of formalizing the complexity estimates
for our algorithm, which will allow a more detailed comparison with the existing methods.

The main goals of this paper were to introduce and describe a new technique in a growing
field of research and to note its apparent advantages over the standard complex analytic
method on the Siegel moduli space. The authors hope that this result will encourage
others to explore the relative advantages and benefits of computing Hilbert invariants
compared to other methods (complex analytic, CRT, p-adic), determine where it might
be best applicable, and whether it might be profitably combined with other techniques.
These questions as well as that of extending this technique to higher genera and smaller
modular functions are interesting and open lines of research.
Acknowledgements. This joint work was mainly done while the second author visited
the Cryptography Group at Microsoft Research in Redmond in 2009, and he thanks Mi-
crosoft Research for providing an excellent working environment. Both authors thank the
anonymous referees and Michael Naehrig for detailed comments to improve the paper.
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8. Appendix

8.1. Pari-gp code to compute Gundlach invariants.

**************Computing the CM field and CM points***********

default(realprecision,50)

d=5

a=5

b=-1

k = bnfinit(y^2-d)

R = rnfinit(k,x^2-((-a-b*Mod(y,y^2-d))))

K = bnfinit(R[11][1])

h = bnfclgp(K)[1]

%% This computes generators for the ideal classes in the Galois cyclic case:

ilist = vector(h,i,0)

x1 = R[7][1][1]

x2 = R[7][1][2]

I1 = bnfisprincipal(k,R[7][2][1])[2]

g1 = I1[1]*k[7][7][1]+I1[2]*Mod(k[7][7][2],y^2-d)

I2 = bnfisprincipal(k,R[7][2][2])[2]

g2 = I2[1]*k[7][7][1]+I2[2]*Mod(k[7][7][2],y^2-d)

ilist[1] = (x1*g1)/(x2*g2)

%% This works for Galois cyclic fields with cyclic class group:

C1 = bnfclgp(K)[3][1]; C=1;

{for(i=1,h-1,

C = idealmul(K,C,C1);

RC = rnfidealabstorel(R,K.zk*C);

z1 = (RC[1][1,1][1]*k[7][7][1]+RC[1][1,1][2]*Mod(k[7][7][2],y^2-d))*x1+

(RC[1][1,2][1]*k[7][7][1]+RC[1][1,2][2]*Mod(k[7][7][2],y^2-d))*x2;

z2 = (RC[1][2,1][1]*k[7][7][1]+RC[1][2,1][2]*Mod(k[7][7][2],y^2-d))*x1+

(RC[1][2,2][1]*k[7][7][1]+RC[1][2,2][2]*Mod(k[7][7][2],y^2-d))*x2;

F1 = bnfisprincipal(k,RC[2][1])[2];

f1 = F1[1]*k[7][7][1]+F1[2]*Mod(k[7][7][2],y^2-d);

F2 = bnfisprincipal(k,RC[2][2])[2];

f2 = F2[1]*k[7][7][1]+F2[2]*Mod(k[7][7][2],y^2-d);

ilist[i+1] = (z1*f1)/(z2*f2);

)

}
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%% Check that imag(ilist[i])>0 and imag(sigma(ilist[i])))>0

%% and set them equal to (z1,z2)

{z1s=vector(h,j,0);

z2s=vector(h,j,0);

for(i=1,h,

zs=vector(2,j,0); r=1;

for(j=1,4,s=lift(subst(ilist[i],x,nfgaloisconj(K)[j]));

s1=subst(s,x,K[7][6][1]);

if(imag(s1) > 0,

zs[r]=s; r=r+1;

);

);

z1s[i]= subst(lift(subst(zs[1],x,K[7][6][1])),y,sqrt(d));

z2s[i]= subst(lift(subst(zs[2],x,K[7][6][1])),y,sqrt(d));

);

}

**************Hilbert functions*********************

Kappa(k)= ((2*Pi)^(2*k)*sqrt(5))/(factorial(k-1)^2*(5^k)*zetak(zetakinit(x^2-5),k));

d=5;

L=nfinit(x^2-d);

abound = 20;

bt(k,a,b) =

{normab = a^2+a*b-b^2;

t= a+b*((1-Mod(x,x^2-d))/2);

PP=idealfactor(L,t);

m=matsize(PP);

divnorm=divisors(normab);

l=length(divnorm);

B=1;

for(i=2,l,

F=factor(divnorm[i]);

numfactor=matsize(F)[1];

S=1;

for(j=1,numfactor,

if(kronecker(F[j,1],d)==-1, if(Mod(F[j,2],2)==1, S=0));

if(kronecker(F[j,1],d)==1,

whichideals=vector(2,i,0); r=1;

for(n=1,m[1], if(PP[n,1][1]==F[j,1], whichideals[r]=n; r=r+1) );

if(whichideals[2]==0, multiplier=1,

i1=PP[whichideals[1],2]; i2=PP[whichideals[2],2]; I2=min(i1,i2);
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if(F[j,2]<I2, multiplier=F[j,2]+1,

if(F[j,2]>max(i1,i2), multiplier=(i1+i2-F[j,2])+1,

multiplier=I2+1

);

);

);

S=S*(multiplier);

);

);

B=B + S*divnorm[i]^(k-1);

);

(Kappa(k)*B)

}

{G(k) = sum(a=1,abound,

sum(b=0, floor(((1+sqrt(5))/2)*a), bt(k,a,b)*q1^a*q2^b,

sum(b=1, floor(-((1-sqrt(5))/2)*a),bt(k,a,-b)*q1^a*q2^(-b))

)

,1)

}

J1=vector(h,i,0); J2=vector(h,i,0);

{for(i=1,h, z1=z1s[i]; z2=z2s[i];

Gk(k,z1,z2)=subst(subst(G(k),q1,

exp(2*Pi*I*((1+sqrt(5))*z1/(2*sqrt(5))-(1-sqrt(5))*z2/(2*sqrt(5))))),q2,

exp(2*Pi*I*(z2-z1)/(sqrt(5))));

G2=Gk(2,z1,z2);

G4=Gk(4,z1,z2);

G6=Gk(6,z1,z2);

G10=Gk(10,z1,z2);

theta6 = -67*(2^5*3^3*5^2)^(-1)*(G6-G2*G4);

theta10 =2^(-10)*3^(-5)*5^(-5)*7^(-1)*(412751*G10-5*67*2293*G4*G6

+ 2^2*3*7*4231*G4^2*G2);

J1[i] = theta6/(G2^3);

J2[i] = (G2^5)/theta10;

);

}

%% Gundlach class polynomials:

P1 = prod(i=1,h,X-J1[i]);

P2 = prod(i=1,h,X-J2[i]);
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8.2. Mestre’s algorithm for genus 2 curves. We recall Mestre’s algorithm to generate
a genus 2 curve with given Igusa invariants. Let k be a field of characteristic not equal to 2.
By Section 2.2, a genus 2 curve X over k is determined by its Igusa invariants ji(X) ∈ F .
Conversely, however, given ji ∈ k, one might not always find a genus 2 curve X defined
over k such that ji(X) = ji although such a curve X exists over a finite extension of k.
This is due to the subtle difference between the definition field of X as a point in C2(k)
(field of moduli) and the definition field of X as a curve (the ‘minimal’ field where X has
a model). Mestre discovered an algorithm to tell whether such a curve X over k exists
and how to construct a model of X over k if it exists. We keep the notation from Section
2.2. Following [Me, p.332 and p.319] (his A′-D′ are our A-D, and his A-D have a different
meaning. We use his definition and solve the equations in [Me, p.319] to get the formula
for x, y, z in terms of Igusa’s A, B, C, and D as follows), set

x =
8

225
(1 + 20

B

A2
)

y =
16

3375
(1 + 80

B

A2
− 600

C

A3
)

z =
−64

253125

(
−108 · 105 D

A5
− 9− 700

B

A2
− 3600

C

A3
+ 12400

B2

A4
− 48 · 103BC

A5

)
.

In terms of the Igusa invariants, one has

x =
8

225
(1 + 20

j2

j1

)

y =
16

3375
(1 + 80

j2

j1

− 600
j3

j1

)(8.1)

z =
−64

253125

(
−108 · 105 1

j1

− 9− 700
j2

j1

− 3600
j3

j1

+ 12400(
j2

j1

)2 − 48 · 103 j2

j1

j3

j1

)
.

Let L ∈ P2 be Mestre’s conic given by the equation vtLv = 0 with variables v =
(v1, v2, v3)t and

(8.2) L =

 x+ 6y 6x2 + 2y 2z
6x2 + 2y 2z 9x3 + 4xy + 6y2

2z 9x3 + 4xy + 6y2 6x2y2y
2 + 3xz


Let M be Mestre’s cubic curve in P2 given by

(8.3)
∑

1≤i,j,k≤3

cijkv1v2v3 = 0.
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Here cijk are given by

c111 = 36xy − 2y − 12z,

c112 = −18x3 − 12xy − 36y2 − 2z,

c113 = −9x3 − 36x2y − 4xy − 6xz − 18y2,

c122 = c113,

c123 = −27x4 − 18x2y − 18xy2 − 3xz − 2y2 − 12yz,

c133 = −27

2
x4 − 72x3y − 6x2y − 9x2z)− 39xy2 − 36y3 − 2yz,

c222 = −81x4 − 54x2y − 18xy2 − 8y2 + 6yz,

c223 = 9x3y − 27x2z + 6xy218y3 − 8yz,

c233 = −81

2
x5 − 27x3y − 9x2y2 − 4xy2 + 3xyz − 6z2,

c333 =
81

2
x4y − 81

2
x3z + 27x2y2 + 9xy3 − 18xyz + 4y3 − 30y2z.

The conic curve L is given in [Me, pp.321,332] and the cubic curve M is given in [Me, p.321]
together with explicit formulae for aijk in [Me, p.318](which relate to cijk by the remark
in [Me, p.321]). Translating his parameters to our parameters gives the above explicit
formula. Alternatively, one can use the formulae in [vW, p.314] for L and M , which use
the same parameters as in this paper. To get our equation from his, simply write the
curve M in terms of vi instead of his xi, and then dividing the resulting equation by (his
notation)

267 · 322 · 523I23
2 I

12
10 .

As noted in [Me], cijk are absolute invariants while aijk are not. Mestre proved in [Me]
that the genus 2 curve X with Igusa invariants ji(X) = ji has a model over a field k of
characteristic not equal to 2 if and only if L(k) is not empty. It can be rephrased as follows.

Proposition 8.1. Let the notation be as above. Then the following are equivalent.
(1) X has a model over k.
(2) The conic curve L has a rational point over k.
(3) The ternary quadratic form Q associated to the matrix L represents 0 in k.
(4) Let V = k3 be endowed with the quadratic form Q(v) = vtLv, and let B = C+(V )

be the associated even Clifford algebra, which is a quaternion algebra over k. Then B is
isomorphic to the matrix algebra M2(k) over k.

Proof. As mentioned above, Mestre proves the equivalence of (1) and (2). (3) is just
reformulation of (2). The equivalence between (3) and (4) is a well-known classical fact in
algebra. �

Suppose that the conic L has a rational point over k. Using this point, we can easily
rewrite it as a parametric function

vi = fi(t).
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for some quadratic polynomial of t. In particular this gives an explicit isomorphism between
L and P1 over k. Plug these equations into the equation for the cubic curve M , we obtain
a polynomial equation of t of degree 6—call it f(t) = 0. Then the genus 2 curve C is given
by (inhomogeneous) [Me, p.321].

(8.4) X : s2 = f(t).
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