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Abstract. Many efficient attacks have appeared in recent years, which
have led to serious blow for the traditional multivariate public key cryp-
tosystems. For example, the signature scheme SFLASH was broken by
Dubois et al. at CRYPTO’07, and the Square signature (or encryption)
scheme by Billet et al. at ASIACRYPTO’09. Most multivariate schemes
known so far are insecure, except maybe the sigature schemes UOV and
HFEv-. Following these new developments, it seems that the general de-
sign principle of multivariate schemes has been seriously questioned, and
there is a rather pressing desire to find new trapdoor construction or
mathematical tools and ideal. In this paper, we introduce the hash au-
thentication techniques and combine with the traditional MQ-trapdoors
to propose a novel hash-based multivariate public key cryptosystems.
The resulting scheme, called EMC (Extended Multivariate Cryptosys-
tem), can also be seen as a novel hash-based cryptosystems like Merkle
tree signature. And it offers the double security protection for signing or
encrypting. By the our analysis, we can construct the secure and efficient
not only signature scheme but also encryption scheme by using the EMC
scheme combined some modification methods summarized by Wolf. And
thus we present two new schems: EMC signature scheme (with the Minus
method “-”) and EMC encryption scheme (with the Plus method “+”).
In addition, we also propose a reduced scheme of the EMC signature
scheme (a light-weight signature scheme). Precise complexity estimates
for these schemes are provided, but their security proofs in the random
oracle model are still an open problem.

Keywords: multivariate public key cryptosystems, hash function, dig-
ital signatures, tame transformation

1 Introduction

Multivariate Polynomials Public Key Cryptography (hereafter MPKC for short)
is an area of research which attempts to build asymmetric key schemes, based
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on solving randomly chosen systems of multivariate quadratic polynomials (MQ
problem) over a finite field, the MQ problem which in general is an NP-hard
problem. Multivariate schemes have recently received much attention, for several
reasons. First, the hard problems of reference are not known to be polynomial
in the quantum model, unlike integer factorization and the discrete logarithm
problems [33]. More importantly, MPKC schemes are in general much more com-
putationally efficient than number theoretic-based schemes such as RSA. And
some of these schemes seem to be very suitable for constrained environments
such as smart card, active RFID tags, wireless sensor networks and other em-
bedded devices. Indeed, the SFLASH signature scheme [1], one of the best-known
multivariate cryptosystems, had stood for a decade and was even accepted as a
security standard for use in low-cost smart cards by the New European Schemes
for Signatures, Integrity and Encryption. However, this scheme and some related
schemes had recently been broken [28,18,13,12,3].

Questions. As we will see in Section 2, most multivariate schemes known so
far were insecure because many efficient attacks have been found in succession.
Despite some countermeasures proposed for resisting these new attacks, unfor-
tunately, most of the countermeasures make the related schemes too slow. Hence
there is a rather pressing need to find new MQ-trapdoors or new modifiers for
constructing secure and efficient multivariate schemes. In addition, multivariate
quadratic equations can be used to easily design cryptographic primitives for
signing applications. By now, how to design the secure and efficient multivariate
encryption schemes is an open question.

Our Results. In this paper, we construct a hash-tame (HT) transformation
based on the hash function and the tame transformation appeared in [17]. And
then we propose a hash-based multivariate public key cryptosystems based on a
HT transformation and the traditional MQ-trapdoors. As the special construc-
tion, we call our new construction the EMC (Extended Multivariate Cryptosys-
tem) scheme. and it offers the double security protection for signing or encrypting
by combining the traditional multivariate public key checking and a HT trans-
formation as hash authentication checking. By the our analysis, we can construct
the secure and efficient not only signature scheme but also encryption scheme
by using some modification methods appeared in [35], combined with our EMC
scheme. And thus we present two new schems: EMC signature scheme (with the
Minus method “-”) and EMC encryption scheme (with the Plus method “+”).
In addition, we also propose a reduced scheme of the EMC signature scheme
(a light-weight signature scheme). This scheme combines the ideals of McEliece
cryptosystems and the Minus method “-”, and uses an affine bijective map in-
stead of the nonlinear bijective map of EMC to hide the process of finding the
inverse of the HT transformation. Precise complexity estimates for these schemes
are provided, but their security proof in the random oracle model is still an open
problem.
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Organization of the Paper. In Section 2, we recall the traditional MQ-
trapdoors and related attack methods. Next, in Section 3, we describe a novel
hash-based multivariate cryptosystem (called EMC), and propose the EMC sig-
nature scheme and the EMC signature scheme respectively. We give a general
cryptanalysis in Section 4. We propose two practical instances, and analyze their
implementation efficiency in Section 5. We propose a reduced scheme of the EMC
signature scheme in Section 6. We conclude the paper in Section 7.

2 Constructions for MQ-trapdoors

We denote by Fn
q the n-dimensional vector space over the finite field Fq with q

elements. A function F from Fn
q to Fm

q is defined by m quadratic polynomials in
n variables and coefficients are in Fq, called the central map and its components
central polynomials. Extant multivariate schemes almost always hide the cental
map F = (f1, · · · , fm) via composition with two affine maps U, T , and obtain
the public map P : Fn

q → Fm
q ,

P = (p1, · · · , pm) = T ◦ F ◦ U (1)

We usually write, for 1 ≤ j ≤ k ≤ n, 1 ≤ i ≤ m,

pi(x1, · · · , xn) =
∑

1≤j≤k≤n

cijkxjxk +
n∑

j=1

bijxj + ai

where ai is usually normalized to zero and coefficients cijk, bij ∈ Fq.
In any given scheme, the central map F belongs to a certain class of quadratic

maps whose inverse can be computed relatively easily. The maps U, T are affine
(sometimes linear) and full-rank. The key of a MPKC is the design of the cen-
tral map. The public key consists of the polynomials in P , In practice, this is
always the collection of the coefficients of the pi’s. The secret key consists of the
information in U , T and F , that is U−1, T−1 and F−1 (sometimes F can be
discarded).

To encrypt a block or verify a signature x, one simply computes y = P (x),
that is

y = P (x) ⇐= T
(
F
(
U(y)

))
To decrypt or sign a block, one can compute

x = U−1
(
F−1

(
T−1(y)

))
So far, there are the following four previously known basic trapdoors for the

central map of MPKCs:
(I) Matsumoto-Imai Scheme A (MIA). The scheme MIA was proposed by

Matsumoto and Imai [24], also called the C∗ scheme. It is the first scheme which
uses two different finite fields. Its central map F is defined from a monomial over
the degree n extension field of Fq, denoted Fqn , of the form F (x) = x1+qθ

, where θ
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satisfies gcd(qθ+1, qn−1) = 1. The C∗ scheme was broken by Patarin in 1995 [28].
Subsequently, Patarin et al. proposed in 2001 [29,30] to remove from the public
key the last r quadratic polynomials (out of the initial n) using Shamir’s minus
method [31], and called the resulting scheme C∗−. Furthermore, if the value of r is
chosen such that qr ≥ 280, then the variant scheme is termed C∗−−. SFLASH [1]
belongs to the C∗−− family and has been chosen as a candidate for the NESSIE
selection, and finally accepted. SFLASH has been entirely broken: the r missing
equations can be recovered in most cases as explained in [12] and the private
key of the C∗ family can be recovered following the cryptanalysis described
in [19]. Recently, two new proposals were based on internal transformations
that are not only quadratic on the base field, but also on the extension field: a
signature scheme called square-vinegar was proposed in [2] and an encryption
scheme called square appeared in [4]. However, they were broken by Billet et al
at ASIACRYPT 2009 [3]. In addition, PMI+ [8] and `-invertible cycle [11] can
be best considered improved versions or extensions of the C∗ scheme.

(II) Hidden Field Equations (HFE). After breaking MIA in 1995, Patarin
generalized the underlying trapdoor to ”Hidden Field Equations” [27]. This gen-
eralization aims at the central equations and uses a univariate polynomial rather
than a univariate monomial here, that is, the central map of C∗ was changed
into

F (X) =
∑

0≤i,j≤d,
qi+qj≤d

cijX
qi+qj

+
∑

0≤k≤d,

qk≤d

bkXqk

+ a

From a cryptanalytic point of view, the basic HFE scheme is broken: an effi-
cient key recovery attack, using the MinRank-problem, has been demonstrated
in [22]. In 2002, Faugère reported have broken the HFE-Challenge I. Since the
fact that the central map of HFE is not injective, his attacks have improved and
in 2003, Faugère and Joux published their results on the security of HFE [16].
But other variants such as HFEv- are still secure so far.

(III) The Oil-Vinegar (OV) scheme. The Oil and Vinegar and later derived
unbalance Oil and Vinegar (UOV) schemes [21] are suitable for signatures. The
original OV scheme was broken by Shamir and Kipnis [32]. This construction is
inspired by the Patarin’s of linearization attacks [28]. This scheme uses two sets
of unknowns (x1, · · · , xo) and (x̂1, · · · , x̂v) respectively called the oil and the
vinegar variables. The central map then consists of an o-tuple of polynomials
F = (f1, · · · , fo) of the special form:

fi(x, x̂) =
o∑

j=1

v∑
k=1

eijkxj x̂k +
v∑

j=1

v∑
k=1

dijkx̂j x̂k +
o∑

j=1

cijxj +
v∑

j=1

bij x̂j + ai

where all corresponding coefficients are randomly chosen from the base field Fq.
The message size over signature size for the UOV signature scheme is not

optimal since the number of vinegar unknowns must be at least twice big as the
number of oil unknowns for it to be secure [32,21,3].

(IV) The Stepwise Triangular System (STS). This scheme first appeared for
lectures in Japanese [34] and in English [31]. Generalized later to its present form
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[36]. A tame map G : Fn
q → Fn

q used in [17] are a special case of the triangular
maps from algebraic geometry, which are more generally defined by:

G(x1, · · · , xn) =


x1

x2 + f1(x1)
...

xn−1 + fn−2(x1, · · · , xn−2)
xn + fn−1(x1, · · · , xn−1)


T

(2)

where the fi are arbitrary polynomial functions. Obviously, G can be easily
inverted assuming that the fi are known.

The Tame Transformation Method (TTM) cryptosystem was first proposed
by T. T. Moh [25]. But most of these schemes are shown to be not secure such
as [20,9]. The original TTM schemes were intended for the purpose of public
key encryption. Attempts were made to apply a similar but simpler idea for
signatures. It was called the TTS (Tamed Transformation Signature) scheme,
As with the TTM schemes, most of the original TTS versions [37,38]are broken
by Ding et al. in [20,10].

By now, all basic trapdoors (MIA, HFE, OV and STS) are insecure, and must
be modified using some effective measures for enhancing their security. A sum-
mary of modifications is given by Wolf and Preneel [35], including minus method
“-”, plus method “+”, subfield method “/”, branching “⊥”, fixing “f”, sparse
polynomials “s”, vinegar variables “v”, internal perturbation “i”, homogenising
“h” and masking “m”. Therefore, to construct secure MPKCs, we can make use
of these modifications such as QUARTZ [26] (HFE, with vinegar variables and
minus method).

3 Hash-based Multivariate Public Key Cryptosystems

3.1 Hash-based Multivariate Cryptosystems

We first construct a hash-based tame transformation and also called a HT trans-
formation. Let Fq be a finite field with q = 2k elements and Fn

q the n-dimensional
vector space over Fq. A HT transformation is defined by L : Fn

q → Fn
q ,

 y1

...
yn−δ

 = A ·

 x1

...
xn−δ

+

 β1

...
βn−δ


yn−δ+1 = γ1xn−δ+1 +

n−δ∑
j=1

aijxj + γδ+1xn+1 + βn−δ+1

...

yn = γδxn +
n−1∑
j=1

anjxj + γ2δxn+δ + βn

(3)
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where δ is the number of the extended variables xn+i ∈ Fq (1 ≤ i ≤ δ),
γi 6= 0 (1 ≤ i ≤ 2δ), (n− δ) × (n− δ) matrix must be full-rank, other cor-
responding coefficients are randomly chosen in Fq; in particular, the extended
variables xn+i(1 ≤ i ≤ δ) are defined by

xn+i = Hk(x1||x2|| · · · ||xn−δ+i−1) (4)

Here, the notations ||, H(·) denote the “concatenation” operation and the stan-
dard hash function such as SHA-1, respectively; and Hk(·) represents to extract
the first k bits of H(·) and maps the bitstring into an element in Fq.

Obviously, L is also bijective (but not linear) as same as the map G like
Eq. (2). We can compute the preimage x = L−1(y) as easily as y = L(x), but
it is difficult to write x explicitly as a function of y variable because of the
nonlinear property of hash function. In addition, if we look upon the δ extended
variables xn+1, · · · , xn+δ as the new variables identified with the first n variables
x1, · · · , xn, then L can be seen as a compression map from Fn+δ

q to Fn
q , that is

(y1, · · · , yn) = L(x1, · · · , xn, xn+1, · · · , xn+δ)

The construction of our new schemes is the same as the traditional MQ-
trapdoors. The only difference is that the transformation U in Eq. (2) is re-
placed by U ′ (= U ◦ L) the combination of an affine bijective map and a HT
transformation, obviously, U ′ is also a bijective map. More precisely, the generic
construction of our schemes has the canonical decomposition of most MPKC’s
as follows. The public map P is the form of multivariate quadratic polynomials
from Fn+δ

q to Fn
q , and defined by

P = (p1, · · · , pn) = T ◦ F ◦ U ′ def U ′=U◦L
========= T ◦ F ◦ (U ◦ L) (5)

The public key consists of the polynomials in P , In practice, this is always
the collection of the coefficients of the pi’s. The secret key consists of L−1, U−1,
T−1 and F−1. In addition, from the theoretical point of view, we can be free to
choose one of the four basic MQ-trapdoors appeared in Section 2.

As the special construction of the new scheme, we call our proposed algorithm
the EMC (Extended Multivariate Cryptosystems) scheme.

3.2 The EMC Signature Scheme

The EMC signature scheme combines the HT transformation defined in this
paper and the Shamir’s Minus method [31] as follows.

The Secret Parameters. We randomly choose two affine bijective maps U ,
T from Fn

q to Fn
q and a HT transformation L from Fn+δ

q to Fn
q , and find their

inverse map U−1, T−1 and L−1 respectively. In addition, we need to choose an
appropriate central map F : Fn

q → Fn
q from the four basic MQ-trapdoors (see

Section 2). Consequently, the private key consists of the information U−1, T−1,
L−1 and F−1, where the size of F−1 depends on the MQ-trapdoor used.
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The Public Parameters. By Eq. (5), the public map P can be obtained by the
composition of the above four maps. Once we apply the Shamir’s minus method
to P , example by deleting the last r components (0 ≤ r < n), we will have a
new map of the EMC signature scheme P− : Fn+δ

q → Fn−r
q defined by

P−(x1, · · · , xn+δ) = (p1, · · · , pn−r) (6)

Apart from this, the public key includes the field structure of Fq and the
standard hash function used.

The Signing Process. The message (or its hash value) is Y − = (y1, · · · , yn−r)
in Fn−r

q . The signer first chooses r random elements yn−r+1, · · · , yn ∈ Fq which
are appended to Y − to obtain Y = (y1, · · · , yn) in Fn

q . Then the signature X is
obtained by

X = (x1, · · · , xn+δ) = L−1

(
U−1

(
F−1

(
T−1(Y )

)))

The verifying Process. Anyone who receives the message Y − and its sig-
nature X = (x1, · · · , xn+δ) first applies the public hash function to check if
indeed

xn+i = Hk(x1||x2|| · · · ||xn−δ+i−1), 1 ≤ i ≤ δ (V 1)

If equality holds, then continues to check(
p1(X), · · · , pn−r(X)

)
= Y − (V 2)

We can conclude that a signature X of Y − is valid if and only if the two con-
ditions (V 1) and (V 2) are simultaneously satisfied. As the use of hash function,
the (V 1) is called the hash authentication checking. the checking method in (V 2)
is the same as the traditional MPKC’s. Of course, the steps (V 1) and (V 2) can
be permuted, it is not required that they are executed in the order shown above.

We will discuss that in Section 4, both (V 1) and (V 2) offer the double-
protection for the security of the EMC signature scheme.

3.3 The EMC Encryption Scheme

Contrary to the EMC signature scheme, the EMC encryption scheme combines
the Plus method [27,35]. the Plus method amounts to adding r randomly chosen
polynomial components as follows.

The Secret Parameters. We randomly choose three maps: two affine bijective
maps U : Fn

q → Fn
q and T : Fn+r

q → Fn+r
q , and a HT transformation L : Fn+δ

q →
Fn

q . and find their inverse map U−1, T−1 and L−1 respectively. In addition,
we need to choose an appropriate central map F : Fn

q → Fn
q from the four

basic MQ-trapdoors (see Section 2). Consequently, the private key consists of
the information U−1, T−1, L−1 and F−1, where the size of F−1 depends on the
MQ-trapdoor used.
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The Public Parameters. By Eq. (5), the public map P can be obtained by
the composition of the above four private maps. Once we apply the Plus method
to the internal map F ′ = F ◦ U ◦ L = (f ′1, · · · , f ′n), example by adding the r
random chosen quadratic polynomials (0 ≤ r < n), we have

F ′+ = (f ′1, · · · , f ′n, f ′n+1, · · · , f ′n+r)

Therefore, the public key of the EMC encryption scheme P+ : Fn+δ
q → Fn+r

q can
be obtained by

P+(x1, · · · , xn+δ) = T ◦ F ′+ = (p1, · · · , pn+r) (7)

In addition, the public key also includes the field structure of Fq and the
standard hash function used.

The Encyption Process. Given a plaintext (x1, · · · , xn) ∈ Fn
q . one first

calculates the extended variables

xn+i = Hk(x1||x2|| · · · ||xn−δ+i−1), 1 ≤ i ≤ δ

and applies the public polynomials P+ to encrypt the plaintext. Then the cor-
responding ciphertext is easily obtained by

(y1, · · · , yn+r) = P+(x1, · · · , xn+δ)

The Decyption Process. To decrypt the ciphertext (y1, · · · , yn+r), we suc-
cessively execute the follwing steps:

1. Compute (a1, · · · , an+r) = T−1(y1, · · · , yn+r), and then discard the r re-
dundant values an+1, · · · , an+r to produce a n-dimensional vector (a1, · · · , an).

2. Compute (b1, · · · , bn) = F−1(a1, · · · , an).
3. Compute (c1, · · · , cn) = U−1(b1, · · · , bn).
4. Finally, the plaintext can be obtained by (x1, · · · , xn) = L−1(c1, · · · , cn).
Obviously, comparison with the decryption process of the traditional multi-

variate public key cryptosystems, SEMC only increases a linear multiplication
with regard to L−1.

4 Security Analysis

4.1 Linearization Equations Attack

Linearization equations attack used to cryptanalyse the C∗ scheme was proposed
in 1995 by Patarin [28]. This attack relies on using the public key P to generate
a large set of equations in the plaintext indeterminates x1, x2, · · · , xn and the
ciphertext indeterminates y1, y2, · · · , yn. The equations to be generated in this
attack all have the ”bilinear” form

n∑
i=1

n∑
j=1

γijxiyj +
n∑

i=1

δixi +
n∑

i=1

εi + η = 0 (8)
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It is shown in [28] that the linear equations in γij , δi, εi and η provided by
a sufficient number of P input-output pairs allow to recover these unknown
coefficients, and that once this has been done, the obtained vector space of
solutions can be used to compute the inverse by P of any Fn

q element Y at
the expense of sovling a small linear system. The complexity of the attack is
approximately O(n6log2q).

By Section 3, we know that the HT transformation L is a nonlinear bijective
function with regard to input variables x1, · · · , xn (but its degree is unknown
by the properties of hash function). In other words, L further increases the
nonlinear degree of MPKCs. We checked experimentally, for a large number
of system parameters chosen, there only exists trivial solution for the linear
equations with regard to the all coefficients of Eq. (8) constructed by a sufficient
number of P input-output pairs.

4.2 Direct Attacks

The most natural ideal of attack on any public-key cryptosystems is to find a
plaintext x for a given ciphertext y without using any information beyond the
public key itself. In the case of MPKCs, the intention is to equivalent to solving
an instance of the MQ problem over a finite field. However this problem is known
to be NP-hard, even when restricted to quadratic eauations over GF (2) and over
any finite field [27]. Several major methods based on Gröbner bases have been
developed to solve the MQ problem, such as XL [7] and improved variants of
Buchbergers’s Gröbner bases computation algorithm such as Faugère’s F4 and
F5 algorithms [14,15], but these algorithms are exponential in time and memory.
It is worth mentioning that in 2002, Faugère reported to have broken the HFE-
Challenge I, and subsequently improved his attacks in [16]. Generally speaking,
these attacks can be easily avoided by choosing appropriate scale parameters.

For the EMC cryptosystems, we transform the original public key P : Fn
q →

Fn
q into the new public key P̃ : Fn+δ

q → Fn
q using a HT map L, and obtained by

P̃ = P ◦ L, where P = T ◦ F ◦ U (see Section 3). According to [27], to find P
and L from P̃ belongs to the IP problem and is NP-hard. Emerging a HT trans-
formation into the traditional MPKCs is equivalent to increasing the number of
input variables, which is difficult to be eliminated by the attacker because of the
hash-value relationship like (4) among these input variables. Obviously, to find
a preimage x from the new public key P̃ is more difficult than from the original
public key P .

4.3 Structure-based Attacks and Security Estimates

The structure-based attack type relies solely on the specific structures of the cor-
responding multivariate public key schemes. The preliminary security analysis
suggests that we can choose any one of the four basic MQ-trapdoors (see Section
2) to be used as the central map F of our proposed EMC schemes. As space is
limited, we do not intend to discuss each scheme based on a basic MQ-trapdoor
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in detail. However, we have shown that the original public key P was disguised
as our new public key P̃ by a HT map L, and to find P and L from P̃ is a com-
putationally intractable problem. Hence the EMC schemes, including signature
and encryption schemes, can effectively resist all known attacks for the original
public key P .

In addition, it offers the double security protection for the EMC schemes
using the “Chemical Synthesis” of the HT map and traditional MQ-trapdoors.
For the EMC signature, if O(Ts) denotes the complexity of forging a signature
X ′ = (x′1, · · · , x′n+δ) of the message Y such that P̃ (X ′) = Y (i.e., passing (V2)
in the verifying process), then the success probability of X ′ satisfying Eq. (4) is
approximately 1/qδ. Thus the complexity of X ′ simultaneously satisfying (V1)
and (V2) in the verifying process is approximately O(Ts · qδ), which is replaced
by conservative security level of the EMC signature scheme is

Csign = O
(
qmin(r,δ)

)
where r, δ can be considered as the dimension of solution (or signature) space
of P̃ and the number of hash-value authentication respectively.

As for the EMC encryption scheme, from the security analysis above, the
new public key P̃ can resist all known cryptanalysis techniques for the original
public key P . Thus the complexity of the best known attack is equal to of the
exhaustive search, that is O(qn). We also propose that an even more conservative
security level of the EMC encryption scheme is

Cencrypt = O
(
qδ−r

)
which also is the solution (or preimage) space of the new public key P̃ .

5 Practical-sized Instances of the EMC Schemes

In order to facilitate the discussion, we can denote the our proposed EMC scheme
by EMC(q, n, δ, r), where the parameters q, n, δ and r have been defined in
Section 3. For the parameter r, if r < 0, then the scheme can be only used as
signing. Conversely, if r > 0, then it can be only used as encrypting. Of course,
when r = 0, it can be use to both sign and encrypt a message (but generally not
recommended).

Based on the security analysis above, we propose a signature scheme of at
least 80-bit security level called EMC(28, 37, 10,−10), where the central map F
in Eq. (5) also uses the MIA construction, the hash function uses SHA-256. And
we summarize operating details as follows.

• Message size: 27 bytes
• Signature size: 47 bytes
• Public key size: 31K bytes
• Private key size: 3.8K bytes
We also propose EMC(28, 37, 20, 10) for an encryption scheme of at least

80-bit security level, and summarize operating details as follows.



Hash-based Multivariate Public Key Cryptosystems 11

• Plaintext size: 27 bytes
• Ciphertext size: 37 bytes
• Public key size: 42.5K bytes
• Private key size: 2.5K bytes
The concrete computing process of the above schemes is the same as the

SFLASHv3 scheme [6], which are more efficient than SFLASHv3. Comparison
to the traditional MQ-schemes, the only difference is an increase of 20 times
hash-value operations.

6 SEMC: a Light-weight Signature Scheme

From the security analysis above, we know that the hash authentication com-
bined the traditional MQ-trapdoors to offer the double security protection for
the EMC signature scheme. In order to better adapt to the very constrained de-
vices such as passive RFID tags. We propose a simplified EMC signature scheme
(SEMC for short) as follows.

The Secret Parameters. We randomly choose an affine bijective maps T from
Fn

q to Fn
q and a HT transformation L from Fn+δ

q to Fn
q respectively. Consequently,

The private key consists of the corresponding inverse maps T−1, L−1.
The Public Parameters. The public map P can be obtained by the com-

position of the above two maps T and L, that is P = T ◦ L. And we also
apply the Shamir’s Minus method to P , example by deleting the last r com-
ponents (0 ≤ r < n), we will have a new map of the SEMC signature scheme
P− : Fn+δ

q → Fn−r
q defined by

P−(x1, · · · , xn+δ) = (p1, · · · , pn−r) (9)

Of course, the public key also includes the field structure of Fq and the
standard hash function used.

The Signing Process. The message (or its hash value) is Y − = (y1, · · · , yn−r)
in Fn−r

q . The signer first chooses r random elements yn−r+1, · · · , yn ∈ Fq which
are appended to Y − to obtain Y = (y1, · · · , yn) in Fn

q . Then the signature X is
obtained by

X = (x1, · · · , xn+δ) = L−1
(
T−1(Y )

)
The verifying Process. Anyone who receives the message Y − and its sig-

nature X = (x1, · · · , xn+δ) first applies the public hash function to check if
indeed

xn+i = Hk(x1||x2|| · · · ||xn−δ+i−1), 1 ≤ i ≤ δ (V ′1)

If equality holds, then continues to check(
p1(X), · · · , pn−r(X)

)
= Y − (V ′2)

A signature X of Y − is valid if and only if the two conditions (V ′1) and (V ′2)
are simultaneously satisfied. And the (V ′1) is also called the hash authentication
checking.
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The construction method of SEMC is inspired from McEliece-type cryptosys-
tems [5]. We use a random chosen linear bijection T to hide a HT map L defined
in this paper. In addition, according to Eq. (3), there exists a certain linear
relationship between part of input and output variables of L. Hence we use
the Minus method to avoid the linear attacks like Patarin’s in [28]. The above
analysis indicates that the complexity of the best-known attack for SEMC is
O(qmin(r,δ)).

7 Conclusion

In this paper, we introduce the hash authentication techniques and combine with
the traditional MQ-trapdoors to propose a novel hash-based multivariate public
key cryptosystems. The new scheme EMC can also be seen as a novel hash-based
cryptosystems like Merkle tree signature [23]. And it offers the double security
protection for signing or encrypting. And we present two new schems: EMC
signature scheme and EMC encryption scheme. In addition, we also propose a
light-weight signature scheme, which is a reduced scheme of the EMC signature
scheme. By the our security analysis, these schemes above can avoid the all
known attacks, but their security proof in the random oracle model is still an
open problem. We believe that our hash-based MQ-trapdoor construction can
easily produce excellent multivariate schemes for practical applications.
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