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Abstract. Since the introduction of the concept of provable security, there has been the steady search for suitable
problems that can be used as a foundation for cryptographic schemes. Indeed, identifying such problems is a chal-
lenging task. First, it should be open and investigated for a long time to make its hardness assumption plausible.
Second, it should be easy to construct hard problem instances. Third, it should allow to build cryptographic ap-
plications on top of them. Not surprisingly, only a few problems are known today that satisfy all conditions, e. g.,
factorization, discrete logarithm, and lattice problems.
In this work, we introduce another candidate: the Inhomogeneous Simultaneous Approximation Problem (ISAP),
an old problem from the field of analytic number theory that dates back to the 19th century. Although the Simul-
taneous Approximation Problem (SAP) is already known in cryptography, it has mainly been considered in its
homogeneous instantiation for attacking schemes. We take a look at the hardness and applicability of ISAP, i. e., the
inhomogeneous variant, for designing schemes.
More precisely, we define a decisional problem related to ISAP, called DISAP, and show that it is NP-complete. With
respect to its hardness, we review existing approaches for computing a solution and give suggestions for the efficient
generation of hard instances. Regarding the applicability, we describe as a proof of concept a bit commitment
scheme where the hiding property is directly reducible to DISAP. An implementation confirms its usability in
principle (e. g., size of one commitment is slightly more than 6 KB and execution time is in the milliseconds).

Keywords: Simultaneous Approximation Problem, Analytic Number Theory, Diophantine Approximation, Prov-
able Security, Commitment Scheme

1 Introduction

Motivation. The concept of provable security is one cornerstone of modern cryptography. The approach is
to prove the security of a cryptographic scheme by reducing its security (in the sense of complexity theory)
to another presumably hard problem. Consequently, there is a huge interest on finding appropriate problems.
To be appropriate, at least the following conditions need to be met:

1. The problem is well-investigated since a long time, making the hardness conjecture trust-worthy.
2. Hard-to-solve instances can be easily constructed.
3. One can build cryptographic schemes upon them.

Different strategies are imaginable. One could start with known hard problems and look for cryptographic
applications. Natural candidates are NP-complete problems, certainly meeting condition 1. However, it is not
always clear how to construct hard-instances (condition 2). As an example take the homomorphic encryption
scheme Polly Cracker by Fellows and Koblitz [5]. The security is based on the NP-complete problem of
solving systems of nonlinear equations. But according to the current state of knowledge, all its instantiations
(and variations like PollyTwo [34]) are either insecure, inefficient, or loose their homomorphic property
(e. g., see [6, 17]). Another strategy could be to have a cryptographic scheme in mind and to clearly formalize
the underlying problem. But then, only little may be known regarding conditions 1 and 2. It is often unclear
if and to what extent newly introduced problems are examined once they have been introduced. Summing



up, although a variety of problems4 have been considered in the recent decades, only few of them fulfill
all three conditions. Mainly these are connected to factorization, discrete logarithm, lattices, pairings, or
error-correcting codes.

Observe that the first two, factorization and discrete logarithm, are probably the most established prob-
lems and belong both to algebraic number theory. Here, we would like to advert to analytic number theory,
more precisely to the field of diophantine analysis. The adjective ”diophantine” means that one is interested
in integral or rational solutions. This field emerged around 250 A. D. and had since then attracted the interest
of many important and influential mathematicians like Gauss or the Fields medal winners Roth, Baker, and
Faltings. Despite the enormous progress, diophantine analysis is still full of open (computational) problems.
As a representative, we investigate the Simultaneous Approximation Problem or more precisely its inho-
mogeneous variant: Given rational numbers αi and ηi, i = 1, ..., n, find integer values q and pi such that
|qαi−pi−ηi| < ε. The most common variant is the homogeneous one, i. e., ηi = 0 for all i, whereas our con-
tribution is to consider for the first time the inhomogeneous variant, i. e., ηi 6= 0, for cryptographic design.
To be in compliance with established notation, we refer to the homogenous Simultaneous Approximation
Problem simply by SAP and denote the inhomogenous variant by ISAP.

Related work. SAP is known in cryptography, but has mainly been considered for attacking cryptosystems,
e. g., knapsack systems (e. g., Shamir [30], Lagarias [13]), factorization and discrete logarithm (e. g., see
Schnorr [25], Seifert [29]), and RSA (e. g., see Wiener [35]).

Regarding the design of cryptosystems, we are only aware of very few works that base their security on
SAP or related problems. Isselhorst [10] presented a public-key scheme based on fractions. He showed that
the scheme could be broken in principle by solving an appropriate simultaneous approximation problem. He
proposed parameters for which he suspected that the algorithm of Lagarias [14] is not capable of finding a
solution. Nonetheless, the scheme was broken soon after by Stern and Toffin [31] using the LLL algorithm
[15] instead. Elsner and Schmidt [4] used continued fractions to design new S-boxes. In both cases, there was
no direct reduction of the security of the scheme to the hardness of solving (I)SAP. Regev [21] presented a
public key cryptosystem where the public key contains rational numbers ai that are close to integer multiples
ofN/hwhereN and h are some integers and h is the secret key. Obviously, the ability of solving SAP would
allow for breaking the scheme. However, it is not clear if a reduction to SAP is possible as the public key
also includes explicitly an index i0 such that ai0 is an odd multiple of N/h. Van Dijk et al. [33] used the
Approximate Greatest Common Divisor (approximate GCD) Problem for constructing a fully homomorphic
encryption scheme. This problem is related to SAP in the following sense. In SAP, a set of rational numbers
αi and some bound B < 1 is given and the task is to find integers q and pi such that |q ·αi− pi| < B for all
i. In approximate GCD, a set of integer values αi and some integer bound 1 ≤ B is given and the task is to
find integers q and pi such that |αi− q · pi| < B for all i. The authors pointed out that their scheme could be
attacked by solving an appropriate SAP instance. In both works, solving SAP would allow for breaking the
scheme. However, it is unclear (as far as we can see) whether a a security reduction to SAP is possible. Apart
from that, to the best of our knowledge the usage of ISAP for cryptographic design has not been considered
so far. Here, we have to stress that our contribution is not the design of a specific scheme but rather to show
up the general hardness and applicability of ISAP.

We want to point out that there might be a relation between (I)SAP and some of the lattice-based prob-
lems as both can be tackled by the LLL algorithm in principle. However, we are not aware of any result
in this direction. Furthermore, the LLL algorithm applies to the homogeneous problem (SAP) only while
we consider the inhomogeneous variant (ISAP). Thus, we leave the investigation of the connection between
(I)SAP and lattice based problems as an open question and consider ISAP as a problem that has not been
used for cryptographic design so far.

4 See the website www.ecrypt.eu.org/wiki/index.php/Hard_Problems_in_Cryptography for an overview.



Contribution. In this paper, we put for the first time ISAP into the heart of a cryptosystem. Our contribu-
tions are as follows:

– Problem Description: We formalize the Decisional Inhomogeneous Simultaneous Approximation Prob-
lem (DISAP) and show that it is NP-complete.

– Instance Generation: We argue that increasing/decreasing certain parameters will probably increase the
hardness of the problem and formulate an accordant assumption. Furthermore, we investigate a related
computational problem and derive suggestions for concrete parameter ranges.

– Cryptographic Application: We demonstrate the usefulness of DISAP for cryptographic applications
by constructing a bit commitment scheme on it. The scheme is perfectly binding and computationally
hiding if hard DISAP instances are used.

Summing up, we demonstrate that DISAP might be a valuable addition to the existing set of established
problems in cryptography and hope to encourage further research on problems from analytic number theory
in general and DISAP in particular.

Organization. In Sec. 2, we present DISAP and discuss its hardness. In addition, we define and motivate
an appropriate hardness assumption, named DISAP assumption. In Sec. 3, we describe a bit commitment
scheme based on DISAP. Its security is proven in Sec. 4 under the DISAP assumption. In Sec. 5, we present
a concrete instantiation and give implementation results. Sec. 6 concludes the paper.

2 The Inhomogeneous Simultaneous Approximation Problem

2.1 Motivation and Definition

In this section we give a short introduction to the main terms of rational diophantine approximation and
motivate and define the Inhomogeneous Simultaneous Approximation Problem (ISAP). In the following, N
will denote the set of positive integers, Z the ring of integers, Q the field of rational numbers, and R the field
of the real numbers. We will distinguish between single values and vectors by putting the latter in bold.

In diophantine analysis the approximation of numbers α ∈ R by rationals p/q ∈ Q is a main topic.5 One
of the most basic results is the approximation theorem of Dirichlet (1805–1859) [9, Theorem 185], which
states that for any α ∈ R \Q there exist infinitely many co-prime numbers p and q such that∣∣∣∣α− p

q

∣∣∣∣ < 1
q2

⇐⇒ |qα− p| < 1
q
. (1)

If α ∈ Q, the number of solutions might be finite only. A theorem of Hurwitz (1859–1919) [9, Theorem
193] states that for every α ∈ R \Q there exist infinitely many co-prime numbers p and q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

(2)

holds and that for any stronger approximation quality, the number of solutions might be finite only. Interest-
ingly, such approximations can be efficiently computed, using continued fractions

a0 +
1

a1 +
1

a2 +
1

· · ·+
1
aN

(3)

5 Nice introductions to this discipline can be found in [9, 18].



where the leading coefficient a0 is an integer and all partial quotients ai (i = 1, . . . , N) are positive integers.
It can be shown that forN →∞ the above given expression converges to some real number α depending on
all partial quotients ai. In that case we call the expression an infinite continued fraction, or simply continued
fraction. For α ∈ Q, the corresponding continued fraction is finite like in (3).

An important term is a convergent, which is a rational number. Given the partial quotients of the contin-
ued fraction, the corresponding convergents can easily be computed using the recurrence formulas (see [9,
Theorem 149])

p0 = a0 , p1 = a1a0 + 1 , pn = anpn−1 + pn−2 (n ≥ 2) , (4)

q0 = 1 , q1 = a1 , qn = anqn−1 + qn−2 (n ≥ 2) . (5)

pn/qn is called the n-th convergent of the continued fraction. Observe that computing the n-th convergent
requires 2n additions and multiplications of integers. It can be shown that (for irrational α or, if α ∈ Q,
n < N )

1
qn(qn + qn+1)

≤
∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1
qnqn+1

≤ 1
q2n

(6)

holds (see [18, Chapter 10.2]). We note that from (6) it follows that the convergents satisfy inequality (1) of
Dirichlet’s theorem. Furthermore, it is proven that the convergents are the best rational approximations with
a bounded denominator, e. g., for α ∈ R, n > 1, 0 < q ≤ qn and pn/qn 6= p/q it holds (see [9, Theorem
181]) ∣∣∣∣α− pn

qn

∣∣∣∣ < ∣∣∣∣α− p

q

∣∣∣∣ . (7)

It is useful to know that pn and qn are co-prime for all convergents.
The type of approximation in (1) is called homogeneous in contrast to the inhomogeneous case, for

which Kronecker (1828–1891) proved the following theorem (see [22, Chapter 10, Theorem 2.6]).

Theorem 1 (Kronecker’s Approximation Theorem). For each α ∈ R \Q, η ∈ R, n > 0 and δ ∈ R with
δ > 0 there are integers p, q with q > n such that

|qα− p− η| <
(

1
2

+
1√
5

+ δ

)
1
q
. (8)

Thereby η is called the inhomogeneity.
In the field of simultaneous diophantine approximation one considers more than one diophantine in-

equality at once and tries to approximate the given numbers αi with fractions pi/q sharing a common de-
nominator. Again, the most basic result was proved by Dirichlet (see [9, Theorem 200]): There are infinitely
many solutions (q, p1, . . . , pn) to the system∣∣∣∣αi − pi

q

∣∣∣∣ < 1
q1+1/n

, ∀i ∈ {1, . . . , n} , (9)

in positive integers q and integers p1, . . . , pn if at least one of the real numbers α1, . . . , αn is irrational.
An inhomogeneous generalization about the existence of simultaneous approximations was also proved by
Kronecker (see [9, Theorem 442]):

Theorem 2 (Kronecker’s Simultaneous Approximation Theorem). Let 1, α1, . . ., αn be real numbers
that are linearly independent over Q. Furthermore, let η1, . . . , ηn be arbitrary real numbers, ε > 0 and
N ∈ N. Then there exists integers p1, . . . , pn and a natural number q with q > N and

|qαi − pi − ηi| < ε ∀i ∈ {1, . . . , n} . (10)



We remark that the one-dimensional theorems can all be proved in a constructive manner by using
continued fractions and convergents. However, as opposed to the one-dimensional case, no constructive
proofs are known for the simultaneous versions. This has lead to the formulation of a variety of related
problems, e. g. [14], for some it has been proven that they are NP-complete. Nevertheless, none of them have
been successfully used for cryptographic applications. The main goal of this paper is to actually remind of
these and to choose one concrete problem formulation and demonstrate a possible cryptographic application.
The considered basic problem is the following:

Definition 1 (Inhomogeneous Simultaneous Approximation Problem (ISAP)). An instance I of the In-
homogeneous Simultaneous Approximation Problem (ISAP) consists of a vector α := (α1, . . . , αn) ∈
(Q∗)n of non-zero rational values, a vector η := (η1, . . . , ηn) ∈ Qn, a positive real value ε ∈ R>0,
and a positive integer N ∈ N.

A tuple (q,p) where q ∈ N>0 and p = (p1, . . . , pn) ∈ Zn is a solution to I if

|qαi − pi − ηi| < ε ∀i ∈ {1, . . . , n} and q ≤ N . (11)

The value n is called the dimension, and ε the approximation quality. In the case that ηi = 0 for all
i, that is in the homogeneous case, we call the problem simply the Simultaneous Approximation Problem
(SAP).

Although the dimension n is implicitly given by the dimension of the vectors α and η, we note it explicitly
for reasons of clarity. Observe that we restrict to rational and integer values on purpose: Working in practice
with irrational numbers effectively means in most cases to approximate them anyway by rational numbers.
We formulate a decisional problem in the context of ISAP that we will eventually propose for cryptographic
design:

Definition 2 (Decisional ISAP (DISAP)). Let I be an ISAP-instance as explained in Def. 1. The Decisional
ISAP (DISAP) is to decide whether I has at least one solution.

Next, we show that the problem class of DISAP contains indeed hard instances, i. e., instances where no
efficient solving algorithms are known so far.

Theorem 3. DISAP is NP-complete.

Proof. We have to show that (i) DISAP is in NP, and (ii) every problem in NP is reducible to DISAP in
polynomial time. The first claim is trivial. Given an DISAP instance (α,η, N, n, ε) and a possible solution
(q,p), one can check in polynomial time (i.e., polynomial in the length of the input) whether (11) is fulfilled.
For the second claim, we make use of Lagarias’ result [14]. He showed that DSAP6 is NP-complete (the
problem was named ”Good Simultaneous Approximation problem (GSA)” there). That is, any NP problem
can be reduced (in polynomial time) to an instance of DSAP. As any instance of DSAP is an instance of
DISAP as well, it follows directly that any NP problem can be reduced in polynomial time to an instance of
DISAP. ut

Still, it remains to clarify how to generate hard instances. It is plausible to assume that increasing the dimen-
sion n and/or chosing a sharper approximation quality ε, i.e., decreasing this value, can make the problem
only harder. This motivates the following assumption:

Definition 3 (DISAP Assumption). Consider a probabilistic polynomial-time (PPT) algorithm Gen that
on input N ∈ N>0, n ∈ N>0, and ε ∈ R>0 generates an ISAP instance I := (α,η, N, n, ε) where
∀i, j = 1, . . . , n : (αi, ηi) 6= (αj , ηj) if i 6= j. Let I denote the set of all possible ISAP instances that can

6 By DSAP, we refer to the straightforward restriction of DISAP to the homogenous case. In other words, a DSAP instance is a
DISAP instance where η = 0.



be generated by Gen. We define a predicate P : I → {0, 1} on I such that P (I) = 1 if and only if I has a
solution. For an algorithm A we define its advantage (with respect to Gen) as

AdvGen,A(N,n, ε) := |Pr[I ← Gen(N,n, ε), P (I) = 0 : A(I) = 0]−
Pr[I ← Gen(N,n, ε), P (I) = 1 : A(I) = 0]|

The decisional ISAP assumption (with respect to Gen) states that for any positive integer s ∈ N>0, being
eventually the security parameter, there exist thresholds N∗ = N∗(s) ∈ N>0, n∗ = n∗(s) ∈ N>0 and
ε∗ = ε∗(s) ∈ R>0 such that AdvGen,A(N,n, ε) is negligible in s for all PPT A if N ≥ N∗, n ≥ n∗, and
0 < ε ≤ ε∗.

2.2 Possible Parameter Choices

As explained in the previous section, a promising strategy for creating hard instances is to choose values
N , n and ε which are beyond certain thresholds. Unfortunately, as DISAP has not been considered directly
so far, nothing is known about concrete choices for these thresholds. However, some indication on possible
choices can be derived from the fact that a somewhat related problem has been investigated since long. The
key to this approach is the following Theorem.

Theorem 4. Assume an algorithm A that is able to efficiently compute solutions (if existent) to ISAP-
instances (α,η, N, n,N−δ) where ηi = λi

µi
with 0 < µi ≤ N δ′ and 0 < δ′ ≤ δ. Then, there exists

another algorithm B with the following property: Given (β, N, n) with β ∈ Qn, invoke A such that any
solution (q,p) returned by A implies values q̃ ∈ N>0 and p̃ = (p̃1, . . . , p̃n) ∈ Qn such that∣∣∣∣βi − p̃i

q̃

∣∣∣∣ < 1
q̃1+(δ−δ′) ∀i ∈ {1, . . . , n} . (12)

Here, the term ∆ := 1 + δ − δ′ is called the approximation order.

Proof. Let (β, N, n) be given as defined above. At first, B chooses some values 0 < µi ≤ N δ′ and sets
αi := βi/µi ∈ Q. Furthermore, some positive integers λi ∈ N>0 are sampled according to some arbitrary
distribution and ηi := λi/µi are defined. Then, B hands the ISAP-instance (α,η, N, n,N−δ) toA. Assume
that A returns a solution (q,p). B sets q̃ := q and p̃i := pi · µi + λi and outputs (q̃, p̃).

We show now that (q̃, p̃) meets condition (12). By assumption, the response (q,p) of A is a solution to
the ISAP instance, i.e., |qαi − pi − ηi| < N−δ for i = 1, . . . , n. Because of µi ≤ N δ′ and q ≤ N , we have
1
Nδ = 1

Nδ−δ′ ·Nδ′ ≤ 1
qδ−δ′ ·µi

. Thus, one can show that∣∣∣∣qαi − p̃i
µi

∣∣∣∣ = |qαi − pi − ηi| < 1
N δ
≤ 1
q(δ−δ′) · µi

(13)

q̃=q
=⇒

∣∣∣∣βi − p̃i
q̃

∣∣∣∣ < 1
q̃1+δ−δ′ . (14)

Therefore, the output of B indeed represents a solution to (12). ut

In the remainder of this section, we will derive parameter ranges where the problem explained above seems
to be hard according to the current state of knowledge. First, we explain the implications for DISAP. For
the sake of brevity, let us introduce some abbreviations here. By CISAP, we refer to the computational
counterpart to DISAP where the challenge is to compute a solution instead of deciding the existence of a
solution. Furthermore, let CSAP* denote the homogeneous variant of CISAP as expressed by Eq. (12), that
is where the approximation quality ε = q−∆ depends on the solution q. Thus, if we derive parameters where
it seems that no solutions to CSAP* can be found, this includes the infeasability of finding solutions implied



by CISAP. As any solution of appropriate CISAP instances imply solutions to CSAP*, this excludes the
existence of efficient algorithms for CISAP (at least for the cases where some of the solutions to CSAP*
can be found via CISAP). On the other hand, the infeasability of CISAP is a necessary condition for the
hardness of DISAP. Therefore, adopting the parameters derived from CSAP* for DISAP and considering
instances as described in Th. 4 seems to be a promising starting point for creating presumably hard instances
of DISAP. We leave the determination of more appropriate values as an open question.

There are several algorithms in the literature to solve CSAP*. In the case of real algebraic and over Q
linear independent numbers 1, α1, . . . , αn and δ∗ > 0 arbitrary, W. Schmidt shows in [24] that there are at
most finitely many (q,p) ∈ N× Zn with∣∣∣∣αi − pi

q

∣∣∣∣ < 1
q1+1/n+δ∗

∀i ∈ {1, . . . , n} . (15)

Furthermore, with δ∗ = 0, under these conditions the approximation order∆ = 1+1/n is the best possible.
There are a lot of generalizations of continued fractions for the simultaneous case, starting with the

work of Jacobi [11] which lead to the Jacobi-Perron-Algorithm (JPA) [20, 28, 26, 2, 8]. However, the JPA is
not able to compute solutions to such approximation quality as we will require in our proposed commitment
scheme (cf. Sec. 3). For example, in the case n = 2 only a system with an approximation quality of 2/q3/2 is
attackable with the JPA (cf. [28]). In [28] it is also mentioned that the JPA is only able to solve systems with
significantly larger ε in the arbitrary case (n ≥ 3). In particular, the best affordable approximation quality
ε increases with the dimension n. Additionally, we want to mention Baldwin’s numerical experiments [1]
in which he computes the approximation exponent of the JPA in two dimensions – with ∆ = 1.374 it is
significantly below the upper bound 1 + 1/2 = 1.5 from theory.

There are some other relevant algorithms based on continued fraction generalizations, namely the ones
of Güting, Brun, Selmer, and Just. The first three ones have comparable properties like the JPA (see [28, 3,
27, 32]). Just’s algorithm is much more worse concerning the approximation order (∆ = 1+1/(2n(n+1)))
[12]. Thus, the above given considerations about the JPA can also be applied to these algorithms.

Another well known algorithm for solving simultaneous diophantine approximation problems is the
lattice-based LLL algorithm presented by Lenstra, Lenstra Jr. and Lovasz in [15]. The LLL algorithm is able
to find solutions nearly as good as the best possible. Indeed, they can compute solutions (q,p) such that∣∣∣∣αi − pi

q

∣∣∣∣ ≤ c(n)
q1+1/n

∀i ∈ {1, . . . , n} , (16)

whereas the αi have to be rationals and c(n) ∈ O (2n) (see [15], [19, Chapter 6, Theorem 8]). Thus, by
choosing small enumerators for the upper bound, e.g., = 1 in our construction, one can construct instances
that seem to fall outside of the parameter ranges that can be solved by LLL.

We conclude with the theoretical work of Lagarias. In [14] he proved that the problem of computing a
denominator q such that

|αiq − pi| ≤ s1/s2 , 1 ≤ q ≤ N , i = 1, . . . , n , (17)

for given positive integers N, s1, s2 and rational numbers αi = ai/bi is in P for fixed dimension n. We
remark that this technique has an exponential runtime in the dimension n. Thus, increasing n is a simple
method for excluding the applicability of Lagarias’ algorithm.

Summing up, no efficient algorithms are known for solving CSAP* with an approximation order of
∆ ≥ 1 + 1/n if the dimension is high enough. In Sec. 5, we will use this observation for proposing
some concrete parameters. More precisely, we will construct instances as explained in Th. 4 where the
approximation quality and the dimension are too high for all algorithms mentioned above. Regarding the
upper bound N , one has to take care that it is big enough for excluding brute force approaches. We will
set N := 2s in our construction where s represents the security parameter. Observe that in our scheme,



we construct instances that have only one unique solution. Hence, it will not be possible to look for other
solutions that might be easier to find. In this context we would like to refer to the results by Rössner and
Seifert [23]: They showed that approximating the best solution is almost NP-hard. Thus, approximating the
unique solution q seems to be not an option either.

3 A Bit Commitment Scheme based on DISAP

In this section, we present a bit commitment scheme based on DISAP. In the commitment phase, the com-
mitter generates an instance of DISAP with a given dimension and approximation quality. The crucial aspect
here is that the problem instance is constructed backwards. That is the committer first starts with the solution
(q,p) that is connected to the message and then generates a problem instance (α,η) from it where (q,p) is
the unique solution. Observe that the generation procedure allows for choosing the parameters outside the
range that is feasible for the algorithms described in Sec. 2.2 in the normal direction and ensures that the
instances are of the form as described in Th. 4. For this purpose, we strongly make use of the inhomogene-
ity η. Regarding the security, the commitment scheme is computationally hiding if the DISAP assumption
holds. Furthermore, as only one solution exists, the scheme is perfectly binding.

Setup Phase. In the setup phase, an algorithm

P := (N, ε, n, µ)← Setup(s) (18)

is executed. The purpose of this algorithm is to fix in dependence of a security parameter s the bound
N , the approximation quality ε, the dimension n, and an upper bound µ on the denominators of η for
DISAP instances that will be used in the other phases of the commitment scheme. Starting from the DISAP
assumption (Def. 3), these are chosen such that N ≥ N∗(s), ε ≤ ε∗(s) and n ≥ n∗(s) where N∗(s),
ε∗(s), and n∗(s) are the thresholds conjectured in the DISAP assumption (Def. 3). More precisely, we will
fix N := 2s to avoid brute force guessing attacks. The bound µ will be set as described in Th. 4. We will
discuss concrete parameter choices later in Sec. 5.

Commitment Phase. In this phase, the committer generates a commitment for a message m ∈ {0, 1}. The
commitment algorithm has the following format:

((α,η) , (q,p))← CommitP (m) (19)

where (α,η, N, n, ε) specifies an instance of DISAP as defined in Def. 1 and (q,p) is a solution to this
instance. The tuple (α,η) represents the commitment to the message m which is made public. The tuple
(q,p) represents the opening information and is kept secret. The value q is constructed in such a way that
its least significant bit (LSB) is equal to the message m.

The commitment algorithm is depicted in Alg. 1. During an execution, a series of values are generated
that have to fulfill certain conditions. For the sake of clarity, we separated in the description of Alg. 1 the
value generation and the testing of the parameters. In real implementations, one would group this steps
together to reduce the number of trials. For example, if parameter generation fails for one index i, one could
retry other values for this index but still use the values generated for indices j < i. We have to point out that
it is not mathematically guaranteed that all conditions can be met. However, this was straightaway the case
in almost all of our simulations (see Sec. 5 for details). Furthermore, in all other cases a small number of
repetitions was sufficient to find values that fulfill the conditions.

Finally, some words on the conditions themselves. The condition 1√
ε
< di (Eq. (20)) is introduced to

achieve the claimed approximation quality with the given solution. The other part of the same inequality,
di < bi, is used to guarantee that the approximation ci/di does not give q · ai/bi again. The last conditions,
given in Eq. (21), ensures that the value q is uniquely determined, making the scheme perfectly binding.



Algorithm 1 The commitment algorithm CommitP
Input: P = (N, ε, n, µ) with approximation quality ε, dimension n, and upper bound µ; a message m ∈ {0, 1}
Output: A commitment on m

1: //Map the message
2: Extend m ∈ {0, 1} to a s-bit value q, that is [q]2 = (rs−1, . . . , r1,m) with ri

$← {0, 1}. [q]2 denotes the bit representation of
q. This implies 0 ≤ q < 2s =: N .

3: //Generate rational numbers αi := ai
bi

4: for i = 1, . . . , n do
5: Choose co-prime integers ai and bi where bi is odd, co-prime to q, and less than or equal to µ.
6: Set αi := ai

bi
.

7: end for

8: //Generate approximations ci
di

of q · ai
bi

9: Use continued fractions to find an approximation of ci
di

of q · ai
bi

such that

1√
ε
< di < bi . (20)

10: If (20) is not satisfiable, restart at line 3.

11: //Check additional condition
12: Beside the conditions given above, we require the existence of an index i∗ ∈ {1, . . . , n} with

N < bi∗ and
√

2bi∗ < di∗ . (21)

13: If (21) is not satisfiable, restart at line 3.

14: //Generate p and η
15: for i = 1, . . . , n do
16: Choose pi ∈ Z arbitrary
17: Set ηi := ci

di
− pi

18: end for

19: return A (public) commitment (α,η) to m and (secret) opening information (q,p)

Opening Phase. To open the commitment, the committer sends the solution (q,p) to the verifier. The
verifier runs the algorithm

out← VerifyP ((α,η) , (q,p)) (22)

where out ∈ {accept,⊥}. The verifier accepts if out = accept and rejects otherwise. The algorithm
VerifyP outputs accept if and only if

1. |qαi − pi − ηi| ≤ ε for all i ∈ {1, . . . , n}
2. There exists an index i∗ ∈ {1, . . . , n} such that N < bi∗ and

√
2bi∗ < di∗ (see Eq. (21)). Observe that

the values bi are part of the commitment and the values di can be computed from ηi and pi by using that
ci and di are co-prime (see Sec. 2.1).

Correctness. The correctness of the scheme follows directly from condition 1√
ε
< di (see Eq. (20)) given

in Alg. 1. For any i ∈ {1, . . . , n}, it holds that

|qαi − pi − ηi| =
∣∣∣∣qαi − pi − ( cidi − pi

)∣∣∣∣ = ∣∣∣∣qαi − ci
di

∣∣∣∣ (6)
≤ 1
d2
i

(20)
< ε . (23)



4 Security

4.1 Binding Property

In this section, we prove that q is uniquely determined by the commitment (α,η). Thus, the scheme is
perfectly binding.

Theorem 5 (Perfectly binding). The commitment scheme is perfectly binding.

Proof. Assume two solutions (q,p) and (q′,p′). (21) ensures the existence of an index i∗ such that N < bi∗

and
√

2bi∗ < di∗ . We omit the index i∗ in the following. By definition it holds that η = c
d−p and η = c′

d′ −p
′

for some appropriate integers c, d, c′, d′ and in particular cd−
c′

d′ ∈ Z. Therefore, there exists an integer z ∈ Z
such that

c

d
− c′

d′
= z ⇐⇒ cd′ − c′d = zdd′ . (24)

It follows that cd′ − c′d ≡ 0 (mod d), cd′ ≡ 0 (mod d), and d′ ≡ 0 (mod d). The latter holds as c and d
are co-prime (see Sec. 2.1). Analogously, one shows that d ≡ 0 (mod d′). As both d and d′ are positive, we
get d = d′. Now recall that the fractions c

d and c′

d are both approximations of q · ab and q′ · ab , respectively,
stemming from continued fractions. With (6) we have∣∣∣q · a

b
− c

d

∣∣∣ < 1
d2

and
∣∣∣∣q′ · ab − c′

d

∣∣∣∣ < 1
d2

(25)

and in particular ∣∣∣(q − q′) a
b
− z
∣∣∣ < 2

d2
⇐⇒

∣∣(q − q′) a− z · b∣∣ < 2b
d2
. (26)

Recall that
√

2b < d by Eq. (21). Thus, the right hand side of (26) is strictly less than 1 while the left hand
side is an integer value. This immediately implies that (q − q′)a − z · b = 0. As a and b are co-prime, it
follows that

q − q′ ≡ 0 (mod b) . (27)

With 0 ≤ q, q′ < N , we have −N < q − q′ < N . By Eq. (21), it holds that b > N . Thus, (27) actually
implies q − q′ = 0⇔ q = q′. ut

4.2 Hiding Property

In this section, we prove that the commitment scheme is computationally hiding. Recall that this means that
no efficient algorithm exists that can decide for a given commitment (α,η) if it commits to m = 0 or to
m = 1.

Theorem 6 (Hiding). Let Gen denote the algorithm that generates DISAP instances as explained in Alg. 1
and let Gen∗ denote the algorithm that first invokes Gen and then replacesα by 2α. If the DISAP assumption
(Def. 3) holds with respect to Gen∗, the commitment scheme is computationally hiding.

Proof. Recall that the DISAP assumption tells that it is hard to decide whether a given instance has a
solution or not. Furthermore, by definition the committed message equals to the least significant bit of q,
for short: LSB(q). Thus, breaking the hiding property is equivalent to deciding the LSB of q. Let I∗ :=
(2α,η, N, n, ε) where I := (α,η, N, n, ε) is the instance generated by Gen. Observe as only the values α
are changed, instance I∗ fulfills all conditions derived in Sec. 2.2 if this is the case for I . We show now that
the LSB of q is equal to 0 if and only if I∗ has a solution.

Assume that LSB of q is zero. That is we can write q = 2q∗ and one sees easily that it holds for all
i = 1, . . . , n:

|q · αi − pi − ηi| < ε⇔ |(2q∗) · αi − pi − ηi| < ε⇔ |q∗ · (2αi)− pi − ηi| < ε (28)



Thus, if q is a solution to I with LSB(q)=0, then there exists a solution to I∗.
Contrariwise, assume that I∗ has a solution q∗. Then, with (28) it follows that q = 2q∗ is a solution to I .

Moreover, as we have shown in Theorem 5, q is the only unique solution. Thus, the existence of a solution
q∗ implies that the LSB of the solution of I is equal to zero. ut

Remark 1. It may occur that the fraction ηi = ci/di − pi cannot be cancelled down. In this case, ηi has
denominator di and ci is known up to an integer multiple of pi. This may be used to mount a naive attack
running over all possible ci using the fact that αi = ai/bi as well ci/di are known. However, by choosing pi
from the same range as qi it can be seen that this attack has the same complexity as a brute force attack on q.

5 A Concrete Instantiation and Implementation

In this section we want to fix some values for the thresholds ε∗ and n∗. Due to our discussion of the algo-
rithmic landscape in Sec. 2.2 and because of q−(1+1/2) ≤ q−(1+1/n) for all n ≥ 2, we know that there exists
no algorithm with a runtime polynomial in n that given (β, N, n), finds integers q̃ and p̃ such that∣∣∣∣βi − p̃i

q̃

∣∣∣∣ < 1
q̃1+δ−δ′ (29)

with δ − δ′ = 1/2. We set ε∗ := N−δ = 2−δs and mention the upper bound on µi of µ∗ := N δ′ = 2δ
′s.

In [14] it is stated that the used algorithm of Lenstra Jr. [16] has a runtime that grows exponentially in the
dimension. This motivates us to set n∗ := log (s) . Observe that the effort of the commitment scheme grows
linearly with n. Thus, increasing n in the case of need induces only a linear overhead.

Looking back to Alg. 1, we set ε := ε∗ and n := n∗ in the following as concrete parameters. Next, we
compute the size of a commitment and thereby get a hint how to choose δ′. Due to the fact that the sizes of
ai and pi do not effect the proofs of binding and hiding in Sec. 4 we are free in the choice of their bounds.
Thus, we choose ai and pi equally distributed from the same interval as q, namely [0, 2s). Only for the bi we
have to pay attention that bi ≤ µ holds.

The commitment consists of the quantities α and η. The αi := ai/bi require s + δ′s bits because ai ∈
[0, 2s) and bi ∈ [0, µ) =

[
0, 2δ

′s
)

. Moreover, the denominators di of the second part η of the commitment

require δ′s bits due to 0 < di < bi < 2δ
′s (see condition (20) in Alg. 1). Finally we consider the expanded

numerators ci − pidi ∈ [−pidi, ci] and note that we need s+ δ′s bits for the negative range because pidi <
2sbi < 2s+δ

′s and 2s bits for the positive range (ci < qai < 22s). Subsuming ηi requires 3s + 2δ′s bits
leading to a complete commitment size of

|(α,η)|2 = n
(
s+ δ′s

)
+ n

(
3s+ 2δ′s

)
= ns

(
4 + 3δ′

)
.

Because of δ′ > 1 we have the lower bound of 7ns bits for the commitment size. We see that we minimize
the commitment size by minimizing δ′ with respect to δ′ > 1. By setting δ′ := 1 + δ′′ with δ′′ > 0 we get
|(α,η)|2 = 7ns+ 3nsδ′′, leading to (3ns)−1 as a minimal choice for δ′′.

We implemented the scheme7 and made about 106 test runs on a AMD Athlon X2 Dual-Core QL-62
with 2 GHz per core with n = 7, s = 128 and minimal δ′′ = (3 · 128 · 7)−1. This gives a commitment size of
6273 bit. The algorithm restarts the computation of the commitment on an average of 3.0579 times in order
to satisfy (21) (cf. line 13 in Alg. 1). The maximal number of restarts to compute a single commitment was
23. Condition (20) was always fulfilled. Furthermore, all operations are really cheap in software – leading
to running times in the milliseconds not measurable in seconds.

7 We used the GNU MP (http://gmplib.org/) and MPFR [7] library for arbitrary large integers and arbitrary precise
floating point arithmetic.



6 Future Work and Conclusions

In this work, we focused on one particular problem from analytic number theory, namely the Decisional
Inhomogeneous Simultaneous Approximation Problem (DISAP). The problem is NP-complete and one can
efficiently generate presumably hard instances. Observe that the difficulty can be easily increased, e. g.,
by raising the dimension n. As a proof of concept, we constructed a bit commitment scheme on DISAP.
However, other schemes would have been imaginable.

For example, observe that if q is known, the enumerators p can be directly computed. Thus, one could
modify the commitment scheme to get a stream cipher where q would be the secret key and pi the individual
plaintexts. Whenever the sender wants to encrypt a plaintext pi, he computes the other values αi, etc. as
described and uses the tuple (αi, ηi) as ciphertext for the current plaintext block. Observe that the values αi
and ci/di can be precomputed for accelerating the scheme. Although we did not check it in detail, we are
optimistic that a proof of security should be possible that is similar to the proof given in this paper, at least
for the known-ciphertext scenario. The development of other schemes might be interesting as well, e. g.,
authentication schemes giving a proof of knowledge on q.

Despite DISAP, other problems and results from analytic number theory might be worth to be inves-
tigated as well. For example, one can easily transform a rational number from its binary representation to
continued fractions and vice versa. But only little is known on the relations between changes in one represen-
tation and the corresponding changes in the other representation. This ”fragility” might be used to construct
a collision-resistant compression function. Furthermore, several results exist on the periodicity of certain
representations. The construction of bitstream generators based on these might be an interesting question.

Concluding, we think that the established discipline of analytic number theory contains many interesting
open problems and results that only wait to be (re-)discovered for cryptographic applications. We hope to
encourage further research into this direction.
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