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Abstract
Cloud computing denotes an architectural shift toward thin clients
and conveniently centralized provision of computing resources.
Clients’ lack of direct resource control in the cloud prompts con-
cern about the potential for data privacy violations, particularly
abuse or leakage of sensitive information by service providers. Cryp-
tography is an oft-touted remedy. Among its most powerful primi-
tives is fully homomorphic encryption (FHE), dubbed by some the
field’s “Holy Grail,” and recently realized as a fully functional con-
struct with seeming promise for cloud privacy.

We argue that cryptography alone can’t enforce the privacy de-
manded by common cloud computing services, even with such pow-
erful tools as FHE. We formally define a hierarchy of natural classes
of private cloud applications, and show that no cryptographic proto-
col can implement those classes where data is shared among clients.
We posit that users of cloud services will also need to rely on other
forms of privacy enforcement, such as tamperproof hardware, dis-
tributed computing, and complex trust ecosystems.

1. INTRODUCTION
Cloud computing is a model of information processing, storage,

and delivery in which highly centralized physical resources are fur-
nished to remote clients on demand. Rather than purchasing actual
physical devices—servers, storage, and networking equipment—
clients lease these resources from a cloud provider as a outsourced
service that abstracts away physical devices. By sharing infrastruc-
ture among tenants, a cloud provider achieves economies of scale
and balances workloads, reducing per-unit resource costs and giv-
ing clients the ability to rachet their resource consumption up or
down. Cloud computing is flexible and portable in that it can be
accessed anytime from anywhere. By using redundant sites and
backup storage, cloud providers can also provide greater reliability
than local computing systems.

For all the benefits of cloud computing, though, it deprives clients
of direct control over the systems that manage their data. Thus
arises a central concern of cloud computing: How can clients trust
that a cloud provider will protect the privacy of their data, i.e., not
leak their data or itself use their data inappropriately?

In this paper, we explore privacy protection in cloud architec-
tures. In particular, we consider the challenge of having a cloud
service run applications over client data while: (1) Not being able
to learn any information itself and (2) Releasing output values to
clients in accordance with an access-control policy. We argue that
by itself, cryptography—and by implication, any logical layer in-
formation security tool—can’t solve this problem in its full general-
ity. Yet this privacy-preserving model is exactly the one ultimately
desired for cloud applications involving multiple tenants, such as
social networking, document sharing, and so forth. Given recent

excitement over the potential of new, powerful constructs such as
fully homomorphic encryption (FHE) [11] to support the privacy
needs of cloud computing, we believe that our negative message is
an important and sobering one.

1.1 Cloud Model
We treat a cloud for simplicity as a highly resourced, monolithic

entity S. We denote each entity relying on S’s resources as a client
or tenant. (In usual parlance, a tenant is a relying entity; a client is
a machine. We use the terms interchangeably.) We denote the set
of n tenants of S by C = {C1, C2, . . . , Cn}.

In our model of cloud computing, clients are thin. They have lim-
ited local computation and storage, delegating as much as possible
to a cloud provider. And they are not consistently on-line. They
may deposit data in the cloud and go offline indefinitely. Con-
sequently, a cloud provider assumes responsibility for processing
data in the absence of its owners.

For the purposes of our exploration here, we treat the data of
each player Ci as a static, private value xi. Ci stores xi with S.
S is tasked with executing various applications over {xi}. The
overarching goal of privacy preservation we explore in this paper
dictates that in no case should S learn any portion of any piece xi
of private data. Applications that operate over the data of multiple
clients respect access-control policies, as we explain.

1.2 Our Contribution
We explore the challenge of privacy preservation for clients in

the cloud by proposing a (nested) hierarchy of three classes of
privacy-preserving forms of computing. These classes are meant
to characterize natural applications that S might be called upon to
execute in the cloud over clients’ sensitive data. We define privacy
preservation here to mean that S itself should learn no information
from any application execution, while select clients should learn
limited output information. (We do not consider bidirectional pri-
vacy here, i.e., we do not consider the privacy of S.) The three
classes, in order of increasing generality, are:

1. Private single-client computing: These applications exe-
cute over the data xi of a given client Ci. Their access-
control policy stipulates that only Ci may learn any output.
Observe that an access-control policy restricting Ci’s access
to outputs is not meaningful: Since xi belongs to Ci, no in-
formation is leaked by revealing any function of xi to Ci.

Example: A privacy-preserving tax-preparation program might
be implemented via private single-client computing. The
data xi consists of the financial statements of Ci—to be hid-
den from S. The output of the program is a prepared tax
return.



2. Private multi-client computing: These applications execute
over the data {xi}ni=1 of multiple clients {Ci}ni=1. Since
clients may not be mutually trusting (and might collude with
S), a multi-client application’s access-control policy must
stipulate release of information selectively to different clients.
Such release may be asymmetric, i.e., for a given f , Cj may
be granted permission to learn f(xi), while Ci cannot learn
f(xj).

Example: A social networking system might be designed as a
private multi-client system. Here, xi is the personal profile of
client Ci. Ci additionally specifies which friends are entitled
to what portions / functions of her data, i.e., gives an access-
control policy.

3. Stateful private multi-client computing: These are private
multi-client applications in which the access-control policy
on a client’s data is stateful, in the sense that it depends on
the history of application execution by S.

Example: A healthcare-research system might be implemented
via stateful private multi-client computing in which a client is
either a patient or a research facility. A patient Ci furnishes
healthcare record xi. A research facility Ci is permitted to
learn certain aggregate statistics over the full set of healthcare
records in the system. The access-control policy is stateful
in the following sense, though: The aggregate information
a research facility receives from the system should never be
sufficient to reveal individually identifying data. (The system
might enforce a standard privacy metric such as k-anonymity
[27].)

Single-client private computing is realizable via FHE, as we ex-
plain below.

Private multi-client computing is an important class to consider
because it provides natural cloud functionality that is fairly limited,
but, as we prove, still not realizable by any cryptographic proto-
col. We prove that private multi-client computing implies general
program obfuscation, which is provably unachievable in software
alone [4]. (Special cases are realizable; our impossibility result ap-
plies to the class as a whole.) Thus private multi-client applications
require trustworthy computation of some type. (Exactly how gen-
eral such trustworthy computation needs to be is an open problem.)
By trustworthy computation, we mean integrity-protected execu-
tion history and integrity-protected application of history to access
control—i.e., functionality equivalent to a fully trusted party.

Stateful private multi-client applications are an important class
to study, as they characterize the norm in the cloud. They include
social networks (e.g., Facebook), shared applications (e.g., Google
Apps), customer relationship management (e.g., Salesforce.com),
etc. They are growing in prevalence. Stateful private multi-client
functions clearly imply trustworthy computation in S.

Organization: In section 2, we discuss FHE and survey related
work. We explore our three privacy-preserving application classes
in detail in section 3, and prove that the class of private multi-client
programs cannot be constructed. We conclude in section 4 with a
discussion of practical approaches to cloud privacy.

2. RELATED WORK
Privacy is a well recognized sticking point in the cloud. Garfinkel

[9] discusses how Google Chrome OS realizes the thin-client / mono-
lithic server model we explore here and the privacy concerns that
the resulting data amalgamation and loss of infrastructural control
bring to consumers. Enterprises too cite security and privacy as top

challenges in cloud adoption, as shown in surveys, e.g., [1], and
generally cautious industry adoption [26].

Researchers tend to advocate a consistent set of approaches to
privacy enforcement in the cloud. Chow et al. [7] classify these ap-
proaches in three major categories: (1) “Information-centric” secu-
rity, in which data objects are tagged with access-control policies—
essentially the mode of operation envisioned in the multi-client
classes of the private computing hierarchy we propose here; (2)
Trusted computing; and (3) Privacy-preserving cryptographic pro-
tocols, which are, of course, the main focus of our work in this
paper.

There are a number of privacy-preserving cryptographic proto-
cols appropriate for specific cloud applications. Among these is
Private Information Retrieval (PIR) [6], which allows a client to
query a database without S learning which queries the client has
submitted. Another example is searchable encryption; see, e.g.,
[25] for early work and [24] for more recent results. Searchable
encryption allows the owner of a set of documents to authorize an-
other party to conduct searches on a pre-specified set of keywords,
without revealing any additional information. These are special
cases of private multi-player applications.

Proposed as a research challenge in 1978 [23], and long consid-
ered the “Holy Grail” of cryptography [21], Fully Homomorphic
Encryption was first realized by Gentry in 2009 [11]. FHE enables
computation over encrypted data. In a cloud environment, a client
can store encrypted data on a server. The server can compute over
this data without decrypting, and can send a ciphertext result to the
client for decryption. Thus the server computes “under the covers”
in a fully privacy-preserving way, never learning the client’s data.
While not yet efficient enough for practice, FHE in theory provides
general privacy protection for a client-server relationship.

FHE provides a general solution for secure two-party computa-
tion, also called secure function evaluation (SFE) [30].In this sense
FHE is a special case of secure multiparty computation (SMC),
first proposed in [13], and subsequently explored in an extensive
literature.1SMC allows a set of (multiple) players to compute an
arbitrary (bounded complexity) function over private inputs. It re-
alizes, as an interactive protocol, the ideal functionality provided
by a trusted party (or piece of hardware). In its general form, how-
ever, SMC requires players to be online, and thus isn’t suitable for
thin-client cloud architectures.

3. CLOUD-APPLICATION CLASS HIERAR-
CHY

3.1 Private Single-Client Computing
In the private single-client scenario, client C asks the cloud S to

evaluate a function f over C’s private input x. S should learn no
information from the computation, so it is necessary that x, f(x),
and any intermediate values in the computation of f(x) remain en-
crypted under C’s public key p.2

More generally, C’s private input x can be a composite x =
(x1, . . . , xn) of different values {xi}ni=1 supplied respectively by
other clients {Ci}ni=1. Each xi is encrypted under C’s public key
p to yield corresponding ciphertext ci. Figure 1 depicts this more
general scenario. The cloud S evaluates the resulting ciphertexts ci

1In [12, pp. 22-24], Gentry explains the full interconnection be-
tween FHE, SFE with Yao’s garbled circuit, and SMC.
2In single-client applications where only the client encrypts her
data, symmetric-key encryption suffices. If other entities contribute
data, then public key encryption is necessary; these entities need the
client’s public key to encrypt their contributed private data.



via evaluation algorithm EvalE . The final result is a ciphertext c,
an encryption of function value f(xS , x1, . . . , xn) under p. Here
f(xS , x1, . . . , xn) = f(xS , x) is f evaluated in C’s private value
x together with a value xS supplied by S.3 The subscript E in-
dicates that the evaluation algorithm EvalE is associated with the
encryption scheme E , which consists of a key-generating, an en-
cryption, and a decryption algorithm.

Note that the {xi} are private with respect to S, an important
issue when we examine multi-client scenarios.

Figure 1: Private Single-Client Computing

It is possible to construct a semantically secure (against chosen
plaintext attacks) encryption scheme E together with an evalua-
tion algorithm EvalE that satisfies the property depicted in Figure
1. Gentry [11] constructed the first fully homomorphic encryp-
tion (FHE) scheme, which solves this problem. Non-homomorphic
or partially homomorphic, i.e., ordinary encryption of data does
not allow someone without knowledge of the secret decryption key
to manipulate the underlying data in a general way. In an FHE
scheme, any f realizable as a (polynomial-size) circuit can be ex-
ecuted without leaking information about inputs, intermediate val-
ues, or outputs.

FHE can be used by a single client to outsource private compu-
tation to the cloud.4 But the range of cloud operations enabled by
FHE is restricted to an encryption domain defined by the public key
p of a single client. For more general cloud applications, we need
to define a more general class.

3.2 Private Multi-Client Computing
The objective in a multi-client setting is to compute across data

supplied by multiple clients, but also to reveal output values to mul-
tiple clients in a privacy-preserving way. To achieve this goal, we
need a new primitive that has functionality beyond FHE. In partic-
ular, there are two new requirements:

1. Access-controlled ciphertexts: Because computation takes
place across multiple clients, it’s important that a clientCi be
able to stipulate what functions may be computed on its pri-
vate input xi. If arbitrary computation is permitted, then xi
itself may be revealed to all other clients (and a colluding S).
We refer to this privacy requirement as functional privacy.

3Function f may discard xS . Value xS can also be encrypted input
if the cloud also plays the role of another entity who contributes
private data.
4E.g., query a database in the cloud privately. Here the privacy of
the query is protected into the extend that only its corresponding
database access pattern leaks, i.e., the range of items among which
the query searches inevitably leaks.

2. Re-encryption: Privacy-protected transformation of a cipher-
text under a key p′ to a key p is required to enforce functional
privacy. If the encryption keys p′ and p are identical, then
any client that can decrypt outputs can also decrypt and learn
inputs, preventing any kind of access control.

In the private multi-client setting, then, S evaluates function f on
private inputs {xi} encrypted under (potentially) different clients’
public keys pi. We let ci denote the ciphertext of Ci. Functional
privacy is enforced by allowing Ci to tag ciphertext ci with access-
control policy Ai that indicates whether xi can be used as input to
a given function f with output encrypted under public key p. We
write ci = Encpi(xi, Ai). We model Ai as a membership circuit
that takes as input triples (i, f, p). If Ai(i, f, p) = true, then
client Ci allows xi to be used as the ith input to f if its final result
is encrypted under p. (Note that any client Ci can be a permitted
receiver of output in this model, namely when p = pi.)

Figure 2 depicts the new situation. If and only if access-control
policies on all ciphertexts {ci} are met, the evaluation algorithm
EvalE returns a ciphertext c = Encp(f(xS , x1, . . . , xn)).

Figure 2: Private Multi-Client Computing

We now prove that private multi-client computing is in general
unachievable using cryptography.

Two-player setting: For the purposes of our proof, it is simplest to
consider a special case of the private multi-client computing class,
namely a two-player setting as depicted in Figure 3. There is one
sender and one receiver. The function f takes only two inputs, xS
and x1. The sender uses a simple access-control policy C(1,f,p), a
membership circuit that outputs true only for input (1, f, p), i.e.,
allows only one function f and one output key p. The receiver
knows the secret key s corresponding to p and is able to decrypt
the result and retrieve the function output f(xS , x1) for any xS .
In this sense the receiver has oracle access to the function xS →
f(xS , x1). (Observe that this two-player scheme may be viewed
as a multi-player application in which there are two clients and S
learns the decryption key of or colludes with one client.)

DEFINITION 1. A two-player private computing scheme has func-
tional privacy over circuits if: For all ppt adversaries A, there ex-
ists a ppt simulator S, and a negligible function α, such that for
all (p1, s1), (p, s)← Gen(1λ), for all circuits f , for all ciphertexts
c1 ← Encp1(x1, C(1,f,p)) and for all poly-time computable binary
predicates π,

Pr[A(p1, f, p, c1, s) = π(x1)]

≤ Pr[S{xS→f(xS ,x1)}(1λ) = π(x1)] + α(λ).



Figure 3: 2-Player Setting

Here, λ is a security parameter; all asymptotics are in λ. S repre-
sents a simulator with oracle access to function xS → f(xS , x1).

The definition formalizes the intuition that privacy means that an
adversary learns no more about x1 than a simulator can learn using
oracle access to xS → f(xS , x1). That is, an adversary learns
about x1 only what the access control policy C(1,f,p) dictates.

Note that functional privacy does not imply semantic security.
Two-player private computing —and by implication, full multi-
client private computing—is not semantically secure against chosen-
plaintext attacks. The receiver can distinguish between plaintexts
by choosing x1, x′1, xS and f such that f(xs, x1) 6= f(xs, x

′
1).

Reducing two-player scheme to program obfuscation: Figure 4
shows a reduction from a two-player private computing scheme
with functional privacy to an efficient circuit obfuscator O which
takes any circuit g as input and outputs an obfuscated circuit Og .
In this reduction, all circuit sizes and running times are polynomial
in λ where λ is set as |g|, the circuit size of g.

The main idea (explained in detail in the appendix) is to create
an execution environment that evaluates a given program g over an
input x “under the covers,” i.e., in the domain of encryption under
key p1. This is accomplished by feeding a representation 〈g〉 of g
into EvalE (expressed as an evaluation circuit5) in x1 and setting
input value x = xS . The actual function evaluation g(x) is per-
formed by a “meta-circuit” F that takes as input x and 〈g〉, i.e., F
is a generic circuit that runs any circuit g on any input value.6 F
is the homomorphically computed function here. (Ciphertext x1 is
tagged with access-control policy C(1,F,p), which permits applica-
tion of F .) The computation result g(x) is output by a decryption
circuit.7

The set BB = (p1, F, p, c1 = Encp1(〈g〉, C(1,F,p)), s) of val-
ues circled in Figure 4 fully defines the execution environment, i.e.,
is all the data needed to realize it. The only variable value is the in-
put x. Thus, running the two-player scheme on BB gives us a
“black box” that takes input x and outputs g(x)—an obfuscated
circuit Og that executes g.8

By definition 1, it is easy to show that for execution of BB, we
have

Pr[A(Og) = π(g)] ≤ Pr[Sg(1|g|) = π(g)] + α(|g|).
5We assume that evaluation is compact, i.e., there exists a polyno-
mial h such that for every value of λ, EvalE can be expressed as a
circuit E of size |E| ≤ h(λ).
6F can be constructed such that its size is polynomial in λ, i.e.,
polynomial in the size of its inputs.
7We assume that decryption Dec is compact.
8This procedure describes a circuit obfuscatorO, which is efficient
in that O itself is a polynomial time algorithm, and its output Og
has circuit size polynomial in |g|.

Figure 4: Circuit Obfuscation

That is, execution of BB obfuscates any (poly-size) program g,
which we know is not achievable [4]. We conclude that general
multi-client private computing based solely on cryptographical as-
sumptions is impossible.

Remarks: Our proof technique is general: it can be used to prove
the impossibility of multi-client computing schemes with functional
privacy defined over Turing Machines (TM) or constant depth thresh-
old circuits (TC0) (for which obfuscation impossibility results exist
[4]).

While general program obfuscation is impossible, the literature
does include positive results for specific forms of obfuscation, in-
cluding point functions [20, 29, 14] and certain cryptographic prim-
itives [17, 16].

3.3 Private Stateful Multi-Client
Due to lack of space, we omit a formal definition of private state-

ful multi-client computing. We remark only that in this class, the
access control policies for a ciphertext include the full history of
computation of S over the data of the client C that owns the cipher-
text. A trustworthy computation environment is clearly necessary
to realize this class of applications. As remarked above, this class
includes many important applications in the cloud.

A key question, then, regards the relationship between private
multi-client computing and stateful private multi-client computing.
We proved above that private multi-client computing cannot be re-
alized with cryptography (i.e., software) alone; thus such applica-
tions require trusted state / execution of some sort. Are the two
application classes equivalent, then, in the sense of having iden-
tical trusted execution requirements? This as an important open
problem.

4. CONCLUSION: HOW TO GET CLOUD
PRIVACY?

We have shown the limitations of cryptography alone in meet-
ing the challenges of cloud privacy. So what practical options are
there for trustworthy computation? One frequently advocated tool
is trusted computing, i.e., privacy (and security) enforcement via
tamper-resistant hardware. The limitations of that approach too are



legion. They include vulnerability to low-resource hardware at-
tacks [2] and man-in-the-middle attacks during bootstrapping [22].
Even well-functioning hardware cannot guarantee system integrity.
Trusted Platform Modules (TPMs) [28], the most prevalent form of
trusted hardware, provide only a root of trust: They help ensure the
execution of a given software stack, but don’t protect against soft-
ware vulnerabilities. Newer trusted computing technologies such
as Intel TXT protect executables, but of course cannot ensure the
trustworthiness of applications themselves [18]. Software intro-
spection via, e.g., a trusted hypervisor, can help [10], but also falls
far short of comprehensive security assurance.

Additionally, a meaningful trusted computing architecture for
the cloud presumes an external entity that can verify the security
and privacy posture of a provider. Cloud infrastructure providers
are already developing architectures that presume such distributed
trust: Trusted hardware and software logging tools generate attes-
tations for consumption by an auditing or compliance-verification
system [8].

Cloud architectures based on distributed trust don’t align with
FHE so much as with SMC. One approach to cloud privacy pro-
tection is for clients to distribute their data across a collection of
service providers, and rely on the trustworthiness of a majority of
them. By executing applications via SMC, providers could then
process client data in a privacy-preserving manner (in a stateful
multi-client model). In its general form, though, SMC demands im-
practically intensive computation and communication. We believe
that in the short-to-medium term, limited-capability distributed trust
models will prevail. While as always helping demarcate trust bound-
aries, cryptography will also help verify specific security require-
ments of cloud deployments, e.g., correctly configured storage [3,
5, 19]. It will be one supporting component in a complex ecosys-
tem of trust that depends on interlocking technical, regulatory, and
commercial security and privacy enforcement approaches.
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APPENDIX
A. PROOF OF IMPOSSIBILITY

A.1 Encryption Scheme
Following the notation of Gentry [11, 12], we denote by

E = {Gen, Enc, Dec}



an encryption scheme that consists of encryption Enc, decryption
Dec, and a key generating algorithm Gen.
Gen is a randomized algorithm that takes a security parameter λ

as input, and outputs a public secret key pair (p, s):

(p, s)← Gen(1λ).

The computational complexity is poly(λ), polynomial in the size of
the input 1λ. Public key p defines both the plaintext and ciphertext
space; both plaintexts and ciphertexts have size poly(λ).
Enc is a randomized algorithm that takes p and a plaintext x as

input, and outputs a ciphertext c:

c← Encp(x).

The computational complexity is poly(λ), polynomial in the size
of plaintext x and the size of the public key p.
Dec is an algorithm that if it takes s and the ciphertext c as input,

then it outputs the corresponding plaintext x. This defines correct
decryption:

x = Decs(c).

The computational complexity is poly(λ), polynomial in the size
of ciphertext c and the size of the secret key s.

We call E compact if it has compact decryption: there exists a
polynomial d such that for every value of λ, E’s decryption algo-
rithm can be expressed as a circuit D of size |D| ≤ d(λ).

A.2 Evaluation
There exists a correct evaluation algorithm EvalE associated to
E , which satisfies the property of Figure 2 as described in section
3.2 if all plaintexts in Figure 2 are such that encryption is possi-
ble (e.g., if the size of input |(xi, Ai)| is poly(λ) and if f can be
represented as a circuit of size poly(λ)).

We define E∗ = E ∪ {EvalE} and call E∗ compact if E is com-
pact and if it has compact evaluation: there exists a polynomial e
such that for every value of λ, EvalE can be expressed as a circuit
E of size |E| ≤ e(λ).

A.3 Definition of Security
Semantic Security: Suppose that E∗ has correct decryption and
correct evaluation. Consider the following game: Suppose that a
challenger runs (p, s) ← Gen(1λ) and gives p to an adversary
A. In response, A runs (p′, s′) ← Gen(1λ), creates the iden-
tity circuit f (i.e., f(x) = x for x ∈ {0, 1}), and constructs
a membership circuit A that encodes the controlled access pol-
icy rule (1, f, p′). We remind the reader that this means that if
x is encrypted together with A, then x can be used as the 1st in-
put of f , if the resulting evaluation of f will be encrypted un-
der p′. The adversary A constructs the plaintexts m0 = (0, A)
and m1 = (1, A), and sends these to the challenger. Now the
challenger picks b ∈ {0, 1}, encrypts c = Encp(mb), and trans-
mits this to A. A runs the evaluation circuit on (f, p′) and the
encrypted input c = Encp(mb) = Encp(b, A). This produces
Encp′(f(b)) = Encp′(b) since f is the identity, which A decrypts
to b by using the secret key s′. We conclude thatA is able to guess b
correctly and that E is not semantically secure under chosen plain-
text attacks (CPA).

The above is consistent with our understanding: access control
policies allow private inputs to leak. In order to model only in-
tended leakage we need to define a weaker form of security that
makes more sense in our situation. For example, an adversary
should learn no information about the xi’s at all if he has no initial
knowledge about any secret key s′ that corresponds to one of the

public keys p′ for rules (i′, f ′, p′) in one of the Ai’s. There should
be some form of semantic security against such an adversary.

We will not bother investigating what kind of security would be
appropriate: scheme E∗ is not only an encryption scheme, it also
controls the functions that are allowed to compute on private input.
This control or functional privacy needs a separate definition. We
will show that even if we only require a minimal amount of func-
tional privacy, there cannot exist a compact scheme E∗ regardless
of the kind of semantic security any cryptographer would be inter-
ested in.

Functional Privacy: Let (p1, A1, c1 ← Encp1(x1, A1)) be a triple
with a ciphertext c1, a corresponding public key p1 and access con-
trol policy A1. Let (j, f, p) ∈ A1. This means that the evalua-
tion algorithm can be used to evaluate f with x1 as the j-th in-
put under encryption with p. By creating one’s own ciphertexts
Encp′(yi, C(i,f,p)) (here, and from here onward, C(i,f,p) is the
membership circuit that outputs true only for input (i, f, p)), it
is possible to use the evaluation algorithm to evaluate the function

(yS , y1, . . . , yj−1, yj+1, . . . , yn)

→ f(yS , y1, . . . , yj−1, x1, yj+1, . . . , yn)

in arbitrary inputs under encryption with p.
Let X = {pi, Ai, ci ← Encpi(xi, Ai)}ni=1 be a larger set of ci-

phertexts, their corresponding public keys and access control poli-
cies. By generalizing the previous analysis, the evaluation algo-
rithm can be used to produce encryptions of outputs of functions
that take as input a value yS and values yj , j ∈ J and evaluate f in
yS , {yj}j∈J , and {xij}j∈{1,...,n}−J if there exists a public key p
with (j, f, p) ∈ Aij for j ∈ J − {1, . . . , n}. Denote by X this set
of functions that can be evaluated under encryption.

Let K be the set of secret keys s corresponding to the public
keys p for which there exist a triple (j, f, p) in one of the Ai’s.
A receiver, who knows the secret keys in K, is able to decrypt the
encryptions produced by the evaluation algorithm that takes cipher-
texts fromX as input. In this sense the receiver has oracle access to
X . We want to model the amount of extra information the receiver
is able to learn from X besides the information that can be learned
from oracle access to X . This will lead to a definition of functional
privacy in which we compare an adversary with access toX andK
to a simulator with oracle access to X .

For a simulator algorithm S, we denote by SX (1λ) the output
of S when executed on input 1λ and oracle access to outputs of X .
Oracle access to outputs of X lets the simulator see unencrypted
function evaluations; this is the ideal world. For an adversarial
algorithmAwe denote byA(X,K) the output ofAwhen executed
on inputsX andK; this is the view of the receiver in the real world
setting. A has access to the (public) function descriptions in E∗,
this allows for the possibility that A tampers with ciphertexts, e.g.,
tries to change a given Ai.

We say E∗ is functional private if: For all ppt adversaries A,
there exists a ppt simulator S, and a negligible function α, such
that for all sets X and K,∣∣∣Pr[A(X,K) = 1]− Pr[SX (1λ) = 1]

∣∣∣ ≤ α(λ) (1)

(λ is the security parameter used for generating public and secret
keys in X and K).

We notice that (1) is equivalent to

Prob[A(X,K) = π({xi}ni=1)]

≤ Pr[SX (1λ) = π({xi}ni=1)] + α(λ)

for all predicates π. In words, an adversary cannot learn more infor-



mation about the encrypted xi’s than what a simulator can learn us-
ing oracle access to X , the plaintext results of the evaluation func-
tion on inputs ci. Here functional privacy means that the adversary
cannot learn more about the xi’s than a (malicious) collaboration
of clients who know the secret decryption keys of the outputs of
EvalE . That is, an adversary cannot learn more than what is al-
lowed to be revealed about the xi’s.

Our discussion started in the two player setting (one sender, one
receiver) with a single triple (p1, A1, c1 ← Encp1(x1, A1)). Sup-
pose that A1 is the simplest possible access control policy, a mem-
bership circuit C(1,f,p) with f a function on two inputs. Then our
definition reduces to 2-player functional privacy: For all ppt adver-
sariesA, there exists a ppt simulator S, and a negligible function α,
such that for all (p1, f, p, c1 ← Encp1(x1, A1))) and s such that
(p, s)← Gen(1λ),∣∣∣∣ Pr[A(p1, f, p, c1, s) = 1]

− Pr[S{yS→f(yS ,x1)}(1λ) = 1]

∣∣∣∣ ≤ α(λ). (2)

In the next subsection we prove that a compact scheme E∗ being 2-
player functional private is already sufficient to prove the existence
of an efficient circuit obfuscator.

A.4 Reduction
We will show that the existence of a compact encryption scheme
E∗ that is 2-player functional private reduces to the existence of
an efficient circuit obfuscator. Such an obfuscator does not exist
[4]. So, even the required minimal privacy cannot be achieved by
cryptographical means only.

We will construct an efficient circuit obfuscator O which can be
asked to produce an obfuscated circuit Og for any circuit g such
that 1) Og describes the same functionality as g, that is, Og(x) =
g(x) for any input x, 2) there is a polynomial h such that, for ev-
ery circuit g, the size |Og| ≤ h(|g|), and 3) Og is like a "virtual
black box" that cannot be used to learn information about (the ac-
tual representation or implementation of) circuit g itself other than
its functionality. This virtual black box property [4] is very similar
to our definition of functional privacy: For all ppt adversaries A,
there exists a ppt simulator S, and a negligible function α, such
that for all circuits g,∣∣∣Pr[A(Og) = 1]− Pr[Sg(1|g|) = 1]

∣∣∣ ≤ α(|g|).
In words, besides learning the size of circuit g, an adversary cannot
distinguish Og from oracle access to the functionality of g.

In order to proceed with the reduction we will construct a repre-
sentation of circuits leading to a meta circuit F that outputs g(x) if
it receives as input a value x together with a circuit representation
〈g〉:

F (x, 〈g〉) = g(x). (3)

Let g be a circuit. Circuits can be designed such that they only
use NAND gates. Let m be the number of NAND gates used in g;
m = |g|, the size of g. Suppose that x = (x1, . . . , xk) is an input
to g. Let xk+1, . . . , xk+m be the intermediate and final result of g’s
computation after each NAND gate. Without loss of generality, the
intermediate results are ordered such that xk+l+1 = xi NAND xi′
for some i and i′ both ≤ k + l; we denote lft(k + l) = i and
rgh(k + l) = i′. For 1 ≤ j ≤ k + l, define zij = 0 for j 6= i

and zij = 1 for j = i. Let zlft(k+l+1) = (zi1, . . . , z
i
k+l) and let

zrgh(k+l+1) = (zi
′

1 , . . . , z
i′
k+l). Notice that,

ORj(xj AND zij) = xi. (4)

This shows that there exists a meta circuit F (independent of g) that
computes g(x) as in (3) for inputs x and

〈g〉 = (zlft(k+1), zrgh(k+1), . . . , zlft(k+m), zrgh(k+m)).

Notice that, since k ≤ m + 1, |〈g〉| = O(|g|2). Since circuit F
is composed of m NAND gates and 2m selection circuits as in (4),
|F | = O(|g|2). Notice that F is independent of g, it only depends
on its size |g|. The functionality of g is completely encoded in its
representation 〈g〉.

Figure 5: Circuit Obfuscation

Let λ = O(|g|). We construct an obfuscated circuit Og as fol-
lows. We select (p1, s1) ← Gen(1λ) and (p, s) ← Gen(1λ). We
construct a membership circuit C(1,F,p) which has size poly(|g|)
We compute a ciphertext c1 ← Encp1(〈g〉, C(1,F,p)) (which is pos-
sible since the plaintext has size poly(|g|)). Now we proceed as in
Figure 5. Since decryption and evaluation are compact, there exist
a decryption circuit D of size d(λ) = poly(|g|) and an evalua-
tion circuit E of size e(λ) = poly(|g|). The oval shapes represent
constant values in circuit Og . As Figure 5 explains, for input x,
Og outputs g(x). Notice that Og has size poly(|g|) and that it is
uniquely represented by the tuple (p1, F, p, c1, s), that is, Og can
be computed from (p1, F, p, c1, s) and vice versa. By (3), map-
ping yS → F (yS , 〈g〉) is identical to function g. This shows that
2-player functional privacy directly translates into the virtual black
box property. We conclude that this describes a circuit obfusca-
tor. Since it is a probabilistic poly(|g|) time algorithm, our circuit
obfuscator is efficient.

In [4] Barak etal. prove that efficient circuit obfuscators do not
exist. This shows that a compact scheme E∗ which is also 2-player
functional private cannot exist. This concludes our impossibility
result.

Impossibility and Possibility: For completeness: There exist many
natural classes of functions that cannot be obfuscated w.r.t to auxil-
iary input, both when the auxiliary input is dependent on the func-
tion being obfuscated and even when the auxiliary input is inde-
pendent of the function being obfuscated [14]. The more relaxed



requirement that an obfuscated program leaks as little information
as any other program with the same functionality (and of similar
size) was introduced and studied in [15]. Obfuscation of crypto-
graphic primitives is well studied and has both positive as well as
negative results [4, 17, 16]. The possibility of obfuscation of point
functions and its impact has been studied in [20, 29, 14]. We notice
that each of these results do not affect our impossibility result: if
we are interested in a family F of circuits for which our technique
is still applicable, that is, there exists a "meta circuit" in F that can
be used to evaluate any circuit, then we are able to construct an ob-
fuscator that can obfuscate any contrived class of circuits, even the
one which has been shown in [4] to be impossible to obfuscate.

Our proof provides a general straightforward reduction. We gave
only one (and not the most efficient) construction for a meta circuit
with circuit representation. There are many other possibilities. To
exclude each of these reductions by only requiring E∗ to evaluate a
restricted family of circuitsF that does not contain a "meta circuit"
(such that our reduction is not applicable), seems rather ad hoc. But
we do not exclude the possibility that families of circuits F with a
functionally private compact scheme E∗ exist. We conjecture that
such families are not useful in interesting applications.

For compactness defined by using Turing machines of poly(λ)
complexity, our reduction leads to TM obfuscators, which Barak
etal. [4] also prove cannot exist. Compactness defined by using
constant depth threshold circuits of size poly(λ) (complexity class
TC0) also leads to an impossibility result if we assume factoring
Blum integers is hard [4].


