
Combining leak–resistant arithmetic for elliptic curves defined

over Fp and RNS representation

JC Bajarda, S. Duquesneb, M Ercegovacc

a LIP6, UPMC Paris, France,

and LIRMM, CNRS, France;
b IRMAR, CNRS Université Rennes 1, France;

c UCLA, Computer Science Department, Los Angeles, California, USA

May 23, 2010

Abstract

In this paper we combine the residue number system (RNS) representation and the leak-

resistant arithmetic on elliptic curves. These two techniques are relevant for implementation

of elliptic curve cryptography on embedded devices.

It is well known that the RNS multiplication is very efficient whereas the reduction step is

costly. Hence, we optimize formulae for basic operations arising in leak-resistant arithmetic

on elliptic curves (unified addition, Montgomery ladder) in order to minimize the number of

modular reductions. We also improve the complexity of the RNS modular reduction step.

As a result, we show how to obtain a competitive secured implementation.

Finally, we show that, contrary to other approaches, ours takes optimally the advantage of

a dedicated parallel architecture.

Keywords: Elliptic curves, Montgomery algorithm, leak-resistance, residue number system

(RNS), modular multiplication, modular reduction.

1 Introduction

Because of their small key length, elliptic curve cryptosystems (ECC) have become popular

to such a degree that they have recently been recommended by NSA. Their small key size is

especially attractive for small cryptographic devices like smart cards. However, such devices are

sensitive to side-channel attacks. These attacks consist of analyzing side-channel information,

like timings [27], power consumptions [28] and electromagnetic radiations [35] of a device. They

have become a serious threat that protecting ECC against them has become a whole research

area in itself and has given rise to various countermeasures [17].

1

There are two types of such attacks, the simple power analysis (SPA) and the differential

power analysis (DPA). The protection again DPA is relatively easy to obtain [17] and has no

consequences on this paper. That is the reason why we concentrate on SPA. The weakness

comes from the difference in complexity between the addition and the doubling on elliptic

curves. There are two ways to deal with this. The first is to use representations of the curve

for which the two operations are obtained with the same formulae as in [29], [25] or [11]. The

second is to use an algorithm for the scalar multiplication due to Montgomery [31] for a fam-

ily of curves defined over Fp and generalized in [19], [11] and [24]. This algorithm has many

advantages for constrained environments: it is SPA-resistant, very simple to implement, mod-

est in memory requirements and does not require precomputations. In classical multiprecision

systems, the cost of these methods is given by the number of modular multiplications. As this

number is high in the algorithms evoked above, we propose to use an alternative representation

of numbers: the Residue Number Systems. Indeed, this representation allows a very efficient

multiplication by distributing the computations on small independent integers. Nevertheless,

even if the multiplication becomes linear (in word basic operations), the modular reduction

step remains quadratic. The RNS has other advantages, in particular, it is easily parallelizable.

Moreover, it is not specific to a value of p contrary to Mersenne number based arithmetic. This

is an important point for circuit maker which must offer a tool useful for all customers.

The aim of this paper is to combine leak-resistance arithmetic on elliptic curve and the Residue

Number System. The same work can of course be done for classical elliptic curve arithmetic.

However, the RNS is particularly well-suited for hardware implementations so that we choose

to concentrate on leak-resistant arithmetic.

To obtain an interesting and efficient combination, we work in two directions.

• We rewrite the formulae on elliptic curve for minimizing the number of modular reduction,

eventually despite an increasing number of multiplication. In some cases, we even propose

new formulae adapted to this new constraint.

• We improve the complexity in the RNS reduction step by using the properties of the RNS

bases [6] which can be used for ECC size. This is significant in our context of small key

size (in practice we deal with 6 to 16 words).

By this way, we show that it is very interesting to use RNS in leak-resistant elliptic curve

cryptography especially if a parallel architecture is used.

In the following, K denotes a field of characteristic 6= 2, 3 (which is a prime field Fp in

practice) and |n|2 denotes the bit-length of n.

2

2 Background properties of the different representations and

algorithms

2.1 Modular multiplication

The elliptic curve arithmetic over Fp mainly involves modular multiplications modulo p. Such a

modular multiplication can be decomposed into one classic multiplication followed by a modular

reduction. Because of the small size of the numbers used with ECC (192 to 512 bits, i.e. 6 to

16 32-bit words), the multiplication is performed by a common method. Let us consider A and

B, as two n-word integers given in radix representation (i.e., X =
∑n

i=0 xiβ
i with 0 ≤ xi < β),

then A × B can be computed by a succession of word multiplications and additions (which

will be considered in the following as basic word operations). We can summarize these by the

equation

A×B = b0A+ β(b1A+ β(b2A · · ·+ βbnA) . . .).

with a complexity of n2 word operations. We note that for the current ECC key size, Karatsuba

or Toom-Cook approaches remain costlier than the classical algorithm, as discussed in the study

made by the GMP group 1.

The reduction of an integer k modulo another integer p consists of finding the remainder of

the Euclidean division of k by p. This operation is costly. It can be substantially speeded up

by using the Montgomery reduction (we will now review this method as used in RNS) or by

using a special modulo.

Montgomery general reduction algorithm:

In [30], Montgomery proposed to substitute the reduction modulo p by a division by a power

of the radix β (i.e., a simple shift). The result is not exactly A mod p but Aβ−n mod p. This

problem can be overcome by using Montgomery representation where A′ = A × βn mod p in

this representation.

Algorithm 1: Montgomeryp(R)

Data: R = A×B < pβn and βn−1 ≤ p < βn

and a precomputed value (−p−1 mod βn);

Result: (q, r) such that r ≡ Rβ−n (mod p), with r < 2p;

q ← −R× p−1 mod βn ;

r ← (R+ qp)/βn ;

The complexity of this reduction is n2+n word operations [9]. Since all the computations can

be done in Montgomery representations, we ignore the cost of the conversion from Montgomery

to classic representation (and reciprocally). For A < βn, its Montgomery representation is
1Intel Pentium-4 gmp-mparam.h

#define MUL KARATSUBA THRESHOLD 23

#define MUL TOOM3 THRESHOLD 137

3

obtained via Algorithm 1 with R = A×(βn mod p). By the same way, if A′ is the Montgomery

representation of A, then we recover A using Algorithm 1 with R = A′. We note, as r < 2p,

that a comparison and a final subtraction could occur, but the output of Algorithm 1 can be

used as input by adding a condition on p, specifically 4p < βn.

Reduction using special modulo:

When using ECC, one can choose the underlying field without restrictions. In this case, the

cost of a modular reduction can be reduced to several shifts and additions. This is why the

generalized Mersenne number class was introduced [38, 14]. This is used in most of the standards

but the main drawback of this approach is that a dedicated architecture to a such a particular

p cannot be used for other prime fields. Consequently, it is not practical in either software or

hardware implementation and many customers prefer flexible products. For this reason we do

not consider this restrictive approach in this paper.

2.2 Leak-resistant arithmetic in elliptic curve cryptography

In all elliptic curve based schemes (such as encryption/decryption or signature generation/verification),

the dominant operation is the scalar multiplication of points on the curve. Hence, the efficiency

of this operation is crucial in elliptic curve cryptography. This is usually done by using standard

scalar multiplication methods such as double and add or sliding window methods combined with

recoding of the exponent.

However, these methods are not SPA-resistant because of the difference in complexity be-

tween addition and doubling operations. There are some methods to protect these algorithms.

For example, if one wants to protect a double and add algorithm against side-channel attacks,

extra (useless) additions can be performed [17]. In this way, for each bit of the exponent, we

perform both an addition and a doubling such that bits of the exponent are indistinguishable.

Unfortunately this protection is expensive and also vulnerable to fault attacks.

Currently there are two means to perform SPA-resistant arithmetic on elliptic curves. The

first uses unified addition formulae. This means that we use a representation of the curve

for which the addition and the doubling can be performed using the same formulae. In the

following, we will present unified formulae for three representations of the curve, i.e. the

Hessian form, the Jacobi form (leading to the most efficient formulae but not applicable to all

elliptic curves) and the short Weierstrass form (which is the general case). The second one

uses the Montgomery ladder where both an addition and a doubling are performed at each step

of the scalar multiplication algorithm. Again, in this case, the arithmetic is more efficient on

restrictive models of the curve and we will present both the restrictive and general model.

We are not interested in this paper in the protection against DPA. Indeed, in elliptic curve

cryptography, this problem is efficiently solved by randomizing the projective coordinates, the

base point or the scalar [17].

4

Unified addition formulae

The use of the Hessian form for a leak-resistant arithmetic has been introduced in [25]. An

elliptic curve over Fp is said to be in Hessian form if it is given by an equation of the form

X3 + Y 3 + Z3 = 3dXY Z

where d ∈ Fp and is not a third root of unity. Such curves have a point of 3-torsion, i.e., their

cardinality is divisible by 3. Consequently, not all elliptic curves can be given in this form. In

[25], Joye and Quisquater described formulae for the addition of two points (X1, Y1, Z1) and

(X2, Y2, Z2) for the elliptic curve in such a representation:
X3 = Y 2

1 X2Z2 − Y 2
2 X1Z1,

Y3 = X2
1Y2Z2 −X2

2Y1Z1,

Z3 = Z2
1X2Y2 − Z2

2X1Y1.

These formulae require 12 field multiplications and can be used for addition and doubling

because we have

2(X,Y, Z) = (Z,X, Y) + (Y,Z,X).

At the same time, the use of the Jacobi model was introduced by Liardet and Smart in

[29]. It is improved in [8] and, more recently, in [18]. It is easy to prove that any elliptic curve

containing a 2-torsion point is birationally equivalent to the Jacobi quartic given by an equation

of the form

Y 2 = εX4 − 2δX2Z2 + Z4,

where ε and δ are constants in Fp. In this case, the formulae for the addition of two points

(X1, Y1, Z1) and (X2, Y2, Z2) are also valid if the two points are the same.
X3 = X1Z1Y2 + Y1X2Z2,

Y3 =
(
Z2

1Z
2
2 + εX2

1X
2
2

)
(Y1Y2 − 2δX1X2Z1Z2)

+2εX1X2Z1Z2

(
X2

1Z
2
2 + Z2

1X
2
2

)
,

Z3 = Z2
1Z

2
2 − εX2

1X
2
2 .

In most cases, ε can be rescaled to a small value so that it is not too restrictive to neglect

multiplication by ε. Thus these formulae also require 12 multiplications, as explained in [18].

However, this method cannot be applied to any elliptic curve since the cardinality of a Jacobi

quartic is even.

In [11], Brier and Joye give unified formulae for a curve given in short Weierstrass form

(which is not restrictive over Fp, where p is a large prime number)

Y 2Z = X3 + aXZ2 + bZ3.

5

Again, formulae given for the addition of two points (X1, Y1, Z1) and (X2, Y2, Z2) are also valid

if the two points are the same.
X3 = 2λd

(
λ2

n − (X1Z2 +X2Z1)(Y1Z2 + Y2Z1)λd

)
,

Y3 = λn

(
3(X1Z2 +X2Z1)(Y1Z2 + Y2Z1)λd − 2λ2

n

)
− ((Y1Z2 + Y2Z1)λd)2 ,

Z3 = 2λ3
d,

where

λn = (X1Z2 +X2Z1)2 −X1X2Z1Z2 + aZ2
1Z

2
2 ,

λd = (Y1Z2 + Y2Z1)Z1Z2.

These formulae are valid for all elliptic curves but are less efficient since they require 18 field

multiplications. Note that by using an isomorphism or an isogeny as in [12], it is possible in

most cases to rescale a to a small value. We will explain this in detail in Section 4.3 within

Montgomery arithmetic context.

Montgomery scalar multiplication

Montgomery proposed in [31] to work only with the x-coordinate. Of course, the group law is

lost but traces remain. So doubling is still possible and the addition of two points P and Q is

possible if P −Q is known. Montgomery gives formulae for operations when the curve admits a

Montgomery form, which means that it can be defined by a (non general) equation of the type

By2 = x3 +Ax2 + x.

Proposition 1 Let E be an elliptic curve defined over Fp in Montgomery form. Let also

P = (Xp, Yp, Zp) and Q = (Xq, Yq, Zq) ∈ E(K) given in projective coordinates. Assume that

P − Q = (x, y) is known in affine coordinates. Then the X and Z-coordinates for P + Q and

2P are given by

Xp+q = ((Xp − Zp)(Xq + Zq) + (Xp + Zp)(Xq − Zq))2 ,

Zp+q = x ((Xp − Zp)(Xq + Zq)− (Xp + Zp)(Xq − Zq))2 ,

4XpZp =
(
(Xp + Zp)2 − (Xp − Zp)2

)
,

X2p = (Xp + Zp)2(Xp − Zp)2,

Z2p = 4XpZp

(
(Xp − Zp)2 + A+2

4 4XpZp

)
.

In this way, both an addition and a doubling takes only 3 multiplications and 2 squares, which

is much faster than usual operations ([16]). The fact that the difference P−Q must be known to

compute P +Q implies that a new algorithm must be used to compute the scalar multiplication

of a point G by an integer k. The solution is to use pairs of consecutive multiples of G, so that

the difference between the two components of the pair is always known and equal to G. The

scalar multiplication algorithm is as follows:

6

Algorithm 2: Montgomery Scalar()
Data: G ∈ E (Fp) and k ∈ Z
Result: x and z-coordinate of kG

Initialize T = (O, G) where O is the point at infinity;1

For i from |k|2 − 1 to 0 do;2

If ki = 0 then T = (2T [1], T [1] + T [2]);3

If ki = 1 then T = (T [1] + T [2], 2T [2]);4

return T [1];5

Both an addition and a doubling are done for each bit of the exponent. So the cost of this

algorithm is about 10|k|2 multiplications for a curve in Montgomery form which is better than

other available algorithms.

Moreover, the operations we have to perform do not depend on the bits of the exponent, so

this method has interesting leak-resistance properties.

Finally, x-coordinate of kG is usually sufficient but some cryptosystems, like ECDSA, require

y-coordinate. It can easily be recovered as explained in [32].

Unfortunately, in odd characteristic, all elliptic curves cannot be transformed into Mont-

gomery form. This is, for example, the case for most standards. The reason is that any curve

which can be transformed into Montgomery form has a 2-torsion point so its cardinality is not

prime (it is divisible by 2).

In general, the curve is defined by an equation of the form

y2 = x3 + ax+ b. (1)

This method can also be applied but is more time consuming ([11],[19] and [24]).

Proposition 2 Let E be an elliptic curve defined over Fp by (1). Let also P = (Xp, Yp, Zp)

and Q = (Xq, Yq, Zq) ∈ E(Fp) given in projective coordinates. Assume that P − Q = (x, y) is

known in affine coordinates. Then we obtain X and Z-coordinates for P + Q and 2P by the

following formulae:

Xp+q = −4bZpZq(XpZq +XqZp) + (XpXq − aZpZq)2,

Zp+q = x(XpZq −XqZp)2,

X2p =
(
X2

p − aZ2
p

)2 − 8bXpZ
3
p ,

Z2p = 4Zp

(
X3

p + aXpZ
2
p + bZ3

p

)
.

Addition can be performed in 10 multiplications and doubling in 9. Hence, the scalar

multiplication can be performed in about 19|n|2 multiplications on Fp which is not interesting

in terms of performance but it is in terms of leak-resistance. Note that the y-coordinate can

also be recovered in this case ([11]).

7

Proposition 3 Suppose that Q = P +G with G = (x, y), P = (xp, yp) and Q = (xq, yq). Then,

if y 6= 0, one has

yp = −2b+ (a+ x.xp)(x+ xp)− xq(x− xp)2

2y

With the Montgomery scalar multiplication method, we always perform both an addition

and a doubling for each bit of the exponent. Consequently, this method is resistant against side-

channel attacks which is the reason why this method is interesting even with 19 multiplications

per step.

In this paper, we will use Residue Number Systems (RNS) for the arithmetic on the base

field. The consequence is that the cost of the multiplication becomes negligible compared to the

cost of the modular reduction. Thus, it is necessary to rewrite the formulae given above in order

to minimize the number of modular reductions. Let us now briefly review this representation

system.

3 Residue Number Systems

3.1 Representation

The Residue Number Systems (RNS) are a corollary of the Chinese Remainder Theorem (CRT).

They are based on the fact that a number a can be represented by its residues (a1, a2, . . . , an)

modulo a set of coprime numbers (m1,m2, . . . ,mn), called RNS basis, thus ai = a mod mi =

|a|mi . We generally assume that 0 ≤ a < M =
∏n

i=1mi. The elements ai are called RNS-digits,

or simply digits if there is no ambiguity. The strongest advantage of a such system is that it

distributes large integer operations on the small residue values. The operations are performed

independently on the residues. These systems were introduced and developed in [21, 22, 39]. A

good introduction can be found in [26].

For constructing an arithmetic over Fp , we assume that M =
∏n

i=1mi is such that p < M .

In this system, two numbers a, and b can be represented by their remainders modulo the mi,

i = 1, . . . , n.

a = (a1, . . . , an) and b = (b1, . . . , bn)

A multiplication modulo M is reduced to n independent RNS-digit products. A RNS-digit

product is equivalent to a classical digit product followed by a modular reduction modulo mi,

which represents few additions (see [7, 6]).

r = (|a1 × b1|m1 , . . . , |an × bn|mn) ≡ a× b (mod M) (2)

It is clear that if a product is followed by an addition (MAC operation), the cost is just increased

by one addition on each modulo, and thus we consider that this operation is equivalent to a

product.

r = (|a1 × b1 + d1|m1 , . . . , |an × bn + dn|mn) ≡ a× b+ d (mod M) (3)

8

In this paper, we consider RNS base (m1, ...,mn) with elements such that, mi = 2k − ci,
where ci is small and sparse, ci < 2k/2. For example, for mi < 232, it is easy to find 16 coprime

values with ci = 2ti±1, with ti = 0...16 for ci = 2ti−1 and ti = 1...15 if ci = 2ti +1. This ensures

that ci < 216. Then, if we want more co-prime values, we can consider the ci = 2ti ± 2si ± 1.

The reduction modulo mi is, in this case, obtained with few shift and adds. For r < 22k

(for example the result of a MAC operation with operands lower than 2k), we consider that

r = rh2k + rl ≡ cirh + rl (mod mi) where the product by ci is just a shift and add processing.

Hence, if we note r′ = cirh + rl = r′h2k + r′l with r′ < 23k/2 when r < 22k, we ensure that

r” = cir
′
h + r′l ≤ 2(2k− 2k/2) < 2mi. This property ensures that the reduction part on each mi,

in the case of a product (or MAC) operations, represents around 10% of the cost [10, 7, 6].

In the following we consider that a RNS digit-product is equivalent to 1.1 word-product (word

= k-bits).

We now focus on the multiplication modulo p using the Montgomery algorithm presented

in [1, 2]. This algorithm for two numbers a and b given in RNS, actually evaluates r = abM−1

mod p. To obtain the right result, we need to use it again with r and (M2 mod p) as operands.

To avoid this, we convert the values in a Montgomery representation where a′ = a×M mod p

which is stable for Montgomery product and addition. This conversion is done once at the

beginning by performing Montgomery product with a and (M2 mod p) as operands, and once

at the end of the complete cryptographic computing with 1 as second operand. Hence, this

transformation will be neglected in the following. Moreover, as the RNS is not redundant, this

representation is well suited for cryptography without any conversion [4].

3.2 RNS Montgomery reduction

This algorithm is a direct transposition of the classical Montgomery method. The main differ-

ence is due to the representation system. When the Montgomery method is applied in a classical

radix β number system, the value βn occurs in the reduction, division and Montgomery factor.

In RNS, this value is replaced by M . Thus an auxiliary RNS base is needed to handle the

inverse of M . Hence some operation as the initial product will be performed on the two bases,

which cost 2n words-products.

Algorithm 3 presents the RNS Montgomery reduction (c can be considered as the result of

an RNS product on the two bases), where all the operations considered are in RNS. We clarify

on which basis they are done.

9

Algorithm 3: MontgR RNS(c, p)
Data: Two RNS bases B = (m1, . . . ,mn), and B′ = (mn+1, . . . ,m2n), such that

M =
∏n

i=1mi < M ′ =
∏n

i=1mn+i and gcd(M,M ′) = 1 ;

A positive integer p represented in RNS in both bases such that 0 < 4p < M and

gcd(p,M) = 1 (p is prime);

A positive integer c represented in RNS in both bases, with c < Mp.

Result: A positive integer r ≡ cM−1 (mod p) represented in RNS in both bases, with

r < 2p.

begin

q ← (c)× (−p−1) in B;1

[q in B] −→ [q in B′] First base extension;2

r ← (c+ q × p)×M−1 in B′ ;3

[r in B]←− [r in B′] Second base extension;4

end

Instructions 1 and 3 of Algorithm 3 deal with RNS operations as presented in the previous

section, which are performed independently for each element of the basis, so they are very

efficient. These two instructions are linear (or constant number of words-operations on a n cells

architecture) Instructions 2 and 4 represent RNS base extensions which are quadratic (or linear

on an n-cell architecture) are costly. To reduce this cost, we can use two different full RNS

extensions as shown in [1, 2]. The extension to base B′ of q (instruction 2), obtained in its RNS

form (q1, . . . , qn) in the base B. In other words, q is computed modulo M , and (c+ q × p) is a

multiple of M which can be divided by M in B′ by multiplying with M−1.

3.3 RNS Base extensions

We consider that we use bases of the following form: mi = 2k − ci with ci = 2ti ± 1 (or

ci = 2ti ± 2si ± 1 if we need more elements, see Annexes) and ci < 2
k
2 (for ECC k can be equal

to 32, for keys up to 1024 bits and maybe more). Due to that fact, the best choice for the

base extension is done with first a Mixed Radix conversion and then a Horner evaluation (it is

related to a Newton interpolation approach).

The MRS Representation of (ã1, ã2, · · · , ãn) of the integer a given in its RNS representation

(a1, a2, · · · , an) is obtained with:

10

ã1 = a1

ã2 =
∣∣∣(a2 − ã1)m−1

1,2

∣∣∣
m2

ã3 =
∣∣∣∣(∣∣∣(x3 − ã1)m−1

1,3

∣∣∣
m3

− ã2)m−1
2,3

∣∣∣∣
m3

ã4 =

∣∣∣∣∣(
∣∣∣∣(∣∣∣(x4 − ã1)m−1

1,4

∣∣∣
m4

− ã2)m−1
2,4)
∣∣∣∣
m4

− ã3)m−1
3,4

∣∣∣∣∣
m4

...

ãn =

∣∣∣∣∣(.
∣∣∣∣(∣∣∣(xn − ã1)m−1

1,n

∣∣∣
mn

− ã2)m−1
2,n)
∣∣∣∣
mn

− .− ãn−1)m−1
n−1,n

∣∣∣∣∣
mn

(4)

where m−1
i,j is the inverse of mi modulo mj

Then, the reconstruction of A is given by:

A = ã1 +m1(ã2 +m2(ã3 · · ·+mn−2(ãn−1 +mn−1ãn) · · ·)) (5)

We point out that this transformation does not need any products, only shifts and adds. We

transpose this equation modulo the elements of the new RNS base B′ with j = n+ 1...2n.

aj =
∣∣ã1 +m1|ã2 +m2|ã3 · · ·+mn−2|ãn−1 +mn−1ãn|mj · · · |mj |mj

∣∣
mj

(6)

The two base extensions of Algorithm 3 are similar.

3.4 Analysis of the complexity

In the literature, the complexity is given in number of word-multiplications. So, we present

here the cost of Algorithm 3 by counting the multiplications needed.

In step 1 and 3 the evaluations of q and r are made in RNS independently for each modulus.

The value q is computed on base B that represents n multiplications by a constant value |p|−1
mi

.

The calculation of r is performed by 2n multiplications in base B′.
Now for the base extension, multiplications occur only in the conversion to Mixed Radix

given by Equation 4. The number of multiplications by a constant (the |mi|−1
mj

) is n2−n
2 .

TRNS−MRS(n) =
n2 − n

2
RNSdigit-products (7)

In the conversion from MRS to RNS, the basic operation |a + mib|mj corresponds to few

shifts and adds. Indeed, a+mib = a+ 2kb− 2tib± b can be done in two additions (a+ 2kb is

just a concatenation). We had seen that the reduction modulo mj represents 3 additions (cia′h
is a concatenation). We note another point: we can deal with values lower than 2mj instead of

mj . In fact we only need a value lower than mi in the RNS-MRS conversion part. This remark

implies that ci < 2
k
2
−1 for a direct reuse of the result of one step in the Horner chain. Thus,

the evaluation of each aj needs 5n word-additions. As the product is the basic operation for

most of the complexity studies found in the literature, we consider that these 5 word-additions

11

are equivalent to 1
5 of an RNSdigit-product [10]. Hence the complexity of the conversion from

MRS to RNS represents:

TMRS−RNS(n) =
1
5

(n2 − n) RNSdigit-products (8)

As we need two extensions in Algorithm 3, the total complexity of this algorithm is :

TAlgo3(n) = n2 − n+
2
5

(n2 − n) + 3n =
7
5
n2 +

8
5
n RNSdigit-products (9)

This is asymptotically better than previous result which are in O(n2).

If we operate with an architecture of n basic word-arithmetic cells, Algorithm 3 can be

performed in a parallel manner. In this case, due to the independency of the RNS, the evaluation

requires, (n−1) steps for the conversion RNS-MRS, and 1
5(n−1) for the RNS-MRS conversion,

one step for each RNS product. Hence, a parallel evaluation of Algorithm 3 can be done in
12
5 n+ 3

5 steps.

3.5 Discussion of the advantages

Even though the number of operations needed for the reduction is somewhat higher than in a

classical representation (n2 + n words products for the classical Montgomery reduction), RNS

has some important advantages. If we assume that for ECC size the multiplication needs

n2 word-products, the RNS approach proposed in this paper is quite interesting for a modular

multiplication which represents 2n2+n word-products in classical systems and
(

7
5n

2 + 18
5 n
)
×1.1

in RNS.

However, if we count separately the multiplication and the modular reduction, with the

property that a RNS multiplication needs only 2n RNSdigit-products or 2.2n word-products,

the advantage of the RNS appears more clearly. This point is developed in the rest of the paper

where by reformulating additions on elliptic curves, we propose solutions up to 30% better than

the classical approaches.

Furthermore, RNS is easy to implement, particularly in hardware, and it provides a reduced

cost for multiplication and addition and a competitive modular reduction. Furthermore, due

to the independence of the modular operations, with RNS, computations can be performed in

a random way and the architecture can be parallelized.

Parallelization of the architecture, with n basic operators, has a time complexity of 2 mod-

ular digit-operations for the multiplication (or multiplication-addition) and 12
5 n + 3

5 for the

modular reduction. This indicates that if we accumulate some operations (i.e., sum of prod-

ucts) before reduction we obtain an efficient implementation ([3]). We develop this approach

in the next section with ECC.

The last advantage of the RNS is the flexibility of the architecture. With a given structure of

n modular digit operators, it is possible to handle many values of p which satisfy : 4×p < M . If

we refer to Algorithm 3, we note that the only values depending on p are: ‖p‖mi for i = 1, ..., n.

12

Thus, by reinitializing these pre-computed values, the system can be adapted for a new value of

p. If p is relatively small as compared to M , we can adjust the RNS base by reducing it by some

mi. In this case, we will use partial RNS bases (m1, ...,mñ) and (mn+1, ...,mn+ñ) with ñ < n.

With a control part which takes ñ into account, we can assume that the system performance

depends on the size of p.

Hence, the RNS approach proposed in this paper offers different levels of adaptability and

scalability. We also note that all the products which occur in the RNS conversions, are, at least,

with a constant value. Another point is that we present a solution with no specific values for the

inverses of the bases, but it is shown in [6] that specific bases exist. In this case, we can achieve

a complexity lower than n2 RNS digit-products for Algorithm 3, where many multiplications

are replaced by additions if the inverses of the mi modulo the following elements of the bases

are sparse. However, these last cases are available for elements composed of more than 32 bits.

4 SPA-resistant arithmetic on elliptic curves optimized for RNS

representation

The aim of this section is to rewrite or modify the formulae given in section 2.2 in order to

minimize the number of modular reductions, since this is the most expensive operation in RNS

representation. Thus we have to group together several multiplications and perform only one

reduction.

4.1 Unified addition formulae

This can be well illustrated by the formulae for Hessian elliptic curves. We give here the steps

required to compute the sum of two points (X1, Y1, Z1) and (X2, Y2, Z2). The costs are given

by the number of modular reductions.

step operations red. mul.

computation of A = X2Y1, B = Y1Z2, C = X1Y2 3 3

intermediate products D = Y2Z1, E = X1Z2, F = X2Z1 3 3

computation of X3 AB − CD 1 2

computation of Y3 EC − FA 1 2

computation of Z3 EB − FD 1 2

Thus the total cost in RNS representation is 9 modular reductions, which has to be compared

to the 12 base field multiplication in standard representation.

Concerning the Jacobi quartic, the cost in terms of modular reductions (and the formulae)

is given in [18] and is equal to 10, whereas 12 multiplications are necessary.

13

Finally, we give details of the steps for computing the sum of two points using unified

addition formulae for a curve given in short Weierstrass form.

step operations red. mul.

computation of λn A = X2Z1, B = X1Z2, 2 2

C = Z1Z2, D = aC 2 2

λn = (A+B)2 −AB + CD 1 3

computation of λd E = Y1Z2 + Y2Z1 1 2

λd = EC 1 1

intermediary F = Eλd, G = λ2
n 2 2

computations H = F (A+B) 1 1

computation of X3 2λd(G−H) 1 1

computation of Y3 λn(3H − 2G)− F 2 1 2

computation of Z3 2λ3
d 2 2

In this case, the total cost in RNS is 14 modular reductions, whereas 18 multiplications must

be performed.

Thus, for all known unified formulae, computation of the addition requires fewer reductions

than multiplications. This means thatusing the RNS representation can become attractive in

terms of performance. In addition, it has all the advantages described in Section 3.5. A detailed

comparison is given in Section 5 .

4.2 Montgomery formulae

In this section, we are interested in the Montgomery ladder. In the restrictive case of curves in

Montgomery form (the cardinality of the curve is even), both 10 multiplications and modular

reductions are required. Moreover, it is easy to see that it is not possible to have a better result

because of the degree of the formulae. The general case of curves in Weierstrass form is much

more interesting. Indeed, one can do better than re-using the formulae described in Section 2.2.

Following the strategy used for the unified addition formulae leads to 16 modular reductions

and 19 multiplications. Slightly rewriting the formulae given in Section 2.2 already makes it

possible to perform only 15 modular reductions. It is actually possible to further reduce this

complexity by resuming, from the beginning, the Montgomery ladder from a more theoretical

standpoint.

The Montgomery ladder is based on the fact that the y-coordinate has only minor informa-

tion. Indeed, it only allows to distinguish a point and its opposite (or equivalently a point and

its image under the hyperelliptic involution). Thus the Montgomery ladder only deals with the

x-coordinate. From a theoretical standpoint, this means that we are working on the quotient

of the curve by the hyperelliptic involution: the Kummer variety. Of course, taking such a

quotient implies that it is not possible to add two different points since P +Q and P −Q are

14

not equal in the Kummer variety. However, doubling is still possible (it is easy to discern P +P

and P − P = O) and if P − Q is known, it is possible to discern P + Q and P − Q. More

precisely, it is proved in [20] that there are biquadratic forms Mx, Mz and Mxz, such that for

any points P = (Xp, Zp) and Q = (Xq, Zq) on the Kummer variety, we have

2Xp+qXp−q = Mx

Xp+qZp−q +Xp−qZp+q = Mxz

2Zp+qZp−q = Mz

with

Mx = (XpXq − aZpZq)2 − 4bZpZq(ZpXq +XpZq),

Mxz = XpXq(ZpXq +XpZq) + ZpZq(a(ZpXq +XpZq) + 2bZpZq)

Mz = (ZpXq −XpZq)2

If P − Q is known, one can easily deduce formulae to compute Xp+q and Zp+q from these

biquadratic forms. In fact, only two of the biquadratic forms are necessary. For instance,

formulae obtained (in another way) by Brier and Joye in [11] and given in Proposition 2 can

be easily deduced from Mx and Mz. Here, we will use Mxz and Mz, in order to minimize the

number of modular reductions. In the context of the Montgomery ladder (Algorithm 2), the

difference between the two points we want to add is always the base point G = (x, y), which is

given in affine coordinates so that Zp−q = 1 and Xp−q = x. Thus we obtain

Xp+q = 2(Mxz − xZp+q)

Zp+q = Mz

Let us note that the theory of Kummer varieties also provides formulae for doubling but these

always lead to the same formulae as in Proposition 2. Therefore, we have the following theorem.

Theorem 1 Let p be a prime number and E be an elliptic curve defined over Fp by (1). Let

also P = (Xp, Yp, Zp) and Q = (Xq, Yq, Zq) ∈ E(Fp) given in projective coordinates. Assume

that P − Q = (x, y) is known in affine coordinates. Then we obtain the X and Z-coordinates

for P +Q and 2P in terms of the X and Z-coordinates for P and Q by the following formulae:

Xp+q = 2 (XpXq(ZpXq +XpZq) + ZpZq(a(ZpXq +XpZq) + 2bZpZq)− xZp+q) ,

Zp+q = (XpZq +XqZp)2 − 4XpXqZpZq,

X2p =
(
X2

p − aZ2
p

)2 − 8bXpZ
3
p ,

Z2p = 4XpZp

(
X2

p + aZ2
p

)
+ 4bZ4

p .

Finally, we give details of the steps for computing the sum of two points and the doubling of a

point

15

step operations red. mul.

preliminary A = ZpXq +XpZq 1 2

computations B = 2XpXq, C = 2ZpZq 2 2

computation of Zp+q A2 −BC 1 2

computation of Xp+q D = aA+ bC 1 2

BA+ CD + 2xZp+q 1 3

preliminary A = 2XpZp 1 1

computations B = X2
p , C = Z2

p 2 2

D = −4bA, E = aA 2 2

computation of X2p BD + (C − E)2 1 2

computation of Z2p 2B(C + E)−AD 1 2

In this case, the total cost for each bit of the exponent in RNS representation is 13 modular

reductions and 20 multiplications whereas 19 base field multiplications must be performed in a

standard representation. Hence the use of an arithmetic which complexity is concentrated on

the reduction step (as the RNS) becomes very attractive with these formulae.

It is interesting to note that, contrary to the case of the standard representation, the extra cost

for curves in short Weierstrass form compared to (more specific) curves in Montgomery form is

not too large (33% in RNS representation compared to 90% in standard representation).

Lastly, if a (or b) is a small number, the cost becomes 12 modular reductions whereas 17 base

field multiplications must be performed in a standard representation. Let us now show that we

can almost always assume that either a or b is small.

4.3 Rescaling the constant to a small value

This section is not specific to the RNS representation and can be applied in other contexts. It

is motivated by the fact that there are 2 multiplications by a in the general formulae for the

Montgomery ladder. Thus, the gain will be attractive if a can be rescaled to a small value.

The standard way to perform such a rescaling is to find a small k such that a
k is a fourth

power u4 in Fp and to use the isomorphism (x, y) 7→
(

x
u2 ,

y
u3

)
to send E on the curve E′ defined

by the equation y2 = x3 + a
u4x+ b

u6 . The probability for an element of Fp to be a fourth power

is only 1
4 and we can obtain a better result in the context of the Montgomery ladder. Indeed,

y is not used in this representation so only u2 will be used and it is actually sufficient that a
k is

a square in Fp. The isomorphism is now defined over Fp, so that it is easier to use a change of

variables to describe the rescaling.

Theorem 2 Let E be an elliptic curve defined over Fp by (1) and k be a small integer such

that a
k is a square v2 in Fp. Let also P = (Xp, Yp, Zp) and Q = (Xq, Yq, Zq) ∈ E(Fp) given

in projective coordinates. Assume that P − Q = (x, y) is known in affine coordinates. Put

Z ′ = vZ. If b′ = b
v3 and x′ = x

v are precomputed, we obtain the X and Z ′-coordinates for P +Q

16

and 2P in terms of the X and Z ′-coordinates for P and Q by the following formulae:

Xp+q = −4b′Z ′pZ
′
q(XpZ

′
q +XqZ

′
p) + (XpXq − kZ ′pZ ′q)2,

Z ′p+q = x′(XpZ
′
q −XqZ

′
p),

X2p =
(
X2

p − kZ ′2p
)2 − 8b′XpZ

′3
p ,

Z ′2p = 4Z ′p
(
X3

p + kXpZ
′2
p + b′Z ′3p

)
.

In this case, addition can be performed in 9 multiplications and doubling in 8. The same idea

can be applied to formulae optimized for the RNS representation given in Section 4.2.

As the constraint on k has been relaxed (a
k must be a square, not necessarily a fourth

power), it is easier to rescale a to a small value in the context of Montgomery ladder than in

the general context. Using the properties of the Legendre symbol, it is easy to prove that k is

either 1 or the smallest non-square in Fp and that the proportion of prime fields such that the

n first prime numbers are squares is only 1
2n .

Anyway, if k is too large to assume that the multiplication by k can be neglected, there

is another way to rescale a to a small value. This method uses isogenies and is explained in

[12]. Finally, the method explained for rescaling a to a small value can also be applied to b

if there is a small k such that 4b
k is a cube in Fp which leads to the same gain (2 multiplications).

In conclusion, the probability that neither a nor b can be rescaled (by using Z ′ or isogenies)

to a small value is very low, especially in the Montgomery ladder context.

5 Performance Comparisons

In this section, we compare the complexities of our approach to those using Montgomery mod-

ular multiplication.

First, we summarize the complexities for base field operations in Table 1. Table 2 (resp. 3)

Operation RNS (in RNSdigit-products) Montgomery (in word-products)

Multiplication 2n n2

Reduction 7
5n

2 + 8
5n n2 + n

Table 1: Number of word-products for performing a multiplication and a modular reduction in

RNS and with Montgomery approach for two n-word integers. A RNSdigit-product is equivalent

to 1.1 word-product (see section 3.1).

shows the number of operations required for a doubling or an addition (resp. a doubling and

an addition) for the different representations of the curve we chose to deal with in this paper.

It is then easy to deduce the global complexity in each case. For instance, one step of

the Montgomery exponentiation algorithm using the formulae given in Section 2.2 (for the

17

Curve representation RNS representation Standard representation

Hessian form 9 red. and 12 mul. 12 mul. and 9 red.

Jacobi form 10 red. and 12 mul. 12 mul. and 10 red.

Unified Weierstrass form 14 red. and 18 mul. 18 mul. and 14 red.

Table 2: Optimal number of operations in RNS and standard representation for an unified

addition

Curve representation RNS representation Standard representation

Montgomery ladder 13 red. and 20 mul. 19 mul. and 16 red.

Montgomery ladder (a small) 12 red. and 18 mul. 17 mul. and 14 red.

Table 3: Optimal number of operations in RNS and standard representation for each bit of the

exponent of a Montgomery ladder

Montgomery approach) or section 4.2 (for our approach) when a is small requires 17n2+14(n2+

n) operations with Montgomery modular multiplication, and
(
18(2n) + 12(7

5n
2 + 8

5n)
)
× 1.1

using RNS. We summarize, in Table 4, the word complexity for each representation of the

curve we considered in this paper (i.e., those having SPA-resistance properties). We also give

these complexities for usual ECC sizes for a 32-bit architecture. All these complexities are

given for one basic step of the scalar multiplication. For Montgomery ladder, such a step

always requires both an addition and a doubling, so that the complexities are easy to compute.

For unified formulae, we assume that this step requires 1.25 unified additions in average using,

for example, a sliding window method with window size 3. This is not necessarily the best

choice (for example in 512 bits) but this has no incidence on our comparisons.

It is interesting to note that the complexities we obtain in RNS are always asymptotically

better than in the Montgomery representation. This is due to the fact that we optimized

formulae on elliptic curves in order to minimize the number of reductions. As a consequence,

our method becomes more interesting for high level of security. For example, the gain obtained

is anecdotal for unified formulas in 192 bits but becomes interesting for higher level of security.

The gain is even important for the Montgomery ladder because we discovered new formulae

which are well adapted to the RNS representation of numbers. Moreover, all of the advantages

of the RNS arithmetic become evident when a parallel architecture is used.

Indeed, assuming that we have an architecture equivalent to n word-operators on a single

word-bus, Table 5 shows the complexities of the different approaches in number of word oper-

ations. Note that we only give these complexities in the case of the Montgomery ladder with a

small in order to simplify the paper. The complexities for the other curves representations can

be easily deduced from Table 4.

The estimation of the cost for the multiplication and for the Montgomery parallel product

18

Curve representation size in bit RNS Montgomery ratio in %

Hessian form 32n 1.25
(
12.6n2 + 38.4n

)
× 1.1 1.25(21n2 + 9n)

192 940.5 1012 7 %

256 1531.2 1770 13.5 %

512 5280 6900 23.5 %

Jacobi form 32n 1.25
(
14n2 + 40n

)
× 1.1 1.25(22n2 + 10n)

192 1023 1065 4 %

256 1672 1860 10 %

512 5808 7240 19.5 %

Unified Weierstrass form 32n 1.25
(
19.6n2 + 58.4n

)
× 1.1 1.25(32n2 + 14n)

192 1452 1545 6 %

256 2367.2 2700 12 %

512 8184 10520 22 %

Montgomery ladder 32n
(
18.2n2 + 60.8n

)
× 1.1 35n2 + 16n

192 1122 1356 17 %

256 1816.32 2368 23 %

512 6195.2 9216 32.5 %

Montg. ladder (a small) 32n
(
16.8n2 + 55.2n

)
× 1.1 31n2 + 14n

192 1029.6 1200 14 %

256 1668.48 2096 20 %

512 5702.4 8160 30 %

Table 4: Cost in word-products (32-bits) of one scalar multiplication iteration

are based on systolic implementations [33] or on parallel implementations [13, 37], where the

given architectures are respectively in O(n2/log(n)2) and O(n2) for the area and O(log(n))

for the time. As we did not find an explicit complexity for multiplication using a O(n) area

architecture, we give two values for the complexity. The first one is minimal but certainly not

realistic. The second one, which is not necessarily optimal, takes into account that

• each product of a number by a digit will produce two numbers (high and low parts),

• a carry-save adder will need an extra register for storing the carry and a final adder for

absorbing these carries,

• 32-bit words look-up tables are not reasonable.

Then, to get an idea with ECC key size, we compare three different implementations in table 6

for the number of operations required for one step of the Montgomery scalar multiplication on

an elliptic curve in Weierstrass form with a small.

In this configuration, the RNS becomes very interesting compared to the Montgomery arith-

metic in terms of efficiency for a leak-resistant implementation of elliptic curve cryptosystems,

even if we use our non-realistic lower bound for the comparison.

19

Operation RNS Montgomery

Multiplication 2× 1.1 n . . . 2n

Reduction
(

12
5 n+ 3

5

)
× 1.1 2n . . . 3n

One iteration of algorithm 2 31.68n+ 47.52 44n . . . 75n

Table 5: Number of cycles with parallel implementations on an n word-operators structure.

|p|2 word RNS Montgomery ratio inc

192 6 237.6 264 . . . 450 10%. . . 47%

256 8 300.96 352. . . 600 14.5%. . . 50%

512 16 554.4 704. . . 1200 21%. . . 54%

Table 6: Comparison of parallel implementations

6 Practical implementation

The aim of this paper was to study the interest of combining leak-resistant arithmetic on elliptic

curves and RNS representation of numbers. Even if it was not the goal of this paper, a practical

implementation was necessary to validate the good results obtained. Such an implementation,

based on this paper, has now been done by Guillermin in [23]. The FPGA implementation

obtained is the fastest one for elliptic curves defined over non-Mersenne prime field. This

proves that the work done in this paper is not only theoretically interesting and that RNS

representation is promising for elliptic curve cryptography.

7 Conclusion

Combining Residue Number System and SPA-resistant arithmetic on elliptic curves, we obtain

an efficient and secure implementation of elliptic curves cryptosystems on embedded devices

especially if a parallel architecture is used.

Since the expensive operation in RNS is the reduction, we proposed to rewrite formulae for

elliptic curve SPA-resistant arithmetic in order to minimize the number of reductions even if the

number of multiplications is increased. In the case of the Montgomery ladder on elliptic curves

in Weierstrass form, we obtained new formulae which are better suited to RNS representation

of numbers and we explain why multiplications by one of the coefficients of the curve can be

neglected in most cases.

We also give an in-depth analysis of the complexity of the Montgomery reduction. We thus

realized that some improvements could be made to obtain a final complexity of 7
5n

2 + 8
5n for a

n-word number.

20

It is clear that, without the results we obtained in these two directions, the combination of

RNS arithmetic and elliptic curves will be possible but less convincing. Thus, we theoretically

obtain an efficient leak-resistant arithmetic especially for high security levels and in the case

of the Montgomery ladder on elliptic curves in Weierstrass form. Moreover these results have

been recently successfully validated by a very efficient FPGA implementation [23]

Our approach is particularly interesting from a hardware standpoint since the RNS repre-

sentation of numbers has many advantages (easy to implement and parallelize, flexibility). It

is also very attractive in the case of a dedicated parallel architecture.

References

[1] Bajard, J.C., Didier, L.S., Kornerup, P.: A RNS Montgomery’s Modular Multiplication.

IEEE Transactions on Computers, volume 47, no. 7, July 1998.

[2] Bajard, J.C., Didier, L.S., Kornerup, P.: Modular multiplication and base extension in

residue number systems. 15th IEEE Symposium on Computer Arithmetic, IEEE Computer

Society Press (2001) 59–65.

[3] Bajard, J.C., Duquesne, S., Ercegovac M. and Meloni N.: Residue systems efficiency for

modular products summation: Application to Elliptic Curves Cryptography, in Advanced

Signal Processing Algorithms, Architectures, and Implementations XVI, part of the SPIE

Optics & Photonics 2006 Symposium. August 2006 San Diego, USA.

[4] Bajard, J.C., Imbert, L.: A full RNS implementation of RSA. IEEE Transactions on Com-

puters 53:6 (2004) 769–774.

[5] Bajard, J.C., Imbert, L., Liardet, P.Y., Teglia, Y.: Leak resistant arithmetic. CHES 2004,

LNCS 3156 59–65.

[6] Bajard, J.C., Kaihara, M., Plantard Th.: Selected RNS Bases for Modular Multiplication

in Proceedings of the 19th IEEE symposium on Computer Arithmetic (ARITH 19) June

2009, Portland, USA.

[7] Bajard, J.C., Meloni, N., Plantard, T.: Efficient RNS bases for Cryptography IMACS’05,

Applied Mathematics and Simulation, (2005).

[8] Billet, O., Joye, M.: The Jacobi Model of an Elliptic Curve and Side-Channel Analysis.

Applied Algebra, Algorithms and Error-Correcting Codes, LNCS 2643 (2003) 34–42.

[9] Bosselaers, A., Govaerts, R., Vandewalle. J.: Comparison of the three modular reduction

functions LNCS 773 (1994) 175–186.

21

[10] Brent, R.P., Kung, H.T.: The Area- Time Complexity of Binary Multiplication. Journal

of the Association for Computing Machinery, Vol 28, No 3, July 1981, 521–534.

[11] Brier, E., Joye, M.: Weierstrass Elliptic Curves and Side-Channel Attacks. Public Key

Cryptography, LNCS 2274 (2002) 335–345.

[12] Brier, E., Joye, M.: Fast Point Multiplication on Elliptic Curves Trough Isogenies, Applied

Algebra, Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., vol.2643,

Springer, Berlin, 2003, pp. 43–50.

[13] Bunimov, V., Schimmler, M.: Efficient Parallel Multiplication Algorithm for Large Integers

Euro-Par 2003, International Conference on Parallel and Distributed Computing (2003)

923–928.

[14] Chung, J., Hasan, A.: More generalized mersenne numbers. SAC 2003, LNCS 3006 (2003)

335–347

[15] Ciet, M., Neve, M., Peeters, E., Quisquater, J.J.: Parallel FPGA implementation of RSA

with residue number systems– can side-channel threats be avoided? 46th IEEE International

Midwest Symposium on Circuits and Systems (2003).

[16] Cohen, H., Frey, G.: Handbook of elliptic and hyperelliptic curve cryptography. Discrete

Math. Appl., Chapman & Hall/CRC (2006).

[17] Coron, J.S.: Resistance against differential power analysis for elliptic curve cryptosystems.

CHES’99, LNCS 1717 (1999) 292–302.

[18] Duquesne, S.: Improving the Arithmetic of Elliptic Curve in Jacobi Model. Information

Processing Letters 104:3 (2007) 101–105.

[19] Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J. P.: Parallel scalar multiplication

on general elliptic curves over Fp hedged against Non-Differential Side-Channel Attacks.

Preprint.

[20] Flynn, E.V.: An explicit theory of heights. Trans. Amer. Math. Soc. 347:8 (1995) 3003–

3015.

[21] Svoboda, A. and Valach, M.: Operational Circuits. Stroje na Zpracovani Informaci,

Sbornik III, Nakl. CSAV, Prague, (1955) 247-295.

[22] Garner, H.L.: The residue number system. IRE Transactions on Electronic Computers,

EL 8:6 (1959) 140–147.

[23] Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications over Fp.

CHESS 2010, LNCS (2010)

22

[24] Izu, T., Takagi, T.: A Fast Parallel Elliptic Curve Multiplication Resistant against Side

Channel Attacks. Public Key Cryptography, LNCS 2274 (2002) 280–296.

[25] Joye, M., Quisquater, J.J.: Hessian Elliptic Curves and Side-Channel Attacks. CHES 2001,

LNCS 2162 402–410.

[26] Knuth, D.: Seminumerical Algorithms. The Art of Computer Programming, vol. 2.

Addison-Wesley (1981).

[27] Kocher, P.C.: Timing attacks on implementations of DH, RSA, DSS and other systems.

CRYPTO’96, LNCS 1109 (1996) 104–113.

[28] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. CRYPTO’99, LNCS 1666

(1999) 388–397.

[29] Liardet, P. Y., Smart, N.: Preventing SPA/DPA in ECC systems using the Jacobi form.

CHESS 2001, LNCS 2162 391–401.

[30] Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. 44:170

(1985) 519–521.

[31] Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math.

Comp. 48:177 (1987) 243–164

[32] Okeya, O., Sakurai, K.: Efficient Elliptic Curve Cryptosystems from a Scalar Multiplica-

tion Algorithm with Recovery of the y-Coordinate on a Montgomery-Form Elliptic Curve.

Cryptographic Hardware and Embedded Systems, LNCS 2162 (2001) 126–141.

[33] G. Orlando and C. Paar. A scalable GF(p) elliptic curve processor architecture for pro-

grammable hardware. In Proceedings of Workshop on Cryptographic Hardware and Em-

bedded Systems (CHES 2001)

[34] Posch, K.C., Posch, R.: Modulo reduction in residue number systems. IEEE Transaction

on Parallel and Distributed Systems 6:5 (1995) 449–454.

[35] Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-

measures for Smart Cards. e-smart 2001, LNCS 2140 (2001) 200–210.

[36] Shenoy, A.P., Kumaresan, R.: Fast base extension using a redundant modulus in RNS.

IEEE Transactions on Computer 38:2 (1989) 292–296.

[37] Sanu, M.O., Swartzlander, E.E., Chase, C.M.: Parallel Montgomery Multipliers. 15th

IEEE International Conference on Application-Specific Systems, Architectures and Proces-

sors (ASAP’04) (2004) 63–72.

23

[38] Solinas, J.: Generalized Mersenne numbers. Research Report CORR-99-39, Center for

Applied Cryptographic Research, University of Waterloo (1999)

[39] Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Applications to Computer Technol-

ogy. McGraw-Hill (1967)

Annexes

16 coprimes of 32 bits with ci = 2ti ± 1 < 212

m1 = 100000000000000000000000000000000

m2 = 11111111111111111111111111111111

m3 = 11111111111111111111111111111101

m4 = 11111111111111111111111111111011

m5 = 11111111111111111111111111110111

m6 = 11111111111111111111111111110001

m7 = 11111111111111111111111111101111

m8 = 11111111111111111111111111011111

m9 = 11111111111111111111111111000001

m10 = 11111111111111111111111110111111

m11 = 11111111111111111111111101111111

m12 = 11111111111111111111111100000001

m13 = 11111111111111111111110111111111

m14 = 11111111111111111111101111111111

m15 = 11111111111111111111011111111111

m16 = 11111111111111111111000000000001

18 coprimes of 32 bits with ci = 2ti ± 1 < 215

m1 = 100000000000000000000000000000000

m2 = 11111111111111111111111111111111

m3 = 11111111111111111111111111111101

m4 = 11111111111111111111111111111011

m5 = 11111111111111111111111111110111

m6 = 11111111111111111111111111110001

m7 = 11111111111111111111111111101111

m8 = 11111111111111111111111111011111

m9 = 11111111111111111111111111000001

m10 = 11111111111111111111111110111111

m11 = 11111111111111111111111101111111

m12 = 11111111111111111111111100000001

m13 = 11111111111111111111110111111111

m14 = 11111111111111111111101111111111

m15 = 11111111111111111111011111111111

m16 = 11111111111111111111000000000001

m17 = 11111111111111111110111111111111

m18 = 11111111111111111101111111111111

24

64 coprimes of 32 bits with ci = 2ti ± 2si ± 1 < 215

m1 = 100000000000000000000000000000000

m2 = 11111111111111111111111111111111

m3 = 11111111111111111111111111111101

m4 = 11111111111111111111111111111011

m5 = 11111111111111111111111111110111

m6 = 11111111111111111111111111110001

m7 = 11111111111111111111111111101111

m8 = 11111111111111111111111111101001

m9 = 11111111111111111111111111100101

m10 = 11111111111111111111111111100011

m11 = 11111111111111111111111111011111

m12 = 11111111111111111111111111010001

m13 = 11111111111111111111111111000001

m14 = 11111111111111111111111110111111

m15 = 11111111111111111111111110100001

m16 = 11111111111111111111111110001001

m17 = 11111111111111111111111101111111

m18 = 11111111111111111111111101111001

m19 = 11111111111111111111111101110001

m20 = 11111111111111111111111101100001

m21 = 11111111111111111111111100011111

m22 = 11111111111111111111111100000001

m23 = 11111111111111111111111010000001

m24 = 11111111111111111111111000111111

m25 = 11111111111111111111111000100001

m26 = 11111111111111111111111000000101

m27 = 11111111111111111111111000000011

m28 = 11111111111111111111110111111111

m29 = 11111111111111111111110111110001

m30 = 11111111111111111111110111000001

m31 = 11111111111111111111110110000001

m32 = 11111111111111111111110001111111

m33 = 11111111111111111111110001000001

m34 = 11111111111111111111110000010001

m35 = 11111111111111111111110000000111

m36 = 11111111111111111111101111111111

m37 = 11111111111111111111101000000001

m38 = 11111111111111111111100011111111

m39 = 11111111111111111111100010000001

m40 = 11111111111111111111100001000001

m41 = 11111111111111111111100000100001

m42 = 11111111111111111111100000001111

m43 = 11111111111111111111100000000011

m44 = 11111111111111111111011111111111

m45 = 11111111111111111111011111100001

m46 = 11111111111111111111000100000001

m47 = 11111111111111111111000001111111

m48 = 11111111111111111111000000000111

m49 = 11111111111111111110111111111111

m50 = 11111111111111111110111111111001

m51 = 11111111111111111110111110000001

m52 = 11111111111111111110111000000001

m53 = 11111111111111111110010000000001

m54 = 11111111111111111110000011111111

m55 = 11111111111111111110000010000001

m56 = 11111111111111111110000000111111

m57 = 11111111111111111110000000001001

m58 = 11111111111111111110000000000011

m59 = 11111111111111111101111111111111

m60 = 11111111111111111101111111000001

m61 = 11111111111111111101111100000001

m62 = 11111111111111111101100000000001

m63 = 11111111111111111101000000000001

m64 = 11111111111111111100000100000001

25

