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Abstract

Existing privacy-preserving evolutionary algorithms are limited to spe-
cific problems securing only cost function evaluation. This lack of func-
tionality and security prevents their use for many security sensitive busi-
ness optimization problems, such as our use case in collaborative sup-
ply chain management. We present a technique to construct privacy-
preserving algorithms that address multi-objective problems and secure
the entire algorithm including survivor selection. We improve performance
over Yao’s protocol for privacy-preserving algorithms and achieve solution
quality only slightly inferior to the multi-objective evolutionary algorithm
NSGA-II.

1 Introduction
Evolutionary algorithms (EAs) have proven to efficiently find effective solutions
for many real-world optimization problems and are therefore widely employed
in business practice. Nevertheless in many real-world business problems, such
as our use case from collaborative production planning, the data is distributed
across a number of parties. A natural objective for each of these parties is to
protect their data, in particular if it is sensitive for their well-being, e.g. business
secrets such as production costs or capacities.

Privacy-preserving evolutionary algorithms (PPEAs) [8, 26] combine the pri-
vacy of input data with the effectiveness and efficiency of EA by using ideas from
secure computation (SC) [29]. SC is a cryptographic technique that allows a
number of parties to jointly compute a function y = f(~x) on their combined
input ~x, such that each party only learns the result y, but nothing else about
the input ~x.

The proposals for PPEA in the literature [8, 26] suffer from several short-
comings in generality and security. The setup chosen in [26] is such that one
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party maintains the population of individuals while the other owns the cost
function. As we will explain in more detail in our use case, this is generally
not the case in collaborative business scenarios. A different setup was chosen
in [8], but the second problem is also evident in this proposal. When SC is
only applied to cost function evaluation, the selection of individuals from the
population reveals significant information about the cost function despite the
use of provably secure protocols. Imagine the following situation: Given two
individuals differing only in one characteristic, assume one survives and one dies.
From this observation one can immediately conclude (even if the cost function
was computed privately) that the survivor’s characteristic was superior. Due to
the many individuals and rounds in EAs this information quickly accumulates.

We improve over this in two aspects. First, we use a quite general setup
for distributed optimization problems. Each party owns some arbitrary parts of
the cost function. In addition, we use a multi-objective evolutionary algorithm
(MOEA), in which each party may follow its own objective function. This is
the natural setting in collaborative supply chain management where each party
wants to minimize its own cost, but has gained an understanding that it needs
to align with its partners in order to promote the common good. While we
describe specific algorithms for a particular use case in collaborative produc-
tion planning, their design technique is applicable to the most general set of
distributed optimization problems.

Second, we secure the generation and selection of individuals in the popula-
tion. Our protocols are provably secure not only for the cost function evaluation,
but for the entire EA. We nevertheless stress that our proposal is not a straight-
forward application of the construction by Yao [29]. This would be impractical
for complex real-world use case due to communication effort and memory con-
sumption. Instead we use a combination of several techniques which might also
be of interest for other complex applications than EA. In order to underpin the
practicality of our approach we report the evaluation results of our prototypical
implementation.

When designing privacy-preserving protocols one must balance three objec-
tives: security, performance, and quality. This paper’s main contribution is
a privacy-preserving multi-objective evolutionary algorithm (PPMOEA) that
improves over the state-of-the-art as follows

• it is more secure than previous proposals for PPEA [8, 26]. We provide
a proof of security for the entire algorithm and not just cost function
evaluation.

• it is more efficient than general SC [29]. We reduce communication com-
plexity from O

(
η(T 2Pm2λ+ TPmλ log2 λ)

)
to

O
(
η(TPm2λ+ λ2 log2 λ+mλ log2 λ)

)
.1

• it is almost as effective as NSGA-II [3], one of the best known MOEAs
[16]. We chose algorithms that are more efficiently implementable securely,

1number of planning periods T ; number of products P ; bit size of production quantity m;
number of offspring λ; number of generations η
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Producer Supplier
p1 p2 p3 m1 m2 m3

Opportunity cost ocp 200 400 600 600 400 200
Capacity consumption cp 1 3 6 6 3 1
Storage costs product scp 20 20
Storage costs material scm 20 -
Market demand d 100 -
Production capacity ct 100 100

Table 1: Parameters of the considered use case.

since performance is key for practicality, but experimentally quantify the
penalty.

The remainder of the paper is structured as follows: Section 2 introduces the
use case that motivates our PPMOEA. The cryptographic tools are introduced
in Section 3. A detailed description of the construction of our PPMOEA is
presented in Section 4. Afterwards, its performance and quality (Section 5) are
evaluated. Related work is presented in Section 6. Section 7 concludes this
paper with a summary of our findings and an outlook on future work.

2 Use Case
Our use case is a finite horizon two-echelon collaborative production planning
problem [4], i.e. companies along a two-level supply chain that wish to jointly
optimize their production planning for a bounded time period. We limit the two
echelons of the supply chain to comprise one party each. On the upstream eche-
lon, a supplier S provides raw materials to a manufacturer P on the downstream
echelon. Both abide an exclusive relationship, i.e. P only procures materials
from S and is furthermore S‘s single source of revenue. Moreover, we assume
periodical shipping with neglected transportation times [4].

As an example assume that S supplies three (P = 3) materials m1 . . .m3 to
P, who produces three consumer products p1 . . . p3, with one unit of pi requiring
one unit of mi to produce. Table 2 shows the further parameters of our use
case. Note the opposing opportunity costs ocp and capacity consumptions cp
for the supplier‘s and producer‘s commodities. This opposition causes tension
in the parties’ planning objectives, since each party is inclined to act rationally,
minimizing only its own cost.

Considered costs Let T denote the planning horizon, i.e. the number of
periods, and P the total number of products involved. Let the matrixA denote a
combined production plan for both parties with entries aSt,p and aPt,p specifying
the produced quantity of product p of the supplier and producer in period t,
respectively. Further, let
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• S(A) denote the warehousing costs of a production plan A. We consider
two kinds of warehousing costs: a) scp - warehousing costs for a product
p and b) scm the producer’s expenses for warehousing material m.

• O(A) denote the opportunity costs for a party. These costs arise if a party
produces less goods then demanded by the market. These lost earnings
are quantified by ocp for product p.

• C(A) denote the penalty costs for exceeding the available production ca-
pacity ct in period t. Producing one unit of product p demands cp capacity.
The cost cp accounts for excess costs, e.g., overtime bonuses.2

• U(A) denote the penalty costs on the producer’s echelon for consuming
more material in a production plan than there is on stock for a particular
product. The costs for procuring extra material are quantified by up.2

We assume the market demand d to be constant in the example, but a varying
demand adds no complexity to our protocol.

As stated before, the supplier and producer pursue different objectives –
minimizing their own cost – which are opposing due to the differing opportu-
nity costs ocp and capacity consumptions cp. We thus compose the objective
function F (A) from the supplier’s objective function fS(A) and the producer’s
one fP(A):

min ~f = F (A) =

(
fS(A)
fP(A)

)
.

Producer The producer’s fitness function is a sum of the four costs

fP(A) =

T∑
t=2

(
Ct(A) +

P∑
p=1

[St,p(A) +Ot,p(A) + Ut,p(A)]

)
. (1)

Due to space constraints, we only briefly present the details of the producer’s
warehousing cost and overcapacity penalty which exhibit all patterns later used
in our optimizations. The producer has to account for both product and unused
material warehousing. The warehousing cost St,p for product p in period t is
given by

St,p(A) = scp max

(
0,

t∑
i=2

aPi,p −
t∑
i=2

di,p

)

+scm max

(
0,

t−1∑
i=1

aSi,p −
t∑
i=2

aPi,p

)
.

(2)

The penalty costs Ct for excessive capacity usage in period t are

Ct(A) = cpmax

(
0,

P∑
i=1

(cpaPt,i)− ct

)
. (3)

2Costs cp and up are parameters of the EA and not specific to the use case. For their
values see Section 5.
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Supplier The supplier is not constrained by a further upstream party and
therefore no costs for excessive material consumption U(A) arise. Its fitness
function is consequently a composition of only three costs

fS(A) =

T−1∑
t=1

(
Ct(A) +

P∑
p=1

[St,p(A) +Ot,p(A)]

)
. (4)

Using our exemplary numbers one can see how the traditional, decentralized
production planning may lead to sub-optimal solutions [9]. In current business
practice production planning is performed upstream: The producer generates
a locally optimal production plan AP and orders materials accordingly. The
supplier then strives to fulfill this order by a locally optimal production plan
AS . If the order cannot be completely satisfied, e.g. due to capacity constraints,
the producer has to execute on a partial shipment, leading to a suboptimal
production plan A′P .

In our example, the producer incurs the lowest costs when producing 100
units of product p1, resulting in an optimal capacity utilization of 100% and
cost fP(AP) = 4 500 000. He would then send an order to the supplier, but
due to capacity constraints, S can merely supply 16 units of material m1. As
a consequence, the producer’s costs are increased to fP(A′P) = 5 256 000 with
only 16% capacity utilization. The supplier’s costs fS(AS) = 2 268 000 add to
the overall supply chain cost. Would they have instead used a collaborative
planning approach, they would have attained the globally optimal production
plan A,

A =
m1 m2 m3 p1 p2 p3
1 31 1 1 31 1 .

This plan A yields 100% capacity utilization for both parties, producer’s cost
fP(A) = 4 806 000 and supplier’s cost fS(A) = 0.3 The overall supply chain
costs are reduced by 40%.

While this greatly cost-reducing concept is long known, most companies are
still very reluctant to share the necessary, sensitive data [21]. However, the
improvements are not derived from the information sharing per se, but rather
from the therefore improved decision making. SC allows for decision making
upon a comprehensive data set, without jeopardizing the privacy of the parties
contributing to this set.

3 Cryptographic Tools

3.1 Secure Computation
SC was introduced by Yao [29]. The problem is as follows: Two players, Alice
and Bob, both know a joint function y = f(a, b) on their combined input a

3The supplier incurs no cost, since a) he does not have to warehouse any goods S(A) = 0,
b) his capacity limit ct is not exceeded C(A) = 0, and c) the producer’s orders are fulfilled
O(A) = 0.
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(Alice) and b (Bob). They are both interested in the result y, but neither is
willing to reveal its input. Note that a party may infer information about the
other party’s input based on y and their own input. This has to be accepted
and is excluded from the security definition. Yao [29] constructed a protocol
that achieves this for any function f .

Yao’s protocol roughly proceeds as follows. Alice and Bob encode the func-
tion f as a Boolean circuit. Then Alice encrypts the circuit for each possible
input of Bob. She ships the encrypted circuit to Bob which then also obtains
the keys for his input using a technique called Oblivious Transfer (OT) [6]. OT
ensures that Bob does not have to reveal his input.

Yao’s protocol has been implemented [22] using a high-level programming
language, but its general construction is too inefficient for complex problems as
our PPMOEA. Instead we construct the necessary (optimized) circuits manu-
ally and apply further optimizations based on secret sharing and homomorphic
encryption.

3.2 Secret Sharing
Let s be a secret known to neither Alice nor Bob. Both, Alice and Bob, hold
a value (called share) s(A) and s(B), respectively, such that s = f(s(A), s(B))
for some reconstruction function f , e.g. s = s(A) + s(B) mod n [12]. A secret
sharing is perfect if any share s(A) or s(B) does not reveal additional information
about the secret s: Pr(s) = Pr(s|s(A)) = Pr(s|s(B)).

3.3 Homomorphic Encryption
Homomorphic encryption is a modern encryption scheme where one operation on
the ciphertexts produces an encryption of the result of a homomorphic operation
on the plaintexts. In particular, we require the homomorphic operation to be
addition (modulo a key-dependent constant). We used Paillier’s encryption
system [23] in the implementation. Let EX(x) denote the encryption of x with
X’s public key and DX(·) the corresponding decryption with X’s private key,
then Paillier’s encryption system has the following property:

DX (EX(x) · EX(y)) = x+ y

With simple arithmetic the following property can be derived

DX (EX(x)y) = x · y

4 The Privacy-Preserving MOEA

4.1 Algorithm Overview
We follow the conventional structure of an EA as outlined in Algorithm 1.

The initial population consists of µ random individuals (operation random).
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Algorithm 1 Privacy-preserving MOEA

1: A←
{
∀i ≤ µ : Ai ← randomT×P

}
2: for ∀j ≤ η do

3: O←
{
∀i ≤ λ : Oi ← mutate

(
Ab i

dλ
µ
e
c

)}
4: F←

{
∀O ∈ O : ~fi ← F (O)

}
5: A←

{
select (O,F) if non-elitist
select (O ∪ A,F) if elitist

6: end for
7: return A

Yao PPMOEA
random TPmµ 0
mutate TPmλ 0
F T 2Pm2λ TPm2λ
select TPmλ log2 λ λ log2 λ(m+ λ) + µ(TPm+ λ)
Total
per
gener-
ation

T 2Pm2λ+ TPmλ log2 λ TPm2λ+ λ2 log2 λ+mλ log2 λ

Table 2: Communication complexity (O(·))

Every individual produces dµλe offspring (operation mutate), perturbing each
individual with a small probability pm by a Gaussian distributed value. We
solely use mutation in our use case, but believe that other reproduction schemes
including recombination are securely realizable with little additional effort. We
then compute the offspring’s fitness (operation F ) and finally select µ survivors
(operation select) either from the offspring only (non-elitist) or including the
parent population (elitist) using a Pareto-optimal selection algorithm suitable
for a multi-objective problem. The evolution iterates for a fixed number η of
generations.

Our PPMOEA realizes each operation privacy-preservingly and not only
cost function evaluation as previous PPEA. Furthermore all privacy-preserving
operations are tied together, such that not even the result of any single operation
will be known to any party, but only the result of the entire algorithm, i.e. the
optimal production plan, will be revealed to both parties. We emphasize that
the parties gain no sensitive information from this production plan, since they
need this information to schedule orders and shipments.

In the remainder of the paper we describe the privacy-preserving implemen-
tation of the operations, but we start by explaining how we tie the individual
operations in Section 4.2, such that no intermediate results are revealed. The
principle we use is not limited to inter-operation use, but we also apply it in op-
timizing the operations. We will then describe the privacy-preserving realization
of the operations in the following sections.
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4.2 Construction of Secure Protocol
Each operation of the MOEA can be abstractly written as a function

y = f(x)

e.g. A = select (O,F). Using Yao’s algorithm we could construct a privacy-
preserving protocol between Alice (Supplier) and Bob (Producer) for any op-
eration, but the results would be revealed and reused as inputs in the next
operation. Instead we use secret sharing as follows in order to conceal the re-
sults.

We maintain the following invariant as pre- and post-condition of each step:
Each variable x or y, i.e. input and output, are distributed as secret shares
across Alice and Bob. For our basic data type of integer Alice has x(A) and
Bob has x(B), such that x = x(A) + x(B) (we omit the modulus for clarity) [12].
Our other data types, such as vectors and matrices, are simple compositions of
integers and if the secret sharing of integers is perfect, their secret sharing is
perfect as well. We can now write

y(A) + y(B) = f
(
x(A) + x(B)

)
We intend to realize the function f using Yao’s protocol which can only imple-
ment deterministic functions. However, in order for the security of the secret
sharing to hold, the shares need to be chosen randomly. We therefore transform
above equation to

y(B) = f
(
x(A) + x(B)

)
− y(A)

and define this as a new function f ′

y(B) = f ′
(
x(A), y(A), x(B)

)
We now implement this function f ′ using Yao’s protocol, such that only Bob
will learn the result. In order to obtain the final result Alice and Bob simply
exchange shares.

Our secret sharing scheme is linear, and linear operations, such as additions
or multiplications with constants, can be performed locally on the shares. If
Alice wants to add a number to a variable, she can simply add this number
to her local share. No communication with Bob is required. Therefore this
decomposition into smaller protocols may reduce the communication complexity
if used cleverly, since otherwise the addition would have to be performed as part
of the encrypted circuit in Yao’s protocol. Table 4.1 gives details of the reduced
communication complexity in our PPMOEA by application of the decomposition
technique. We also reduce the memory consumption, since the size of the circuits
in main memory is reduced. Both are important aspects of making secure
computation protocols efficient.
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4.2.1 Security Proof

We prove the security of our decomposition in the semi-honest model of Goldre-
ich [7]. Loosely speaking, in the semi-honest model, parties follow the protocol,
but keep a record of all messages in order to infer additional knowledge (passive
attackers). This model very well corresponds to the motivation of the players
in our business use case. For a security proof in this model we need to show
the existence of a simulator that using local input x(B) and output y(B) gener-
ates messages – a view – that are computationally indistinguishable from the
messages received during a real protocol execution. Assume we sequentially
compose two functions f and g as described above.

y(B) = f
(
x(A), y(A), x(B)

)
z(B) = g

(
y(A), z(A), y(B)

)
Let h = f ◦ g be the sequential composition.

Theorem 1. Let h = f ◦ g be the sequential composition of two function f and
g. If both f and g are implemented securely as described above, the combined
protocol securely implements h in the semi-honest model.

We stress that our composition theorem differs from Goldreich’s in that
we prove a secure protocol for h from secure protocols for f and g instead
of assuming there exists already a secure protocol for h (with either f or g
replaced). We write V IEW f

A for the view of Alice in the protocol for f and SfA
for a simulator of this view. We write V IEW f

A ∼ S
f
A if they are computationally

indistinguishable.

Proof. From using Yao’s protocol we know that there exist SfA ∼ V IEW f
A,

SgA ∼ V IEW g
A, S

f
B ∼ V IEW f

B and SgB ∼ V IEW g
B . In case of Alice’s view,

observe that Alice does not obtain any output in either f or g and therefore the
views of the protocols are independent. We construct the simulator ShA simply as
a sequential composition of SfA and SgA. If one can distinguish ShA and V IEWh

A,
one can either distinguish SfA and V IEW f

A or SgA and V IEW g
A. Bob receives

y(B) in addition to the views V IEW f
B and V IEW g

B . The key insight is that
y(B) can be simulated independently by a uniform random source due to the
perfect secret sharing with y(A) which remains unknown to Bob. Therefore there
exists a simulator SgB(z(B)) which produces a computationally indistinguishable
output from SgB(y(B), z(B)) which simulates the view during Yao’s protocol.
Since this simulator is independent from the simulator for protocol for f , the
same arguments as for Alice hold.

4.3 Population
Before we can describe the first privacy-preserving realizations of the initializa-
tion (operation random) and reproduction (operation mutate), we must describe
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the representation of the population. This representation must always be use
case specific. Integer genotypes as necessitated by cryptographic techniques are
well-suited for production planning problems, although little research has been
conducted on the field of integer-based EA (see Section 6). Let at,p denote the
produced quantity of product p in period t. An individual is given by matrix

A =



Supplier︷ ︸︸ ︷
a1,1 . . . a1,PS
...

. . .
...

aT,1 . . . aT,PS

Producer︷ ︸︸ ︷
a1,PS+1 . . . a1,PS+PP

...
. . .

...
aT,PS+1 . . . aT,PS+PP

 .

Individuals are the main inputs and outputs of the operations in our PP-
MOEA. Therefore they are maintained as secret shares throughout the entire
algorithm and each party only possesses a share of every individual, denoted by
A(A) and A(B).

Initialization Supplier and producer independently generate the initial pop-
ulation, i.e. µ local production plans. Each party chooses initial production
quantities for their own products randomly from a uniform distribution. They
use these values to initialize their shares for these parts of the individual and
simply initialize the shares for the other party’s plan with 0. No communication
is required for this step and it results in a perfect secret sharing of the random,
initial population.

Reproduction Reproduction may consists of mutation and recombination.
We restrict ourselves to mutation, due to the high probability that in our use case
the combination of two individuals results in prohibitively high penalty costs
for excessive material consumption U(A). We believe however, that crossover
is suitable for privacy-preserving recombination. Both parties can either choose
crossover points independently, select one publicly or perform the crossover
entirely using Yao’s protocol.

In our PPMOEA, each individual produces dλµe offspring resulting in an
ancestor population of λ individuals. We apply Gaussian perturbation to every
production quantity with probability pm [10]

∀t, p : a′t,p = at,p + ∆ ∆ =

{
bN (0, σ2)e Pr = pm

0 Pr = (1− pm)
.

Stochastic rounding (b∆e) ensures an unbiased tie-breaking if the fractional part
of ∆ is .5 [17].

We can use the linearity of the secret sharing scheme in order to realize this
operation (almost) without any communication. For each production quantity
a party is chosen that applies the perturbation to its share only. The other
party does not modify its share. In order to prevent certain active attacks, such
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as enforcing its locally optimal production plan, we randomly choose the party
to perform the perturbation using a pseudo-random function based on a jointly
chosen seed.

The step size of the mutation is set by the standard deviation σ2 of the
normal distribution. This step size strongly influences the convergence of the
evolution and can either be static throughout all generations or be adapted
according to some predefined schedule, commonly producing better results [5].
Our PPMOEA can implement both and we compare the results in our evalua-
tion.

4.4 Fitness Evaluation
As noted in the other proposals for PPEA fitness computation is the most sen-
sitive operation. Since it is a simple arithmetic computation, we can implement
it straightforwardly using Yao’s protocol. Nevertheless in order to speed up the
protocol, we employ a number of optimizations over simply implementing F (A)
as a circuit.

First note that F (A) can be easily decomposed into λ computations of the
fitness F (A) of each individual. The same circuit can be used for each invocation
of F (A) and, since all invocations are using independent inputs and outputs,
we can run them in parallel. Parallel execution allows computation and com-
munication of different invocations to overlap, maximizing the CPU utilization
of each party.

Furthermore we use the linearity of the secret sharing in order to reduce
the size of the circuit that has to be computed using Yao’s protocol. The size
of the circuit dominates the communication cost. Due to space limitations we
exemplify our techniques on the previously presented formulas for warehousing
cost St,p(A) as well as capacity penalty cost Ct(A).

Precomputation Note that the innermost terms of the warehousing costs
St,p(A) are summations. These sums need to be computed first and can be
precomputed before the input to Yao’s protocol on the secret shares. Let St,p
denote the accumulated production quantities for product p of the supplier in
period t,

∑t
i=1 aSi,p , and Pt,p that of the producer:

∑t
i=2 aPi,p . Furthermore,

let Dt,p be the aggregated demand of product p:
∑t
i=2Di,p.

We can then use the precomputed sums as input for Yao’s protocol for fitness
evaluation. This optimization does not only reduce the communication com-
plexity to O(Pm2) but also significantly reduces the constants hidden by the
“big-O” notation.

Term rewriting The sums are not only used in the warehousing costs, but
almost all cost types of our fitness function. Obviously we can reuse the pre-
computed terms for all cost types, but we exploit a further similarity.

The warehousing cost St,p(A) contains a lower bounded difference of the pre-
computed sums: max(0,

∑t
i=2 aPi,p−

∑t
i=2 di,p). The opportunity cost Ot,p(A)
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Figure 1: Schematic diagram for fP - Producer stock, opportunity and penalty
costs.

contains the lower bounded negative of this difference: max(0,
∑t
i=2 di,p −∑t

i=2 aPi,p).

As a result, only either the warehousing cost or the opportunity cost contributes
to the fitness; the other one being 0. We can therefore implement the circuit
by computing the difference only once, comparing it to 0 and then selecting
the appropriate cost. The same applies for material cost and deficit penalty
cost.

Using both optimizations Equation (1) for the fitness function can be rewritten
as

fP(A) =

T∑
t=2

Ct(A) +

ψt,p(A)︷ ︸︸ ︷
P∑
p=1

[ϕt,p|Pt,p −Dt,p|+ κt,p|Pt,p − St−1,p|]


ϕt,p =

{
scp, Pt,p −Dt,p > 0

ocp, Pt,p −Dt,p < 0
κt,p =

{
up, Pt,p − St−1,p > 0

scm, Pt,p − St−1,p < 0.

(5)

Figure 1 depicts our circuit for ψt,p(A). Let m denote the bit size of one
production quantity. The circuit consists of 12m2 +64m−10 gates. For m = 32
bits this amounts to 14 326 gates. By term rewriting we reduced the number of
expensive (O(m2)) multiplications from 4 to 2.

The precomputation of the sums does not apply to the capacity penalty cost
Ct(A), since its innermost term cpaPt,i is a product of two sensitive values that
should be kept private. The resulting circuit’s size grows with the number of
products P and has 6Pm2 + 7Pm − 5P + 12m2 + 32m + 6 gates. For m = 32
bits and P = 6 products the circuit has 51 496 gates. We show the impact of
the lack of precomputation in our evaluation.

For the fitness computation of the entire population O(λT ) parallel invo-
cations of Yao’s protocol with circuits containing O(Pm2) gates and O(λTP )
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parallel invocations with O(m2) gates are required with a total communication
complexity of O(λTPm2).

4.5 Survivor Selection
The selection of the µ “best” individuals from the population is the final step
for every generation. The selected individuals serve as parent population for
the subsequent generation. Multi-objective optimization problems (MOPs) re-
quire a more complex notion of “better” than single objective ones. Classical
methods scalarize the MOP by some (weighted) objective combination scheme,
thus requiring knowledge about the relative magnitudes of the parties’ fitness
functions [28]. This is not desirable in a privacy-preserving setting, since it leaks
information, and we therefore embrace Pareto’s notion of “better” [2, p.10 et.
seq.].

A vector ~x ∈ Rn is called superior to, or not dominated by, ~y ∈ Rn if it
satisfies the Pareto-criterion:

~x � ~y := ∀i : xi ≤ yi ∧ ∃i ≤ n : xi < yi.

In a set of vectors Ω, the subset Ω′ := {~x | @~y ∈ Ω : ~y � ~x} is called the Pareto-
optimal set and contains the optimal tradeoffs to the given problem. Pareto-
sorting requires no domain knowledge and is independent from the different
orders of magnitude of the single objectives.

Pareto-sorting is a rather complex task that can even dominate the cost
without protection of privacy. The most efficient, non-privacy-preserving algo-
rithms known are O(λ2) [3]. We therefore choose to implement a traditional
sorting algorithm for strictly ordered sets that is only likely to produce a Pareto-
sorting. Subsequent to the sorting the non-dominated individuals are then likely
occupying the first θ ranks. The first µ individuals are selected for survival; if
θ > µ optimal individuals will be lost, if θ < µ non-optimal ones will survive in
order to keep a steady-state population.

Sorting For a privacy-preserving realization we require a sorting algorithm
that is oblivious to the outcome of the performed comparisons, i.e. the oper-
ations performed after comparing xi to xj are exactly the same for the case
xi < xj and xi > xj . Sorting networks [19, p. 228 et. seq.] are an ideal
candidate with this property. A sorting network is a sequence of compare-and-
exchange (CX) operations to sort any given input x1 . . . xλ. A sorting net-
work is characterized by two properties: size refers to the total number of CX
operations; depth denotes the maximum number of comparators a xi has to
pass through. The most efficient practical sorting networks follow the odd-even
merger construction of Batcher [1], resulting in networks of size O(λ log2 λ) and
depth O(log2 λ) [1, 19, p. 228 et. seq.].

A CX operation compares two fitness values x and y (using the Pareto cri-
terion) and if necessary exchanges their position, such that the non-dominated
one occupies the lower rank. We decompose the sorting network by secret shar-
ing and only implement each CX operation as an invocation of Yao’s protocol
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using the same circuit. The CX operations on one level of the network can be
performed in parallel.

Our use case is a two objective problem. We implement the Pareto criterion
for the two fitness vectors ~fx and ~fy with the following logical formula: (fx1

<
fy1 ∧ fx2

≤ fy2) ∨ (fx1
≤ fy1 ∧ fx2

< fy2). We further optimize our integer
comparison, such that it produces two output bits: one for the < and one for
the = case. The circuit then has only 10m+ 12 gates.

The purpose of privately implementing sorting is to privately implement
selection, i.e. the parties should not learn which individuals survive, since this
reveals significant information about the private cost functions. Consequently
not only the fitness values need to be sorted privately, but also the corresponding
individuals. Unfortunately the size (number of bits) of an individual is quite
large (TPm � λ), significantly increasing the communication complexity of a
CX operation. We therefore realize another optimization by a level of indirection
using index variables. An index variable i is a λ-bit string with only one bit
i[κ] set. At the start of the sorting this bit κ is the index of individual x in the
original, unsorted population, hence index variable. After the sorting the lower
ranked index variables contain the indices of the “better” individuals.

The index variables are secretly shared bitwise (modulo 2) between Alice and
Bob, such that i = 2κ = i(A) ⊕ i(B). We then only sort and exchange the index
variables in a CX operation instead of the entire individuals. This reduces the
communication complexity for sorting from O(TPm) to O(λ), but adds another
subsequent selection operation using the index variables and individuals which
we describe next. Each CX circuit then has only 66m+ 10λ+ 10 gates.

The total communication complexity of the sorting network following Batcher’s
construction is O(λ log2(λ)(m+ λ)).

Selection Subsequent to the execution of the sorting network, the indices of
the µ best individuals are likely to reside in ranks 1 . . . µ. A separate protocol
is required for using an index variable to select the corresponding individual.
Implementing this straightforwardly as a circuit in Yao’s protocol completely
annihilates the advantage from using index variables in the first place. Instead
we employ a more sophisticated technique.

Alice and Bob secretly share index variable i = 2κ = i(A) ⊕ i(B) and pop-
ulation A = A(A) + A(B). We present a protocol to select Alice’s share A

(A)
κ .

Later, this protocol is run again with the roles of Alice and Bob interchanged
selecting Bob’s share A

(B)
κ . This pair of protocols is run µ times, once for each

survivor.
Alice chooses a public, private key-pair EA(·) in Paillier’s homomorphic en-

cryption scheme. She encrypts each bit i(A)[j] of her share of the index variable
i and sends all ciphertexts to Bob.

Bob performs the following algorithm: For each share A
(B)
j of an individual

he reconstructs the (unshared) index variable bit i[j] in homomorphically en-
crypted form (EA(i[j])) by using his plaintext share of the index variable (recall
that these bits are shared “exclusive-or” while modulus of the encryption is a
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Protocol 2 Survivor selection with homomorphic encryption
Input: λ encrypted index variable bits EA(i(A)[j]) (i = 2κ)
Output: Encrypted share EA(s(A)) of the individual selected by i

RB ← (U(0, q))T×P

for j ≤ λ do
if i(B)[j] = 1 then

EA(i[j])←EA
(
i(A)[j]

)−1
· EA (1)

= EA

(
−i(A)[j] + 1

)
else
EA(i[j])← EA

(
i(A)[j]

)
end if {i[j] =̂ i(A)[j]⊕ i(B)[j]; i = 2κ κ ∈ [0, λ]}
Oj ← Aj −RB
EA(cj)← EA(i[j])Oj = EA (i[j] ·Oj)

end for{EA(cκ) = EA(Aκ −RB); ∀j 6= κ : EA(cj) = EA(0)}

EA(s(A))←
∏λ
j=1EA(cj) = EA

(∑λ
j=1 (i[j] ·Oj)

)

product of two large primes). If the individual is the selected one, i.e. j = κ,
then he now has an encryption of 1 (EA(1)), otherwise of 0 (EA(0)). In our
decomposition technique all shares need to be randomized by an uniform RB ,
which Bob can subtract from his plaintext share. Bob then homomorphically
multiplies the encrypted index bit with the plaintext of his randomized share
of the individual. Since only one index bit is set, the (homomorphic) sum of
products of all his shares equals the share of the selected individual. Bob sends
the (encrypted) share to Alice. The detailed steps are shown in Protocol 2.

After the protocol Alice has s(A) = DA(EA(sA)) and Bob has RB , such that
A

(B)
κ = s(A) +RB . Alice and Bob then run the same protocol with the roles of

Alice and Bob interchanged. Alice obtains RA and Bob s(B) (A(A)
κ = s(B)+RA).

They compute new shares A
′(A)
κ = s(A) + RA and A

′(B)
κ = s(B) + RB of the

selected individual, respectively. They have obtained a fresh, perfect secret
sharing

A′(A)
κ + A′(B)

κ = s(A) +RA + s(B) +RB = A(B)
κ + A(A)

κ = Aκ.

Note that Bob only receives ciphertexts as messages and no output and Al-
ice’s view corresponds to our decomposition technique. Therefore the security
proof for this protocol does not significantly differ from that of our decomposi-
tion technique.

The execution of the protocol pairs can be parallelized. All µ invocations of
the first protocol of each pair are performed concurrently, afterwards the µ sec-
ond protocols are performed concurrently. The total communication complexity
for this selection is O(µ(λ+ TPm)).
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5 Evaluation
We experimentally evaluated the solution quality and performance of our PP-
MOEA in comparison to NSGA-II [3]. Security is ascertained by proof (Sec-
tion 4.2.1).

Solution quality For evaluation of solution quality we follow the proposals
from literature and adopt four of the metrics proposed by Zitzler et al. [30]. Let
F denote the set of the final population‘s fitness vectors. The average distance
of each individual in F to the true Pareto front of the problem is measured
by metric M∗1(F). A low value indicates good convergence of the evolution.
MetricM∗3(F) is an indicator for the spread of the identified Pareto-optimal set
by computing the maximal distance between any two solutions in F. Another
metric for the spread of a population and its distribution along the identified
Pareto-front is S(F). It measures the size of the space covered by population F.
For both metrics a high value is desirable, as it indicates a diverse population.
To compare the relative quality of two fitness vector sets F′ and F′′, Zitzler
et al. [30] propose metric C(F′,F′′) as the number of individuals in F′′ which
are dominated by or equal to an individual in F′. The better population is
characterized by less dominated solutions. All metrics are normalized to interval
[0, 1] and displayed in box plots which identify minium, maximum, median, first
and third quartile [30].

In our experiments we varied population sizes (µ and λ) and number of
generations (η). Furthermore we ran different variants of the algorithm by
using elitist (µ+λ) and non-elitist (µ, λ) selection schemes as well as static and
adaptive mutation step sizes and penalty factors (σ2, cp, up). All reported results
are the average of 10 runs of each algorithm.4 In summary our experiments cover
80 different parameter configurations:

η︷ ︸︸ ︷(
50
100
500
1000
2000

)
×

(µ;λ)︷ ︸︸ ︷(
(2;5)
(3;6)
(5;35)
(10;50)

)
×
(

(µ,λ)
(µ+λ)

)
×


σ2=1,

cp=1000,
up=10000
σ2=5...1,

cp=10...5000,
up=100...20000

 (6)

We first analyzed the parameter choices for our PPMOEA by evaluating only
its metric scores. Due to space constraints we cannot report detailed figures,
but our experiments indicate that 500 iterations are a good trade-off between
population convergence and algorithm runtime in all tested population sizes.
Not much solution quality is gained by increasing the number of iterations,
whereas less generations (100) – while still producing a good median convergence
for the larger population sizes ((5; 35) and (10; 50)) – result in a significantly
higher variance of metricM∗1(F). Elitist (µ+ λ) and non-elitist (µ, λ) selection
produce similar scores for metricM∗1(F) (within the margin of error). However,
elitism consistently resulted in a slightly lower score for metrics M∗3(F) and

4NSGA-II always uses elitist selection.
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Test case Parameter settings

1
η = 100 (µ, λ) = (5; 35)

σ2 = 1 cp = 1000
up = 10000

2
η = 500 (µ, λ) = (5; 35)

σ2 = 1 cp = 1000
up = 10000

3

η = 500 (µ, λ) = (5; 35)
σ2 = 5 . . . 1

cp = 10 . . . 5000
up = 100 . . . 20000

4

η = 1000
(µ, λ) = (5; 35)
σ2 = 1 cp = 1000
up = 10000

Table 3: Test cases for in-depth comparison of NSGA-II and PPMOEA

Prep Comp Comm Sync Other Total
Initialization - 0.02 - 0.02 15.01 15.08 0.49%
Mutation - 0.03 - - 0.01 0.04 0.00%
Fitness 0.08 308.94 166.72 1 468.84 809.93 2 754.51 89.74%
Sorting 0.01 100.26 59.48 0.91 98.46 259.11 8.44%
Selection - 16.42 18.14 - 6.05 40.61 1.32%
Total 0.09 425.67 244.34 1 469.76 929.47 3 069.35

0.00% 13.87% 7.96% 47.89% 30.28% values in [s]

Table 4: Algorithm runtime broken down into preparation, computation, com-
munication and synchronization.

S∗(F). Therefore we consider only non-elitist selection for our PPMOEA in the
remainder of the paper.

From the entire parameter space we selected four configurations that broadly
cover the range of solution quality of our PPMOEA (see Table 5). In these four
configurations we compared our PPMOEA to NSGA-II. Figures 2(a) through
2(d) show the metrics M∗1(F), M∗3(F) and S(F) for both algorithms for the
respective test cases. Figure 2(e) shows the metric C(F′,F′′) for all test cases.
In all four test cases our PPMOEA has better convergence but poorer spread
and distribution than NSGA-II. In metric M∗1(F) our PPMOEA outperforms
NSGA-II by a factor of 3.75, whereas NSGA-II outperforms PPMOEA by a
factor of 124.87 and 421.83 in metricsM∗3(F) and S(F). NSGA-II considers the
density of the population surrounding an individual in its selection algorithm
[3]. We believe that the lack of such a diversity operator in PPMOEA explains
the poor spread of the identified solutions, but also contributes to the slightly
better convergence due to the more focused evolution.

Runtime Our runtime measurements are based on test case 3 and are per-
formed on two servers connected by Gigabit Ethernet, each equipped with four
dual-core 2.6GHz CPUs and 16GB of main memory.

Table 5 summarizes the runtime of PPMOEA for one generation with pop-
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Figure 2: Solution quality comparison of NSGA-II and PPMOEA. Figures (a)
through (d) show metricsM∗1(F),M∗3(F) and S(F) for the respective test cases.
Figure (e) shows the metric C(F′,F′′) for all four test cases.
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ulation size (µ;λ) = (5; 35). It requires ≈ 52 minutes. In comparison NSGA-II
computes all 500 generations in 10.62s; a factor of ≈ 150 000 faster. As antici-
pated privacy protection incurs a very high performance penalty which justifies
our optimizations even if they may sacrifice solution quality.

Our decomposition technique enables simple parallelization of several pro-
tocol invocations. This is indispensable, since the aggregated CPU time used is
≈ 220 minutes (compared to ≈ 52 minutes runtime).

Recall that we precompute sums for the partial cost function ψt,p(A) while
not for Ct(A). On average the ψ-circuit requires 2.38s for computation and
1.97s for communication. The Ct-circuit requires 4.48s and 3.74s, respectively.
The two circuits differ (almost) only by the P additions in Ct(A) with the ψ-
circuit being even slightly larger. Precomputation reduces both measures by ≈
47%.

Almost 90% of the runtime (≈ 45 minutes) is spent on fitness computation
which has already been secured in the other proposals for PPEA. Our novel
privacy-preserving complementary operations of an EA only contribute the re-
maining 10%. We attribute this superior performance to two factors: First,
motivated by our real-world use case we chose a rather complex fitness function
comprised of many and complex – e.g. maximum and product – arithmetic
operations. Second, we carefully designed the other operations with runtime
performance in mind and based on results from literature [13, 14, 15].

6 Related Work
The first PPEAs have been proposed in [26, 8]. The former presents a PPEA for
combinatorial problems such as traveling salesman problem (TSP). The latter
proposes a PPEA for rule discovery in distributed datasets.

Our PPMOEA improves [26] by supporting even the most general distributed
setting, even for their use case of combinatorial problems. This is of practical
interest, e.g. for a group of companies that wish to align their logistics in order
to jointly ship goods. Han and Ng [8] consider arbitrarily partitioned datasets
in their work.

Both proposals rely only on homomorphic encryption for security and there-
fore do not support general cost functions, but only permit scalar products. Our
PPMOEA using Yao’s protocol supports arbitrary functions.

Both proposals also reveal the result of the cost function (Han and Ng [8]
reveal the absolute value while Sakuma and Kobayashi [26] reveal their relative
ordering). This allows espionage by inferences from local input and output. Our
PPMOEA only reveals the final result.

MOEAs have been studied extensively [2]. State of the art algorithms in-
clude NSGA-II [3], SPEA2 [31] and PAES [18]. All use a Pareto-dominance
based selection scheme (similar to our PPMOEA), enhanced by some diversity
operation (lacking in PPMOEA).

Integer-based EAs and their mutation operators have received less research.
Schwefel [27] proposes to perturb the offspring by a binomial distributed value.

19



Rudolph [25] studies maximum entropy probability distributions for integer
EAs. The use of stochastically rounded Gaussian distributed perturbations
as used in PPMOEA is suggested by Hugosson et al. [10, 17].

Several implementations of SC exist. Malkhi et al. [22] where the first with
a compiler for Yao’s protocol. An optimized design for an alogrithm in genomic
computing is presented in [11]. Optimizations built into the compiler – free
“exclusive-or” gates [20] and security in the malicious model [24] – have also
been proposed.

7 Conclusions
This paper presents a privacy-preserving multi-objective evolutionary algorithm
capable of solving distributed multi-objective optimization problems between
two parties. We elaborate on a real-world use case from collaborative supply
chain management which involves sensitive information, such as mission-critical
business secrets.

Our PPMOEA reveals only the optimal solution after the evolution, thus
preventing inferences from intermediate results. We introduce several optimiza-
tions, including a general decomposition technique for Yao’s garbled circuits. As
a result the communication complexity is significantly reduced and computation
can be parallelized.

Our experimental results show that performance remains the critical param-
eter. On the one hand, since cost function evaluation accounts for the majority
of the runtime, less complex fitness functions that lead to similar solution qual-
ity should be evaluated in future work. On the other hand, since our novel
privacy-preserving selection algorithm is comparatively efficient, but the diver-
sity of our solutions is poor compared to NSGA-II (while convergence is similar),
securely implementing a diversity operator in the selection algorithm remains
future work.
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