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Abstract—Signcryption is a cryptographic primitive that
provides confidentiality and authenticity simultaneously at a
cost significantly lower than that of the naive combination of
encrypting and signing the message. Threshold signcryption
is used when a message to be sent needs the authentication
of a certain number of members in an organisation, and
until and unless a given number of members (known as the
threshold) join the signcyption process, a particular message
cannot be signcrypted. Threshold unsigncryption is used when
this constraint is applicable during the unsigncryption process.
In this work, we cryptanalyze two threshold unsigncryption
schemes. We show that both these schemes do not meet the
stringent requirements of insider security and propose attacks
on both confidentiality and unforgeability. We also propose an
improved identity based threshold unsigncryption scheme and
give the formal proof of security in a new stronger security
model.

Keywords-Identity Based Cryptography, Threshold Unsign-
cryption, Cryptanalysis, Random Oracle Model.

I. INTRODUCTION

Signcryption, proposed by Zheng in 1997 [16] is a crypto-

graphic primitive which combines the functionality of digital

signature and encryption. It not only provides authenticity

and confidentiality in a single step, but also gives more

efficient computations than the naive Sign-then-Encrypt and

Sign-and-Encrypt approaches. Followed by the first con-

struction in [16], many new schemes and improvements have

been proposed [3][11][5][7]. Threshold Signcryption is a

primitive which is the integration of threshold cryptography

and signcryption. Identity based cryptosystem was proposed

by Shamir in [15]. It provides a more convenient alternative

to conventional Public Key Infrastructure (PKI) because

it solves the problem of Key-Management and public key

Certification, which were considered to be tedious in PKI.

In identity based threshold unsigncryption scheme, a

signcrypted message can be unsigncrypted only when more

than t members out of n members in a receiver group

join during the unsigncryption protocol execution. Similarly,

in identity based threshold signcryption scheme atleast t
members out of a total of n members in the sender group

jointly signcrypt the message. In both the cases t ≤ n.

To the best of our knowledge, there were three PKI based

threshold signcryption schemes in the literature [1],[6] and

[17]. Almost all of them have security weaknesses and these

weaknessess were reported in [13]. The weakness in identity

based threshold signcryption scheme by Fagen Li et al.

was shown in [14]. Similarly, two identity based threshold

unsigncryption schemes appear in the literature [9] and [10].

Both of them do not meet the stringent requirements of

insider security. Even the security proofs are not consistent

with the security model specified and no proof for existential

unforgeability were given.

Our Contribution: In this paper, we show the weak-

nesses in the schemes reported in [9] and [10]. Specifically,

we show that, the identity based threshold unsigncryption

scheme from pairings [9] by Fagen Li et al. is not CPA

(Chosen Plaintext Attack) secure and is existentially forge-

able. The identity based signcryption scheme with (t, n)
shared unsigncryption [10] by Fagen Li et al. is not aCCA

(Adaptive Chosen Ciphertext Attack) secure and is existen-

tially forgeable. We also propose an improvement for the

threshold unsigncryption scheme in [9] and formally prove

the security in the random oracle model. There is no formal

security model for threshold unsigncryption in the literature,

we have given an appropriate security model considering a

stronger attack model for the system. We have used this

model to prove the security, whereas the original scheme

[9] did not give a formal treatment for the security of the

scheme. We have also changed some notations in the original

schemes to maintain notational consistency.

II. PRELIMINARIES

In this section, we briefly describe the basic tools used

for the construction of the scheme.

A. Computational Assumptions

We use two computational hard problems Computational

Bilinear Diffie Hellman Problem for proving the confi-

dentiality of the system and Compuational Diffie Hellman

Problem for proving the unforgeability of the system. The

complete description of these standard and well-known

problems can be found in [8].



B. General Framework of Identity Based Threshold Unsign-

cryption

In identity based threshold unsigncryption scheme, a

trusted central authority namely the private key generator

(PKG) generates the system parameters. The private key

corresponding to the identites in the system are generated

by the PKG. In threshold unsigncryption scheme t out of n
members in a receiver group should be able to unsigncrypt

the ciphertext. On behalf of every receiver group, the PKG

generates a group public and group private key using the

group identity. It also generates n shares of the group

private key and distributes one share to each member of

the receiver group. Thus, each user in the system has his

own private, public key pair as well as a private key-share if

he belongs to some receiver group. For unsigncrypting the

ciphertext, each group member generates the unsigncryption

share using the group private key share given by PKG and

the ciphertext. In a (t, n) threshold unsigncryption scheme,

any t unsigncryption shares may be combined by a single

legitimate user called clerk to unsigncrypt the ciphertext.

A typical identity based threshold unsigncryption scheme

consists of the following eight algorithms:

Setup(κ): Given a security parameter κ, the PKG generates

the public parameters params, and a corresponding master

secret key s.

Extract(IDA): Given the identity IDA of the user A, the

PKG computes the public key QA and private key DA, and

sends it to the user through a secure channel. Here we denote

the groups with the subscript notation A or B, depending

whether it is a sender or receiver. The public key of the

group GA is QA and private key is DA.

Key-Share Distribution(DB, n, t): Given the private key

DB of user group GB, the number of members n in the

unsigncryption group and t and the number of threshold

members the PKG runs this algorithm to compute the private

key shares ∆i and the corresponding verification keys τi

of these n members, by using Shamir′s (t, n) threshold

scheme. Then each pair of private/verification key share

(∆i, τi) is sent to the appropriate receiver group member.

Each member of the group can have independent private

and public keys.

Signcryption(m,DA, QB): To signcrypt a message m to the

receiver group GB, the sender A runs this algorithm and

obtains the signcryption σ.

SignVer(σ,QA): This signature verification algorithm can be

run by anyone to check the validity of the signature of the

sender on σ.

Unsigncryption Share-Generation(σ,GB): This algorithm

is run by each member in the receiver group GB (let

{B1, B2, ..., Bn} be the set of all members in the group),

to generate the unsigncryption shares after the signature is

verified.

ShareVer(σ1, σ2, ..., σt): Given the unsigncryption share σi

for i = 1 to t, the clerk runs this algorithm to verify the

validity of the shares obtained from the t members of the

group GB. Without loss of generality and to reduce the

messy notations we assume that the first t members of

the group GB form the group TB (let {B1, B2, ..., Bt} be

the set of all members in this group), who contribute their

unsigncryption shares.

ShareCombine(σ1, σ2, ..., σt): The clerk runs this algorithm

after verifying the validity of the shares from all the mem-

bers of the group TB, to obtain the unsigncryption of the

signcryption σ i.e. the plaintext m.

C. Security Model for ID- Based Threshold Unsigncryption

The formal security of signcryption scheme was first

proposed by Baek and Zheng in [3]. The semantic se-

curity of identity based signcryption was first proposed by

Malone-Lee in [11], this was later improved by Boyen et

al. in [5] providing notions for insider security and this

was further modified by Sherman et. al in [7] which

incorporates security against adaptive chosen ciphertext at-

tack, identity attacks and existential unforgeability against

chosen message attack. The schemes LGH-IDBTUSC [9]

and LXH-IDBSSSU [10] extended these notions and claim

their schemes to be secure, but they fail to capture the

security model proposed. In [2], the authors have proposed

a gCCA2 secure model, but have restricted the adversary

from querying a class of ciphertexts that are used to mount

the CCA attack. We have described a security model by

adding the insider security notion for both confidentiality

and unforgeability, granting the adversary the freedom of

querying any ciphertext of his choice, except the challenge

ciphertext. Our model for confidentiality is similar to the

model by Baek and Zheng in [4]. Here, in the confidentiality

game we provide the adversary with the t − 1 private key

shares of the target recipient group, and an unsigncryption

share oracle for querying the unsigncryption shares of the

uncorrupted members. Thus we give maximum advantage to

the adversary and also capture the exact threshold concept

in real scenario.
1) CONFIDENTIALITY:: An identity based threshold

unsigncryption scheme (ID-TUSC) is said to be indistin-

guishable against adaptive chosen ciphertext attacks (IND-

ID-TUSC-aCCA2) if no polynomially bounded adversary

has a non-negligible advantage in the following game be-

tween the Challenger C and the Adversary A:

Initial: The challenger C runs the Setup algorithm to gen-

erate the public parameters params and master private key

s. C gives params to A and keeps the master private key s
secret from A.

Phase 1: In this phase, A performs a series of queries in

an adaptive fashion, i.e. each query may depend on the

responses to the previous queries. The following queries are

allowed:



Key Extraction queries: A chooses an identity IDi and gives

it to C which computes the corresponding private key Di and

sends it to A.

Signcryption queries: A produces the sender identity IDi,

receiver group GJ’s identity IDJ and a plaintext message m
to C. C computes the signcryption σ of the message m, and

sends σ to A.

Unsigncryption queries: A produces the sender identity IDi,

receiver group GJ’s identity IDJ and a signcryption σ. C
obtains the message m from σ and returns it to A.

Challenge: At the end of Phase 1, A sends to C two

plaintexts m0 and m1 of equal length, and two identities

IDA and IDB, on which he wishes to be challenged. The

adversary shouldn’t have asked for the Key-Extraction query

on IDB. The challenger C flips a fair coin b ∈R {0, 1} and

computes the challenge signcryption σ∗ on the message mb

and returns σ∗ to A along with the t− 1 private key shares

of the members in the target recipient group GB.

Phase 2: In this phase A can adaptively perform polynomi-

ally bounded number of queries again as in Phase 1 with

the restriction that A cannot make a key extraction query

on IDB and cannot query the unsigncryption oracle on σ∗

from sender A to the receiver group GB. In this phase, A is

allowed one more query stared below:

Unsigncryption share queries: A produces the sender iden-

tity IDi and the receiver group’s identity IDJ, the tth

member of the receiver group and a signcryption σ. C obtains

the unsigncryption share of the tth member by first retrieves

the t − 1 private key shares ∆i, for i = 1 to t − 1 given

to the adversary and then generates the share by running

the Unsigncryption Share-Generation(σ,Gj) algorithm. C
then returns σt to A, iff σ is a valid signcryption from IDi to

IDJ by running the SignV er algorithm, otherwise returns

⊥.

The advantage of A is defined as Adv(A) = | 2P [b′ =
b] − 1 | where P [b′ = b] denotes the probability that

b′ = b. The adversary is allowed to make key extraction

query on the signcrypting identity IDA. This is to meet

the stringent requirements of insider-security. It also ensures

the forward security of the scheme, i.e. confidentiality is

preserved even if the sender’s private key is compromised.

2) EXISTENTIAL UNFORGEABILITY: An identity

based threshold unsigncryption scheme (IDTUSC) is said to

be secure against an existential forgery for adaptive chosen

messages attacks (EF-IDTUSC-aCMA) if no polynomially

bounded adversary has a non-negligible advantage in the

following game

Initial: The challenger C runs the Setup algorithm to

generate the master public key params and master private

key s. C gives params to A and keeps the master private

key s secret from A.

Training Phase: A makes polynomially bounded number of

queries adaptively to the various oracles provided by C, as

described in Phase 1 of the confidentiality game.

Forgery: At the end of the Training Phase, A chooses a

message m and produces a signcryption σ∗ on m with the

sender and receiver identities IDA and IDB respectively,

such that the triplet (σ∗, IDA, IDB) was not the output of

any previous queries to the Signcryption Oracle with m as

the message and the private key of IDA was not queried

during the Training Phase. A wins the game if the result of

SignVer is not ⊥ symbol.

The advantage of A is defined as the probability that A
wins. A is allowed to make a key extraction query on the

forged ciphertext’s receiver IDB. Again, this is to capture

the notion of insider security.

Notations: From now on we represent Fagen Li et al.’s

identity based threshold unsigncryption scheme from pairing

[9] as LGH-IDBTUSC and Fagen Li et al.’s identity based

signcryption scheme with (t, n) shared unsigncryption [10]

as LXH-IDBSSSU.

III. REVIEW AND ATTACK OF LGH-IDBTUSC

In this section, we review the identity based threshold un-

signcryption scheme by Fagen Li et al.’s (LGH-IDBTUSC)

proposed in [9]. We also show that it is not insider secure

from CPA atack against confidentiality and is existentially

forgeable.

A. Review of LGH-IDBTUSC

The LGH-IDBTUSC scheme involves four roles:

The PKG, the sender A, the receiver group GB =
{B1, B2, ..., Bn} and the clerk - a member of the group who

combines the unsigncryption shares from the other members,

to unsigncrypt the ciphertext.

Setup: Given κ as input, the PKG does the following:

• Chooses G1 and G2 of prime order q and a generator

P of G1,

• Chooses a bilinear map ê : G1 × G1 → G2 and hash

functions H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}δ ,

H3 : {0, 1}∗×G2 → Z
∗
q and H4 : G2×G2×G2 → Z

∗
q .

• Chooses s ∈ Z
∗
q and computes Ppub = sP .

• Chooses a secure symmetric cipher (E ,D).

params = 〈G1, G2, δ, ê, P, Ppub,H1,H2,H3,H4, E ,D〉
and s is the master secret key.

Extract: The input to this algorithm may be the identity

of an individual user or a group. The PKG computes the

QA = H1(IDA) and the private key DA = sQA. The

extract procedure is same for both user and the group.

Key-Share Distribution: Let t (a threshold) and n satisfies

the condition 1 ≤ t ≤ n < q. The PKG performs the

following



- Chooses Rj ∈R G
∗
1, for 1 ≤ j ≤ t − 1 and constructs a

function F (u) = DB +
t−1
∑

j=1

ujRj .

- Computes the private key share of each Bi ∈ GB as ∆i =
F (i) and the verification key τi = ê(∆i, P ).

- Sends the private key share ∆i and the verification key τi

to Bi. Bi then keeps ∆i as secret while making τi public.

Signcryption: To signcrypt a message m to the recipient

group GB, the sender A chooses x ∈R Z
∗
q and computes the

signcryption σ = (c, r, V ) as follows:

1) k1 = ê(P, Ppub)
x and k2 = H2(ê(Ppub, QB)x).

2) c = Ek2
(m), r = H3(c, k1) and V = xPpub - rDA.

SignVer: This algorithm can be run by anyone who wants

to verify the signature on the signcryption σ. Compute

k′
1 = ê(P, V )ê(Ppub, QA)r and accept iff r

?
= H3(c, k

′
1).

Otherwise, return Invalid Signcryption.

Unsigncryption Share-Generation: Each Bi(1 ≤ i ≤ t)
checks the validity of σ by running SignVer. If σ is valid,

each Bi(1 ≤ i ≤ t) computes ηi = ê(∆i, QA); µi =
ê(Ti, QA); ωi = ê(Ti, P ); vi = H4(ηi, µi, ωi) and Wi =
Ti+vi∆i, for Ti ∈R G1 and sends σi = (i, ηi, µi, ωi, vi,Wi)
to the clerk. Otherwise, Bi returns Invalid Signcryption.

ShareVer: The clerk computes v′i = H4(ηi, µi, ωi) and then

checks if v′i
?
= vi, ê(Wi, QA)η

v′

i

i

?
= µi, and ê(Wi, P )τ

v′

i

i

?
=

ωi. If these tests hold, then σi from Bi is a valid unsign-

cryption share. Otherwise, the clerk returns Invalid Share.

ShareCombine: When the clerk collects valid

unsigncryption shares from all the t members in

group TB={B1, B2, ..., Bt}, he computes k′
2 =

H2(ê(V,QB)(
t
∏

j=1

η
N0,j

j )r), where N0,j =
t
∏

i=1,i 6=j

0 − i

j − i

mod q, i and j represent the ith and jth users in TB and

recovers m = Dk′

2
(c).

B. Attacks on LGH-IDBTUSC

Fagen Li et al. in [9] claimed that their scheme is seman-

tically secure i.e. indistinguishable against adaptive chosen

ciphertext attack, but it is not. In the following section, we

show the weakness in confidentiality and unforgeability of

the scheme.

1) Attack on Confidentiality by the clerk:: The proposed

scheme is insecure from the point of view of attack by the

clerk, who gets the shares from the members in the group

to unsigncrypt the signcrypted message. The attack follows:

The members in the group give their unsigncryption

shares of the signcryption σ to the clerk and the share used

for obtaining the unsigncryption key k2 is ηi = ê(∆i, QA),
which do not include any part of the current signcryption

σ. So, if the clerk is malicious, once he gets these shares

from the threshold members in GB, he can use the same

shares to unsigncrypt the ciphertexts being sent to GB

from A, without requesting the unsigncryption shares

from the group members and calculate the unsigncryption

key k2 as k2 = H2(ê(V,QB)(
t
∏

j=1

η
N0,j

j )r), where

N0,j =
t
∏

i=1,i 6=j

0 − i

j − i
mod q, i and j represent the ith and

jth users in TB and ηj is from the previous unsigncryption.

Remark: This attack is possible because the components

of a specific signcryption is not bound to the computations

done during unsigncryption share generation, so it will not

be specific for a particular signcryption.

2) Insider attack on Confidentiality by an adversary : The

scheme proposed above lacks the notion of insider security.

As in the above scheme once the adversary knows the private

key of the sender he can calculate the encryption key k2 and

then unsigncrypt the signcryption. The attack follows:

The adversary A knows the private key DA of the sender,

so to unsigncrypt σ = (c, r, V ), where V = xPpub − rDA,

he does the following:

Computes V − rDA = xPpub and k2 = H2(ê(xPpub, QB)).
Obtains m = Dk2

(c)

Thus, it is not CPA secure. In the challenge phase of

the confidentiality game, when the adversary A gets the

ciphertext σ∗, he can unsigncrypt σ∗ to find out whether it

is the signcryption of the message m0 or m1, because here

the adversary knows the private key of the sender.

Remark: This attack is possible because the designers have

not strictly followed the notion of insider security, so the

adversary can easily retrieve the component used in the

ephimeral key generation, and can thus recover the message

without the need of the secret key of the receivers.

3) Attack on Unforgeability by a forger : Any can forge

a signcryption from a user A to receiver group GB′ , if he

has a valid signcryption from A to any receiver group GB.

The attack follows:

The forger F , has a valid signcryption σ = (c, r, V ) from

user A to the receiver group GB. He claims σ′ = σ to be

a valid signcryption from the same sender A to a different

receiver group GB′ . The signature is accepted if and only

if it passes the verification in the SignVer algorithm.

In this case, it passes the verification, as the equality

r
?
= H3(c, k

′
1) holds, where k′

1 = ê(P, V )ê(Ppub, QA)r.

Thus σ′ is accepted by GB′ as valid, but it will be

unsigncrypted to some arbitrary message, thus making it

existentially forgeable.

Remark: This attack is possible because the receiver’s

identity is not included in the sign verification procedure.

Signcryption must include both the identities of the sender

and the receiver and therefore omitting any of them in



the encryption or the signature will lead to attacks in

confidentiality and unforgeability of the system.

IV. REVIEW AND ATTACK ON LXH-IDBSSSU

In this section, we review the identity based signcryption

scheme with (t,n) shared unsigncryption by Fagen Li et

al.’s (LXH-IDBSSSU) presented in [10]. We also show

that it is not insider secure against adaptive CCA atack on

confidentiality and is existentially forgeable.

A. Review of LXH-IDBSSSU

The LXH-IDBSSSU scheme involves three roles:

The PKG, the sender A and the receiver group

GB={B1, B2, ..., Bn}, who co-operatively participate in the

unsigncryption process.

Setup: This is similar to the LGH-IDBTUSC scheme in

section III-A.

Extract: Given an identity IDA, the PKG computes the user

public key QA = H1(IDA), computes the user’s private

signcryption key SA = s−1QA and private unsigncryption

key DA = sQA. The message recipient group GB has a

public key QB and a corresponding private unsigncryption

key DB = sQB.

Key-Share Distribution: This is also similar to the LGH-

IDBTUSC scheme in section III-A.

Signcryption: This algorithm is run by the sender. To send

a message m to the recipient group GB, sender A chooses

x ∈R Z
∗
q and computes the signcryption σ = (c, r, V ) as

follows:

• Computes k1 = ê(P,QA)x and k2 = H2(ê(QA, QB)x).
• Computes c = Ek2

(m), r = H3(c, k1) and V = (x −
r)SA.

The signcryption σ = (c, r, V ) is then sent to the receiver

group GB.

Unsigncryption: Let TB = {B1, B2, ..., Bt}, be the group

of t members who want to cooperatively unsigncrypt the

signcryption σ = (c, r, V ). Each user Bi does the following:

- Computes k′
1 = ê(V, Ppub)ê(QA, P )r and accepts σ iff

r
?
= H3(c, k

′
1), otherwise return ′′Invalid′′.

- Computes ηi = ê(∆i, V ); µi = ê(Ti, V ); ωi = ê(Ti, P );
vi = H4(ηi, µi, ωi) and Wi = Ti + vi∆i for Ti ∈R G1 and

sends σi = (i, ηi, µi, ωi, vi,Wi) to the other t− 1 members

in TB.

- Each σj = (j, ηj , µj , ωj , vj ,Wj) from Bj(j 6= i) is

verified as follows:

Bi first computes v′j = H4(ηj , µj , ωj) and then checks if

v′j
?
= vj , ê(Wj , V )/η

v′

j

j

?
= µj and, ê(Wj , P )/τ

v′

j

j

?
= ωj .

If all the above tests hold, then σj from Bj(j 6= i) is a

valid unsigncryption share.

- Computes k′
2 = H2(

t
∏

j=1

η
N0,j

j ê(QA, QB)r), where N0,j =

t
∏

i=1,i 6=j

0 − i

j − i
mod q.

- Recovers m = Dk′

2
(c).

B. Attack on LXH-IDBSSSU

Fagen Li et al. in [10] claimed that their scheme is se-

mantically secure against adaptive chosen ciphertext attacks

with insider security, but we show attacks confidentiality and

unforgeability of the scheme.

1) Attack on Confidentiality by an adversary:: The

scheme is not insider security, that is if the private key

of the sender is compromised during the adaptive CCA

attack, the adversary will be able to distinguish between the

messages m0 and m1 of the challenge signcryption. The

attack follows:

During the confidentiality game, in the challenge phase

the adversary A gives two messages m0 and m1, the sender

identity IDA and the receiver group GB to the challenger

C and obtains the signcryption σ∗ = (c, r, V ) , where V =
(x− r)SA. A computes V ′ = V + rSA − rSA′ and queries

to the unsigncryption oracle for the unsigncryption of σ′ =
(c, r, V ′) from the sender IDA′ to the receiver group GB.

Now since this is different from the challenge signcryption

σ∗, the oracle will unsigncrypt as follows:

- Verify σ′ by calculating k′
1 = ê(V ′, Ppub)ê(QA′ , P )r, and

this will be equal to ê(P,QA)x which is the same one used

for σ∗, so it will pass the verification procedure.

- Now C will calculate k2 = H2(
t
∏

j=1

η
N0,j

j ê(QA′ , QB)r),

where N0,j =
t
∏

i=1,i 6=j

0 − i

j − i
mod q, and this will be equal to

H2(ê(QA, QB)). Thus sends m = Dk2
(c) to the adversary.

This m, obtained is the same mb used in σ∗. Thus we have

proved that the given scheme is not CCA secure.

Remark: This attack is possible because there is no binding

of the sender’s identity in the key generation part, so by just

changing one component in the signature, the adversary can

recover the plaintext used in the challenge phase by querying

the unsigncryption oracle in the confidentiality game.

2) Attack on Unforgeability by a forger:: If the

forger F , has a valid signcryption σ = (c, r, V ) from

user IDA to the receiver group GB, A can produce a

forgery σ′ = σ from the same sender IDA to a different

receiver group GB′ . This is because it passes the sign

verification procedure as the equality r
?
= H3(c, k

′
1) holds,

where k′
1 = ê(P, V )ê(Ppub, QA)r. Thus the signcryption

is valid from IDA to GB′ but it will be unsigncrypted

to some arbitrary message, making it existentially forgeable.

Remark: This attack is possible because the receiver’s

identity is not included in the sign verification procedure.



V. IMPROVED ID-BASED THRESHOLD UNSIGNCRYPTION

SCHEME (I-IDBTUSC)

In this section, we have provided a fix for the LGH-

IDBTUSC scheme, to make the scheme semantically secure

and secure against malicious clerks.

The improved scheme involves four roles: The PKG, the

sender A, the receiver group GB = {B1, B2, ..., Bn} and

the clerk - a member of the group who combines the un-

signcryption shares from the other members, to unsigncrypt

the signcryption.

Setup: This algorithm run by the PKG is similar to the

original scheme in [9], only modifications made are in

the definitions of the hash functions and a new hash

function H5 is defined. These are: H2 G2 × G1 ×
G1 × G1 → {0, 1}δ , H3 {0, 1}∗ × G1 × G1 × G1 ×
G1 → Z

∗
q and H5 : {0, 1}∗ × Z

∗
q → Z

∗
q . Thus, the

system’s public parameters published by the PKG are

(G1, G2, δ, ê, P, Ppub,H1,H2,H3,H4,H5, E ,D) and mas-

ter secret key s is kept secret.

Extract: This algorithm is run by the PKG and is similar

to the original scheme.

Key-Share Distribution: This algorithm run by the PKG

is also similar to the previous scheme. The PKG computes

the private key share for the ith member as ∆i = F (i),
where F (.) is the Lagrange polynomial as mentioned in the

previous scheme and the verification key τi = ê(∆i, P ),
and sends ∆i and τi to Bi(1 ≤ i ≤ n). Each user can

then perform a consistency check to check the validity

of their secret shares by performing the following check

ê(QB, Ppub)
?
= ê(∆i, P )N0,i

t
∏

k=1,k 6=i

τ
N0,k

k , where N0,k =

t
∏

i=1,i 6=k

0 − i

k − i
, i and k represent the ith and kth users in GB

Signcryption: This algorithm is run by the sender. To send a

message m to the recipient group GB, the sender A chooses

x and ρ randomly from Z
∗
q and computes the signcryption

σ = (c, k1, V, Y ) as follows:

1) h = H5(m, ρ)
2) k1 = xP and k2 = H2(ê(Ppub, QB)h, k1, QA, QB).
3) Y = hP .

4) c = Ek2
(m ‖ ρ).

5) r = H3(c, k1, Y,QA, QB).
6) V = xPpub - rDA.

The signcryption σ = (c, k1, V, Y ) is then sent to the

receiver group GB.

SignVer: This algorithm can be run by anyone who wants

to verify the signature on the signcryption σ. The clerk who

wants to unsigncrypt σ, computes r′ = H3(c, k1, Y,QA, QB)

and accepts the signature iff ê(V, P )
?
= ê(k1 − r′QA, Ppub).

Otherwise, he returns Invalid Signcryption.

Unsigncryption Share-Generation: This algorithm is run

by the receiver group. The clerk requests unsigncryption

shares from each member in group GB. Each Bi(1 ≤ i ≤ n)
verifies the signature of σ by running SignVer. If it is valid,

Each Bi(1 ≤ i ≤ n) computes ηi = ê(∆i, Y ); µi =
ê(Ti, Y ); ωi = ê(Ti, P ); vi = H4(ηi, µi, ωi) and

Wi = Ti + vi∆i for Ti ∈R G1 and sends σi =
(i, ηi, µi, ωi, vi,Wi) to the clerk. Otherwise, Bi returns

Invalid Signcryption.

Sharever: The clerk firstly computes v′i = H4(ηi, µi, ωi)

and then checks if v′i
?
= vi, ê(Wi, Y )/η

v′

i

i

?
= µi, and

ê(Wi, P )/τ
v′

i

i

?
= ωi. If these tests hold, then σi from Bi

is a valid unsigncryption share. Otherwise, the clerk returns

Invalid Share.

ShareCombine: When the clerk collects valid unsigncryp-

tion shares from the t members in group TB, he computes

k′
2 = H2((

t
∏

j=1

η
N0,j

j ), k1, QA, QB), where N0,j =

t
∏

i=1,i 6=j

0 − i

j − i
mod q, i and j represent the ith and jth users

in TB and recovers m ‖ ρ = Dk′

2
(c). He then calculates

h = H5(m, ρ) and accepts the message authenticity iff

Y
?
= hP , otherwise return Invalid Signcryption.

Correctness: To prove the correctness of I-IDBTUSC

scheme, we show how the sign verification is done in

SignVer algorithm:

ê(P, V ) = ê(Ppub, k1 − r′QA)= ê(sP, xP − r′QA)
= ê(P, s(xP − r′QA)) = ê(P, xPpub − r′DA)
= ê(P, V ) [Iff r = r′]

We also show how k′
2 calculated in ShareCombine is the

same k2 used in Signcryption:

k′
2 = H2((

t
∏

j=1

η
N0,j

j ), k1, QA, QB).

= H2((
t
∏

j=1

ê(∆j , Y )N0,j ), k1, QA, QB).

= H2((
t
∏

j=1

ê(N0,j∆j , Y )), k1, QA, QB).

= H2(ê(
t

∑

j=1

N0,j∆j , Y ), k1, QA, QB).

= H2(ê(DB, Y ), k1, QA, QB).
= H2(ê(DB, P )h, k1, QA, QB).

Remark: The last check during unsigncryption ensures that

σ is a valid signcryption from IDA to IDB. This check

is needed to ensure the consistency of key generation i.e.

to confirm that the message retrieved is encrypted using

the same key, otherwise it will help the adversary to play

with the challenge signcryption in the confidentiality game.

In many identity based signcryption schemes this check is

eliminated to introduce public verifiability, but without this

check we will not be able to verify the signcryption validity.



A. Security of the Scheme (I-IDBTUSC)

In Fagen Li et al.’s LGH-IDBTUSC [9], the security

proof given for confidentiality is not strictly according to

the security model proposed, and they have also not given

any proof for unforgeability. It has weakly implemented

the notion of insider security. In this section we formally

prove the security of I-IDBTUSC indistinguishable against

adaptive chosen ciphertext attacks IND-I-IDBTUSC-aCCA2

and existentially unforgeable against adaptive chosen mes-

sage attack and identity attack (EUF-I-IDBTUSC-aCMA) in

random oracle model, assuming that the adversary or the

forger has the access to all the private keys except the private

key of the target identity for the notion of insider security.

We consider the security model given in section 2.5 to prove

the security of the improved scheme I-IDBTUSC

1) Existentially Unforgeablity Proof of I-IDBTUSC:

Theorem 1: In the random oracle model, we assume

that we have a forger F who is able to win the

EUF-I-IDBTUSC-aCMA unforgeability game with an

advantage ε ≥ 10(qH3
+ 1)(qS + qH3

)/2κ and asking

at most qH1
identity hashing queries, qE key extraction

queries, qH3
H3 queries and qS signcryption queries. Then

there exists an algorithm C which can solve the CDH

problem with advantage ε′ ≥ 1/9.

Proof: We use Forking Lemma to prove the unforgeability

of the scheme.

The forking lemma essentially says the following:

Consider a signature scheme producing signatures of the

form m,σ1, h, σ2 where each of σ1, h, σ2 corresponds

to one of the three phases of some honest-verifier zero-

knowledge identification protocol i.e., σ1 is a commitment

by the prover/signer, h = H[m,σ1] serves to simulate

a random challenge by the verifier, and σ2 is the

prover/signer’s response to the challenge. Suppose that

F is an adaptive CMA existential forger, who makes

µS signature queries and µR random oracle queries, and

forges a signature m,σ1, h, σ2 in time τ with probability

ε = 10(µS + 1)(µS + µR)/2n. If the triples σ1, h, σ2 can

be perfectly simulated without knowing the private key

(e.g., by manipulating the random oracles instead), then

there exists an algorithm A′ that, using F as a subroutine,

produces two valid signatures m,σ1, h, σ2 and m,σ1, h
′, σ′

2

such that h 6= h′, in expected time τ ′ ≤ 120686µRτ/ε.

First we show that our scheme I-IDBTUSC produces

signature of the form σ1, h, σ2 which corresponds to the

required three-phase honest-verifier zero-knowledge iden-

tification protocol. In the improved scheme I-IDBTUSC

σ1 = k1 = xP being the prover’s commitment, h =
r = H3(c, σ1, Y,QA, QB) a hash value substituted for the

verifier’s challenge, and σ2 = V the prover’s response.

The rest of the proof then consists of the following steps:

- A simulation step, in which we show how to simulate the

signature without knowing the secret key of the sender. By

Forking Lemma, this gives us a machine A′ that produces

two valid signatures (σ1, h, σ2) and (σ1, h
′, σ′

2) with h 6= h′.

- A reduction step, in which we show how to solve the CDH

problem by interacting with the machine A′

The simulation of the real attack environment is shown

below:

Let C be a challenger who is given the instance of the

CDH problem, P, αP, βP . His goal is to compute αβP .

Suppose there exists a forger F , who can existentially forge

the I-IDBTUSC scheme, now C runs F as a subroutine

and act as F’s challenger in the forgery game and using

F , solves the CDH problem instance with non-negligible

advantage in polynomial time.

Assumptions: The following assumption is made:

- F queries H1(IDi) before IDi is used in any key

extraction, signcryption and unsigncryption queries.

Here we do not need to provide the forger F with the

unsigncryption share oracle because due to the notion of

insider security, we have assumed that he can have access

to the private keys of all the receiver group in the system,

so providing him with the unsigncryption shares would not

give him any advantage to forge the signature.

Let there be qH1
identity hash queries, out of which qG are

the identity queries for groups in the system and qI are the

identity queries for individual users in the system. C chooses

θ randomly from qI i.e. θ ∈R {1, 2, ..., qI}. Now whenever

i = θ, IDi is referred as ID∗. It sets Ppub = αP and

Q∗ = H1(ID∗) = βP , thus D∗ = αβP and C does not

know D∗. These values will be used in the challenge phase.

Thus the goal of the challenger is to compute D∗ = αβP
which is the solution to the CDH problem.

Initial: C gives F the public parameters (G1, G2,
δ, ê, P, Ppub,H1,H2,H3,H4,H5, E ,D) where he sets

Ppub = αP , α is unknown to C. This value simulates the

master key s in the game.

Training Phase: The forger F queries C for the

random oracles H1,H2,H3,H4 and H5. As these

answers are randomly generated C keeps the lists

L1, L2, L3, L4 and L5 to maintain consistency and

to avoid collision. The queries to the random ora-

cles OH1
, OH2

, OH3
, OH4

, OH5
, OKey−Extract,

OSigncryption, and OUnsigncryption are answered as fol-

lows:

-Oracle OH1
(ID): For a query H1(IDi), if there exists

a tuple (IDi, de) then C returns deP as the answer else

chooses de ∈R Z
∗
q , returns deP and updates the list L1 with

the tuple (IDi, de). If IDi = ID∗ it returns βP .

-Oracle OH2
(ge, k1, IDi, IDj): For a query

H2(ge, k1, Qi, Qj), if there exists a tuple (ge, k1, Qi, Qj , k2)



then return k2 as the answer else chooses k2 ∈R {0, 1}δ

such that no other tuple contains the same k2 and returns k2.

It then updates the list L2 with the tuple (ge, k1, Qi, Qj , k2).

-Oracle OH3
(c, k1, Y, IDi, IDj): For a query

H3(c, k1, Y,Qi, Qj), if there exists a tuple

(c, k1, Y, Qi, Qj , r) then return r as the answer else

chooses r ∈R Z
∗
q such that no other tuple contains the same

r and then returns r. It then updates the list L3 with the

tuple (c, k1, Y, Qi, Qj , r).

-Oracle OH4
(η, µ, ω): For a query H4(ηe, µe, ωe), if there

exists a tuple (ηe, µe, ωe, v) then returns v as the answer else

chooses v ∈R Z
∗
q , returns v and updates the list L4 with the

tuple (ηe, µe, ωe, v).

-Oracle OH5
(m, ρ): For a query H5(m, ρ), if there exists

a tuple (m, ρ, h) then returns h as the answer else chooses

h ∈R Z
∗
q , such that no other tuple contains the same h,

returns h and updates the list L5 with the tuple (m, ρ, h).

-Oracle OKey−Extract(IDi): For a query Extract(IDi):

1) If IDi = ID∗, then C fails and aborts.

2) If IDi 6= ID∗, then L1 contains a pair (IDi, de). So

it returns Di = dePpub = deαP = αQi.

-Oracle OSigncryption(m, IDi, IDj): For a signcryption

query on message m, sender’s identity IDi and receiver’s

identity IDj , the challenger C computes the signcryption σ
as follows:

1) If IDi 6= ID∗. In this case C knows the secret

private key of the sender. He answers the query by

running the algorithm Signcryption(m,Di, IDj).

While answering the query he updates the lists

L2 : {ê(Ppub, Qj)
h, k1, Qi, Qj , k2}

L3 : {c, k1, Y,Qi, Qj , r}
L5 : {m, ρ, h}

2) If IDi = ID∗, in this case C has to simulate

Signcryption as follows:

C chooses r ∈R Z
∗
q , V ∈R G1, k1 ∈R G1, and ρ ∈R

Z
∗
q , and computes:

a) h = H5(m, ρ) and updates the list L5 with

(m, ρ, h).
b) Y = hP .

c) ge = ê(Qj , Ppub)
h.

d) k2 = H2(ge, k1, Qi, Qj) and updates the list L2

with (ge, k1, Qi, Qj , k2).
e) c = Ek2

(m ‖ ρ).

He checks if L3 contains a tuple (c, k1, Y,Qi, Qj , r
′)

with r′ 6= r, if it does then C repeats the above

procedure with another random quadruple (r, V, k1, ρ).

He then returns to the forger the signcryption σ =
(c, k1, V, Y ).

-Oracle OUnsigncryption(σ, IDi, IDj): For the unsigncryp-

tion query of (c, k1, V, Y ) from the sender identity IDi to

the receiver IDj , the challenger first verifies the signature

by running the SignVer algorithm. C knows the private

keys of all the groups. Therefore, if signature passes the

verification then challenger unsigncrypts σ by running the

Unsigncryption Share-Generation algorithm and then com-

bines the shares using ShareCombine algorithm and returns

m from m ‖ ρ = Dk2
(c), iff Y

?
= (H5(m, ρ)).P , otherwise

returns Invalid Signcryption.

Forgery: Eventually F outputs a forged signcryption σ∗ =
(c∗, k∗

1 , V ∗, Y ∗) for some message m∗ and the identities

IDA and IDB, where IDA is the target identity chosen

by F on which he wants to be challenged. Now, if the

target identity IDA chosen by the forger is not the same as

chosen by the challenger ID∗, then C fails the simulation

and aborts. In other case C checks for the validity of the

forged message. The output signcryption is a valid forgery if

the triple (σ∗, IDA, IDB) was not the output of any previous

queries to the Signcryption Oracle with m∗ as the message

and the private key of IDA was not queried during the

Training Phase. F wins the game if the result of SignVer

is not ⊥ symbol and the message unsigncrypted passes the

validity check in the end.

Now we show the reduction to solve the CDH problem by

constructing a Las Vegas Machine as follows:

If F is a sufficiently efficient forger in the above in-

teraction, then following forking lemma in [12] we can

construct a Las Vegas machine A′ that outputs two signed

messages ((IDi,m, ), k1, V, Y ) and ((IDi,m), k1, V
′, Y ′)

with r 6= r′, where r and r′ is computed using the

publicly known values as r = H3(c, k1, Y,QA, QB), and

r′ = H3(c, k1, Y
′, QA, QB) and the same commitment x

used in k1 = xP .

Remark: We are implicitly coalescing the signing identity

IDi and the message m into a ”generalised” forged message

(IDi,m) for the purpose of applying the forking lemma.

This is in order to hide the identity-based aspect of the

EUF-I-IDBTUSC-aCMA attack, and simulate the setting

of an (identity-less) adaptive-CMA existential forgery for

which the forking lemma is proven in [12].

Thus, given F , we derive a machine A′, and use it to

construct a second machine B which is the reduction for

the CDH problem. B proceeds as follows.

1) B runs A′ to obtain two distinct forgeries

((IDi,m), k1, V, Y ) and ((IDi,m), k1, V
′, Y ′)

and computes r = H3(c, k1, Y, QA, QB) and

r′ = H3(c, k1, Y
′, QA, QB).

2) Now B unsigncrypts and obtains the signatures: V =
xPpub − rDA and V ′ = xPpub − r′DA, subtracts both

the equations and derives the value of abP from (r′−
r)−1(V − V ′) = DA as (r′ − r)−1(V − V ′) = αβP .

Note: In forking lemma we use the oracle replay technique,

where the same random tape is used by the forger F , but

different oracles are used to answer the queries.



Thus, the challenger C obtains the solution αβP to the

CDH problem instance (P, αP, βP ), using a polynomial

time forger EUF-I-IDBTUSC-aCMA.

Success Probability: The challenger C has the same advan-

tage in solving the CDH problem as the forger F has in

forging a valid signcryption. So, if there exists a forger who

can forge a valid signcryption with non-negligible advantage,

that means there exists an algorithm to solve the CDH

problem with non-negligible advantage.

Based on the bound from the forking lemma in [12] if F
succeeds in time ≤ t with probability ε ≥ 10(qH3

+1)(qS +
qH3

)/2κ, then B can solve the CDH problem in expected

time τ ≤ 23.qH3
t/ε with an advantage ε′ ≥ 1/9.

As per the advantage given above, with very negligible

probability one can solve the CDH problem, therefore no

forger can forge a valid signcryption with non-negligible

advantage. Hence, our improved scheme is secure against

any EUF-I-IDBTUSC-aCMA attack.

2) Confidentiality Proof of I-IDBTUSC : Theorem 2: In

the random oracle model (where the hash functions are

modelled as random oracles), we assume that we have an

adversary A who is able to win the IND-I-IDBTUSC-aCCA2

confidentiality game (i.e. A is able to distinguish signcryp-

tions given by the challenger), with an advantage ε and

asking at most qH1
identity hashing queries, at most qE key

extraction queries and at most qH2
H2 queries. Then, there

exists an algorithm C that can solve the CBDH problem with

an advantage

Adv(C) = (
ε + 1

2
−

1

2δ
).(

1

qH2

).(
1

qH1

).

where advantage of C is defined as

AdvCBDH
A

= Pr
[

A(P, αP, βP, γP ) = ê(P, P )αβγ | α, β, γ ∈ Z
∗
q

]

Proof: Let C be a challenger who is given the instance

of the CBDH problem, (P, αP, βP, γP ). His goal is to

compute ê(P, P )αβγ . Suppose there exists an adversary

A, who can break the confidentiality of the I-IDBTUSC

scheme, now C runs A as a subroutine and act as A’s

challenger in the confidentiality game and using A solves

the CBDH problem instance with non-negligible advantage

in polynomial time.

Assumptions: The following assumptions are made:

- A queries H1(IDi) before IDi is used in any key

extraction, signcryption and unsigncryption queries.

- A can corrupt at most t − 1 unsigncryption members

during the attack. That is he obtains t − 1 private keys

{∆i}(1≤i≤t) of the corrupted unsigncryption members of

the target identity after the challenge phase.

- A is given an unsigncryption share oracle

OUnsigncryption−Share in the second phase of his queries

in the game, from which he may ask for the unsigncryption

shares of the uncorrupted members of the target group.

Here we have given the unsigncryption share oracle only

in the second phase, because in the challenge phase the

adversary specifies the target identity of the recipient group,

so he would be needing the unsigncryption shares of the

uncorrupted members only after that. In the first phase his

queries would only be for the complete unsigncryption of

the signcryption not the shares.

Let there be qH1
identity hash queries, out of which qG

are the identity queries for groups in the system and qI

are the identity queries for individual users in the system. C
chooses θ randomly from qG queries i.e. θ ∈R {1, 2, ..., qG}.

Now, whenever i = θ, IDi is referred as ID∗. He sets

Ppub = αP ; Q∗ = H1(ID∗) = βP and Y ∗ = γP , thus

D∗ = αβP but C does not know D∗. These values will be

used in the challenge phase. Thus the solution to the CBDH

problem is ê(D∗, Y ∗) = ê(P, P )αβγ .

Initial: C gives A the public parameters

(G1, G2, δ, ê, P, Ppub,H1,H2,H3,H4,H5, E ,D) where

he sets Ppub = αP , α is unknown to C. This value ’α’

simulates the master key ’s’ in the game.

Phase 1: The adversary A queries C for the

random oracles H1,H2,H3,H4 and H5. As these

answers are randomly generated C keeps the lists

L1, L2, L3, L4 and L5 to maintain consistency and

to avoid collision. The queries to the random oracles

OH1
, OH2

, OH3
, OH4

, OH5
, and OKey−Extract

are answered in the similar manner as shown in

the unforgeability game, so can be referred in the

previous section and the queries to the random oracles

OSigncryption, and OUnsigncryption are answered as

follows:

-Oracle OSigncryption(m, IDi, IDj): For a signcryption

query on message m and identities IDi and IDj , the

challenger C can compute the signcryption σ by running

the algorithm Signcryption(m,Di, IDj), because he knows

the private keys of all the individual members in the system.

While answering the query he updates the lists

L2 : {ê(Ppub, Qj)
h, k1, Qi, Qj , k2}

L3 : {c, k1, Y,Qi, Qj , r}
L5 : {m, ρ, h}

He then returns to the adversary the signcryption σ =
(c, k1, V, Y ).

-Oracle OUnsigncryption(σ, IDi, IDj): For the unsigncryp-

tion query of (c, k1, V, Y ) from the sender identity IDi to

the receiver IDj , the challenger first verifies the signature by

running the SignVer algorithm, if it passes the verification

then challenger unsigncrypts the ciphertext c as follows:

- If IDj 6= ID∗, in this case C knows the secret key

of the receiver group, so he unsigncrypts σ by running

the Unsigncryption Share-Generation algorithm and then



combines the shares using ShareCombine algorithm and

returns m from m ‖ ρ = Dk2
(c), iff Y

?
= (H5(m, ρ)).P ,

otherwise returns Invalid Signcryption.

- If IDj = ID∗, then C searches L2 for a tuple

(ge, k1, Qi, Qj , k2), and store all such tuples in list L7. Now

from all these tuples k2 is retrieved to unsigncrypt c to

obtain m ‖ ρ = Dk2
(c), and checks if Y

?
= (H5(m, ρ))P .

For the tuples that passes the validity, checks whether

ge
?
= ê(Qj , Ppub)

H5(m,ρ), if it does then returns m obtained

from this ge to the adversary, else if no such tuple passes

the validity then returns Invalid Signcryption.

Challenge: Once A decides that phase one is over, he

outputs two messages m0 and m1 of equal length and the

identities of the sender as IDA and of the receiver group as

IDB, and this IDB is the target identity on which he wants

to be challenged.

Now, if the challenge identity IDB chosen by the adversary

is not the same identity ID∗ set by the challenger, then C
fails and aborts the game, because the simulation will not

be helpful for him to solve the CBDH problem. Otherwise

if IDB = ID∗, then C gives the signcryption σ∗ by flipping

a fair coin b ∈R {0, 1}, and chooses c∗ ∈R {0, 1}∗; r∗ ∈R

Z
∗
q ; k∗

1 ∈R G1 and V ∗ ∈R G1, sets Y ∗ = γP and verifies

if L3 contains (c∗, k∗
1 , Y ∗, QA, QB, r′), where r′ 6= r∗, if

so then choose another random quadruple (c∗, r∗, k∗
1 , V ∗)

and then returns to A the challenge signcryption σ∗ =
(c∗, k∗

1 , V ∗, Y ∗).

Now, we assume that the adversary can corrupt atmost t−1
members in the target recipient group and without the loss of

generality we assume that these are the first t− 1 members.

Now C picks ∆i ∈R G1 for i = 1, 2, ..., t− 1 and computes

n − t + 1 verification keys of other members in GB as:

τj = ê(QB, Ppub)
N0,j

t−1
∏

k=1

ê(∆k, P )Nj,k

where t ≤ j ≤ n and Nj,k denotes the Lagrange coefficient

Nj,k =
t
∏

l=0,l 6=k

j − l

k − l
. C then sends ∆i of the corrupted

members and τj of the uncorrupted members to the adver-

sary A. He then stores these values in the list L6.

Phase 2: Now A performs second series of queries to

the oracles treated in the same way as in the first phase.

In this phase he is given one more oracle for querying

the unsigncryption shares of the uncorrupted members. The

queries to this oracle OUnsigncryption−Share is answered as

follows:

-Oracle OUnsigncryption−Share(σ, IDi, ID∗, t): For the

unsigncryption share query of the tth member for the

signcryption (c, k1, V, Y ) from IDi to ID∗, the challenger

first verifies the signature by running the SignVer algorithm,

if it passes the verification then challenger first obtains

the private key-shares of the t − 1 corrupted members of

the group G∗ from the list L6 and then calculates the tth

unsigncryption share as:

First C searches L2 for a tuple (ge, k1, Qi, Qj , k2), and

store all such tuples in list L7. Now from all these tuples k2

is retrieved to unsigncrypt c to obtain m ‖ ρ = Dk2
(c), and

checks if Y
?
= (H5(m, ρ))P . For the tuples that passes the

validity, check whether ge
?
= ê(Qj , Ppub)

H5(m,ρ). It repeats

this process until a valid tuple is found, else when all such

tuples are exhausted then returns Invalid Signcryption. If any

tuple passes the validity, then C computes:

1) ηt = g
N0,t
e

t−1
∏

i=1

ê(∆i, Y )Nt,i , where ∆′
is are the private

key-shares of the t − 1 corrupted members, Nt,i =
t−1
∏

l=0

t − l

i − l
denotes the Lagrange coefficient and ge is

the first entry in the found tuple.

2) Chooses random vt ∈R Z
∗
q and Wt ∈R G1 and com-

putes: µt = ê(Wt, Y )/ηvt

t and ωt = ê(Wt, P )/τvt

t .

then, checks the list L4 with (ηt, µt, ωt, v
′
t), such that v′t 6=

vt. If such a tuple exists then repeats the above procedure

with another random tuple (vt,Wt). If the condition satisfies

then update the list L4 and return to the adversary A the

unsigncryption share σt = (t, ηt, µt, ωt, vt,Wt).

Since the challenge ciphertext given is not a valid one,

therefore when the adversary calculates the correct value

in the unsigncryption key, he will query H2, but the

challenger will not be able to give him the correct answer.

The adversary now knows that the challenger is fooling

him and aborts the game.

Success Probability: Now we analyse C′s success

probability in the above confidentiality game. In the above

simulation, all responses to the random hash oracles,

signcryption and unsigncryption oracles are randomly

distributed simulating the real experiment, as A is unaware

of the secret parameters and identity guessed by the

challenger. Whenever A chooses the same target identity

guessed by C and with the event that C never aborts

then the simulation provided by C is indistinguishable

from a real attack scenario to the adversary A. Also the

challenge signcryption σ∗ given to A passes the sign

verification procedure so adversary is unable to know

the invalidity of the signcryption, until he computes

the unsigncryption key, in which case he will abort.

By definition the advantage of such adversary A is given

as Adv(A) = | 2P [b′ = b] − 1 |, ie P [b′ = b] = (ε+1)/2.

Now we analyse the events when the above experiment

fails to simulate the real attack environment. C aborts the

experiment in the following scenario:

1) When A makes a key extraction query on ID∗ in the

first phase.



2) When A do not choose ID∗ as the target recipient in

the challenge phase.

3) When C rejects a valid signcryption during the unsign-

cryption query, even if the signcryption is valid.

To calculate that C aborts during the simulation, suppose

there are qH1
H1 queries, qE key extraction queries and

qH2
H2 queries.

The probability that C does not abort in first phase

is the probability that it does not make any key

extraction queries on ID∗ for the qE queries, which is

(
qH1

−1

qH1

).(
qH1

−2

qH1
−1 )...(

qH1
−qE

qH1
−qE+1 ) = (

qH1
−qE

qH1

). Further, with

a probability exactly (
qH1

−qE−1

qH1
−qE

).( 1
qH1

−qE−1 ) = ( 1
qH1

−qE
),

A chooses to be challenged on the identity ID∗, where

(
qH1

−qE−1

qH1
−qE

) being the probability of choosing an identity

other than ID∗ as the sender’s and the later being the

probability of choosing ID∗ as the receiver’s. Hence the

probability that A′s response is helpful to C is ( 1
qH1

).

Now the case when A makes random guess must also

be considered because the random guess of the encryption

key will not leave any entry in L2 and will not help C
in solving the problem. Thus, the probability of randomly

guessing the encryption key is ( 1
2δ ).

The third case where the simulation may fail will never

happen because the adversary would never be able to find

out whether the signcryption is valid or not, because he

has only the SignVer algorithm to verify the signature of

the sender not the validity of the signcryption, and the

case when he knows the signcryption is valid, is when he

has obtained it from the signcryption oracle, in that case

the correct unsigncryption is provided with the help of the

lists. Thus the probability with which a valid signcryption

is rejected will never happen.

Now, we have assumed that the adversary A is

capable of breaking the confidentiality of the system,

thus he is able to calculate the correct unsigncryption key

k2 = H2(ê(D
∗, Y ∗), k∗

1 , QA, Q∗). But since the ciphertext

c∗ formed is randomly chosen from {0, 1}∗, when querying

for the hash value H2 he will be answered with some

random k2, using which for unsigncryption would not yield

either m0 or m1. Thus now the challenger is caught and A
aborts the game. Challenger is now sure that A must have

queried H2 with (ê(D∗, Y ∗), k∗
1 , QA, Q∗). Thus, at the end

of the game, C extracts the solution to the CBDH problem

by searching the list L2 with conditional probability ( 1
qH2

).

Taking into account all the probabilities that C will not

fail its simulation, the probability that A chooses to be

challenged on the identity ID∗, and the probability that

A wins the IND-I-IDBTUSC-aCCA2 game, the value of

Adv(C) for solving the CBDH problem instance is calculated

as:

Adv(C) = (
ε + 1

2
−

1

2δ
).(

1

qH2

).(
1

qH1

).

VI. CONCLUSION

In this paper, we have cryptanalysed the identity based

threshold unsingcryption schemes by Fagen Li et al. in [9]

and Fagen Li et al. in [10]. We showed that both these

schemes do not meet the stringent requirements of insider

security and demonstrate attacks on both confidentiality

and unforgeability. We have also proposed an improved

identity based threshold unsigncryption scheme and gave the

formal proof of security in a new stronger security model

in the random oracle model. Thus our improved scheme

remains the only provably secure identity based threshold

unsingcryption scheme.
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