
Round-Optimal Password-Based Authenticated

Key Exchange

Jonathan Katz∗ Vinod Vaikuntanathan†

Abstract

We show a general framework for constructing password-based authenticated key-exchange
protocols with optimal round complexity — one message per party, sent simultaneously — in the
standard model, assuming the existence of a common reference string. When our framework is
instantiated using bilinear-map-based cryptosystems, the resulting protocol is also (reasonably)
efficient. Somewhat surprisingly, our framework can be adapted to give protocols in the standard
model that are universally composable while still using only one (simultaneous) round.

1 Password-Based Authenticated Key Exchange

Protocols for authenticated key exchange enable two parties to generate a shared, cryptographically
strong key while communicating over an insecure network under the complete control of an adver-
sary. Such protocols are among the most widely used and fundamental cryptographic primitives;
indeed, agreement on a shared key is necessary before “higher-level” tasks such as encryption and
message authentication become possible.

Parties must share some information in order for authenticated key exchange to be possible.
It is well known that shared cryptographic keys — either in the form of public keys or a long,
uniformly random symmetric key — suffice, and several protocols in this model, building on the
classic Diffie-Hellman protocol [19] (which protects only against an eavesdropping adversary and
provides no authentication at all) are known; see, e.g., [7, 4].

Password-based protocols allow users to bootstrap a weak (e.g., short) shared secret into a (much
longer) cryptographic key. The canonical application here is authentication using passwords, though
protocols developed in this context can be useful even when the shared secret has high min-entropy
(but is not uniform) [11]. The security guaranteed by password-based protocols (roughly speaking)
is that if the password is chosen uniformly1 from a dictionary of size D then an adversary who
initiates Q on-line attacks — i.e., who actively interferes in Q sessions — has “advantage” at
most Q/D. (This is inherent, as an adversary can always carry out Q impersonation attempts
and succeed with this probability.) In particular, off-line dictionary attacks in which an adversary

∗Dept. of Computer Science, University of Maryland. Work done while visiting IBM. Email: jkatz@cs.umd.edu.
Research supported by NSF grant #0627306 and NSF CAREER award #0447075.

†Dept. of Computer Science, University of Toronto. Work done while at IBM and Microsoft Research. Email:
vinodv@cs.toronto.edu.

1Although the usual presentation of PAKE assumes a uniform password, known protocols work with passwords
chosen from any (efficiently sampleable) distribution.

1

enumerates passwords from the dictionary of potential passwords, and tries to match observed
protocol transcripts to each one, are of no use.

Early work on password-based protocols [24, 29] considered a “hybrid” setting where users share
public keys in addition to a password. In the setting where only a password is shared, Bellovin and
Merritt [6] proposed the first protocols for password-based authenticated key exchange (PAKE)
with heuristic arguments for their security. Several years later, provably secure PAKE protocols
were constructed [3, 12, 36] in the random-oracle/ideal-cipher models, and many improvements and
generalizations of these protocols are known. In contrast, only a handful of PAKE protocols are
known in the standard model (i.e., without random oracles):

• General assumptions: Goldreich and Lindell [23] gave the first PAKE protocol in the
standard model (and without requiring any additional setup). Their work does not handle
concurrent executions of the protocol by the same party. Work of Barak et al. [2] shows
a general feasibility result for computation over unauthenticated networks which implies a
solution for PAKE as a special case, assuming a common reference string (CRS) is available
to the parties.2 All these protocols are impractical in terms of communication, computation,
and round complexity. Nguyen and Vadhan [38] show some efficiency improvements, but
achieve a weaker notion of security. Their protocol is still far from practical.

• Efficient protocols: Katz, Ostrovsky, and Yung [34] demonstrated the first efficient PAKE
protocol with a proof of security based on standard assumptions; extensions and improvements
of their protocol were given in [22, 16, 33, 21, 35]. Different constructions of efficient PAKE
protocols were given in [32, 27]. These works all require a CRS.

Other relevant work, done subsequent to the present work, includes [26, 15, 25].

Round/message complexity of existing protocols. We distinguish between rounds and mes-
sages. Differing somewhat from the usual convention in the two-party setting (but matching the
usual convention in the multi-party setting), we let a round consist of one message sent by each
party simultaneously; note that in a one-round protocol each honest party’s message cannot depend
on the other party’s message. We stress, however, that the adversary is assumed to be rushing ;
i.e., it may wait to receive an honest party’s first-round message before sending its own.

Determining the optimal round complexity of key-exchange protocols is of both theoretical
and practical interest, and has been studied in various settings. The original Diffie-Hellman proto-
col [19], which provides security against a passive eavesdropper, can be run in one round; one-round
authenticated key exchange based on shared public/symmetric keys is also possible [31, 39]. One-
round PAKE protocols are also known (e.g., [3]) in the random oracle model. All prior PAKE
protocols based on standard assumptions, though, require three or more rounds. We remark that
the protocols in [32, 27] achieve explicit authentication in three rounds (whereas the protocols of
[34, 22, 21, 35] achieve only implicit authentication in three rounds, and require an additional round
for explicit authentication), but the round complexity of these protocols cannot be further reduced
even if only implicit authentication is desired.

2Reliance on a CRS is not a serious drawback in the context of PAKE where the CRS can be hard-coded into
an implementation of the protocol. Note also that reliance on a CRS (or some other setup) is inherent for achieving
universally composable PAKE [16].

2

1.1 Our Results

We show a new framework for constructing one-round PAKE protocols in the standard model
(assuming a CRS), where each party may send their message simultaneously. (Once again, we
stress that our security model allows for a “rushing” adversary who waits to see the message sent
by a party before sending its response.) Our protocols achieve implicit authentication but can
be extended to give explicit authentication using one additional round; explicit authentication is
impossible in one round without stronger setup assumptions (e.g., a global clock).

Our framework relies on non-interactive zero-knowledge (NIZK) proofs and so, in general, is
computationally inefficient. When instantiating our framework using bilinear maps, however, we
obtain a reasonably efficient solution communicating a constant number of group elements.

Somewhat surprisingly, we can extend our framework to give a universally composable PAKE
protocol [14] — secure against static corruptions — without increasing the round complexity at
all (and still without relying on random oracles). In contrast, the work of [16] shows a method
for obtaining universal composability (used also in [27]) that requires additional messages/rounds.
Abdalla et al. [1] show a universally composable PAKE protocol, proven secure in the random oracle
model, that requires three rounds. To the best of our knowledge, no prior universally composable
PAKE protocol (whether in the random oracle model or not) can be run in only one round.

1.2 Our Techniques

At a basic level we rely on smooth projective hash functions [17], as used for PAKE in [22] (and
implicitly in [34]). Roughly speaking, and adapted to the present context, a smooth projective
hash function is a keyed function H that can be computed in two ways: either using the hash
key k or using a projected key s. If C is an encryption of some value pw using randomness r (with
respect to some fixed public key), then Hk(C, pw) = Hs(C, pw, r). On the other hand, if C is not
an encryption of pw then the value of Hk(C, pw) is independent of the projected key s. We refer
the reader to Section 2.2 for formal definitions.

The basic structure of previous protocols [34, 22], omitting various details, is as follows:

First round: The client sends an encryption C of the password pw.

Second round: The server sends an encryption C ′ of pw, and a projected key s′ = α(k′, C, pw)
corresponding to a hash key k′.

Third round: The client sends a projected key s = α(k, C ′, pw) corresponding to a hash key k.

The client computes the session key as Hk(C ′, pw) · Hs′(C, pw, r), and the server computes the
session key as Hs(C ′, pw, r′) · Hk′(C, pw). (Here, r, r′ is the randomness used to compute C, C ′,
respectively.) Properties of the smooth projective hash function ensure that these are equal.

Two difficulties must be overcome in order to collapse a protocol of the above form to one round:

• In the smooth projective hash functions used in prior work, the “projection function” α was
adaptive, and depended on both the hash key k and the element being hashed (i.e., (C, pw) in
the above example). This leads to protocols requiring three rounds just to ensure correctness.

Here we show a construction of CCA-secure encryption schemes with associated smooth
projective hash functions whose projection function is non-adaptive, and depends only on the
hash key k. This allows us to obtain the functionality of PAKE in a single round, by having
the client send (α(k), C) and the server send (α(k′), C ′) simultaneously.

3

• The above addresses correctness, but says nothing about security. The main technical diffi-
culty is that an honestly generated client message (s, C) might be forwarded by an adversary
to multiple server instances (and similarly for server messages), and the session keys computed
in all these instances should look random and independent to the adversary. (This issue does
not arise in prior work because, roughly speaking, messages are bound to a single session by
virtue of a signature verification key sent in the first round [34, 22] or a MAC derived from
the shared session key [21]. Neither approach is viable if we want the entire protocol to take
place in a single round.)

To address the above difficulty, we rely on a technical lemma (which may be of independent
interest) regarding the re-use of both the hash keys and the inputs to the smooth projective
hash function.

Additional ideas are needed to obtain a universally composable protocol without increasing the
number of rounds. We refer the reader to Section 5.1 for an overview of the techniques used there.

1.3 Outline of the Paper

In Section 2 we present a standard definition of security for PAKE due to Bellare et al. [3]. We also
review there the notion of smooth projective hashing, and prove a technical lemma regarding its
usage. In Section 3 we describe our basic framework for constructing one-round PAKE protocols,
and prove security of this approach according to the definition of [3]. We discuss in Section 4 two
instantiations of our framework: one based on the decisional Diffie-Hellman assumption, and a
second, more efficient instantiation based on bilinear maps. In Section 5 we describe an extension
of our framework that yields one-round, universally composable PAKE protocols.

2 Definitions and Background

Throughout, we denote the security parameter by n.

2.1 Password-Based Authenticated Key Exchange

We present a definition of security for PAKE due to Bellare, Pointcheval, and Rogaway [3], based
on prior work of [4, 5]. The text here is taken almost verbatim from [34].

Participants, passwords, and initialization. Prior to any execution of the protocol there is an
initialization phase during which public parameters and a CRS are established. We assume a fixed
set User of protocol participants (also called principals or users). For every distinct U,U ′ ∈ User,
users U and U ′ share a password pwU,U ′ . We assume that each pwU,U ′ is chosen independently and

uniformly from the set [D] def= {1, . . . , D} for some integer D. (Our proof of security extends to
more general cases, and we implicitly consider arbitrary password distributions in the setting of
universal composability.)

Execution of the protocol. In the real world, a protocol determines how principals behave in
response to input from their environment. In the formal model, these inputs are provided by the
adversary. Each principal can execute the protocol multiple times (possibly concurrently) with dif-
ferent partners; this is modeled by allowing each principal to have an unlimited number of instances
with which to execute the protocol. We denote instance i of user U as Πi

U . Each instance may

4

be used only once. The adversary is given oracle access to these different instances; furthermore,
each instance maintains (local) state which is updated during the course of the experiment. In
particular, each instance Πi

U is associated with the following variables:

• sidi
U , pidi

U , and ski
U denote the session id, partner id, and session key for an instance, respec-

tively. The session id is simply a way to keep track of different executions; we let sidi
U be the

(ordered) concatenation of all messages sent and received by Πi
U . The partner id denotes the

user with whom Πi
U believes it is interacting. (Note that pidi

U can never equal U .)

• acci
U and termi

U are boolean variables denoting whether a given instance has accepted or
terminated, respectively.

The adversary’s interaction with the principals (more specifically, with the various instances)
is modeled via access to oracles that we describe now:

• Send(U, i, msg) — This sends message msg to instance Πi
U . This instance runs according to

the protocol specification, updating state as appropriate. The message output by Πi
U is given

to the adversary.

The adversary can prompt the unused instance Πi
U to initiate the protocol with partner U ′ by

querying Send(U, i, U ′). In response, instance Πi
U outputs the first message of the protocol.

• Execute(U, i, U ′, j) — If Πi
U and Πj

U ′ have not yet been used, this oracle executes the protocol
between these instances and gives the transcript of this execution to the adversary. This
oracle call represents passive eavesdropping of a protocol execution.

• Reveal(U, i) — This outputs the session key ski
U , modeling leakage of session keys due to, e.g.,

improper erasure of session keys after use, compromise of a host computer, or cryptanalysis.

• Test(U, i) — This oracle does not model any real-world capability of the adversary, but is
instead used to define security. A random bit b is chosen; if b = 1 the adversary is given ski

U ,
and if b = 0 the adversary is given a session key chosen uniformly from the appropriate space.

Partnering. Let U,U ′ ∈ User. Instances Πi
U and Πj

U ′ are partnered if (1) sidi
U = sidj

U ′ 6= null,
and (2) pidi

U = U ′ and pidj
U ′ = U .

Correctness. To be viable, a key-exchange protocol must satisfy the following notion of correct-
ness: if Πi

U and Πj
U ′ are partnered then acci

U = accj
U ′ = true and ski

U = skj
U ′ , i.e., they both accept

and conclude with the same session key.

Advantage of the adversary. Informally, the adversary succeeds if it can guess the bit b used
by the Test oracle. To formally define the adversary’s success, we first define a notion of freshness.
An instance Πi

U is fresh unless one of the following is true at the conclusion of the experiment:
(1) at some point, the adversary queried Reveal(U, i); or (2) at some point, the adversary queried
Reveal(U ′, j), where Πj

U ′ and Πi
U are partnered. We allow the adversary to succeed only if its Test

query is made to a fresh instance; this is necessary for any reasonable definition of security.
An adversary A succeeds if it makes a single query Test(U, i) to a fresh instance Πi

U , and outputs
a bit b′ with b′ = b (recall that b is the bit chosen by the Test oracle). We denote this event by
Succ. The advantage of A in attacking protocol Π is given by AdvA,Π(k) def= 2 ·Pr[Succ]− 1, where

5

the probability is taken over the random coins used by the adversary and the random coins used
during the course of the experiment (including the initialization phase).

It remains to define a secure protocol. A probabilistic polynomial-time (ppt) adversary can
always succeed with probability 1 by trying all passwords one-by-one; this is possible since the size
of the password dictionary is small. Informally, a protocol is secure if this is the best an adversary
can do. Formally, an instance Πi

U represents an on-line attack if both the following are true at
the time of the Test query: (1) at some point, the adversary queried Send(U, i, ∗); and (2) at some
point, the adversary queried Reveal(U, i) or Test(U, i). The number of on-line attacks represents a
bound on the number of passwords the adversary could have tested in an on-line fashion.

Definition 1. Protocol Π is a secure protocol for password-based authenticated key exchange if, for
all dictionary sizes D and for all ppt adversaries A making at most Q(n) on-line attacks, it holds
that AdvA,Π(n) ≤ Q(n)/D + negl(n).

2.2 Smooth Projective Hash Functions

We provide a self-contained definitional treatment of smooth projective hash functions. These were
introduced by Cramer and Shoup [17], and our discussion here is based on that of Gennaro and
Lindell [22]. Rather than aiming for utmost generality, we tailor the definitions to our application.

A hard subset-membership problem. Fix some integer D. Let (Gen, Enc, Dec) be a CCA-
secure labeled encryption scheme (cf. Appendix A.1). We let Cpk denote the set of pairs of valid
labels and ciphertexts with respect to some public key pk, and require that this set be efficiently
recognizable for all pk. For a given public key pk, define sets X and {Lpw}pw∈[D] as follows:

1. X
def= {(label, C, pw)}, where (label, C) ∈ Cpk and pw ∈ {1, . . . , D}.

2. Lpw
def= {(label, Encpk(label, pw), pw)}, where label ∈ {0, 1}∗.

That is, X consists of all tuples of valid labels, valid ciphertexts, and passwords, while Lpw consists
of all tuples where the third component is pw, the first component is label, and the second component
is an encryption of pw using label. Let L =

⋃D
pw=1 Lpw, and note that L ⊂ X. It follows from CCA

security of (Gen, Enc, Dec) that the following is negligible for any probabilistic polynomial-time A:
∣∣∣∣∣∣
Pr




(pk, sk) ← Gen(1n);
(label, pw) ← ADecsk(·,·)(pk);

C ← Encpk(label, pw)
: ADecsk(·,·)(C) = 1




− Pr




(pk, sk) ← Gen(1n);
(label, pw) ← ADecsk(·,·)(pk);

C ← Encpk(label, 0)
: ADecsk(·,·)(C) = 1




∣∣∣∣∣∣
,

where A is disallowed from querying (label, C) to its decryption oracle.

Smooth projective hash functions. Fix pk and sets X,L as above. A smooth projective
hash function H = {Hk}k∈K is a keyed function mapping elements in X to elements in some
group G, along with a projection function α : K → S. Informally, if x ∈ L then the value
of Hk(x) is uniquely determined by s = α(k) and x, whereas if x ∈ X \ L then the value of
Hk(x) is statistically close to uniform given α(k) and x (assuming k was chosen uniformly in K).
A smooth projective hash function is formally defined by a sampling algorithm that, given pk,
outputs (K,G,H = {Hk : X → G}k∈K , S, α : K → S) such that:

6

1. There are efficient algorithms for (1) sampling a uniform k ∈ K, (2) computing Hk(x) for
any k ∈ K and x ∈ X, and (3) computing α(k) for k ∈ K.

2. For all (label, C, pw) ∈ L, the value of Hk(label, C, pw) is uniquely determined by α(k).
Moreover, there is an efficient algorithm that takes as input s = α(k) and (label, C, pw, r)
for which C = Encpk(label, pw; r), and outputs Hk(label, C, pw). (In other words, when
(label, C, pw) ∈ L then Hk(label, C, pw) can be computed in two ways: either using k itself,
or using α(k) and the randomness used to generate C.)

3. For any (even unbounded) function f : S → X \L, the following distributions have statistical
difference negligible in n:

{
k ← K; s := α(k) :

(
s, Hk(f(s))

)}
and {k ← K; s := α(k); g ← G : (s, g)} . (1)

Above we have modified the definition from [22] in two ways: first, α is non-adaptive and depends
on k only (rather than both k and x); second, we require Equation (1) to hold even for adaptive
choice of f(s) 6∈ L. The first modification allows us to achieve the functionality of password-based
authenticated key exchange in one round, whereas the second is used for proving security of the
resulting protocol.

A technical lemma. We now prove a technical lemma regarding smooth projective hash functions.
Somewhat informally, Gennaro and Lindell [22] showed that, for randomly generated pk and any
(label, pw), the distribution

{
k ← K; s := α(k);C ← Encpk(label, pw) :

(
s, C, Hk(label, C, pw)

)}

is computationally indistinguishable from the distribution

{k ← K; s := α(k);C ← Encpk(label, pw); g ← G : (s, C, g)} .

(Note this holds even though Hk(label, C, pw) is uniquely determined by s and C.) Here we show
that this continues to hold even if hash keys and ciphertexts are re-used multiple times. That is,
at a high level (ignoring labels and technical details), we show that the distribution

{
k1, . . . , k` ← K; ∀i : si := α(ki);

C1, . . . , C` ← Encpk(pw)
:
(
{si}, {Ci}, {Hki(Cj , pw)}`

i,j=1

)}

is computationally indistinguishable from the distribution
{

k1, . . . , k` ← K; ∀i : si := α(ki);
C1, . . . , C` ← Encpk(pw);∀i, j : gi,j ← G :

(
{si}, {Ci}, {gi,j}`

i,j=1

)}
.

Formally, fix a function ` = `(n), let A be an adversary, and let b ∈ {0, 1}. Consider the
following experiment Exptb:

1. Compute (pk, sk) ← Gen(1n) and let (K,G,H = {Hk : X → G}k∈K , S, α : K → S) be a
smooth projective hash function for pk. Give pk to A.

2. Sample k1, . . . , k` ← K, and let si := α(ki) for all i. Give s1, . . . , s` to A.

7

3. A may adaptively query a (modified) encryption oracle that takes as input (label, pw) for
pw ∈ [D], and outputs a ciphertext C ← Encpk(label, pw) along with:

(a) If b = 0, the values Hki
(label, C, pw) for i = 1 to `.

(b) If b = 1, random values g1, . . . , g` ← G.

4. A can also query a decryption oracle Decsk(·, ·) at any point, except that it may not query
any pair (label, C) where C was obtained from the encryption oracle on query (label, pw).

5. At the end of the experiment, A outputs a bit b′. We say A succeeds if b′ = b.

Lemma 1. Let (Gen,Enc,Dec) be a CCA-secure labeled encryption scheme, and (K,G,H = {Hk :
X → G}k∈K , S, α : K → S) a smooth projective hash function. For any polynomial ` and proba-
bilistic polynomial-time A, we have Pr[A succeeds] ≤ 1

2 + negl(n).

Proof: Let `′ be a (polynomial) bound on the number of encryption queries asked by A, and let
Ci ← Encpk(labeli, pwi) be the ciphertext returned in response to the ith query of A. When b = 0,
the values given to A include pk, s1, . . . , s`, the ciphertexts C1, . . . , C`′ , and the values




Hk1(label1, C1, pw1) · · · · · · Hk1(label`′ , C`′ , pw`′)
...

.
...

Hk`
(label1, C1, pw1) · · · · · · Hk`

(label`′ , C`′ , pw`′)


 .

We show that this is computationally indistinguishable from the experiment where A gets pk,
s1, . . . , s`, ciphertexts C1, . . . , C`′ , and a matrix of ` · `′ uniform and independent elements of G.

To prove this we show that, for arbitrary i, j, the experiment in which A is given



g1,1
...

...
... gi−1,j

...
...

... Hki(labelj , Cj , pwj)
...

...
... Hki+1(labelj , Cj , pwj)

...

g`,1
... Hk`

(label`′ , C`′ , pw`′)




is computationally indistinguishable from the experiment in which A is given



g1,1
...

...
... gi−1,j

...
...

... gi,j
...

...
... Hki+1(labelj , Cj , pwj)

...

g`,1
... Hk`

(label`′ , C`′ , pw`′)




,

where the ga,b denote uniform and independent elements of G. (In both cases, A is also given
pk, s1, . . . , s`, and C1, . . . , C`′ , and may access the decryption oracle as in the original experiment.
Note that only the distribution of the (i, j)th element has changed.) Once we show this, the lemma
follows by a standard hybrid argument.

8

We denote the first experiment, in which the (i, j)th entry of the matrix is computed as
Hki

(labelj , Cj , pwj), by reali,j ; we denote the second experiment, in which the (i, j)th entry of the
matrix is a random gi,j , by randi,j . To prove that these two experiments are indistinguishable, we
introduce two additional experiments. Experiment real′i,j (resp., rand′i,j) is identical to reali,j (resp.,
randi,j) except that now the jth ciphertext Cj returned by the encryption oracle is computed as
an encryption of 0 (i.e., Cj ← Encpk(labelj , 0)). It follows from the CCA-security of the encryption
scheme that reali,j and real′i,j (resp., randi,j and rand′i,j) are computationally indistinguishable.

To complete the proof that reali,j and randi,j are computationally indistinguishable, we show
that real′i,j and rand′i,j are statistically close. To see this, consider the following experiment involving
an algorithm B who is given si = α(ki) for unknown (random) ki, outputs (label, C, pw) ∈ X \ L,
and is given in response an element hi,j ∈ G:

1. Choose random ki ← K and give si = α(ki) to B.

2. B computes (pk, sk) ← Gen(1n) and internally runs A on initial input pk. Then B samples
k1, . . . , ki−1, ki+1, . . . , k` ← K, sets sm = α(km) for all m 6= i, and gives s1, . . ., s` to A.

3. When A queries its encryption oracle with (label, pw), then B does:

(a) For the kth such query where k < j, we have B compute Ck ← Encpk(label, pw) and give
to A the ciphertext Ck along with random g1,k, . . . , g`,k ← G.

(b) For the jth such query (so (labelj , pwj) = (label, pw)), B computes Cj ← Encpk(labelj , 0),
outputs (labelj , Cj , pwj), and receives hi,j . It then chooses g1,j , . . . , gi−1,j ← G, and gives
to A the values g1,j , . . . , gi−1,j , hi,j ,Hki+1(labelj , Cj , pwj), . . . , Hk`

(labelj , Cj , pwj). Note
that B can compute these latter values since it knows ki+1, . . . , k`.

(c) For the kth such query where k > j, we have B compute Ck ← Encpk(label, pw) and give
to A the ciphertext Ck along with Hk1(label, Ck, pw), . . . , Hk`

(label, Ck, pw). Note that
B can compute Hki(label, Ck, pw), even though it does not know ki, because of the fact
that (label, Ck, pw) ∈ Lpw and B knows the randomness used to compute Ck.

B answers any decryption queries of A using sk.

Note that pwj 6= 0 (since 0 6∈ [D]), and so (labelj , Cj , pwj) ∈ X \ L. The view of A is distributed
according to real′i,j if hi,j = Hki(labelj , Cj , pwj), and according to rand′i,j if hi,j is chosen uniformly
from G. It follows from Equation (1) that real′i,j and rand′i,j are statistically close.

3 A Framework for One-Round PAKE Protocols

Our protocol uses a CCA-secure labeled public-key encryption scheme (Gen, Enc,Dec), and a smooth
projective hash function as described in Section 2.2.

Public parameters. The public parameters consist of a public key pk generated by Gen(1n).
No one need know or store the associated secret key. (For the specific instantiations given in
Section 4, a public key can be derived from a common random string.) Let (K,G,H = {Hk : X →
G}k∈K , S, α : K → S) be a smooth projective hash function for pk.

Protocol execution. Consider an execution of the protocol between users U and U ′ 6= U holding
a shared password pw. Our protocol is symmetric, and so we describe the execution from the point
of view of U ; see also Figure 1.

9

Public parameters: pk

User U User U ′

k ← K; s := α(k)
label := (U,U ′, s)

C ← Encpk(label, pw)

k′ ← K; s′ := α(k′)
label′ := (U ′, U, s′)
C ′ ← Encpk(label′, pw)s, C -

s′, C ′
¾

label′ := (U ′, U, s′)
skU := Hk(label′, C ′, pw)

·Hk′(label, C, pw)

label := (U,U ′, s)
skU ′ := Hk(label′, C ′, pw)

·Hk′(label, C, pw)

Figure 1: A one-round protocol for password-based authenticated key exchange.

First, U chooses random hash key k ← K and computes s := α(k). It then sets label := (U,U ′, s)
and computes the ciphertext C ← Encpk(label, pw). It sends the message (s, C).

Upon receiving the message (s′, C ′), user U does the following. If C ′ is not a valid ciphertext
or s′ 6∈ S, then U simply rejects. Otherwise, U sets label′ := (U ′, U, s′) and computes

skU := Hk(label′, C ′, pw) ·Hk′(label, C, pw).

U computes Hk(label′, C ′, pw) using k, and can compute Hk′(label, C, pw) using s′ = α(k′) and the
randomness it used to generate C. Correctness follows immediately from the definition of smooth
projective hashing.

Theorem 1. If (Gen, Enc, Dec) is a CCA-secure labeled encryption scheme and (K,G,H = {Hk :
X → G}k∈K , S, α : K → S) is a smooth projective hash function, then the protocol in Figure 1 is
a secure protocol for password-based authenticated key exchange.

Proof: Let Π denote the protocol in Figure 1, and fix a polynomial-time adversary A attacking Π.
We construct a sequence of experiments Expt0, . . . ,Expt5, with the original experiment correspond-
ing to Expt0. Let AdvA,i(n) denote the advantage of A in experiment Expti. To prove the desired
bound on AdvA,Π(n) = AdvA,0(n), we bound the effect of each change in the experiment on the
advantage of A, and then show that AdvA,5(n) ≤ Q(n)/D (where, recall, Q(n) denotes the number
of on-line attacks made by A, and D denotes the dictionary size).

Experiment Expt1: Here we change the way Execute queries are answered. Specifically, the
ciphertexts C,C ′ sent by the two parties U,U ′ are computed as encryptions of 0 instead of being
computed as encryptions of the correct password pwU,U ′ . (Recall that the space of legal passwords
is {1, . . . , D}, and so 0 is never a valid password.) The (common) session key is computed as

skU := skU ′ := Hk(label′, C ′, pw) ·Hk′(label, C, pw),

where both values are computed using the (known) keys k, k′. A proof of the following is immediate
from semantic security of (Gen, Enc, Dec):

Claim 1. |AdvA,0(n)− AdvA,1(n)| is negligible.

10

Experiment Expt2: Here, we again change the way Execute queries are answered. Now, the
(common) session key skU = skU ′ is chosen uniformly from G.

Claim 2. |AdvA,1(n)− AdvA,2(n)| is negligible.

Proof: The claim follows from the properties of the smooth projective hash function. Consider
a single call to the Execute oracle (in either Expt1 or Expt2), where the transcript given to the
adversary is (s, C, s′, C ′) with C ← Encpk(label, 0) and C ′ ← Encpk(label′, 0). In Expt1 the session
keys are computed as

skU := skU ′ := Hk(label′, C ′, pw) ·Hk′(label, C, pw),

where pw = pwU,U ′ is the password shared by U and U ′. Since (label′, C ′, pw) is not in L, it follows
(cf. Equation (1)) that (s,Hk(label′, C ′, pw)) is statistically close to (s, g), where g is uniform in G.
This means that, in Expt1, skU = skU ′ is statistically close to uniform in G, even conditioned on
the given transcript. Since this is how skU , skU ′ are chosen in Expt2, the claim follows.

Before continuing, we distinguish between two possible types of Send oracle queries. We let
Send0(U, i, U ′) denote a “prompt” query that causes instance Πi

U of user U to initiate the protocol
with user U ′. In response to a Send0 query, the adversary is given the message sent by U to U ′.
This query also has the effect of setting pidi

U = U ′.
The second type of Send query, Send1(U, i,msg), represents A sending the message msg to

instance Πi
U . In response, a session key ski

U is computed. (Nothing is output in response to this
query, but the value of the computed session key affects a subsequent Reveal or Test query for
instance Πi

U .) For a query Send1(U, i, msg) with pidi
U = U ′, we say a valid msg is previously used

if it was output by a previous oracle query Send0(U ′, ?, U). In any other case, we say a valid msg
is adversarially generated. (An invalid message is always ignored by the instance that receives it,
and so we assume from now on that A does not send such messages.)

Experiment Expt3: We first modify the experiment so that when the public parameters pk are
generated the simulator stores the associated secret key sk. (This is just a syntactic change.) We
then modify the way queries to the Send1 oracle are handled. Specifically, in response to the query
Send1(U, i,msg) where msg = (s′, C ′), we distinguish the following three cases (in all the following,
let pidi

U = U ′, let label′ = (U ′, U, s′), and let pw = pwU,U ′):

1. If msg is adversarially generated, then compute pw′ := Decsk(label′, C ′). Then:

(a) If pw′ = pw, the simulator declares that A succeeds and terminates the experiment.

(b) If pw′ 6= pw, the simulator chooses ski
U uniformly from G.

2. If msg is previously used, then in particular the simulator knows a value k′ such that s′ = α(k′).
The simulator computes ski

U := Hk(label′, C ′, pw) ·Hk′(label, C, pw), but using k′ to compute
Hk′(label, C, pw) (rather than using the randomness used to generate C, as done in Expt2).

Invalid messages are treated as before, and no session key is computed.

Claim 3. AdvA,2(n) ≤ AdvA,3(n) + negl(n).

Proof: Consider the three possible cases described above. The change in Case 1(a) can only
increase the advantage of A. The change in Case 1(b) introduces a negligible statistical difference;
the analysis is as in Claim 2, except that we now specifically use the fact that Equation (1) holds

11

even under adaptive choice of (label′, C ′, pw) 6∈ L. The change in Case 2 does not affect the
computed value ski

U since (label, C, pw) ∈ L.

Experiment Expt4: Once again we change how Send1 queries are handled. In response to query
Send1(U, i,msg) where msg = (s′, C ′) is previously used, let pidi

U = U ′ and proceed as follows:

• If there exists an instance Πj
U ′ partnered with Πi

U (i.e., such that sidj
U ′ , the transcript of the

protocol for instance Πj
U ′ , is equal to sidi

U), then set ski
U := skj

U ′ .

• Otherwise, choose ski
U uniformly from G.

Claim 4. |AdvA,3(n)− AdvA,4(n)| is negligible.

Proof: The proof relies on Lemma 1 (cf. Section 2.2) and CCA-security of (Gen, Enc, Dec). Let `
be a polynomial upper bound on the number of Send queries issued by A, and consider the following
adversary S interacting in the experiment defined in Lemma 1:

1. S is given pk and s1, . . . , s`.

2. S chooses random passwords pwU,U ′ for all pairs of parties U,U ′, and runs A on input pk.

3. S responds to Execute queries as in Expt2 by generating a transcript where C, C ′ are encryp-
tions of 0, and where the (matching) session keys are chosen uniformly at random.

4. S responds to the ith Send0 query Send0(U, ?, U ′) as follows: Set label := (U,U ′, si). Submit
(label, pwU,U ′) to the encryption oracle, and receive in return a ciphertext Ci along with values
h1,i, . . . , h`,i. Give to A the message (si, Ci).

5. S responds to a query Send1(U, j,msg), where msg = (s′, C ′), as follows: If there exists
an instance Πk

U ′ partnered with Πj
U , then set skj

U := skk
U ′ . Otherwise, let pidj

U = U ′ and
label′ = (U ′, U, s′), and say the query Send0(U, j, U ′) (i.e., the Send query that initiated
instance Πj

U) was the ith Send0 query made by A, and resulted in the response (si, Ci). We
now distinguish several cases based on msg = (s′, C ′):

(a) If msg is previously used, then (by definition) it was output by some previous query
Send0(U ′, ?, U). Say this was the rth Send0 query made by A, and so msg = (sr, Cr).
Then S computes skj

U := hi,r · hr,i.

(b) If msg is adversarially generated, then S submits (label′, C ′) to its decryption oracle and
receives in return a value pw. If pw 6= pwU,U ′ then skj

U is chosen uniformly from G. If
pw = pwU,U ′ then S declares that A succeeds and terminates the experiment.

6. At the end of the experiment, S outputs 1 if and only if A succeeds.

Let b be as in the experiment defined in Section 2.2. If b = 0 then the view of A in the above
execution with S is identical to the view of A in Expt3. This is true since when b = 0 it holds
in step 5(b), above, that hi,r = Hki

(label′, Cr, pwU,U ′) and hr,i = Hkr(label, Ci, pwU,U ′), where
si = α(ki), sr = α(kr), and Ci, Cr are encryptions of pwU,U ′ .

On the other hand, when b = 1 the view of A in the above execution with S is identical to the
view of A in Expt4. To see this, recall that when b = 1 all the values {hi,j} received by S are chosen
uniformly and independently from G. We need to show that this yields a uniform and independent
distribution on all the session keys computed in step 5(b). Consider a particular session key skj

U

computed as in step 5(b). The only other time the value hi,r could be used in the experiment is if
A queries Send1(U ′, ?, (si, Ci)) to the instance Π?

U ′ which sent (sr, Cr). But then Π?
U ′ and Πj

U are

12

partnered, and so the session key sk?
U ′ will be set equal to skj

U (as in Expt4). Since hi,r is random
and used only once to compute a session key in step 5(b), we conclude that (when b = 1) any
session keys computed in that step are independently uniform in G.

The claim follows from Lemma 1.

Experiment Expt5: Here, we change how Send0 queries are handled. Now, in response to a query
Send0(U, i, U ′), we compute s as usual but let C be an encryption of 0. The following claim is
immediate from CCA-security of (Gen, Enc, Dec).

Claim 5. |AdvA,4(n)− AdvA,5(n)| is negligible.

In Expt5, the view of A is independent of any of the user’s passwords until it sends an adver-
sarially generated message that corresponds to an encryption of the correct password (at which
point A succeeds). It therefore holds that AdvA,5(n) ≤ Q(n)/D. Claims 1–5 thus imply that
AdvA,0(n) ≤ Q(n)/D + negl(n), completing the proof of the theorem.

4 Instantiating the Building Blocks

We now discuss two possible instantiations of the building blocks required by the protocol of
Section 3.

• Our first instantiation is based on the decisional Diffie-Hellman (DDH) assumption and
(generic) simulation-sound NIZK proofs [40]; see Appendix A.2 for a definition. (This instan-
tiation could also be based on the quadratic residuosity assumption or the Paillier assumption,
as in [22]. We omit further details.)

• Our second, more efficient instantiation is based on the decisional linear assumption [10] in
groups with a bilinear map, and a specific simulation-sound NIZK proof system.

4.1 A Construction Based on the DDH Assumption

We first describe an encryption scheme and then the associated smooth projective hash function.

A CCA-secure encryption scheme. We construct a CCA-secure encryption scheme by applying
the Naor-Yung/Sahai paradigm [37, 40] to the El Gamal encryption scheme. Briefly, the public key
defines a group G of prime order p along with generators g1, h1, g2, h2 ∈ G. The public key also
contains a common random string crs for a (one-time) simulation-sound NIZK proof system [40].

Fixing G, let ElGamalg,h(m) denote an El Gamal encryption of m ∈ G with respect to (g, h);
namely, ElGamalg,h(m) outputs (gr, hr · m), where r ∈ Zp is chosen uniformly at random. (We
assume passwords can be represented as elements of G.) To encrypt a message m ∈ G in our
CCA-secure scheme, the sender outputs the ciphertext

(ElGamalg1,h1(m), ElGamalg2,h2(m), π) ,

where π is a simulation-sound NIZK proof that the same m is encrypted in both cases. Labels can
be incorporated by including the label in the proof π; we omit the standard details.

Decryption of the ciphertext (c1, d1, c2, d2, π) rejects if c1, d1, c2, d2 6∈ G or if the proof π is
invalid. (Note that the space of valid label/ciphertext pairs is efficiently recognizable without the

13

secret key.) If the ciphertext is valid, then one of the two component ciphertexts is decrypted and
the resulting message is output. The results of [40] show that this yields a CCA-secure (labeled)
encryption scheme based on the DDH assumption and simulation-sound NIZK.

A smooth projective hash function. Fix a group G and a public key pk = (g1, h1, g2, h2, crs) as
above, and define sets X and {Lpw} as in Section 2.2. Define a smooth projective hash function as
follows. The set of keys K consists of all four-tuples of elements in Zp. Given a valid label/ciphertext
pair (label, C = (c1, d1, c2, d2, π)) and key k = (x1, y1, x2, y2), the hash function is defined as:

H(x1,y1,x2,y2)

(
label, (c1, d1, c2, d2, π), pw

)
= cx1

1 · (d1/pw)y1 · cx2
2 · (d2/pw)y2 .

(Thus, the range of H is the group G.) The projection function α is defined as:

α(x1, y1, x2, y2) = (gx1
1 · hy1

1 , gx2
2 · hy2

2) .

Lemma 2. (K,G,H = {Hk}k∈K , S, α) as defined above is a smooth projective hash function for
the hard subset-membership problem (X, {Lpw}).
Proof: Sampling a uniform k ∈ K, computing Hk(x) given k ∈ K and x ∈ X, and computing
α(k) for k ∈ K are all easy.

We now show that if (label, C, pw) ∈ L, then Hk(label, C, pw) can be computed efficiently given
α(k) and the randomness used to generate C. Since (label, C, pw) ∈ L, we have that

C = (c1, d1, c2, d2, π) = (gr1
1 , hr1

1 · pw, gr2
2 , hr2

2 · pw, π)

for some r1, r2 ∈ Zp. For k = (x1, y1, x2, y2) we have

Hk(label, C, pw) = cx1
1 · (d1/pw)y1 · cx2

2 · (d2/pw)y2

= gr1x1
1 · (h1)

r1y1 · gr2x2
2 · (h2)

r2y2

= (gx1
1 hy1

1)r1 · (gx2
2 hy2

2)r2 .

This can be computed easily given r1, r2 and α(k) = (gx1
1 hy1

1 , gx2
2 hy2

2).
Next, we show that if (label, C, pw) ∈ X \ L, then the value of Hk(label, C, pw) is uniform

conditioned on α(k). (This holds even if (label, C, pw) are chosen adaptively depending on α(k).)
Fix any α(k) = (s1, s2). This constrains k = (x1, y1, x2, y2) to satisfy

x1 +
(
logg1

h1

) · y1 = logg1
s1 (2)

x2 +
(
logg2

h2

) · y2 = logg2
s2 , (3)

where the above are modulo the group order p. For any (label, C, pw) ∈ X \ L, we can write
C = (gr1

1 , hr1
1 · pw′, gr2

2 , hr2
2 · pw′, π) for some pw′ 6= pw. (We assume for simplicity that the same

pw′ is encrypted twice; since π is valid, this is the case with all but negligible probability.) Then:

Hk(label, C, pw) = gr1x1
1 · (hr1

1 · pw′/pw
)y1 · gr2x2

2 · (hr2
2 · pw′/pw

)y2

= gr1x1
1 · hr′1y1

1 · gr2x2
2 · hr′2y2

2 ,

for some r′1 6= r1 and r′2 6= r2. So, for any g ∈ G, we have Hk(label, C, pw) = g iff

r1 · x1 + (r′1 · logg1
h1) · y1 + (r2 · logg1

g2) · x2 + (r′2 · logg1
h2) · y2 = logg1

g.

Since this equation in the unknowns x1, y1, x2, y2 is linearly independent of Equations (2) and (3),
we see that the probability that Hk(label, C, pw) = g is exactly 1/|G|, and so the distribution of
Hk(label, C, pw) is uniform in G.

14

4.2 A Construction Based on the Decisional Linear Assumption

We now present a more efficient construction based on bilinear maps. The efficiency advantage
is obtained by using a specific simulation-sound NIZK proof system, constructed using techniques
adapted from [28, 13]. Our construction here relies on the decisional linear assumption as introduced
by Boneh et al. [10]; we refer the reader there for a precise statement of the assumption.

A CPA-secure encryption scheme. We start by describing a semantically secure encryption
scheme, due to Boneh et al. [10], based on the decisional linear assumption; we then convert
this into a CCA-secure encryption scheme via the same paradigm as above, but using an efficient
simulation-sound NIZK proof system. The bilinear map is used only in the construction of the
simulation-sound NIZK.

Fix groups G,GT of prime order p, and a bilinear map e : G × G → GT . The public key is
pk = (f, g, h) ∈ G3, and the secret key is (α, β) such that f = h1/α and g = h1/β. A message m ∈ G
is encrypted by choosing random r, s ∈ Zp and computing the ciphertext (f r, gs, hr+s ·m). Given
a ciphertext (c1, c2, c3), we can recover m as c3/cα

1 cβ
2 .

A simulation-sound NIZK proof of plaintext equality. We can construct a (one-time)
simulation-sound NIZK proof of plaintext equality for the encryption scheme described above using
the techniques of [28, 13]. Details of the construction (which, while not entirely straightforward,
are not the focus of this work) are given in Appendix B.

A CCA-secure encryption scheme. We obtain a CCA-secure encryption scheme by using the
Naor-Yung/Sahai paradigm, as described previously. (The following discussion relies on the results
of Appendix B.) The public key consists of group elements (f1, g1, f2, g2, h) used for encryption, in
addition to any group elements needed for the CRS of the simulation-sound NIZK proof. Encryption
of m, as described in Appendix B, is done by choosing r1, s1, r2, s2 ∈ Zp and computing the
ciphertext

(f r1
1 , gs1

1 , hr1+s1 ·m, f r2
2 , gs2

2 , hr2+s2 ·m, π),

where π denotes a simulation-sound NIZK proof that the same m was encrypted both times. (Once
again, the space of valid label/ciphertext pairs is efficiently recognizable without the secret key.) It
follows from [37, 40] that this yields a CCA-secure scheme under the decisional linear assumption.
Ciphertexts consist of 66 group elements altogether (see Appendix B).

A smooth projective hash function. (Similar constructions were given in [41, 30].) Fix G,GT ,
and a public-key pk = (f1, g1, f2, g2, h) as above, and define sets X and {Lpw} as in Section 2.2.
We define a smooth projective hash function as follows. The set of keys K is the set of six-tuples
of elements in Zp. Given a valid label/ciphertext pair (label, C = (c1, d1, e1, c2, d2, e2, π)) and a key
k = (x1, y1, z1, x2, y2, z2) ∈ Z6

p, the hash function is defined as

H(x1,y1,z1,x2,y2,z2)(label, C, pw) = cx1
1 · dy1

1 · (e1/pw)z1 · cx2
2 · dy2

2 · (e2/pw)z2 .

(The range of H is G itself.) The projection function α : K → G4 is defined as:

α(x1, y1, z1, x2, y2, z2) = (fx1
1 hz1 , gy1

1 hz1 , fx2
2 hz2 , gy2

2 hz2) .

Lemma 3. (K,G,H = {Hk}k∈K , S, α) as defined above is a smooth projective hash function for
the hard subset-membership problem (X, {Lpw}).

15

Proof: Sampling a uniform k ∈ K, computing Hk(x) given k ∈ K and x ∈ X, and computing
α(k) for k ∈ K are all easy.

We show that if (label, C, pw) ∈ L, then Hk(label, C, pw) can be computed efficiently given α(k)
and the randomness used to generate C. Since (label, C, pw) ∈ L, we have

C = (c1, d1, e1, c2, d2, e2, π) =
(
f r1
1 , gs1

1 , hr1+s1 · pw, f r2
2 , gs2

2 , hr2+s2 · pw, π
)

for some r1, s1, r2, s2 ∈ Zp. For a hash key k = (x1, y1, z1, x2, y2, z2) we have

Hk(label, C, pw) = cx1
1 dy1

1 · (e1/pw)z1 · cx2
2 · dy2

2 · (e2/pw)z2

= (fx1
1 hz1)r1 · (gy1

1 hz1)s1 · (fx2
2 hz2)r2 · (gy2

2 hz2)s2 .

This can be computed easily given r1, s1, r2, s2 and α(k) = (fx1
1 hz1 , gy1

1 hz1 , fx2
2 hz2 , gy2

2 hz2).
Next, we show that if (label, C, pw) ∈ X \ L, then the value of Hk(label, C, pw) is uniform

conditioned on α(k). (This holds even if (label, C, pw) are chosen adaptively depending on α(k).)
Fix any α(k) = (S1, S2, S3, S4). Letting αi = logh fi and βi = logh gi, this value of α(k) constrains
k = (x1, y1, z1, x2, y2, z2) to satisfy




α1 0 1 0 0 0
0 β1 1 0 0 0
0 0 0 α2 0 1
0 0 0 0 β2 1







x1

y1

z1

x2

y2

z2




=




γ1

γ2

γ3

γ4


 , (4)

where γi = logh Si. For any (label, C, pw) ∈ X \ L, we can write

C = (f r1
1 , gs1

1 , hr1+s1 · pw′, f r2
2 , gs2

2 , hr2+s2 · pw′, π)

for some pw′ 6= pw. (We assume for simplicity that the same pw′ is encrypted twice; since π is
valid, this is the case with all but negligible probability. The proof holds even when this is not the
case.) We then have

Hk(label, C, pw) = f r1x1
1 · gs1y1

1 · h(r1+s1)z1 · (pw′/pw
)z1 · f r2x2

2 · gs2y2
2 · h(r2+s2)z2 · (pw′/pw

)z2

= Sr1
1 Ss1

2 Sr2
3 Ss2

4 · (pw′/pw
)z1+z2 , (5)

where pw′/pw 6= 1. For any g ∈ G, we have (pw′/pw)z1+z2 = g iff

logh(pw′/pw) · z1 + logh(pw′/pw) · z2 = logh g. (6)

Since Equation (6) is linearly independent of the system of equations given by (4), the probability
that (pw′/pw)z1+z2 = g is exactly 1/|G| even conditioned on the value α(k). Looking at Equa-
tion (5), and noting that Sr1

1 Ss1
2 Sr2

3 Ss2
4 is entirely determined by α(k) and C, we conclude that the

distribution of Hk(label, C, pw) is uniform in G.

16

5 A One-Round, Universally Composable PAKE Protocol

Canetti et al. [16] gave a definition of security for password-based authenticated key exchange in
the universal composability (UC) framework [14]. Their definition guarantees a strong, simulation-
based notion of security that, in particular, guarantees that security is maintained even when the
protocol is run concurrently with arbitrary other protocols. For the specific case of password-based
key exchange, the definition also has the advantage of automatically handling arbitrary (efficiently
sampleable) distributions on passwords, and even correlations between passwords of different users.
We refer to [16] for a more complete discussion.

A brief review of the UC framework and the password-based key-exchange functionality FpwKE

are given in Appendix C. We let F̂pwKE denote the multi-session extension of FpwKE.

5.1 Overview of the Construction

We do not know how to prove that the protocol from Section 3 is universally composable. The
main difficulty is that the definition of PAKE in the UC framework requires simulation even if the
adversary guesses the correct password. (In contrast, in the proof of security in Section 3 we simply
“give up” in case this ever occurs.) To see the problem more clearly, consider what happens in the
UC setting when the simulator sends the first message of the protocol to the adversary, before the
simulator knows the correct password. The simulator must send some ciphertext C as part of the
first message, and this commits the simulator to some password pw. When the adversary sends the
reply, the simulator can extract the adversary’s “password guess” pw′ and submit this guess to the
ideal functionality. If this turns out to be the correct password, however, the simulator is stuck:
it needs to compute a session key that matches the session key the adversary would compute, but
the simulator is (information-theoretically!) unable to do so because it sent an incorrect ciphertext
in the first message.

In prior work [16], the issue above was resolved by having one party send a “pre-commitment”
to the password, and then run a regular PAKE protocol and give a proof that the password being
used in the protocol is the same as the password to which it “pre-committed”. (The proof is set
up in such a way that the simulator can equivocate this proof, but the adversary cannot.) This
requires at least one additional round.

We take a different approach that does not affect the round complexity at all. Roughly, we
modify the protocol from Figure 1 by having each party include as part of its message an encryption
C1 of its hash key k, along with a proof that C1 encrypts a value k for which α(k) = s. Now, even
if the simulator is wrong in its guess of the password it will still be able to compute a session key by
extracting this hash key from the adversary’s message. A full description of the protocol is given
in the following section.

While we do not describe in detail any instantiation of the components, we remark that it
should be possible to use the same techniques as in Appendix B to construct (reasonably) efficient
realizations of the necessary components using bilinear maps. We leave this for future work.

5.2 Description of the Protocol

In addition to the building blocks used in Section 3, here we also rely on an unbounded simulation-
sound [18] NIZK proof system (CRSGen,P,V) for a language L∗ defined below; refer to Ap-
pendix A.2 for definitions.

17

Public Parameters: (pk1, pk2, crs)

User U User U ′

k ← K; s := α(k)
C1 ← Encpk1(k)

π := Pcrs((s, C1) ∈ L∗)
label := (sid, U, U ′, s, C1, π)

C2 ← Encpk2(label, pw)

k′ ← K; s′ := α(k′)
C ′

1 ← Encpk1(k
′)

π′ := Pcrs((s′, C ′
1) ∈ L∗)

label′ := (sid, U ′, U, s′, C ′
1, π

′)
C ′

2 ← Encpk2(label′, pw)s, C1, π, C2 -

s′, C ′
1, π

′, C ′
2¾

label′ := (sid, U ′, U, s′, C ′
1, π

′)
skU := Hk(label′, C ′

2, pw)
·Hk′(label, C2, pw)

label := (sid, U, U ′, s, C1, π)
skU ′ := Hk(label′, C ′

2, pw)
·Hk′(label, C2, pw)

Figure 2: A universally composable protocol for password-based authenticated key exchange.

Public parameters. The public parameters consist of two public keys pk1, pk2 generated by Gen(1n)
and a common random string crs for the simulation-sound NIZK proof system. Let (K,G,H =
{Hk}k∈K , S, α : K → S) be a smooth projective hash function for pk2.

Protocol execution. Consider an execution of the protocol between users U and U ′ 6= U holding
a shared password pw and a common session identifier sid. (The sid is an artifact of the UC
framework, and it is guaranteed that (1) parties communicating with each other begin holding
matching sids, and (2) each sid is used only once. Existence of these sids is not essential to our
proof of security, though it does make the proof somewhat simpler.) Our protocol is symmetric,
and so we describe the execution from the point of view of U ; see Figure 2.

First, U chooses a random hash key k ← K and computes s := α(k). It then computes an
encryption of k, namely C1 ← Encpk1(k). Define a language L∗ as follows.

L∗ def= {(s, C1) : ∃k ∈ K and ω s.t s = α(k) and C1 = Encpk1(k; ω)}.
U computes an NIZK proof π that (C1, s) ∈ L∗, using crs. It then sets label := (sid, U, U ′, s, C1, π)
and computes the ciphertext C2 ← Encpk2(label, pw). The message it sends is (s, C1, π, C2).

Upon receiving the message (s′, C ′
1, π

′, C ′
2), user U does the following. If the message is invalid

(i.e., if verification of π′ fails, or C ′
2 is not a valid ciphertext, or s′ 6∈ S), then U simply rejects. Other-

wise, U sets label′ := (sid, U ′, U, s′, C ′
1, π

′) and computes skU := Hk(label′, C ′
2, pw)·Hk′(label, C2, pw).

Note U can compute Hk(label′, C ′
2, pw) since it knows k, and can compute Hk′(label, C2, pw) using

s′ = α(k′) and the randomness used to generate C2. Correctness follows from the definition of
smooth projective hashing.

Theorem 2. If (Gen, Enc, Dec) is CCA-secure, (CRSGen,P,V) is an unbounded simulation-sound
NIZK proof system, and (K,G,H = {Hk}k∈K , S, α) is a smooth projective hash function, then the
protocol in Figure 2 securely realizes F̂pwKE under static corruptions in the Fcrs-hybrid model.

Proof: Let A be an adversary that interacts with the parties running the protocol. We construct
an ideal-world adversary (i.e., simulator) S interacting with the ideal functionality F̂pwKE, such that

18

no ppt environment Z can distinguish an interaction with A in the real world from an interaction
with S in the ideal world.

S starts by invoking a copy of A and running a simulated interaction of A with Z and the
parties in the network. S forwards all messages to/from A and Z in the usual way.

Generating the public parameters. S generates pk1 and pk2 along with their corresponding
secret keys sk1 and sk2. It also runs (crs, τ) ← S1(1k), where S1 is the initial simulator for the
simulation-sound NIZK proof system. The public parameters (pk1, pk2, crs) are given to A, and
then S responds to the messages of A as described below.

Receiving a (NewSession, sid, Pi, Pj) message from F̂pwKE. Upon receiving such a message
(indicating that Pi should initiate the protocol with Pj), S proceeds as follows. Choose a random
hash key k ← K and compute s := α(k). Compute the ciphertext C1 ← Encpk1(0) and a simulated
NIZK proof π for the statement (C1, s) ∈ L∗. Set label := (sid, Pi, Pj , s, C1, π) and compute
C2 ← Encpk2(label, 0). Give the message (s, C1, π, C2) to A.

Receiving a message msg′ = (s′, C ′
1, π

′, C ′
2) from A. Let Pi denote the (uncorrupted) user to

whom A sends this message, and let sid denote the session ID with which this message is associated.
Let Pj denote the partner of Pi for this session.

If msg′ is invalid then S does nothing. Otherwise, we say msg′ is previously used if it was sent
by S (on behalf of Pj) upon receiving the message (NewSession, sid, Pj , Pi) from F̂pwKE. In any
other case we say msg′ is adversarially generated. To respond to this message, S does:

1. If msg′ is previously used, then S sends (NewKey, sid, Pi,⊥) to the functionality F̂pwKE. (This
has the effect of choosing a random session key for this instance of Pi if it terminates before
the partnered session at Pj , or if the passwords used by these instances of Pi and Pj differ,
and otherwise setting the session key for this instance of Pi equal to the session key already
computed for the partnered instance of Pj ; cf. Appendix C.1.1.)

2. If msg′ is adversarially generated, then S decrypts the ciphertext C ′
2 using the secret key sk2 to

obtain a password pw′. Then S queries the functionality F̂pwKE on input (TestPwd, sid, Pi, pw′),
which replies with either “correct guess” or “wrong guess”.

(a) If the reply is “correct guess”, then S decrypts C ′
1 using sk1 to obtain k′. It then com-

putes sk := Hk(label′, C ′
2, pw′) ·Hk′(label, C2, pw′), where Hk′(label, C2, pw′) is computed

using k′. Finally, S sends (NewKey, sid, Pi, sk) to F̂pwKE.

(b) If the reply is “wrong guess”, then S sends (NewKey, sid, Pi,⊥) to F̂pwKE.

Let idealF̂pwKE,S,Z denote the view of the environment Z in the ideal world when interacting
with S, and let execΠ,A,Z denote the view of Z in the real world when the protocol from Figure 2
is being run. Our aim is to show that these distributions are computationally indistinguishable. We
do this by considering a sequence of experiments Expt1, . . . ,Expt5 (where Expt0 corresponds to the
real-world execution). Let execi,A,Z denote the view of Z in Expti. We show that execi,A,Z ≈c

execi+1,A,Z for all i (where this denotes computational indistinguishability), and then argue that
exec5,A,Z is identical to idealF̂pwKE,S,Z . This completes the proof.

Experiment Expt0: Recall, this experiment involves the environment Z interacting with the ad-
versary A, who in turn interacts with parties running the real protocol as specified in Figure 2. The

19

view of Z consists of the public parameters and all the protocol messages (forwarded to it by A)
as well as all the session keys produced by parties during the course of the experiment.

Experiment Expt1: We change the distribution of the public parameters and the messages gen-
erated by the parties in the protocol. Specifically, the common random string crs is replaced with
a simulated one, and the proof π in every outgoing message is replaced with a simulated proof. It
follows from the zero-knowledge properties of the proof system that exec1,A,Z ≈c exec0,A,Z .

Experiment Expt2: Here, we again change the distribution of the outgoing messages by always
computing the ciphertext C1 as an encryption of 0 (rather than an encryption of the hash key k).
It follows immediately from semantic security of (Gen, Enc, Dec) that exec2,A,Z ≈c exec1,A,Z .

Before continuing, we define the notion of a previously used message. Note that the definition
here is slightly different from the definition used in the proof of Theorem 1.

Consider a valid msg′ = (s′, C ′
1, π

′, C ′
2) sent to an instance of (uncorrupted user) Pi who is using

session ID sid and is partnered with Pj . We say msg′ is previously used if it was sent by an instance
of the (uncorrupted user) Pj that is using the same session ID sid, and is partnered with Pi. We say
a previously used msg′ is associated with pw if pw is the password that was used by the instance of
Pj that sent msg′. If msg′ is not previously used, we say it is adversarially generated.

Experiment Expt3: We change the way session keys are computed. Specifically, consider an
instance of user Pi, with session ID sid and partner Pj , who receives an incoming message msg′ =
(s′, C ′

1, π
′, C ′

2). If msg′ is invalid, then it is handled as before (and no session key is computed).
Otherwise, set label′ = (sid, Pj , Pi, s

′, C ′
1, π

′) and let pw be the password being used by the current
instance of Pi. There are several sub-cases:

1. If msg′ is adversarially generated, compute pw′ := Decsk2(label′, C ′
2). Then:

(a) If pw′ = pw, compute k′ := Decsk1(C1). Then compute sk := Hk(label′, C ′
2, pw) ·

Hk′(label, C2, pw), using k′ to compute the second hash value.

(b) If pw′ 6= pw, choose sk uniformly from G.

2. If msg′ is previously used, then the simulator knows the password pw′ associated with msg′,
and also knows a value k′ such that s′ = α(k′). Then:

(a) If pw′ = pw, compute sk := Hk(label′, C ′
2, pw)·Hk′(label, C2, pw), using k′ to compute the

second hash value (rather than using the randomness used to generate C2, as in Expt2).

(b) If pw′ 6= pw, choose sk uniformly from G.

Claim 6. exec3,A,Z ≈c exec2,A,Z .

Proof: This follows from simulation soundness of (CRSGen,P,V). The proof is similar to that
of Claim 3, though there are some differences due to the particularities of the UC setting. Imagine
first that only the changes in Case 1(b) and 2(b) are made. These changes introduce a negligible
statistical difference between Expt3 and Expt2, exactly as in Claim 3 (though note that Case 2(b)
cannot occur in the context of the previous claim since parties are assumed to always use matching
passwords there).

Consider next the change in Case 1(a). Since the proof system is simulation-sound, with all but
negligible probability S extracts a value k′ such that α(k′) = s′; assuming this occurs, the session

20

key computed in Expt3 is identical to the session key that would have been computed in Expt2. The
same holds (always) in Case 2(a).

Experiment Expt4: Here, in every outgoing message the ciphertext C2 is generated as an encryp-
tion of 0, rather than as an encryption of pw. It follows readily from the CCA-security of the
encryption scheme used that exec4,A,Z ≈c exec3,A,Z .

Experiment Expt5: We once again change the way session keys are computed. Consider an
instance of user Pi, with session ID sid, partner Pj , and using password pw, who receives an
incoming message msg′ = (s′, C ′

1, π
′, C ′

2) that is previously used and is associated with pw. Then:

• If the corresponding partnered instance of Pj has already computed a session key sk, then set
the session key of the current instance of Pi equal to sk.

• Otherwise, choose the session key for the current instance of Pi uniformly from G.

Claim 7. exec5,A,Z ≈c exec4,A,Z .

Proof: Since msg′ is previously used, the ciphertext C ′
2 is an encryption of 0. Thus (label′, C ′

2, pw)
is not in L, and it follows (cf. Equation (1)) that (s,Hk(label′, C ′

2, pw)) is statistically close to (s, g),
where s = α(k) and g is a uniform element in G. This means that the secret key is statistically
close to a uniform element in G, even conditioned on the given transcript. The claim follows.

The distribution exec5,A,Z is identical to the distribution produced by the simulator, namely
idealF̂pwKE,S,Z . This follows by inspection. Indeed, the only difference is a syntactic one: in
experiment Expt5 the session keys are computed and stored locally by the simulator, whereas in the
ideal world the functionality computes the session keys and sends them to the (dummy) parties.

The above shows that execΠ,A,Z ≡ exec0,A,Z ≈c exec5,A,Z ≡ idealF̂pwKE,S,Z , completing the
proof of the theorem.

References

[1] M. Abdalla, D. Catalano, C. Chevalier, and D. Pointcheval. Efficient two-party password-
based key exchange protocols in the UC framework. In Cryptographers’ Track — RSA 2008,
volume 4964 of LNCS, pages 335–351. Springer, 2008.

[2] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure computation without authen-
tication. Journal of Cryptology, 24(4):720–760, 2011.

[3] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In Advances in Cryptology — Eurocrypt 2000, volume 1807 of LNCS,
pages 139–155. Springer, 2000.

[4] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in
Cryptology — Crypto ’93, volume 773 of LNCS, pages 232–249. Springer, 1994.

[5] M. Bellare and P. Rogaway. Provably secure session key distribution: The three party case.
In 27th Annual ACM Symposium on Theory of Computing (STOC), pages 57–66. ACM Press,
1995.

21

[6] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In IEEE Symposium on Security & Privacy, pages 72–84. IEEE,
1992.

[7] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systematic
design of two-party authentication protocols. IEEE J. on Selected Areas in Communications,
11(5):679–693, 1993.

[8] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM
Journal on Computing, 20(6):1084–1118, 1991.

[9] M. Blum, P. Feldman, and S. Micali. Proving security against chosen cyphertext attacks. In
Advances in Cryptology — Crypto ’88, volume 403 of LNCS, pages 256–268. Springer, 1990.

[10] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology —
Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer, 2004.

[11] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith. Secure remote authentication using
biometric data. In Advances in Cryptology — Eurocrypt 2005, volume 3494 of LNCS, pages
147–163. Springer, 2005.

[12] V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated key ex-
change using Diffie-Hellman. In Advances in Cryptology — Eurocrypt 2000, volume 1807 of
LNCS, pages 156–171. Springer, 2000.

[13] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against
key dependent chosen plaintext and adaptive chosen ciphertext attacks. In A. Joux, editor,
Advances in Cryptology — Eurocrypt 2009, volume 5479 of LNCS, pages 351–368. Springer,
2009.

[14] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–145. IEEE,
2001. Full version at http://eprint.iacr.org/2000/067/.

[15] R. Canetti, D. Dachman-Soled, V. Vaikuntanathan, and H. Wee. Efficient password authenti-
cated key exchange via oblivious transfer. In Public-Key Cryptography — PKC 2012, volume
7293 of LNCS, pages 449–466. Springer, 2012.

[16] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable
password-based key exchange. In Advances in Cryptology — Eurocrypt 2005, volume 3494 of
LNCS, pages 404–421. Springer, 2005.

[17] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Advances in Cryptology — Eurocrypt 2002, volume 2332 of
LNCS, pages 45–64. Springer, 2002.

[18] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive
zero knowledge. In Advances in Cryptology — Crypto 2001, volume 2139 of LNCS, pages 566–
598. Springer, 2001.

22

[19] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Information
Theory, 22(6):644–654, 1976.

[20] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs under
general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

[21] R. Gennaro. Faster and shorter password-authenticated key exchange. In 5th Theory of
Cryptography Conference — TCC 2008, volume 4948 of LNCS, pages 589–606. Springer, 2008.

[22] R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange.
ACM Trans. Information and System Security, 9(2):181–234, 2006.

[23] O. Goldreich and Y. Lindell. Session-key generation using human passwords only. Journal of
Cryptology, 19(3):241–340, 2006.

[24] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly chosen secrets
from guessing attacks. IEEE J. Selected Areas in Communications, 11(5):648–656, 1993.

[25] V. Goyal. Positive results for concurrently secure computation in the plain model. In 53rd
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2012.

[26] V. Goyal, A. Jain, and R. Ostrovsky. Password-authenticated session-key generation on the
internet in the plain model. In Advances in Cryptology — Crypto 2010, volume 6223 of LNCS,
pages 277–294. Springer, 2010.

[27] A. Groce and J. Katz. A new framework for efficient password-based authenticated key ex-
change. In 17th ACM Conf. on Computer and Communications Security (CCS), pages 516–525.
ACM Press, 2010.

[28] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Advances
in Cryptology — Eurocrypt 2008, volume 4965 of LNCS, pages 415–432. Springer, 2008.

[29] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. ACM Trans.
Information and System Security, 2(3):230–268, 1999.

[30] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In
Advances in Cryptology — Crypto 2007, volume 4622 of LNCS, pages 553–571. Springer,
2007.

[31] I. R. Jeong, J. Katz, and D. H. Lee. One-round protocols for two-party authenticated key
exchange. In 2nd Intl. Conference on Applied Cryptography and Network Security (ACNS),
volume 3089 of LNCS, pages 220–232. Springer, 2004.

[32] S. Jiang and G. Gong. Password based key exchange with mutual authentication. In 11th
Annual International Workshop on Selected Areas in Cryptography (SAC), volume 3357 of
LNCS, pages 267–279. Springer, 2004.

[33] J. Katz, P. D. MacKenzie, G. Taban, and V. D. Gligor. Two-server password-only authenti-
cated key exchange. J. Computer and System Sciences, 78(2):651–669, 2012.

23

[34] J. Katz, R. Ostrovsky, and M. Yung. Efficient and secure authenticated key exchange using
weak passwords. J. ACM, 57(1):78–116, 2009.

[35] J. Katz and V. Vaikuntanathan. Smooth projective hashing and password-based authenticated
key exchange from lattices. In Advances in Cryptology — Asiacrypt 2009, volume 5912 of
LNCS, pages 636–652. Springer, 2009.

[36] P. D. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key exchange based
on RSA. In Advances in Cryptology — Asiacrypt 2000, volume 1976 of LNCS, pages 599–613.
Springer, 2000.

[37] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd Annual ACM Symposium on Theory of Computing (STOC), pages 427–437.
ACM Press, 1990.

[38] M.-H. Nguyen and S. Vadhan. Simpler session-key generation from short random passwords.
Journal of Cryptology, 21(1):52–96, 2008.

[39] T. Okamoto. Authenticated key exchange and key encapsulation in the standard model. In
Advances in Cryptology — Asiacrypt 2007, volume 4833 of LNCS, pages 474–484. Springer,
2007.

[40] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity. In 40th Annual Symposium on Foundations of Computer Science (FOCS), pages 543–553.
IEEE, 1999.

[41] H. Shacham. A Cramer-Shoup encryption scheme from the linear assumption and from pro-
gressively weaker linear variants. Cryptology ePrint archive, report 2007/074.

A Additional Definitions

A.1 Labeled CCA-Secure Encryption

We use the standard notion of chosen-ciphertext security for public-key encryption, though adapted
to support the inclusion of labels when generating ciphertexts.

Definition 2. A public-key encryption scheme supporting labels is a tuple of ppt algorithms (Gen,
Enc, Dec) such that:

• The key-generation algorithm Gen takes as input a security parameter 1n and returns a public
key pk and a secret key sk.

• The encryption algorithm Enc takes as input a public key pk, a label label, and a message m.
It returns a ciphertext C ← Encpk(label,m).

• The decryption algorithm Dec takes as input a secret key sk, a label label, and a ciphertext C.
It returns a message m or a distinguished symbol ⊥. We write this as m = Dsk(label, C).

We require that for all pk, sk output by gen(1n), any label ∈ {0, 1}∗, all m in the (implicit) message
space, and any C output by Encpk(label, m) we have Decsk(label, C) = m.

24

Our definition of security against chosen-ciphertext attacks is standard except for our inclusion of
labels. Define a left-or-right encryption oracle Encpk,b(·, ·, ·) (where b ∈ {0, 1}) as follows:

Encpk,b(label,m0, m1)
def= Encpk(label,mb).

Definition 3. A public-key encryption scheme (Gen, Enc, Dec) is secure against adaptive chosen-
ciphertext attacks (CCA-secure) if the following is negligible for all ppt algorithms A:

∣∣∣2 · Pr[(pk, sk) ← Gen(1n); b ← {0, 1} : AEncpk,b(·,·,·),Decsk(·,·)(1n, pk) = b]− 1
∣∣∣ ,

where A’s queries are restricted as follows: if A makes a query Encpk,b(label,m0,m1) then |m0| =
|m1|; furthermore, if A receives ciphertext C in response to this query, then A cannot later query
Decsk(label, C) (but it is allowed to query (Decsk(label′, C) with label′ 6= label).

A.2 Simulation-Sound Non-Interactive Zero Knowledge (NIZK)

Simulation-sound NIZK was introduced in [40, 18]. Intuitively, a simulation-sound NIZK proof
system is a NIZK proof system with the extra property that a polynomially bounded cheating
prover is incapable of convincing the verifier of a false statement, even after seeing any number of
simulated proofs of her choosing. We first recall the notion of (adaptive) NIZK:

Definition 4 ([20, 9, 8]). A tuple of ppt algorithms Π = (CRSGen,P,V,S1,S2) is an efficient NIZK
proof system for a language L ∈ NP with witness relation R if the following hold:

• Completeness: For all n, all x ∈ L ∩ {0, 1}n, all w such that R(x,w) = 1, and all strings
σ ← CRSGen(1n), it holds that Vσ(x,Pσ(x,w)) = 1.

• Adaptive Soundness: For all adversaries A, the following is negligible (in n):

Pr[σ ← CRSGen(1n); (x, π) ← A(σ) : Vσ(x, π) = 1 ∧ π 6∈ L].

• Adaptive Zero Knowledge: For all ppt adversaries A, the following is negligible
∣∣Pr[ExptA(n) = 1]− Pr[ExptSim

A (n) = 1]
∣∣,

where experiment ExptA(n) is defined as:

σ ← CRSGen(1n)

Return APσ(·,·)(1n, σ)

and experiment ExptSim
A (n) is defined as:

(σ, τ) ← S1(1n)

Return AS′σ,τ (·,·)(1n, σ),

where S′σ,τ (x,w) =
{ S2(x, σ, τ) R(x,w) = 1 ∧ x ∈ {0, 1}n

⊥ otherwise
.

25

We next define the notion of simulation-sound NIZK. (Note that although one-time simulation
soundness would suffice for our applications in Section 4, we only define the stronger notion of
unbounded simulation-sound NIZK. See [40] for a definition of the former.)

Definition 5. Let Π = (CRSGen,P,V,S1,S2) be an efficient NIZK proof system for a language
L ∈ NP. We say Π is simulation sound if for all ppt adversaries A it holds that Pr[ExptA,Π(n) = 1]
is negligible, where ExptA,Π(n) denotes the following experiment:

(σ, τ) ← S1(1n)

(x, π) ← AS2(·,σ,τ)(1n, σ)
Let Q be the list of proofs returned by S2, above
Return 1 iff (π 6∈ Q and x 6∈ L and Vσ(x, π) = 1) .

Assuming the existence of doubly enhanced trapdoor permutations, every language in NP has
a simulation-sound NIZK proof system [18].

B A Simulation-Sound NIZK Proof of Plaintext Equality

Fix groups G,GT of prime order p, and a bilinear map e : G×G→ GT as in Section 4.2. Fix also
two public keys pk1 = (f1, g1, h) and pk2 = (f2, g2, h). We encrypt a message m with respect to pk1

by choosing random r, s and computing the ciphertext (f r
1 , gs

1, h
r+s ·m). We encrypt a message m

with respect to pk2 by choosing random r, s ∈ Zp and computing the ciphertext (f r
2 , gs

2, h
r+s ·m).

We stress that the public keys use the same value h.
We first describe a (potentially malleable) NIZK proof of plaintext equality. That is, given

two ciphertexts (F1, G1,H1) and (F2, G2,H2) encrypted with respect to pk1, pk2, respectively, we
describe a proof that these ciphertexts encrypt the same message. The observation is that plaintext
equality is equivalent to the existence of r1, s1, r2, s2 ∈ Zp such that:

F1 = f r1
1 (7)

G1 = gs1
1 (8)

F2 = f r2
2 (9)

G2 = gs2
2 (10)

H1/H2 = hr1+s1−r2−s2 . (11)

As shown in [28] (see also [13, Section 4.4] for a self-contained description), NIZK proofs of satisfi-
ability (with a CRS) can be constructed for a system of equations as above; since, in our case, we
have 5 linear equations in 4 variables, proofs would contain 22 group elements.3

Camenisch et al. [13] show a construction of an unbounded simulation-sound NIZK proof system.
For our purposes in Section 3, a simpler construction that is one-time simulation sound [40] suffices.
Let (Gen, Sign,Vrfy) be a one-time signature scheme, where for simplicity we assume verification
keys are elements of G (this can always be achieved using an extra step of hashing). To make the
above (one-time) simulation-sound, we add to the CRS group elements (f, g, h, F,G, H). Roughly,
proofs of plaintext equality now contain:

3Our calculations here are based on the decisional linear assumption (the 2-linear assumption in the terminology
of [13]). If we are willing to use the 1-linear assumption, the efficiency of our proofs can be improved.

26

1. A fresh signature verification key vk.

2. A proof that either there exists a satisfying assignment to Equations (7)–(11), or that the
given tuple (f, g, h, F,G, H) is an encryption of vk, i.e., that there exist r, s such that:

F = f r, G = gs, H/vk = hr+s. (12)

3. A signature σ (with respect to vk) on the proof from the previous step.

Equation (12) describes a system of 3 linear equations in 2 variables. Using the techniques from [13,
Appendix A.2], an NIZK proof as required in step 2 can be obtained using 58 group elements.
(In detail: Applying the OR-transformation from [13, Appendix A.2.2] to the two systems of
equations given by Equations (7)–(11) and Equation (12), respectively, we obtain one system of 8
linear equations and one quadratic equation in 7 variables. Applying the transformation from [13,
Appendix A.2.1], we get a system of 11 linear equations in 11 variables, plus 3 extra group elements
that need to be sent. From [13, Section 4.4] we see that an NIZK proof for the former can be done
using 55 group elements.) This gives a total of 60 group elements for the entire simulation-sound
NIZK proof (assuming signatures are one group element for simplicity). See also footnote 3.

C Universally Composable Password-Based Key Exchange

C.1 The Universal Composability Framework

We provide a brief review of the universally composable security framework [14]. The framework
allows for defining the security properties of cryptographic tasks so that security is maintained
under general composition with an unbounded number of instances of arbitrary protocols running
concurrently. In the UC framework, the security requirements of a given task are captured by
specifying an ideal functionality run by a “trusted party” that obtains the inputs of the participants
and provides them with the desired outputs. Informally, then, a protocol securely carries out a
given task if running the protocol in the presence of a real-world adversary amounts to “emulating”
the desired ideal functionality.

The notion of emulation in the UC framework is considerably stronger than that considered in
previous models. As usual, the real-world model includes the parties running the protocol and an
adversary A who controls their communication and potentially corrupts parties, while the ideal-
world includes a simulator S who interacts with an ideal functionality F and also with dummy
players who simply send input to/receive output from F ; “emulating an ideal process” requires
that for any adversary A there should exist a simulator S that causes the outputs of the parties
in the ideal process to have a “similar” (i.e., computationally-indistinguishable) distribution to
the outputs of the parties in a real-world execution of the protocol. In the UC framework, the
requirement on S is more stringent than this. Specifically, there is also an additional entity called
the environment Z. This environment generates the inputs to all parties, observes all their outputs,
and interacts with the adversary in an arbitrary way throughout the computation. A protocol π
is said to securely realize an ideal functionality F if for any real-world adversary A that interacts
with Z and real players running π, there exists an ideal-world simulator S that interacts with Z,
the ideal functionality F , and the “dummy” players communicating with F , such that no poly-time
environment Z can distinguish whether it is interacting with A (in the real world) or S (in the
ideal world). Z thus serves as an “interactive distinguisher” between a real-world execution of the

27

protocol π and an ideal execution of functionality F . A key point is that Z cannot be re-wound by
S; in other words, S must provide a so-called “straight-line” simulation.

The following universal composition theorem is proven in [14]. Consider a protocol π that
operates in the F-hybrid model, where parties can communicate as usual and in addition have
ideal access to an unbounded number of copies of the functionality F . Let ρ be a protocol that
securely realizes F as sketched above, and let πρ be identical to π with the exception that the
interaction with each copy of F is replaced with an interaction with a separate instance of ρ. Then,
π and πρ have essentially the same input/output behavior. In particular, if π securely realizes
some functionality G in the F-hybrid model then πρ securely realizes G in the standard model (i.e.,
without access to any functionality).

C.1.1 Universally-Composable Password-Based Key Exchange

In Figure 3 we present the functionality FpwKE for password-based key exchange, taken directly
from [16]. We refer the reader to their work for extensive discussion regarding the particular choices
made regarding this formulation of this functionality.

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter n. It interacts with an adversary S and
a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw) from party Pi:
Send (NewSession, sid, Pi, Pj) to S. In addition, if this is the first NewSession query, or if this is the
second NewSession query and there is a record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark this
record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:
If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw′ = pw, mark the record
compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and
reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = n:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi, then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to player Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw, and a key sk′ was sent
to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ ← {0, 1}n and send (sid, sk′) to Pi.

In all cases, mark the record (Pi, Pj , pw) as completed.

Figure 3: The password-based key-exchange functionality FpwKE.

28

