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Abstract. We analyze the Grøstl hash function, which is a 2nd-round candidate
of the SHA-3 competition. Using the start-from-the-middle variant of the rebound
technique, we show collision attacks on the Grøstl-256 hash function reduced to
5 and 6 out of 10 rounds with time complexities 248 and 2112, respectively. Fur-
thermore, we demonstrate semi-free-start collision attacks on the Grøstl-224 and
-256 hash functions reduced to 7 rounds and the Grøstl-224 and -256 compression
functions reduced to 8 rounds. Our attacks are based on differential paths between
the two permutations P and Q of Grøstl, a strategy introduced by Peyrin [15] to
construct distinguishers for the compression function. In this paper, we extend
this approach to construct collision and semi-free-start collision attacks for both
the hash and the compression function. Finally, we present improved distinguish-
ers for reduced-round versions of the Grøstl-224 and -256 permutations.
Key words:Hash Function, Differential Cryptanalysis, SHA-3

1 Introduction

Cryptographic hash functions are one of the most important primitives in cryptography;
they are used in many applications, including digital signature schemes, MAC algorithms,
and PRNG. Since the discovery of the collision attacks on NIST’s standard hash function
SHA-1 [17, 4], there is a strong need for a secure and efficient hash function. In 2008,
NIST launched the SHA-3 competition [14], that intends to select a new standard hash
function in 2012. More than 60 hash functions were submitted to the competition, and
14 functions among them were selected as second-round candidates in 2009. The hash
functions are expected to be collision resistant: it is expected that finding a collision
takes 2n/2 operations for a hash function with an n-bit output.

Several types of hash functions have been proposed to the SHA-3 competition. Some
of the most promising designs reuse the components of the AES [1]. In this paper, we
concentrate on the Grøstl [5] hash function that belongs to this class.

To analyze AES-type functions, several cryptanalytic techniques were developed.
Among them, one of the most important techniques is truncated differential cryptanal-
ysis [7, 16]. In this technique, differences of bits are reduced to differences of bytes. This
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makes differential paths very simple and is very suitable for functions based on byte-wise
calculations, such as AES-type functions. Refinements of truncated differential cryptanal-
ysis are the rebound attack [11] and the two variants thereof: the start-from-the-middle
and the Super-Sbox rebound attacks [12, 9, 6]. As an AES-based design, the resistance of
Grøstl against these attacks has been assessed in detail [11–13,6, 15]. Specifically, as a
comparison with our results, a collision attack on the Grøstl-224 and -256 hash functions
reduced to 4 rounds with 264 time and memory complexities was shown by Mendel et

al. [13], and a semi-free-start collision attack on the Grøstl-256 compression function
reduced to 7 rounds with 2120 time and 264 memory complexities is shown by Mendel et

al. [13] and Gilbert et al. [6].

We use the start-from-the-middle and the Super-Sbox variants of the rebound tech-
nique to analyze the reduced-round Grøstl-224 and Grøstl-256 hash functions, compres-
sion function, and permutations. We show collision attacks on the Grøstl-256 hash func-
tion reduced to 5 and 6 rounds with time complexities 248 and 2112, respectively, and on
the Grøstl-224 hash function reduced to 5 rounds with time complexity 248. To the best
of our knowledge, these are the best collision attacks on Grøstl-224 and 256 hash func-
tions so far. Our analysis uses truncated differential paths between the two permutations,
P and Q. This approach was introduced in [15] to construct distinguishers. Generaliz-
ing our collision attacks to semi-free-start collision attacks, we construct semi-free-start
collision attacks on the Grøstl-224 and -256 hash functions reduced to 7 rounds with
time complexity 280 and on the Grøstl-224 and -256 compression functions reduced to 8
rounds with time complexity 2192. To the best of our knowledge, these are the best semi-
free-start collision attacks on the Grøstl-224 and -256 hash functions and compression
functions so far. By contrast, the paths in [15] could not be used to obtain semi-free-start
collisions due to lack of degrees of freedom. Furthermore, we show distinguishers of the
Grøstl-224 and -256 permutations reduced to 7 and 8 rounds. The 7-round distinguisher
has a practical complexity. We list an example of input pairs of the permutations.

Our cryptanalytic results of Grøstl are summarized in Table 1. We will explain these
results in Sect. 4 and 5.

Table 1. Summary of results for Grøstl

Target Hash Length Rounds Time Memory Type Reference

224, 256 4 264 264 collision [13]
256 5 248 232 collision Sect. 4.2

hash function 256 6 2112 232 collision Sect. 4.2
(full: 10 round) 224 5 248 232 collision Sect. 4.2

224, 256 7 280 264 semi-free-start collision Sect. 4.2

compression 256 7 2120 264 semi-free-start collision [13, 6]
function 224, 256 8 2192 264 semi-free-start collision Sect. 4.3

(512-bit CV)

224, 256 7 255 - distinguisher [12]
permutation 224, 256 7 219 - distinguisher Sect. 5.2

256 8 2112 264 distinguisher [6]
224, 256 8 264 264 distinguisher Sect. 5.1



The paper is organized as follows. In Sect. 2, the specification of Grøstl is briefly
explained. In Sect. 3, we give a short review of the techniques used in our analysis. In
Sect. 4 and 5, we analyze Grøstl. Sect. 6 concludes the paper.

2 A Short Description of Grøstl

Here, we shortly explain the specification of Grøstl. For a detailed explanation, we refer to
the original paper [5]. Grøstl is an iterated hash function with an SPN structure following
the AES design strategy. The chaining values are 512-bit for Grøstl-224 and -256; they
are stored as an 8 by 8 matrix whose elements are bytes. The compression function takes
a 512-bit chaining value (CV) and a 512-bit message block as inputs and generates a
new 512-bit CV. The compression function uses two permutations P and Q, with input
length 512-bit. The compression function is computed as follows (see also Fig. 1):

x = CompGrøstl(y, z) = P (y ⊕ z) ⊕ Q(z) ⊕ y,

y

z

xP

Q

Fig. 1. The Compression Function of Grøstl

A message is padded and divided into 512-bit message blocks m1, . . . , mb and pro-
cessed as follows to generate a hash value h,

CV0 = IV,

CVi = CompGrøstl(CVi−1, mi), i = 1, . . . , b,

h = Output(CVb) = P (CVb) ⊕ CVb.

Here, the IV is a constant value, namely the binary representation of the hash length.
For example, the IV of Grøstl-256 is IV = 0x00 . . .0100; its matrix representation is
given in Fig. 2(a).

The permutation P is an AES-type SP-network structure [1] with 10 rounds, where a
round consists of MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddConstants. The permutation
Q has the same structure; it uses the same MixBytes, ShiftBytes and SubBytes but
another AddConstants.

SubBytes is a non-linear transformation using the AES S-box. ShiftBytes consists of
byte-wise cyclic shifts of rows. The i-th row is moved left cyclically by i bytes. MixBytes
is a matrix multiplication, where a constant MDS matrix is multiplied from the left.

AddConstants of P xors the round number to the first bytes of the internal state.
AddConstants of Q xors the negation of the round number to the eighth byte of the
internal state. These functions are depicted in Fig. 2(b).

3 Cryptanalytic Techniques

Here, we shortly explain the start-from-the-middle and Super-Sbox variants of the re-
bound technique. In this paper, we call these the start-from-the-middle rebound technique
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Fig. 2. (a) The IV of Grøstl-256 (b) AddConstants at the j-th round of the Grøstl permutations

and the Super-Sbox rebound technique, respectively. For a detailed explanation, we refer
to the original papers [12, 9, 6].

3.1 The Start-From-the-Middle Rebound Technique

The start-from-the-middle rebound technique was introduced by Mendel et al. [12] and
can be considered as a generalization of the rebound attack [11]. We explain this technique
using a small example with a 4-round path depicted in Fig. 3.

We split the path into a controlled phase and an uncontrolled phase. The controlled
phase consists of the middle part of the path and comprises most costly differential
transitions. In Fig. 3, the controlled phase is shown by solid arrows and the uncontrolled
one is shown by dashed arrows.

SB ShB MB SB ShB MB

SB ShB MB SB ShB MB

1st round 2nd

3rd 4th

Fig. 3. Example path for the start-from-the-middle rebound technique

At first, the adversary builds 28−1 difference distribution tables (DDT) of the Sbox;
each DDT is a table that lists for a given output difference the input differences and the
corresponding input pairs. There are 28 tables of size 28. Then, the adversary deals with
the controlled phase. The procedure for the controlled phase consists of the following
three steps.

1. The adversary fixes the input difference of the 4th round SubBytes, then calculates
the output difference of the 3rd round SubBytes.

2. He fixes the input difference of the 2nd round MixBytes and calculates the input
difference of the 3rd round SubBytes. Then, for each column of the output of the 3rd
round SubBytes, he finds pairs of values of the column by using the precomputed
difference distribution table such that the fixed input and output differences of the
3rd-round SubBytes are followed. This can be done for each column independently.
By repeating this step with different input differences of the 2nd-round MixBytes,
he obtains a set of solutions for each column, hence eight sets of solutions.

3. For the solutions obtained in the previous step, he calculates the differences of the
input of the 2nd-round SubBytes. Then, he looks for solutions such that the difference
of the input of the 2nd-round SubBytes is transformed to a one-byte difference by
the 1st-round inverse MixBytes. These are the solutions of the controlled phase. He



can repeat the procedure from Step. 1 to 3 by changing the input difference of the
4th round SubBytes.

Although in the above procedure the adversary proceeds backwards from the end of the
3rd round to the input of the 1st round MixBytes, he can also proceed in the opposite
direction. In this procedure, the average time complexity to find one solution of the
controlled phase is one and the memory complexity is negligible.

The uncontrolled phase is probabilistic. In the backward direction (from the input of
the 1st-round ShiftBytes to the beginning of the path), the probability to follow the
path is almost one. In the forward direction (from the input of the 4th-round SubBytes

to the end of the path), it requires 256 solutions of the controlled phase in order to follow
a 8 → 1 transition for the 4th-round MixBytes.

In total, generating one solution of the whole path takes time 256.
The degrees of freedom can be counted by the method of [15]. For the path above, we

can find about 215 solutions following the whole path. Note that if we consider differential
paths between P (m+IV ) and Q(m), we need not to halve the overall degrees of freedom
at the middle point. Hence for this case, the degrees of freedom are doubled compared
with the number counted by the method of [15].

3.2 The Super-Sbox Rebound Technique

The Super-Sbox rebound technique [9, 6] is a composition of the super box concept and
the rebound technique. The super box concept [2, 3] considers the Sbox layers of two
consecutive rounds as one big Sbox layer. Specifically, by exchanging the order of the first
SubBytes and the first ShiftBytes, we have a composition of SubBytes ◦ AddConstants
◦ MixBytes ◦ SubBytes. This composition is considered as eight independent 64-bit to
64-bit Sboxes, which are called super boxes, or Super-Sboxes as in [6].

We explain the Super-Sbox Rebound technique in an example in Fig. 4. Similar to
the start-from-the-middle rebound technique, we split the path into a controlled phase
and an uncontrolled phase.

SB ShB MB SB ShB MB

SB ShB MB

SB ShB MB

1st round 2nd

4th

5th

SBShB MB

3rd

Super-Sbox

Fig. 4. Example path for the Super-Sbox rebound technique

For the controlled phase, the procedure proceeds as follows.

1. The adversary fixes the input difference of the 2nd round MixBytes, then calculates
the input difference of the 3rd round SubBytes. For each Super-Sbox, he computes
the output differences of the Super-Sbox for all possible pairs of inputs which have the



fixed input difference and makes tables of the output difference and the corresponding
input pair. This takes time and memory 264.

2. Then, he fixes the output difference of the 4th round Mixbytes and calculates the
output difference of the 4th round SubBytes.

3. For each Super-Sbox, he looks for the pairs of the inputs of the Super-Sbox by using
the difference distribution table of Step 1 such that the output difference of the 4th-
round SubBytes is equal to that of Step 2. This can be done for each Super-Sbox
independently. If the number of solutions of the controlled phase is not sufficient, he
can repeat Step 2 and 3 until the output differences of the 4th round MixBytes are
exhausted. After exhausting the differences at Step 2, he can repeat the procedure
from Step 1 by changing the input difference of the 2nd round MixBytes.

Although in the above procedure the adversary proceeds forward from the input of the
2nd round MixBytes to the end of the 4th round, he can also proceed in the opposite
direction.

As before, the uncontrolled phase is probabilistic. Since there are two 8 → 1 transi-
tions (the 1st-round MixBytes and the 5th-round MixBytes), he needs 256×2 solutions
of the controlled phase. Hence, the time complexity to generate a solution following the
whole path is 2112. The total memory complexity is 264.

The degrees of freedom can be counted as in the case of the start-from-the-middle
rebound attack. For the path above, we can find about 215 solutions following the whole
path.

This path can also be followed by using the start-from-the-middle rebound technique,
requiring the same time and memory complexity as the Super-Sbox rebound technique.

4 Collision and Semi-Free-Start Collision Attacks on Reduced

Round Grøstl

4.1 The Attack Strategy

We show collision attacks and semi-free-start collision attacks on the reduced-round
Grøstl hash function and compression function. We apply the start-from-the-middle re-
bound technique on the 5-round, 6-round and 7-round Grøstl hash functions and the
Super-Sbox rebound technique on the 8-round Grøstl compression function.

In all of these cases, we consider differential paths between P (m ⊕ IV ) and Q(m).
(For collision attacks, the IV is the value specified by the designer. For semi-free-start
collision attacks, the IV can take another value.) Since the permutations P and Q only
differ in the AddConstants functions, where there are two-byte differences per round, we
can construct differential paths between P and Q which hold with high probability. This
strategy was introduced in [15] to construct distinguishers of the compression function.

In our attacks on the hash function, an adversary finds a message pair in which each
padded message has the same number b of blocks with b ≥ 2. Consider the case b = 2.
Firstly, he finds a pair of the first blocks m1 and m′

1 that generate an internal collision
of CV after processing the first block:

CV = CompGrøstl(IV, m1) = CompGrøstl(IV, m′

1) . (1)



Then, the adversary appends the same message block m2 to both blocks such that the
padding rule is satisfied;

Padding(M) = m1||m2, Padding(M ′) = m′

1||m2 , (2)

where M and M ′ are messages which generate the same hash value,

hash(M) = hash(M ′) = Output(CompGrøstl(CV, m2)) . (3)

As finding the second message blocks is easy, we can concentrate on finding the first
blocks.

For an attack on the compression function, finding the first blocks is sufficient.

4.2 Applying the Start-from-the-Middle rebound technique to 5-round,

6-round, and 7-round Grøstl-224 and -256

We show collision attacks on the Grøstl-256 hash function reduced to 5 rounds and 6
rounds and a semi-free-start collision attack on the Grøstl-224 and -256 hash functions
reduced to 7 rounds. The full Grøstl-224 and -256 hash function has 10 rounds.

Collision attack on the Grøstl-256 hash function reduced to 5 rounds First,
we explain a collision attack on the Grøstl-256 hash function reduced to 5 rounds. For
this case, our differential path between P (m ⊕ IV ) and Q(m) of the first message block
is shown in Fig 5. The controlled phase is shown by solid arrows and the uncontrolled
phase by dashed arrows.

The controlled phase starts from the input of the 4th round SubBytes, proceeds
backwards and ends at the input of the 1st round MixBytes. The average time complexity
to generate an internal state pair which follows the path of the controlled phase is one.
The remaining steps of the path are the uncontrolled phase. For the forward direction
(from the 4th round SubBytes to the end of compression function), the probability to
follow the path is almost one. For the backward direction (from the 1st round inverse
ShiftBytes to the beginning of the compression function), it takes 216 computations to
follow the inverse AddConstants and addition of the IV in the 1st round. Therefore, the
time complexity to find a message block to follow the whole path is 216. An example of
such a message block can be found in Table 2.

As the differences of CV at the end of the path are determined by the 8-byte difference
before the final MixBytes, by the birthday paradox we need to have 232 message blocks
following the path in order to obtain a pair (m1, m

′

1) whose CV s collide; P (m1 ⊕ IV )⊕
Q(m1)⊕ IV = P (m′

1 ⊕ IV )⊕Q(m′

1)⊕ IV . Therefore, the total complexity of the attack
is 216+32 = 248 time and 232 memory.

Table 2. Message block m following the differential path between P and Q used in the 5-round
collision attack.

m 7d108fbb55b235a4 0eba3e293ec86701 42e5de7469e6e097 cbaf6719a603b7bf

b617d48098448877 215829419c0a161c 01131ad85ba62da2 b9dbe9d6fb8e44ce
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Fig. 5. Differential path between P and Q of 5-round Grøstl-256

By counting the degrees of freedom, it is expected that we can generate at most
264 message blocks following the path. Because the attack requires 232 message blocks
following the path, we have enough degrees of freedom to make the attack work.

The 5-round path can be modified to be used in a semi-free start collision attack on
the Grøstl-224 and -256 hash functions reduced to 7 rounds. The total complexity of the
attack is 280 time and 264 memory. The 7-round path is depicted in Fig 10 in Appendix A.
In this case, we can generate at most 264 message blocks following the path. On the other
hand, the attack needs 264 message blocks following the path to generate a collision of
CV , because CV is determined by 8 non-zero bytes of the IV and the 8-byte difference
before the last MixBytes. Hence, it is expected that we can generate just one collision of
CV with high probability.1

The 5-round path can also be slightly modified to be used in a collision attack on the
Grøstl-224 hash function reduced to 5 rounds. The path is depicted in Fig. 11 in Ap-
pendix A. Note that the IV of Grøstl-224 has a non-zero byte only at the least significant
byte.

Collision attack on the Grøstl-256 hash function reduced to 6 rounds Next,
we show a collision attack on the 6-round Grøstl-256 hash function. The path used is
depicted in Fig. 6. The controlled phase (solid line) starts from the input of the 2nd
round MixBytes, proceeds forwards and ends at the input of the 5th round SubBytes.
The average time complexity to generate an internal state pair which follows the path of

1 If we cannot find a collision with this path, we can change the path, such that there are a full
active ’diagonal column’ and a full active ’off-diagonal column’ at the output of the 5th round
MixBytes, instead of a full active diagonal column. (A diagonal column denotes diagonal 8
bytes, which are aligned to the first column by ShiftBytes, and a off-diagonal column denotes
8 bytes which are aligned to a column other than the first column by ShiftBytes.) For the
new path, we can generate at most 2128 message blocks following the path. This is enough to
make a collision of CV, because CVs live in 192-bit space. For this case, the complexities of
the attack are 2112 for time and 296 for memory.



the controlled phase is one. The remaining steps of the path are the uncontrolled phase
(dashed line). For the forward direction (from the 5th round SubBytes to the end of
compression function), the probability to follow the path is almost one. For the backward
direction (from the 2nd round inverse ShiftBytes to the beginning of the compression
function), it takes 216 computations to follow the 2nd round inverse AddConstants, 248

computations for the 2nd round inverse MixBytes, and 216 computation for the inverse
AddConstants and addition of the IV in the 1st round. Therefore, the time complexity
to find a message block which follows the whole path is 280.

One might think that finding solutions of the internal state pair at Step 3 of the
controlled phase is difficult and requires much time and memory. Specifically, we can
generate 232 solutions of the controlled phase with time and memory 232, hence the
average cost to find one solution is one. We explain a way to do this in the next paragraph.

Before starting Step 3, the adversary prepares 232 solutions for each column at the
output of the 3rd round MixBytes in Step 2 independently. Then, a procedure to obtain
solutions of the controlled phase in Step 3 is as follows.

3-1 He evolves the solutions obtained in Step 2 forwards until the input of the 4th
round MixBytes. Now, he has 232 solutions for each anti-diagonal or anti-off-diagonal
column (An anti-diagonal column denotes anti-diagonal 8 bytes, which are aligned to
the eighth column by inverse ShiftBytes, and an anti-off-diagonal column denotes
8 bytes which are aligned to a column other than the eighth column by inverse
ShiftBytes.) at the input of the 4th round MixBytes.

3-2 He picks up an element among the solutions corresponding to the anti-diagonal
column. This determines 4 bytes of the anti-diagonal 8-byte difference at the input
of the 4th round MixBytes. As the transition pattern of the 4th round MixBytes in
the path imposes 28 bytes linear equations on the input difference, the other 28-byte
difference at the input of the 4th round MixBytes is fixed by solving these 28 bytes
equations. Then, he checks whether this 28-byte difference is included in the other
sets of the solutions (corresponding to anti-off-diagonal columns). He repeats this
procedure for all 232 elements of the solutions corresponding to the anti-diagonal
column.

This procedure takes 232 time and 232 memory. Because he has 232×8 candidates of
solution at the input of the 4th round MixBytes, he can obtain 232×8/228×8 = 232

solutions at the output of the 4th round MixBytes through this procedure. Hence, he
can generate one solution of the controlled phase with average complexity one.

As in the case of the 5-round collision attack, we need to have 232 message blocks
following the path in order to obtain a pair (m1, m

′

1) whose CV s collide. Therefore, the
total complexity of the attack is 280+32 = 2112 time and 232 memory.

By counting the degrees of freedom, it is expected we can generate at most 232 message
blocks following the path. Because the attack requires 232 message blocks following the
path, we expect just one collision of CV with high probability. 2 Hence our attack works.

2 If we cannot find a collision with this path, we can change the path slightly; we can change
the location of the full active ’off-diagonal’ columns at the output of the 3rd round MixBytes.
Using these paths, we can generate more message-blocks which have the same truncated
difference pattern at the end of the compression function and we can obtain a sufficient
number of message blocks for the attack to work.
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Fig. 6. Differential path between P and Q of 6-round Grøstl-256

4.3 Applying the Super-Sbox rebound technique to 8-round Grøstl-224

and -256

We show a semi-free-start collision attack on the Grøstl-224 and -256 compression func-
tions reduced to 8 rounds, using the Super-Sbox rebound technique. The differential path
between P (m ⊕ IV ) and Q(m) of the message block is shown in Fig 7.

The controlled phase (solid line) starts at the input of the 4th round MixBytes and
ends at the input of the 7th round SubBytes. The average time complexity to generate
an internal state pair that follows the path of the controlled phase is one. The remaining
steps of the path are the uncontrolled phase (dashed line). For the forward direction (from
the 7th round SubBytes to the end of compression function), the path can be followed
with probability almost one. For the backward direction (from the 4th round inverse
ShiftBytes to the beginning of the compression function), it takes 2112 computations
to follow two 8 → 1 transitions at the 3rd round inverse MixBytes and 216 computation
to follow the 3rd round inverse AddConstants. Therefore, the time complexity to find a
message block which follows the whole path is 2128.

Because the differences of CV at the end of the path are determined by the 8-byte
difference before the final MixBytes and the 8 non-zero bytes of IV , we need to have
264 message blocks following the path in order to obtain a pair (m1, m

′

1) whose CV s
collide, P (m1 ⊕ IV ′)⊕Q(m1)⊕ IV ′ = P (m′

1 ⊕ IV ′)⊕Q(m′

1)⊕ IV ′. Therefore, the total
complexity of the attack is 2128+64 = 2192 for time and 264 for memory.

By counting the degrees of freedom, it is expected that we can generate at most
264 message blocks following the path. Because the attack requires 264 message blocks
following the path, it is expected for us to have just one collision of CV with high
probability. 3 Hence our attack works.

3 If we cannot find a collision with this path, we can change the path, such that there are a full
active diagonal column and a off-diagonal column at the output of the 6th round MixBytes,
instead of a full active diagonal column. For the new path, we can generate at most 2128
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Fig. 7. Differential path between P and Q of 8-round Grøstl-224 and -256

We can follow the path also using the start-from-the-middle rebound technique with
the same time complexity and the same memory complexity.

5 Distinguishers for the round-reduced Grøstl permutation

In this section, we show improved distinguishers for 7 and 8 rounds of the Grøstl per-
mutations, applicable to both P and Q; the distinguisher for 7 rounds has practical time
and memory requirements. The distinguishers work in both the limited-birthday [6] and
the stronger Subspace Problem model [10]. Before going into detail about the different
notions of distinguishing, we describe the differential paths and attack procedures.

The truncated differential path for Grøstl reduced to 7 rounds is depicted in Fig. 8.

1st round 2nd 3rd 4th 5th 6th AC,SB,ShB MB

Fig. 8. Differential path for the 7-round distinguisher of the Grøstl permutation.

By using the start-from-the-middle rebound technique, we can create a pair following
this path with a complexity of about 28 compression function calls and negligible memory.
Starting from the input to SubBytes in the 5th round, we can create a pair following

message blocks following the path. This is enough to make a collision of CV, because CVs
live in 192-bit space. For this case, the complexities are 2224 time and 296 memory.



the path back to the output of SubBytes in the 2nd round with a complexity of about
one. The remaining steps in both directions are uncontrolled. Except for the transition
from 8 to 7 active bytes in the 5th round (which happens with probability 2−8), they
are followed with probability of almost one, hence about 28 repetitions are sufficient to
generate one pair following the entire path.

For eight rounds, we use the truncated differential path illustrated in Fig. 9.

1st round 2nd 3rd 4th 6th5th 7th AC,SB,ShB MB

Fig. 9. Differential path for the 8-round distinguisher of the Grøstl permutation.

In order to afford the two fully active states in the middle, we employ the Super-Sbox
technique. Starting from the output of MixBytes in round 3, 264 pairs following the path
until the input of MixBytes in round 6 can be generated at a cost of 264 computations
and 264 memory. Out of these 264 pairs, a fraction of about 2−2·32 are expected to follow
the required 8 → 4 transitions in both backward and forward direction. The remaining
transitions have a probability of about one, so that one pair following the entire 8-round
path can be found with 264 time and memory.

5.1 Distinguishers in the Limited-Birthday model

A limited-birthday distinguisher for a keyed permutation consists of an efficient proce-
dure to obtain pairs of inputs and outputs such that the input and output differences
are zero at i and j bit positions, respectively. If this procedure is more efficient than the
conceived best generic algorithm based on the birthday paradox, it is considered a valid
distinguisher [6]. Although primarily targeted for a known-key setting for keyed permu-
tations, limited-birthday distinguishers have been applied to the Grøstl permutation and
compression function [6].

In this setting, obtaining input/output pairs for the seven-round Grøstl permutation
(barring the last MixBytes) having a zero difference at 448 input and 64 output bits
should ideally take 232 operations, while following our procedure has a complexity of 28.
We have implemented the algorithm for the seven-round distinguisher. An example pair
of inputs to the P permutation following the entire path can be found in Table 3.

Likewise, in the eight-round case, the ideal complexity is 2128, while our procedure
takes 264 time and memory.

Table 3. Input pair (a, b) of Grøstl’s P permutation following the differential path used in the
7-round distinguisher.

a 10becfbee55034d9 05598137bd731e89 d36c10b47aa2df07 5d81efd7fc3c893b

d693175875f288e1 aed8001c310642cb 67cadc2fc955410a e775ab2a9d6101f7

b 69becfbee55034d9 05538137bd731e89 d36c33b47aa2df07 5d81ef9ffc3c893b

d693175898f288e1 aed8001c31b842cb 67cadc2fc955f50a e775ab2a9d6101ce



5.2 Distinguishers in the Subspace Problem model

Distinguishers based on the Subspace Problem [10] consider the problem of obtaining t
difference pairs for an N -bit permutation such that the output differences span a vector
space of dimension less than or equal to n (provided the input differences span a vector
space of dimension less than or equal to n too). Contrary to the limited-birthday model,
lower bounds for the number of permutation queries needed in the generic case can be
proven [10], so this provides a stronger distinguishing setting.

For the Grøstl permutation, we have N = 512. Our procedure to generate pairs for
the seven round trail of Figure 8 has to be compared to the generic lower bound given
by Corollary 4 of [10] with n = 448. Note that the conditions stated in Proposition 2
can actually be relaxed to t ≥ 2n and N > n. Starting from t = 211, our method is more
efficient (219 computations) than the generic algorithm (223 queries), yielding a valid
distinguisher.

For eight rounds, we have n = 256, and again choosing t = 211 gives a complexity of
2101 for the generic case, while our method has a complexity of 275 time and 264 memory.

6 Conclusion

We analyzed the Grøstl hash functions in this paper. Using the start-from-the-middle
rebound technique, we have shown a collision attack on the Grøstl-256 hash function
reduced to 5 rounds and 6 rounds with 248 and 2112 time complexities, respectively.
Furthermore, semi-free-start collision attacks on the Grøstl-224 and -256 hash functions
reduced to 7 rounds, on the the Grøstl-224 and -256 compression functions reduced to 8
rounds were shown and some improvements of distinguishers of the permutations were
presented. While our analysis shows (semi-free-start) collision attacks for up to seven
rounds which leaves just three rounds of security margin, it does not pose a direct threat
to the full Grøstl hash or compression function.

Further improvements. We expect memoryless algorithms for the birthday problem
such as Floyd’s cycle finding algorithm [8] to be applicable to the birthday matches
required in the last phase of our collision attacks. In this case, the memory requirements
of the collision attacks on 5 rounds and the semi-free-start collision attacks on 7 rounds
of the Grøstl-224 and -256 hash functions become negligible without significant increase
in time complexity. The memory requirements of the other attacks remain unchanged.
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A Additional Paths Used in the Start-from-the-Middle

Rebound Technique
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Fig. 10. Differential path between P and Q of 7-round Grøstl-224 and -256

AC SB ShB MB

AC SB ShB MB

AC SB ShB MB

IV

AC SB ShB MB

AC SB ShB MB

Fig. 11. Differential path between P and Q of 5-round Grøstl-224


