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Abstract In this paper, we propose a new generic reduction framework BoostReduce for strong lattice
basis reduction. At the core of our new framework is an iterative method which uses a newly-developed
algorithm for finding short lattice vectors and integrating them efficiently into an improved lattice
basis. We present BoostBKZ as an instance of BoostReduce using the Block-Korkine-Zolotarev (BKZ)
reduction. BoostBKZ is tailored to make effective use of modern computer architectures in that it takes
advantage of multiple threads. Experimental results of BoostBKZ show a significant reduction in running
time while maintaining the quality of the reduced lattice basis in comparison to the traditional BKZ
reduction algorithm.
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1 Introduction

Over the past few years, lattice theory has assumed an ever-increasing role in cryptography. Major
milestones include the seminal work by Lenstra, Lenstra, and Lovász introducing the LLL lattice
basis reduction algorithm; Schnorr and Euchner proposing a variant of the LLL algorithm [33]—
marking a break-through in enabling efficient lattice basis reduction in practice; or the advances in
providing for stronger lattice basis reduction in practice (e.g., Block Korkine-Zolotarev reduction
[10, 34]). These works have led to lattice basis reduction becoming a prominent tool in cryptanalysis
(e.g., [33, 11, 28, 29, 13, 14, 25]). Furthermore, lattice theory is gaining importance in designing cryp-
tographic primitives. In particular, it is widely believed that lattice theory can provide the means
for constructing cryptographic primitives that exhibit strong security even in the presence of quan-
tum computers. Recent advances in constructing lattice-based cryptographic primitives include the
introduction of the first fully homomorphic cryptosystem by Gentry [15] using ideal lattices, Peik-
ert’s work on constructing public key cryptosystems from the worst-case shortest vector problem
[30], lattice-based hash functions (e.g., [31, 24]), lattice-based identification schemes [23], or the
NTRU (e.g., [20, 37]) and GGH cryptosystems [16]—much of which was originally spurred by the
work of Ajtai and Dwork [1–3] which was the first to prove security based on hardness assumptions
of lattice problems.

One question that is key to lattice theory and especially its applications to cryptography con-
cerns the efficient finding of a short or the shortest lattice vector for a given basis in practice. While
considerable progress has been made in recent years (e.g., [12, 22, 26, 27, 6, 8, 40]), much needs yet
to be understood better—in particular with respect to the gap between theory and practice—and
further advances must be achieved. It is in this context that this paper introduces a new reduction
framework BoostReduce that provides a novel approach to strong lattice basis reduction tailored
to take advantage of today’s modern multi-core computer architectures. While major advances in
improving and parallelizing the Schnorr-Euchner LLL reduction in practice have been achieved for
quite some time already (e.g., [6, 8, 40, 26]), there was little to no progress in parallelizing stronger
lattice basis reduction algorithms, such as the Block-Korkine-Zolotarev (BKZ) reduction, until very



recently. Pujol et al. [35] developed a first parallel algorithm for finding the shortest lattice vectors
based on a variant of Kannan’s algorithm [21, 17]. The work of Hermans et al. [18, 19] focuses on a
similar parallel algorithm for finding shortest lattice vectors using CUDA capable graphics cards.
Both works constitute an important step towards a parallel BKZ reduction algorithm, but neither
of these algorithms does yet support pruning techniques which are essential for enabling efficient,
parallel BKZ reduction in practice—especially when considering typical problem sizes in many of
today’s cryptographic contexts.

Our new reduction framework pursues a different approach. The core structure of BoostReduce
is based on the use of sequences of lattice basis reductions [4, 5]. As a main component of the novel
framework we introduce a new set of intermediate steps in between the individual reductions that
are tailored to further improve the lattice basis and thus the starting point for the subsequent
lattice basis reduction. This is combined with a sophisticated tightening of the parameters for the
intermediate steps as well as the reduction algorithm itself. In addition, the new framework supports
the execution of multiple heuristics in parallel and as such provides the means to select an optimal
lattice basis as the starting point for the next round of the overall reduction process.

As a second main contribution of this paper, we introduce BoostBKZ as an instance of our new
framework BoostReduce which is based on the BKZ reduction algorithm. In particular, as part of
BoostBKZ we develop a new parallel algorithm for finding short lattice vectors that makes effective
use of the multi-core features of today’s computer architectures.

The third main component of this paper is an extensive analysis of the performance of BoostBKZ.
Our experiments show that BoostBKZ provides a significant improvement in practice over conven-
tional BKZ reduction.

Outline: Section 2 provides the definitions and notations used in the remainder of the paper.
Section 3 introduces our new reduction framework BoostReduce and Section 4 details BoostBKZ as
instance of our framework BoostReduce. Section 5 presents our new parallel algorithm for finding
short lattice vectors and Section 6 describes an algorithm for incorporating these short lattice
vectors into an improved lattice basis. Section 7 provides a detailed analysis of BoostBKZ. The
paper closes with some directions for future work.

2 Preliminaries

A lattice L =
{∑k

i=1 xibi|xi ∈ Z, 1 ≤ i ≤ k
}
⊂ Rn is an additive discrete subgroup of Rn. The linear

independent vectors b1, . . . , bk ∈ Rn (k ≤ n) form a basis B = (b1, . . . , bk) ∈ Rn×k of dimension k
of the lattice L. The basis of a lattice is not unique. A basis B may be transformed into a basis B′

of the same lattice L by applying a unimodular transformation U, i.e., B′ = BU with U ∈ Zn×k
and | detU | = 1.

The Gram-Schmidt orthogonalization B∗ = (b∗1, . . . , b
∗
k) of a lattice basis B = (b1, . . . , bk) ∈ Rn×k

is computed as b∗1 = b1, b∗i = bi −
∑i−1

j=1 µi,jb
∗
j for 2 ≤ i ≤ k where µi,j =

〈bi,b∗j 〉
‖b∗j‖

for 1 ≤ j < i ≤ k

where 〈., .〉 defines the scalar product of two vectors. It is important to note that B∗ is not necessarily
a basis for the lattice L, nor is a vector b∗i of the orthogonalization B∗ necessarily in L.

The defect of a lattice basis B = (b1, . . . , bk) ∈ Rn×k defined as dft(B) =
∏n

i=1 ‖bi‖
det(L) allows one

to compare the quality of different bases. Obviously, dft(B) ≥ 1 and dft(B) = 1 for an orthogonal
basis. The goal of lattice basis reduction is to determine a basis with smaller defect. That is, for a
lattice L ⊂ Rn with bases B and B′ ∈ Rn×k, B′ is better reduced than B if dft(B′) < dft(B).
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For a lattice L ⊆ Zn with basis B = (b1, . . . , bk) ∈ Zn×k, corresponding Gram-Schmidt or-
thogonalization B∗ = (b∗1, . . . , b

∗
k) ∈ Rn×k, and coefficients µi,j with 1 ≤ j < i ≤ k, πi :−→

span(b1, . . . , bi−1)⊥ for 1 ≤ i ≤ k denotes the orthogonal projection with πi(bj) =
∑k

s=i µjsb
∗
s. A

basis B = (b1, . . . , bk) ∈ Zn×k for lattice L ⊆ Zn is Block Korkine-Zolotarev reduced for block
size β ∈ N and reduction parameter 1

4 < y < 1, iff |µij | ≤ 1
2 for 1 ≤ j < i ≤ k (Eq. 1) and

y‖πi(bi)‖ ≤ λ1(L(πi(bi), . . . , πi(bmin(i+β−1,n)))) (Eq. 2) where λ1 denotes the length of the shortest
non-zero vector of L(πi(bi), . . . , πi(bmin(i+β−1,n))) [32].

3 The New Approach

In the following, we introduce and motivate the three main ideas of our new algorithmic framework
tailored to significantly decrease the running time of strong lattice basis reduction algorithms in
practice—thus enabling the tackling of large lattice bases.

The first idea in designing the framework is to iteratively reduce a lattice basis using a sequence
of reduction parameters that increase in size. This general heuristic previously proved beneficial in
the context of LLL reduction [4, 5]. The second idea is the introduction of suitable intermediate steps
in between two iterations with the goal of further improving the lattice basis and thus providing
for a better starting point for the subsequent reduction algorithm. In [7], for example, simple
modifications—such as sorting—resulted in a decrease of the running time when LLL reducing
unimodular lattice bases. The third idea for our new approach is to make effective use of today’s
multi-core computer architectures by exploiting the inherent parallel capabilities due to multiple
cores. Specifically, our framework is designed to allow for the executing of the same basic sequential
algorithm while employing differing algorithmic heuristics or using varying inputs on different cores.
As such it is possible to execute multiple heuristics or treat different inputs at once with the benefit
that the best one among multiple results can be selected as the starting point for subsequent steps.

These three basic ideas lead to the following structure of our new BoostReduce reduction
framework (see Algorithm 1): At the beginning, we perform an initial reduction using a weak set of
parameters. The main loop of BoostReduce (Lines (2) - (7)) corresponds to the overall iterative
algorithmic framework of our new approach. In each iteration of the main loop, we first use an
algorithm for finding a set S of linear combinations of short lattice vectors.

Algorithm 1: BoostReduce

Input: B = (b1, . . . , bk) ∈ Zn×k,
Pi parameter set for ReduceBasis, Ei parameter set for FindShortLV
Gj parameter set for generating improved bases
t number of allocated threads, r number of steps

Output: B = (b1, . . . , bk), BKZ reduced

(1) B = ReduceBasis(B ,P0 )
(2) for (1 ≤ i ≤ r) do
(3) S = FindShortLV (B,Ei)
(4) Use set S and parameters G1, . . . , Gt to generate improved bases B′1, . . . , B

′
t

(5) Run B ′′j = ReduceBasis(B ′j ,Pi ) with 1 ≤ j ≤ t
in parallel until maxred instances have finished.

(6) Select l such that pl = min{pj |1 ≤ j ≤ t} with pj =
∏k

i=1 ‖b′′ji‖
(7) B = B′′l

The set S of linear combinations of short lattice vectors serves as input for generating a number
of improved lattice basis B′j with 1 ≤ j ≤ t (see Line (4)) where the number t corresponds to the
number of threads allocated for the execution of BoostReduce. Subsequently, all improved lattice
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bases B′j are then reduced in parallel. In order to limit the time spent on the reductions and keeping
the overall algorithm balanced, ongoing reductions as part of Line (5) are terminated once maxred

number of the reductions are completed. Then, the best reduced lattice basis among the results
of all completed reductions is selected as the input for the next iteration of BoostReduce. This
selection can be done efficiently by searching for the basis with a minimal product of the lengths
of its basis vectors.1

In the following, we detail BoostBKZ as a concrete instance of our new reduction framework
BoostReduce based on BKZ reduction. In particular, as part of designing BoostBKZ we develop a
new parallel algorithm FindShortLV for finding short lattice vectors, introduce a new algorithm for
generating an improved lattice basis, and show how the various parameter sets need to be chosen
in a suitable fashion.

4 BoostBKZ — An Instance Of BoostReduce Using BKZ

In seeking for a strong lattice basis reduction method, BKZ often is the method of choice. While the
LLL lattice basis reduction algorithm generally outperforms BKZ reduction in terms of the reduc-
tion time, BKZ generally provides for better reduction results (for appropriately chosen parameters).
Generally, the quality of a BKZ reduced lattice basis depends on the reduction parameter δ (see
Eq. 2), the block size β, and the so-called pruning parameter for the enumeration process [10, 34].

BoostBKZ (see Algorithm 2) is the instantiation of the BoostReduce framework for the
BKZ lattice basis reduction algorithm. The main component of BoostBKZ is the subroutine
ThreadBoostBKZj (see Algorithm 3) which allows for the reduction of the improved lattice
bases in parallel. BoostBKZ first performs an initial BKZ reduction in Line (1). The main loop
(Lines (3) - (9)) implements the finding of short lattice vectors, generating, and reducing the
improved lattice basis.

Algorithm 2: BoostBKZ

Input: B = (b1, . . . , bk) ∈ Zn×k,
Pi parameter set for BKZ reduction,
Ei parameter set for FindShortLV,
Gj parameter set for GenerateBasis,
maxred number of BKZ instances,
t number of allocated threads,
r number of steps

Output: B = (b1, . . . , bk), BKZ reduced

(1) B = BKZ (B ,P0 )
(2) MUTEX INIT(lock)
(3) for (1 ≤ i ≤ r) do
(4) S = FindShortLV(B,Ei)
(5) finished = 0
(6) for (1 ≤ j ≤ t) do
(7) start thread with

B′′j = ThreadBoostBKZi(S, Pi, Gj)

(8) find l with ‖b′′l1‖ · . . . · ‖b
′′
lk
‖ minimal

(9) B = B′′l

Algorithm 3: ThreadBoostBKZj
Input: B = (b1, . . . , bk) ∈ Zn×k,

S set of linear combinations of
short vectors,
P parameter set for BKZ reduction,
G parameter set for GenerateBasis,
j thread number

Output: B∗j = (b1, . . . , bk), BKZ reduced

(1) B′ = GenerateBasis(B,G, S) 2

(2) B′′j = BKZ(B′, P )

(3) MUTEX LOCK(lock)
(4) finished = finished + 1
(5) if (finished ≥ maxred) then
(6) kill remaining instances of

threads with ThreadBoostBKZi
(7) fi
(8) MUTEX UNLOCK(lock)

1 In this case the product is sufficient to determine the quality of the reduced bases because all are bases of the same
lattice. Generally, determining the quality of a reduced basis requires the considering of the defect of the lattice.

2 In outlining our multi-threaded programs, we distinguish between variables that are local for every thread and
variables that are shared among all threads. Local variables are highlighted by the use of a different font (e.g.,
local vs. shared).
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In Line (4), BoostBKZ calls algorithm FindShortLV—a newly-developed parallel algorithm for
finding short lattice vectors (see Section 5 for details). Lines (5) - (7) initialize and create the t
threads running algorithm ThreadBoostBKZj with the set S of linear combinations of short lattice
vectors, the parameters for generating an improved basis, and the parameters of BKZ for the
current step as input parameters. In Lines (8) - (9), the best reduced basis is selected (amongst
those who finished as part of the parallel threads ThreadBoostBKZj) as a starting point for the
next iteration of BoostBKZ. It is necessary to adjust and tighten the parameters in each iteration
of BoostBKZ in order to improve the quality of the reduced basis. In particular, the block sizes
for BKZ and the size of the subsets for FindShortLV are increased in each iteration of BoostBKZ.
The respective parameter sets are Pi for the BKZ reduction and Ei for FindShortLV for iteration
i of BoostBKZ. Unlike the parameter sets Pi and Ei, the parameter sets Gj do not concern the
tightening or updating of parameters but rather correspond to the different strategies pursued in
parallel for algorithm GenerateBasis (see Section 6 for details). The number of different strategies
is directly correlated to the number of allocated threads.

In algorithm ThreadBoostBKZj, we first generate the improved lattice basis using the set S
provided by FindShortLV and the parameter set G which is unique for each one of the t executed
threads. This ensures that GenerateBasis does create a different B′ in each thread. The global
variable finished is used to count the completed BKZ instances. If the required number maxred is
reached, the remaining running threads ThreadBoostBKZj (see Lines (5) - (7), Algorithm 3) are
aborted. The access to finished is protected by a mutex in order to avoid a data race condition.

In the following, we first detail our newly-developed parallel enumeration algorithm
FindShortLV for finding short lattice vectors. FindShortLV is based on the idea of performing
multiple enumerations in parallel. The inputs for each enumeration are small subsets of the lattice
basis that are distinct with high probability. In Section 6 we then introduce a new algorithm that
generates an improved lattice basis using the set of short vectors found by FindShortLV.

5 Finding Short Lattice Vectors

To date, one of the best known methods for finding the shortest lattice vector in practice is the
enumeration method ENUM developed by Schnorr and Hoerner [10, 34]. However, the running time
of this algorithm is exponential in the size of the lattice basis and as such is not practical for
higher dimensions. Nevertheless, we use this algorithm as a subroutine as part of our new parallel
algorithm for finding short lattice vectors. It is in the novel way we use the subroutine that makes
this approach viable in practice. In contrast to the original use of the enumeration by Schnorr and
Hoerner, we are not interested in finding only the shortest lattice vectors, but we are interested in
vectors that are shorter than the current basis vectors we seek to replace. It is important to note that
our variant of the ENUM algorithm keeps all intermediate results and not only the shortest vector(s)
thus providing a larger set of short vectors which allows for more flexibility and opportunities in
improving the lattice basis as part of the subsequent steps of BoostBKZ. Another main difference
of our approach to that of Schnorr and Hoerner is that the enumeration is only applied to suitable
subsets of the lattice basis.

5.1 Parallel Enumeration

FindShortLV (see Algorithm 4) and ThreadFindShortLV (see Algorithm 5) implement our parallel
enumeration technique for finding short lattice vectors. FindShortLV is responsible for the proper
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initialization of the global variables that are later accessed and modified by the individual threads.
In addition, FindShortLV creates a mutex to avoid data race conditions before it spins off t threads
each running algorithm ThreadFindShortLV.

Overall, the parallel enumeration process is carried out in q sequence steps, each of which
includes the parallel enumeration of p subsets of a basis B. A simple approach for distributing the
work load among all threads would be to assign each thread p/t subsets in each sequence step.
This approach is not optimal because the running time of the subroutine ENUM depends on the
chosen subset and therefore varies greatly. This behavior forces us to implement a work-stealing
approach [9] in order to balance the work load equally among all threads. ThreadFindShortLV
entails q iterations and implements the idea of updating the parameters in each sequence step of
the iteration process. In Line (2), the p subsets of the lattice basis vectors are chosen based on a
specific strategy (see Section 5.2 for details). The thread that finishes the last one of the p subsets
in the current sequence step performs the transition of the parallel enumeration process to the
next sequence step (Lines (9) - (13)) resetting the subset counter pc and adjusting the parameters
Lc and c for ENUM and f, w and d for Strategyx

3. It is particularly important to note that the
length of the currently shortest lattice vectors found Lc is used to limit the enumeration bounds
for subsequent calls of the algorithm ENUM. It is updated within a particular sequence step, i.e., in
the course of treating the p sets in parallel (Line (7)), as well as during the transition from one
iteration to the next (Line (11)).

Algorithm 4: FindShortLV

Input: B = (b1, . . . , bk) ∈ Zn×k,
f, w, d ∈ N param for Strategyx
c pruning param for ENUM,
p no subsets per sequence step,
q no sequence steps,
fa, wa, da adjustment for f, d and w,
ca adjustment value for c
l1, l2 slack factors

Output: S set of linear combinations
of short lattice vectors

(1) S = ∅
(2) Lc = min

{
‖b1‖2}, . . . ‖bk‖2

}
(3) qc = pc = 0
(4) MUTEX INIT(lock)
(5) for (1 ≤ i ≤ t) do
(6) start thread ThreadFindShortLVi

Algorithm 5: ThreadFindShortLVi
Input: B = (b1, . . . , bk) ∈ Zn×k,

f, w, d ∈ N param for Strategyx
c pruning param for ENUM,
p no subsets per sequence step,
q no sequence steps,
fa, wa, da adjustment for f, d and w,
ca adjustment value for c
l1, l2 slack factors

Output: S set of linear combinations
of short lattice vectors

(1) repeat
(2) Strategyx(B′, B, f, w, d)
(3) Le = Lc · l1
(4) S′ = ENUM(B′, Le, c, 1, d)
(5) MUTEX LOCK(lock)
(6) S = S ∪ S′
(7) Lc = min

{
‖v‖2}|v ∈ S

}
(8) pc = pc + 1
(9) if (pc ≥ p) then

(10) pc = 0, qc = qc + 1
(11) Lc = l2 · Lc

(12) f = f + fa, d = d+ da
(13) w = w + wa, c = c · ca
(14) MUTEX UNLOCK(lock)
(15) until (qc ≥ q)

In order to enable the finding of sufficiently many short lattice vectors, Algorithms 4 and 5 use
so-called slack or length adjustment parameters l1 and l2. These parameters provide an effective
means for adjusting the upper bound for the length of lattice vectors (Le) considered in the process
of ENUM. To recall, we are not only interested in finding the shortest vectors but strive to also
find vectors that are close in length to the shortest lattice vectors. While the introduction of the

3 In case of Strategy1 (see Section 5.2), parameter w is ignored.
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slack parameters significantly increases the number of short vectors found, this comes at the cost
of a performance overhead. Consequently, it is crucial to strike a good balance between finding
sufficiently many short vectors and not suffering too much of a performance overhead.

5.2 Selecting Suitable Subsets

We have developed a randomized heuristic for selecting suitable subsets as part of the parallel
enumeration process. The heuristic approach is based on Conjecture 1 which was established as a
result of extensive experiments in which the Schnorr/Hoerner enumeration method was used for
determining a shortest lattice vector.

Conjecture 1. It is possible to compute short basis vectors of a lattice as a linear combination of
mostly short lattice basis vectors and a few longer vectors of the respective lattice basis.

In using the conjecture in practice, we start with a reduced lattice basis. Roughly speaking, Con-
jecture 1 is then interpreted as mainly using lattice basis vectors located in the front of the lattice
basis and combining them with a few vectors selected from the remainder of the reduced lattice ba-
sis. We have developed and evaluated three different strategies. While the first two are designed in
accordance with the conjecture, the third strategy was purposely designed to violate the conjecture.

For a lattice basis B = (b1, . . . , bk) ∈ Zn×k and f, d ∈ N with f < d, our first strategy
(Strategy1) selects the first f vectors of the reduced lattice basis B. The other d − f vectors
are chosen at random from the remaining lattice basis vectors. Strategy2 introduces an additional
parameter w with f < w. The parameter w defines a window of consecutive basis vectors from
which the first f vectors are selected. In Strategy2, this window is located at the front of the
lattice basis in order to comply with the conjecture. The remaining vectors are chosen at random
from basis vectors outside of the window (i.e., similar to Strategy1).

Strategy1

Input: B = (b1, . . . , bk) ∈ Zn×k, f < d
Output: B′ = (b′1, . . . , b

′
d)

(1) M = ∅
(2) for (1 ≤ i ≤ f) do
(3) M = M ∪ {i}
(4) j = f
(5) while (j < d) do
(6) select i randomly out of [f + 1, k]
(7) if (M ∩ {i} = ∅) then
(8) M = M ∪ {i}, j = j + 1
(9) j = 1

(10) for (1 ≤ i ≤ k) do
(11) if (M ∩ {i} 6= ∅) then
(12) b′j = bi, j = j + 1

Strategy2

Input: B = (b1, . . . , bk) ∈ Zn×k, f < w < d
Output: B′ = (b′1, . . . , b

′
d)

(1) M = ∅, j = 0
(2) while (j < f) do
(3) select i randomly out of [1, w]
(4) if (M ∩ {i} = ∅) then
(5) M = M ∪ {i}, j = j + 1
(6) j = f
(7) while (j < d) do
(8) select i randomly out of [w + 1, k]
(9) if (M ∩ {i} = ∅) then

(10) M = M ∪ {i}, j = j + 1
(11) j = 1
(12) for (1 ≤ i ≤ k) do
(13) if (M ∩ {i} 6= ∅) then
(14) b′j = bi, j = j + 1

The third strategy (Strategy3) is based on Strategy2 but allows for the position of the window
of size w to be selected at random. As a consequence, Strategy3 chooses the majority of the basis
vectors from the middle or the back part of the reduced lattice basis and as such is in clear violation
of Conjecture 1.
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5.3 Evaluation of Selection Strategies

The effectiveness of the three strategies in selecting subsets of lattice basis vectors was evaluated
using lattice bases generated as part of a lattice challenge contest conducted by the TU Darmstadt
[36]. These lattice bases are assumed to be hard instances constructed to allow the testing and
comparing of lattice basis reduction algorithms. Our tests use the lattice bases of the challenge
for dimensions 200 to 500 (the challenge provides one lattice basis for each dimension). Each basis
was first BKZ reduced with a block size of β = 20 using the NTL [40] implementation of the BKZ
reduction algorithm. Then, for each BKZ reduced basis we carried out 10 runs of FindShortLV

(using parameters q = 1 and p = 20, 000) each yielding a set of short vectors. Using the length
of the shortest of the short vectors of each one of the ten sets allows us to determine the average
length of the shortest of the short vectors determined by the experiment.
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strategy
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Figure 1. Strategyx for FindShortLV with q = 1 and p = 20000.

In a series of tests, we fix the number d of lattice vectors chosen as part of the Strategyx
algorithms to d = 75. For Strategy1 we chose f = 50. For Strategy2 and Strategy3 we used a
window of size w = 55 for selecting the first f = 50 basis vectors. Figure 1 summarizes the results of
the test. For each dimension, it shows the average length of the shortest of the short vectors averaged
over the ten runs for each test instance. For the challenge lattice basis of dimension 475 none of our
tested strategies were able to find short lattice vectors. Strategy3 also failed for dimension 350.
The results show that the average length of the shortest of the short vectors found by Strategy1
is significantly smaller than that for Strategy3. This result was expected due to the fact that
Strategy3 was designed to violate Conjecture 1 while Strategy1 was designed in compliance with
Conjecture 1. The average length for Strategy2 is significantly better than that for Strategy3,
yet slightly inferior to Strategy1. These results clearly support Conjecture 1 and suggest that
Strategy1 is the best among the tested strategies. We therefore use Strategy1 exclusively for the
experiments detailed in Section 7.

6 Generate An Improved Basis

In order to allow for an effective use of the short vectors found by FindShortLV as part of BoostBKZ
(see Algorithm 2, Line (4)), some of these short vectors must first be integrated properly into a
lattice basis. A straightforward approach is to add the short vectors to the lattice basis which was
the starting point for FindShortLV, thus yielding a generating system of lattice vectors. One would
then have to either transform the generating system into a basis or use a variant of the BKZ that
allows the use of a generating system instead of a lattice basis. However, both of these options have
a significant running time overhead. We therefore devise a new heuristic algorithm GenerateBasis

(see Algorithm 6) which allows the efficient computing of an improved lattice basis.
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Algorithm 6: GenerateBasis

Input: B = (b1, . . . , bk) ∈ Zn×k,
S set of linear combinations of
short vectors,
N number of vectors to be replaced

Output: B′ = (b′1, . . . b
′
k) ∈ Zn×k

improved basis

(1) z = (0, . . . , 0)
(2) B′ = B
(3) l = 0
(4) remove trivial s with ‖s‖ = 1 out of S

(5) foreach (s ∈ S) do
(6) S = S \ {s}
(7) find i with si = ±1 and zi = 0
(8) if (i exists) then

(9) b′i =
∑k

i=1 sibi
(10) l = l + 1
(11) for (1 ≤ j ≤ k) do
(12) if (sj 6= 0) then

(13) zj = 1

(14) if (l == N) then
(15) break
(16) possible repositioning (sort/random)

of newly inserted vectors

GenerateBasis receives as input the set S of linear combinations of short lattice vectors which
was computed by FindShortLV. These linear combinations are key in selecting a suitable linear
combination of basis vectors (which can be used to compute the actual set of short lattice vectors)
that can be used to replace a longer basis vectors. Specifically, GenerateBasis uses a flag array,
i.e., vector z that allows one to determine whether the exchange of a specific basis vector is allowed
thus ensuring that one never leaves the actual lattice. At the outset, all basis vectors are possible
candidates to be replaced (see Line (1), Algorithm 6). The main loop of the algorithm is executed
(Lines (5) - (15)) until a sufficiently large number N of vectors has been replaced. At the beginning
of each iteration of the loop, the linear combination s ∈ S is chosen which represents the shortest
of the short vectors left in S at that point. In order to determine whether the lattice vector
corresponding to the linear combination s can be used to replace a lattice basis vector, it is necessary
to check whether there is an 1 ≤ i ≤ k such that si = ±1 and zi = 0 (Line (7)). The lattice vector
corresponding to s cannot be used to replace a basis vector bi if si 6= ±1 as one would otherwise
leave the lattice. It is important to note that the replacing of a lattice basis vector (Line (9)) must
be carried out on a copy B′ of input basis B as all the linear combinations in S are relative to B.
Thus, a modification of B would invalidate the set of linear combinations S. The flag array z must
be updated after the respective lattice basis vector has been replaced. In Lines (11) - (13), every
position j in z is marked where the corresponding entry in the linear combination sj is not equal to
zero—thus disallowing every basis vector which has been used as part of the linear combination s
for further consideration. The final step of algorithm GenerateBasis allows the newly inserted
vectors to be repositioned within the improved lattice basis B′.

One of challenges with this new algorithm GenerateBasis is to decide which vector should be
replaced. The replacement is triggered by i (Line (7)) and each lattice vector bi with si = ±1 and
zi = 0 is a proper candidate. In our experiments (see Section 7) we focus on two variants: The first
variant chooses a minimal position i to allow the newly inserted vector to have an effect early on in
the subsequent BKZ reduction. This variant starts with i = 1 and checks the si and zi in a forward
direction by continuously increasing i. The second variant is tailored to incorporate the length of
the basis vector to be replaced. As such, the variant maximizes the position i in order to replace
longer vectors. The variant starts with i = k and searches for a suitable position in a backwards
direction by decreasing i continuously. It, however, is important to note that positioning a short
vector towards the end of the lattice basis can be a disadvantage as it takes longer for this shorter
vector to have an impact on the subsequent BKZ reduction.

The repositioning step as a final step of GenerateBasis (see Line (16)) allows us to, e.g., move
the inserted vectors to the front of the lattice basis and sort them according to their length. It
is important to note that we do not change the order of the vectors that have not been replaced.
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Some of our earlier experiments suggest that sorting the entire lattice basis may have a negative
impact on the quality of the reduced basis.

7 Results

The experiments were performed on a Sun x4150 server with two quad core Intel Xeon processors
at 2.83 GHz and 8 GB of main memory. We used NTL 5.5.1 [40] for the BKZ reduction, GMP 4.3.1
[38] as long integer arithmetic, and MPFR 2.3.1 [39] as multi-precision floating point arithmetic. All
programs (including our own code for GenerateBasis, FindShortLV etc.) have been compiled with
GCC 4.3.2 using identical optimization flags. As detailed in Section 5.3, for our experiments we use
the lattice bases published as part of the lattice contest conducted by the TU Darmstadt [36].

7.1 Evaluating FindShortLV

A first set of experiments was carried out to determine suitable parameters for FindShortLV. The
goal was to determine a set of parameters that yield the best cost-benefit ratio, i.e., balancing
the running time, the length, and the number of short vectors found. Due to the large number
of parameters, we were forced to fix some of the parameters for our tests. In particular, we fixed
p = 2, 000 and through some initial tests we determined that it proves beneficial to fix f = d− 10
for a given d. Table 1 summarizes the parameter sets for four different series of experiments. It is
important to note that in test series 3 and 4, the size of the subset of lattice vectors is adjusted before
advancing to the next iteration in ThreadFindShortLVi. Each test lattice is first BKZ reduced with
block size 20. Then, for each combination of parameters and test lattice we execute FindShortLV

ten times. Each run results in a set S of short lattice vectors. Using the length of the shortest of the
short vectors of each one of the ten sets allows us to determine the average length of the shortest
of the short vectors determined in each instance of the experiment. Figure 2 shows the average

series q c the ca l1 l2 f d fa, da

1 10 0.001 0.25 1.0 1.1 70 80 0
2 10 0.001 0.25 1.0 1.05 75 85 0
3 10 0.001 0.25 1.025 1.05 70 80 1
4 5 0.000001 0.25 1.0 (last seq. step 1.1) 1.0 70 80 1

Table 1. Parameters for FindShortLV

length of the shortest of the short lattice vector found by FindShortLV for a specific parameter set
and lattice basis. As expected, an increase in f and d has a positive effect on the average length of
the shortest of the short vectors found. Both the series 3 and 4 with their dynamically increasing f
and d manage to find the shortest vectors in our experiments. It is important to note that in most
cases series 4 yields a significantly higher number of short lattice vectors compared to series 1, 2,
and 3. This can easily be seen in Figure 3 which shows the average number of short vectors found
by FindShortLV (where the average is taken over the sizes of the ten sets resulting from the ten
individual runs). With the exception of dimensions 475 and 500, test series 3 does not find more
short vectors than test series 1 and 2 even though the slack parameter l1 is increased (see Table 1).
The shorter lattice vectors found by series 3 parameters make it more difficult to find additional
lattice vectors of similar size and this therefore requires an additional increase of slack parameter l1.
The parameters for test series 4 have been chosen in order to overcome these shortcomings (see
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Figure 3). To compensate for the increase in running time, test series 4 therefore uses a reduced
number of sequence steps q but with a tighter initial pruning parameter c. For the first four of the
q = 5 sequence steps test series 4 uses a slack parameter l1 = 1.0. This measure helps us to find a
reasonable short lattice vector as starting point for the final one of the q sequence steps. In the 5th
and final sequence step we use a slack parameter l1 = 1.1 in order to maximize the number of short
lattice vectors found. Figure 4 shows the average running time (in hours, averaged over the ten
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Figure 2. Average length of shortest of the short vector
found by FindShortLV.
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Figure 3. Average number of short vectors found by
FindShortLV.
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Figure 4. Average real time of FindShortLV with 8 threads and different parameters.

individual runs) of FindShortLV. An increase in d and f leads to a significant increase in running
time due to the exponential character of the subroutine ENUM. The increase of d = 80 for series 1
to d = 85 for series 2 leads (in most cases) to more than a fourfold increase in the running time.
(Recall that f is chosen as f = d − 10.) In addition, Figure 4 shows that we have been successful
in keeping the overhead for test series 4 within reasonable limits compared to series 2 and 3. While
one would hope that spending more time on finding shorter lattice vectors will pay off in the long
run, i.e., in the overall generic framework, we will see later that this, unfortunately, is generally
not true. The improvements of our reduction framework BoostBKZ strongly depend on both the
composition of the set of short lattice vectors generated by FindShortLV and their positioning
within the improved lattice basis.
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7.2 Evaluating BoostBKZ

Through a set of initial experiments it was determined that replacing a large number of basis vectors
often has no positive impact on the running time of BoostBKZ. Consequently, the number of lattice
basis vectors to be replaced as part of GenerateBasis is limited to at most ten. As discussed earlier,
the number of different parameter sets Gj for GenerateBasis is tied to the number of available
threads t. The compute servers in our test setup (see above) offer 8 cores. We therefore have chosen
the number of threads to be t = 8. Table 2 details the parameter sets Gj (N , the direction, and the
repositioning) used in combination with the test series as outlined previously (1 ≤ j ≤ 8). These
parameter sets have been determined based on an analysis of a set of initial experiments. (Further
details will be included in an extended version of this paper.)

G1 G2 G3 G4 G5 G6 G7 G8

N 3 5 7 10 3 5 7 10
Direction fwd. fwd. fwd. fwd. bwd. bwd. bwd. bwd.
Repositioning — — — — random random random random

Table 2. Parameters for GenerateBasis

In analyzing BoostBKZ, we conduct an experiment that is tailored to show the effectiveness of our
intermediate steps introduced as part of BoostBKZ to improve the overall reduction result. For that,
we fixed the number of iterations in BoostBKZ to r = 1. For the initial BKZ reduction (Line (1) in
Algorithm 2) we used block size 20. For the BKZ reductions in ThreadBoostBKZj (as part of the one
and only iteration in BoostBKZ) we used block size 25. The other parameters, such as the reduction
parameter (δ = 0.99) and the pruning parameter for the enumeration (2−15), were identical in both
cases. The maximum number of BKZ instances to be completed was set to maxred ∈ {1, 2, 3}.
We compared the performance of BoostBKZ to a conventional BKZ reduction with block size 25
(referred to as BKZ 25) and a sequence of conventional BKZ reductions with first block size 20
followed by a second one with block size 25 (referred to as BKZ 20/25). Each experiment was
conducted ten times and the averages were computed over the results of these ten runs. Figure 5
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Figure 5. Comparison of running time for conventional BKZ and BoostBKZ (Lines (5) - (9)) with maxred = 1, 2, 3
for FindShortLV with series 1 and 2

shows the running time (in hours) of Lines (5) - (9) of BoostBKZ for series 1 and 2 in comparison
to the conventional BKZ reductions. The experiments clearly show a substantial advantage in the
running time of our approach with maxred = 1 over both BKZ 25 and BKZ 20/25. It is interesting
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to note that for some test lattices BKZ 25 outperforms BKZ 20/25 and for some it is the other
way around. That is, neither BKZ 25 nor BKZ 20/25 is an optimal choice for conventional BKZ.
Figure 5 also shows that an increase in f and d from series 1 to series 2 has a significant impact on
the running time, especially for higher dimensions. The additional time spent in FindShortLV for
series 2 in comparison to series 1 is beneficial with respect to the overall running time. In particular,
it is important to note, that the running time for FindShortLV (see Figure 4) is negligible when
compared to the running time of Lines (5) - (9) of algorithm BoostBKZ in higher dimensions4.
Figure 6 shows the running time for series 3 and 4. At first, the results seem inferior in comparison
to the running times for series 1 and 2. However, when comparing the quality of the reduced basis
(see Figure 7) it becomes clear that series 3 and especially series 4 produce lattice bases of better
quality. Figure 7 shows that the quality for series 4 with maxred = 2 is almost equal to the quality
obtained for series 1 and 2 with maxred = 3. Even for maxred = 1, BoostBKZ yields lattice bases
of acceptable quality given test series 2 and 4 (see Figure 8) when compared to the conventional
BKZ reduction.

In order to gain a better understanding for the connection between the parameter maxred and
the quality of the reduced lattice basis we have analyzed the set of short lattice vectors found by
FindShortLV in more detail. Figure 9 shows the average length of the first 3, 5, 7, and 10 lattice
vectors that are inserted into the lattice basis by GenerateBasis. It is interesting to see that the
difference between the first ten short vectors and the first three short vectors is noticeably higher for
series 2 than for series 4. This difference is caused by the use of slack parameter l2 for series 2 and
l1 for series 4. Slack parameter l1 should therefore be preferred over l2. These results indicate that

4 By construction, FindShortLV scales almost perfectly with the number of dedicated CPU cores. E.g., doubling the
number of CPU cores will in general cut the running time of FindShortLV in half.
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Figure 6. Comparison of running time for conventional BKZ and BoostBKZ (Lines (5) - (9)) with maxred = 1, 2, 3
for FindShortLV with series 3 and 4

575 600
960

980

1000

1020

1040

1060

1080

1100

1120

dimension

lo
g

1
0
 d

e
fe

c
t

 

 
BKZ 20

BKZ 25

BKZ 20/25

maxred = 2 − series 1

maxred = 2 − series 2

maxred = 2 − series 3

maxred = 2 − series 4

maxred = 3 − series 1

maxred = 3 − series 2

Figure 7. Quality of lattice basis for maxred = 2, 3.

575 600
960

980

1000

1020

1040

1060

1080

1100

1120

dimension

lo
g

1
0
 d

e
fe

c
t

 

 
BKZ 20

BKZ 25

BKZ 20/25

maxred = 1 − series 1

maxred = 1 − series 2

maxred = 1 − series 3

maxred = 1 − series 4

Figure 8. Quality of lattice basis for maxred = 1.

13



450 475 500 525 550 575 600

30

40

50

60

70

80

dimension

le
n

g
th

 

 
series 2 − 3 SV

series 2 − 5 SV

series 2 − 7 SV

series 2 − 10 SV 

450 475 500 525 550 575 600

30

40

50

60

70

80

dimension

le
n

g
th

 

 
series 4 − 3 SV

series 4 − 5 SV

series 4 − 7 SV

series 4 − 10 SV 

Figure 9. Average length of 3, 5, 7 and 10 vectors inserted by GenerateBasis.

dedicating additional time in BoostBKZ for FindShortLV is beneficial in cases where the difference
in length between the inserted lattice vectors is minimal.

8 Conclusion and Future Work

The new algorithmic framework BoostReduce and the concrete instance BoostBKZ based on the
BKZ reduction presented in this paper provide an effective new means to strong lattice basis
reduction. Future work includes additional experiments to further fine-tune the choice of the various
parameters. In addition, we will investigate how much of an additional advantage one may achieve
by replacing the traditional BKZ reduction or the ENUM algorithm with recent developments in
reducing lattice bases and finding shortest lattice vectors [35, 18].
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